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Cloud storage auditing allows the users to store their data to the cloud with a guarantee that the data integrity can be efficiently
checked. In order to release the user from the burden of generating data signatures, the proxy with a valid warrant is introduced
to help the user process data in lightweight cloud storage auditing schemes. However, the proxy might be revoked or the proxy’s
warrant might expire.These problems are common and essential in real-world applications, but they are not considered and solved
in existing lightweight cloud storage auditing schemes. In this paper, we propose a lightweight identity-based cloud storage auditing
scheme supporting proxy update, which not only reduces the user’s computation overhead but alsomakes the revoked proxy or the
expired proxy unable to process data on behalf of the user any more.The signatures generated by the revoked proxy or the expired
proxy can still be used to verify data integrity. Furthermore, our scheme also supports workload-based payment for the proxy. The
security proof and the performance analysis indicate that our scheme is secure and efficient.

1. Introduction

Cloud storage enables users to store their data in the cloud
without retaining a copy locally. It greatly reduces the burden
of data storage management and maintenance and avoids the
capital expenditure on software/hardware on the user side.
Although cloud storage provides a lot of appealing benefits for
users, it also incurs a number of security challenges [1]. Once
the users upload their data to the cloud, they will lose the
physical control of their data since they no longer keep their
data locally.Thus, it is natural for users toworrywhether their
data stored in the cloud is intact or not due to the inevitable
human errors or software/hardware bugs in the cloud. In
order to guarantee the data integrity and reduce the user’s
computation and communication burden, some public cloud
storage auditing schemes [2–4] have been proposed to allow
a public verifier, such as the Third Party Auditor (TPA), to
perform periodical data integrity auditing tasks on behalf of
users.

In most existing public cloud storage auditing schemes,
the user relieves the computation burden for verifying data
integrity by introducing the TPA, but he still needs to
perform heavy computation for generating data signatures
before uploading data to the cloud. These data signatures are
used to check the integrity of cloud data. In order to deal
with the above problem, several lightweight cloud storage
auditing schemes [5–8] have been proposed. Wang et al. [5]
proposed a proxy-oriented data integrity auditing scheme.
In this scheme, the proxy helps the user to generate data
signatures, which obviously alleviates the user’s computation
burden. Shen et al. [6] constructed a lightweight cloud
storage auditing scheme, which introduces the Third Party
Medium (TPM) to generate data signatures and verify the
data integrity for users. These schemes introduced a proxy
with powerful computation capabilities to execute time-
consuming operation on behalf of users. Nevertheless, there
are two critical problems not well solved in all existing
lightweight cloud storage auditing schemes.
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Firstly, these lightweight cloud storage auditing schemes
cannot support proxy update. In real-world applications,
in order to designate a proxy, the user needs to issue a
warrant with a valid time period to this proxy. The cloud
will verify whether the proxy is valid based on this war-
rant. Furthermore, the proxy might be revoked before the
expiration of this valid time period. For instance, a user
with low computation capabilities delegates a proxy to help
him process data. The proxy can be a legal organization
which has significant computation resources. The user and
the proxy sign a contract with a specific valid time period.
Once the contract expires, the expired proxy should not be
able to process data on behalf of the user any more. Another
situation is that the user wants to change the proxy before
the expiration of the contract’s valid time period due to the
misbehaviour of the proxy. This revoked proxy also should
not be able to process data for the user any more even if his
warrant is still in a valid time period. Thus, how to design a
lightweight cloud storage auditing supporting proxy update
is worthwhile.

Secondly, existing lightweight cloud storage auditing
schemes do not consider the mechanism of paying for the
proxy based on the workload. In the lightweight cloud
storage auditing scenario, the user delegates a proxy to
upload files to the cloud on his behalf. However, the
number of these uploaded files might be greatly differ-
ent in different time period. Obviously, it is unfair for
the proxy if we pay for the proxy according to service
time. It is more reasonable to pay for the proxy according
to how many files he uploads to the cloud. Therefore,
it is necessary to design an effective mechanism to pay
for the proxy based on the workload in cloud storage
auditing.

Contribution. In order to deal with the above problems,
we propose a novel lightweight identity-based cloud storage
auditing scheme. In this scheme, we introduce a proxy to
help the user generate data signatures, which remarkably
releases the users’ burden on computation. Different from
the previous lightweight cloud storage auditing schemes, our
proposed scheme supports proxy update. In the detailed
scheme, the user issues a warrant to the designated proxy.
The proxy with the valid warrant can process data on behalf
of the user. In order to realize effective proxy update, the
valid time period and the proxy identity are embedded into
the warrant and the cloud keeps a public revocation list. It
makes the revoked proxy or the expired proxy unable to
process and upload data to the cloud on behalf of the user
any more. When the proxy is revoked or the proxy’s warrant
expires, the signatures generated by this proxy can still be
used to check data integrity according to this proxy iden-
tity, the corresponding time period, and some verification
values. We also design an effective mechanism to achieve
workload-based payment for the proxy. Our scheme relies
on identity-based cryptography, which simplifies certificate
management. We finally prove the security of the scheme
and evaluate the performance of the scheme by concrete
implementations.

1.1. Related Work. Ateniese et al. [2] firstly proposed the
notion of Provable Data Possession (PDP), in which the
techniques of homomorphic authenticators and random
sample are utilized to verify the integrity of data in the cloud.
To achieve the retrievability and the integrity guarantee of
the cloud data, Juels and Kaliski [9] proposed the concept of
Proof of Retrievability (PoR) and designed a concrete scheme
by employing the techniques of the spot-checking and the
error-correcting codes. Later, many variants of PDP and
PoR schemes [10–13] were constructed to deal with different
problems in cloud storage auditing.

In order to protect data privacy, Wang et al. [13] proposed
a cloud storage auditing scheme with data privacy preserving
by using a randommasking technique. Li et al. [14] presented
a privacy preserving remote data integrity auditing scheme
based on the zero-knowledge proof. To support data dynamic
operations, Liu et al. [15] designed a dynamic data integrity
auditing scheme with efficient fine-grained updates based
on the Merkle hash tree. Tian et al. [16] proposed a cloud
storage auditing scheme supporting data dynamics with the
employment of dynamic hash table. By utilizing key update
techniques [17], Yu et al. [18] solved the problem of key
exposure in cloud storage auditing. The privacy preserving
of authentication in cloud storage auditing was considered
in [19]. The problem of users’ identity privacy in shared data
auditing was taken into account in [20, 21].

To eliminate the complex certificate management in PKI
setting, Wang et al. [22] constructed the first identity-based
remote data integrity auditing scheme. Based on identity-
based cryptosystem, Yu et al. [23] designed a perfect data
privacy-preserving cloud storage auditing scheme, which
is able to achieve zero knowledge privacy against a third
party auditor. Li et al. [24] proposed a fuzzy identity-based
cloud storage auditing scheme, in which a set of descriptive
attributes is used as a user’s identity. Zhang et al. [25]
considered the problem of user revocation in the cloud
storage auditing and presented an identity-based shared
data integrity auditing scheme supporting real efficient user
revocation. Shen et al. [26] proposed an identity-based cloud
storage auditing scheme for shared data. In this scheme,
the cloud file can be shared and used by others under the
condition that the sensitive information is hidden.

Most end users, such as smart phone, have constrained
computation resources and computation capabilities. In
order to alleviate the user’s computation burden, many
lightweight cloud storage auditing schemes were proposed.
Li. et al. [27] and Wang et al. [28], respectively, proposed
cloud storage auditing schemes for low-performance end
devices based on online/offline signatures. In these two
schemes, most heavy computations are executed in the
offline phase. Nonetheless, the user still needs to carry out
lightweight computations for generating data signatures in
the online phase. In order to deal with this problem, Wang
et al. [5] proposed an identity-based cloud storage auditing
scheme by introducing a proxy to help users generate data
signatures. In this scheme, the user does not need to consume
computation resources to generate data signatures. Shen et
al. [6] designed a lightweight data integrity auditing scheme
for cloud storage, in which theThird Party Medium (TPM) is
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introduced to process data on behalf of users. Wang et al. [8]
constructed a comprehensive cloud storage auditing scheme.
In this scheme, the user delegates the task of data signature
generation to a dedicated proxy. However, all these schemes
that introduce the proxy donot consider the problemof proxy
update. In addition, the problem of workload-based payment
was also not taken into account. Actually, these problems are
common and essential in real-world applications as discussed
above.

1.2. Organization. The rest of this paper is organized as
follows. We present the system model and design goals
in Section 2. In Section 3, we give the notations and
the definition and review several cryptographic knowledge.
The proposed cloud storage auditing scheme is introduced
in Section 4. The security proof and performance eval-
uation of the proposed scheme are given, respectively,
in Section 5 and Section 6. Section 7 concludes the
paper.

2. System Model and Design Goals

2.1. System Model. As shown in Figure 1, there are five
types of entities in our system model, that is, the user, the
cloud, the proxy, the Private Key Generator (PKG), and the
TPA.

(1) User:The user is the data owner, who hasmassive data
files to be stored to the cloud. Most end users, such
as smart phone and PDAs, have limited computation
resources and computation capabilities.

(2) Cloud: The cloud has enormous storage space and
computation resources and offers data storage ser-
vices for the user.

(3) Proxy: The proxy is authorized by the user and helps
the user to process and upload data to the cloud.

(4) PKG: The PKG is responsible for generating global
parameters, the partial private key, and the private
keys for the proxy, the user, and the cloud, respec-
tively, according to their identities.

(5) TPA:The TPA is in charge of executing cloud storage
auditing on behalf of the user. The TPA can check
whether the cloud stores the user’s data correctly by
performing the challenge-response protocol with the
cloud.

In our system model, when a user would like to store
his data to the cloud, he will delegate a proxy to help him
to process data. Meanwhile, the user generates the warrant-
signature pair and the time private key and then sends them
to the proxy.The proxy with a valid warrant can generate the
signatures for data and upload these data blocks along with
the signature set to the cloud on behalf of the user. When the
proxy is revoked or the proxy’s warrant expires, this proxy
cannot process data for the user any more. The user pays for
the proxy based on the proxy’s workload. Same as the system
mode in cloud storage schemes [5, 8, 12, 25, 29], we do not
take any collusion into account in this system.

2.2. Design Goals. To support proxy update, workload-based
payment, and lightweight identity-based cloud storage audit-
ing, our designed scheme should achieve the following goals:

(1) Auditing correctness: to ensure that the auditing proof
generated by the cloud can pass the TPA’s verification,
if the cloud possesses the user’s intact data.

(2) Auditing soundness: to guarantee that the cloud can-
not pass the validation of the TPA if it does not keep
the user’s data correctly.

(3) Lightweight: to reduce the computation burden of
generating data signatures and verifying data integrity
for the user with constrained computation capabili-
ties.

(4) Secure proxy update: to ensure that the revoked proxy
or the expired proxy cannot process data on behalf of
the user any more.

(5) Efficient proxy update: to guarantee that the data
signatures generated by the proxy do not need to
be recomputed even if this proxy is revoked or his
warrant expires.

(6) Effective payment: to ensure that the user can pay for
the proxy based on the workload of the proxy.

3. Notations, Definition, and
Cryptographic Knowledge

3.1. Notations. In Table 1, we show the notations used in the
description of our scheme.

3.2. Definition

Definition 1. A lightweight identity-based cloud storage
auditing scheme supporting proxy update and workload-
based payment is composed by the following eight algo-
rithms:

(1) 𝑆𝑒𝑡𝑢𝑝:The setup algorithm is run by the PKG. It takes
as input the security parameter k and outputs the
master private key 𝑥 and the public parameters 𝑝𝑝.

(2) 𝐸𝑥𝑡𝑟𝑎𝑐𝑡: The extract algorithm is run by the PKG.
It takes as input the public parameters 𝑝𝑝, the user
identity 𝐼𝐷𝑢 , the cloud identity 𝐼𝐷𝑐 , the proxy identity𝐼𝐷𝑝, and the master private key 𝑥 and generates the
user 𝐼𝐷𝑢’s private key 𝑠𝑘𝑢, the cloud 𝐼𝐷𝑐’s private key𝑠𝑘𝑐, and the proxy 𝐼𝐷𝑝’s partial private key 𝑠𝑘𝑝. The
user verifies the correctness of the private key 𝑠𝑘𝑢.The
cloud checks the correctness of the private key 𝑠𝑘𝑐.
Theproxy verifies the correctness of the partial private
key 𝑠𝑘𝑝.

(3) 𝑃𝑟𝑜𝑥𝑦𝐾𝑒𝑦𝐺𝑒𝑛: The proxy private key generation
algorithm is run by the user and the proxy. It takes
as input the warrant’s start time 𝑇𝑠 and end time 𝑇𝑒,
the user identity 𝐼𝐷𝑢, the proxy identity 𝐼𝐷𝑝, and
the partial private key 𝑠𝑘𝑝. The user generates the
time private key 𝑠𝑘𝑇 and the warrant-signature pair(𝑚𝑤, (𝑅1, 𝜎1)). The proxy generates the proxy private
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Figure 1: System model of our cloud storage auditing.

Table 1: Notations.

Notation Meaning
𝐺1, 𝐺2 Multiplicative cyclic groups with prime order p
𝑔, 𝑢 Two generators of group 𝐺1𝑒 A bilinear pairing map 𝑒 : 𝐺1 × 𝐺1 󳨀→ 𝐺2𝐻 A cryptographic hash function,𝐻 : {0, 1}∗ × 𝐺1 󳨀→ 𝑍∗𝑝ℎ A cryptographic hash function, ℎ : {0, 1}∗ 󳨀→ 𝐺1𝑘 The security parameter
𝑥 Themaster private key
𝐼𝐷𝑢 The user identity
𝐼𝐷𝑝 The proxy identity
𝐼𝐷𝑐 The cloud identity
𝑠𝑘𝐼𝐷𝑢 The user 𝐼𝐷𝑢’s private key𝑠𝑘𝐼𝐷𝑝 The proxy 𝐼𝐷𝑝’s partial private key𝑠𝑘𝐼𝐷𝑐 The cloud 𝐼𝐷𝑐’s private key𝑚𝑤 The warrant
𝑇𝑠, 𝑇𝑒 The warrant’s start time and end time
(𝑅𝑇, 𝜎𝑇) The time private key
(𝑅𝐼𝐷𝑝 , 𝑅𝑇, 𝜎) The proxy private key
𝐹 The file
𝑛 The number of data blocks of file F
𝑚𝑖 (𝑖 = 1, 2, . . . , 𝑛) The i-th block of file F
𝜎𝑖 The signature of data block𝑚𝑖Φ The signature set of data blocks
𝑁 The upload number
𝜇 The linear combination of data blocks
𝜎 An aggregated data signature
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key (𝑅𝐼𝐷𝑝 , 𝑅𝑇, 𝜎) according to the time private key and
the partial private key.

(4) 𝑆𝑖𝑔𝑛𝐺𝑒𝑛: The signature generation algorithm is run
by the proxy. It takes as input the file name 𝑛𝑎𝑚𝑒, the
file 𝐹, the warrant’s start time 𝑇𝑠 and end time 𝑇𝑒, and
the proxy private key (𝑅𝐼𝐷𝑝 , 𝑅𝑇, 𝜎) and generates the
set of signatures Φ and the file tag 𝑡𝑎𝑔.

(5) 𝑃𝑟𝑜𝑜𝑓𝐺𝑒𝑛: The proof generation algorithm is run by
the cloud. It takes as input the file F, the correspond-
ing signature set Φ, and the auditing challenge chal
and generates an auditing proof P that is used to prove
the cloud stores the file correctly.

(6) 𝑃𝑟𝑜𝑜𝑓𝑉𝑒𝑟𝑖𝑓𝑦: The proof verification algorithm is run
by the TPA. It takes as input the public parameters𝑝𝑝, the auditing challenge chal, and the auditing proof
P and returns “1” if the verification passes or “0” if
otherwise.

(7) 𝑃𝑟𝑜𝑥𝑦𝑈𝑝𝑑𝑎𝑡𝑒: The proxy update algorithm is run by
the user and the proxy. It takes as input the new
warrant’s start time 𝑇𝑠 and end time 𝑇𝑒, the user
identity 𝐼𝐷𝑢, the proxy identity 𝐼𝐷𝑝, and the partial
private key 𝑠𝑘𝑝.The user generates a new time private
key and a new warrant-signature pair. The proxy
generates the proxy private key according to the new
time private key and the partial private key.

(8) 𝑃𝑎𝑦𝑚𝑒𝑛𝑡: The payment algorithm is run by the
cloud, the proxy, and the user. It takes as input the
upload number𝑁 and the cloud’s private key 𝑠𝑘𝑐 and
generates the signature 𝛽 corresponding to 𝑁. The
proxy and the user check the validity of 𝛽.

3.3. Cryptographic Knowledge

(1) BilinearMaps.A bilinear map is a map 𝑒 : 𝐺1 ×𝐺1 󳨀→ 𝐺2,
where𝐺1 and𝐺2 are two multiplicative cyclic groups of order𝑝 with the following properties:

(a) Computability: there exists an efficiently computable
algorithm to calculate 𝑒(𝑢, V) for 𝑢, V ∈ 𝐺1.

(b) Bilinearity: for all 𝑢, V ∈ 𝐺1 and 𝑥, 𝑦 ∈ 𝑍∗𝑝, 𝑒(𝑢𝑥, V𝑦) =𝑒(𝑢, V)𝑥𝑦.
(c) Nondegeneracy: 𝑒(𝑔, 𝑔) ̸= 1, where 𝑔 is the generator

of 𝐺1.
(2) Computational Diffie-Hellman (CDH) Problem. Given 𝑔𝑥
and 𝑔𝑦, where 𝑔 is a generator of a multiplicative group𝐺1 with the prime order 𝑝, and 𝑥, 𝑦 ∈ 𝑍∗𝑝 are unknown,
calculate 𝑔𝑥𝑦 ∈ 𝐺1. The CDH assumption in 𝐺1 holds if it is
computationally infeasible to solve the CDH problem in 𝐺1.
(3) Discrete Logarithm (DL) Problem. Given 𝑔𝑎, where 𝑔 is a
generator of a multiplicative group 𝐺1 with the prime order𝑝, and 𝑎 ∈ 𝑍∗𝑝 is unknown, calculate 𝑎. The DL assumption
in 𝐺1 holds if it is computationally infeasible to solve the DL
problem in 𝐺1.

4. The Proposed Scheme

In our scheme, the file 𝐹 is divided into 𝑛 blocks, i.e., 𝐹 =(𝑚1, 𝑚2, . . . , 𝑚𝑛), where 𝑚𝑖 denotes the 𝑖th block of file 𝐹. In
previous cloud storage auditing schemes [18, 32], there is a
signature 𝑆𝑆𝑖𝑔 that is used to guarantee the correctness of
the file identifier name. Without loss of generality, we also
utilize a similar identity-based signature 𝑆𝑆𝑖𝑔 to ensure the
correctness of the file identifier name, the warrant’s valid time
period, the proxy identity, and the verification values in our
scheme.We assume 𝑠𝑠𝑘 is the secret key for the signature 𝑆𝑆𝑖𝑔.
The proxy holds this secret key. In addition, we assume the
upload number is𝑁, which is used to record how many files
are uploaded to the cloud by the proxy. The upload number
is initialized to 0. The details of the proposed scheme are as
follows.

(1) Setup

(a) The PKG randomly selects two multiplicative cyclic
groups 𝐺1, 𝐺2 with the prime order p, a bilinear map𝑒 : 𝐺1 ×𝐺1 󳨀→ 𝐺2, two generators 𝑔, 𝑢 ∈ 𝐺1, and two
cryptographic hash functions𝐻 : {0, 1}∗ ×𝐺1 󳨀→ 𝑍∗𝑝
and ℎ : {0, 1}∗ 󳨀→ 𝐺1.

(b) The PKG randomly picks 𝑥 ∈ 𝑍∗𝑝 as its master private
key and computes 𝑌 = 𝑔𝑥.

(c) The PKG publishes the global parameters 𝑝𝑝 =(𝐺1, 𝐺2, 𝑝, 𝑔, 𝑒, 𝑢, 𝑌,𝐻, ℎ) and keeps his master pri-
vate key 𝑥.

(2) Extract. The PKG generates private keys for the user 𝐼𝐷𝑢
and the cloud 𝐼𝐷𝑐, respectively, and generates the partial
private key for the proxy 𝐼𝐷𝑝.The user 𝐼𝐷𝑢 and the cloud 𝐼𝐷𝑐
can verify the correctness of their private keys, respectively.
The proxy 𝐼𝐷𝑝 can check correctness of the partial private
key.

(a) After receiving the user’s identity 𝐼𝐷𝑢, the PKG
randomly chooses 𝑟𝐼𝐷𝑢 ∈ 𝑍∗𝑝, and calculates 𝑅𝐼𝐷𝑢 =𝑔𝑟𝐼𝐷𝑢 and 𝜎𝐼𝐷𝑢 = 𝑟𝐼𝐷𝑢 + 𝑥𝐻(𝐼𝐷𝑢, 𝑅𝐼𝐷𝑢). Set the user’s
private key 𝑠𝑘𝐼𝐷𝑢 = (𝑅𝐼𝐷𝑢 , 𝜎𝐼𝐷𝑢).The PKG sends 𝑠𝑘𝐼𝐷𝑢
to the user 𝐼𝐷𝑢.
Upon receiving the private key from the PKG, the user𝐼𝐷𝑢 validates the correctness of 𝑠𝑘𝐼𝐷𝑢 by checking
whether the following equation holds or not:

𝑔𝜎𝐼𝐷𝑢 = 𝑅𝐼𝐷𝑢𝑌𝐻(𝐼𝐷𝑢 ,𝑅𝐼𝐷𝑢 ). (1)

If (1) holds, the user 𝐼𝐷𝑢 accepts the private key 𝑠𝑘𝐼𝐷𝑢 ;
otherwise, the user rejects it.

(b) Similarly, receiving the cloud’s identity 𝐼𝐷𝑐, the PKG
calculates the cloud’s private key 𝑠𝑘𝐼𝐷𝑐 = (𝑅𝐼𝐷𝑐 , 𝜎𝐼𝐷𝑐 ),
where 𝑅𝐼𝐷𝑐 = 𝑔𝑟𝐼𝐷𝑐 and 𝜎𝐼𝐷𝑐 = 𝑟𝐼𝐷𝑐 + 𝑥𝐻(𝐼𝐷𝑐, 𝑅𝐼𝐷𝑐 )
and then sends it to the cloud.The cloud can verify the
correctness of 𝑠𝑘𝐼𝐷𝑐 by checking the equation 𝑔𝜎𝐼𝐷𝑐 =𝑅𝐼𝐷𝑐𝑌𝐻(𝐼𝐷𝑐 ,𝑅𝐼𝐷𝑐 ).
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(c) Receiving the proxy’s identity 𝐼𝐷𝑝, the PKGcalculates
the proxy’s private key, and the proxy can get its
partial private key 𝑠𝑘𝐼𝐷𝑝 = (𝑅𝐼𝐷𝑝 , 𝜎𝐼D𝑝 ), where 𝑅𝐼𝐷𝑝 =𝑔𝑟𝐼𝐷𝑝 and 𝜎𝐼𝐷𝑝 = 𝑟𝐼𝐷𝑝 + 𝑥𝐻(𝐼𝐷𝑝, 𝑅𝐼𝐷𝑝). The proxy
can check the correctness of 𝑠𝑘𝐼𝐷𝑝 by checking the
equation 𝑔𝜎𝐼𝐷𝑝 = 𝑅𝐼𝐷𝑝𝑌𝐻(𝐼𝐷𝑝,𝑅𝐼𝐷𝑝 ).

(3) ProxyKeyGen. This process is illustrated in Figure 2. The
user 𝐼𝐷𝑢 firstly sets thewarrant’s start time and end time, then
generates the time private key and the warrant-signature pair,
and finally sends all the above messages to the proxy 𝐼𝐷𝑝.The
proxy 𝐼𝐷𝑝 can verify the correctness of the above messages,
respectively, and then computes the proxy private key based
on the partial private key and the time private key.

(a) The user 𝐼𝐷𝑢 executes the following steps.
(i) The user 𝐼𝐷𝑢 sets the warrant’s start time 𝑇𝑠 and

end time 𝑇𝑒. The user 𝐼𝐷𝑢 selects 𝑟𝑇∈𝑅𝑍∗𝑝 and
computes 𝑅𝑇 = 𝑔𝑟𝑇 and 𝜎𝑇 = 𝑟𝑇 + 𝜎𝐼𝐷𝑢 ⋅ 𝐻(𝑇𝑠 ‖𝑇𝑒, 𝑅𝑇). Let 𝑠𝑘𝑇 = (𝑅𝑇, 𝜎𝑇) be the time private
key.

(ii) The user 𝐼𝐷𝑢 generates a warrant 𝑚𝑤, which
is used to authorize a designated proxy. The
warrant 𝑚𝑤 consists of the user’s identity 𝐼𝐷𝑢,
the proxy’s identity 𝐼𝐷𝑝, and the warrant’s valid
time period (start time 𝑇𝑠 and end time 𝑇𝑒).
Let the warrant be denoted as 𝑚𝑤 = 𝐼𝐷𝑢 ‖𝐼𝐷𝑝 ‖ 𝑇𝑠 ‖ 𝑇𝑒. The user 𝐼𝐷𝑢 picks 𝑟1∈𝑅𝑍∗𝑝 and
calculates the warrant 𝑚𝑤’s signature as follows:𝑅1 = 𝑔𝑟1 and 𝜎1 = 𝑟1 + 𝜎𝐼𝐷𝑢 ⋅ 𝐻(𝑚𝑤, 𝑅1).

(iii) The user 𝐼𝐷𝑢 sends the warrant’s valid time
period (𝑇𝑠, 𝑇𝑒), the time private key (𝑅𝑇, 𝜎𝑇),
warrant-signature pair (𝑚𝑤, (𝑅1, 𝜎1)), and the
verification value 𝑅𝐼𝐷𝑢 to the proxy 𝐼𝐷𝑝.

(b) Upon receiving the messages from the user 𝐼𝐷𝑢, the
proxy 𝐼𝐷𝑝 does the following steps:
(i) The proxy 𝐼𝐷𝑝 verifies the validity of warrant-

signature pair (𝑚𝑤, (𝑅1, 𝜎1)) by checking
whether the following equation holds:

𝑔𝜎1 = 𝑅1𝑅𝐻(𝑚𝑤,𝑅1)𝐼𝐷𝑢
𝑌𝐻(𝐼𝐷𝑢 ,𝑅𝐼𝐷𝑢 )⋅𝐻(𝑚𝑤,𝑅1). (2)

If (2) does not hold, the proxy 𝐼𝐷𝑝 rejects the
warrant 𝑚𝑤 from the user 𝐼𝐷𝑢; otherwise, he
accepts the warrant and then does step (ii).

(ii) The proxy 𝐼𝐷𝑝 checks the correctness of time
private key (𝑅𝑇, 𝜎𝑇) by validating the following
equation:

𝑔𝜎𝑇 = 𝑅𝑇𝑅𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇)𝐼𝐷𝑢
𝑌𝐻(𝐼𝐷𝑢 ,𝑅𝐼𝐷𝑢 )⋅𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇). (3)

If (3) holds, the proxy 𝐼𝐷𝑝 computes 𝜎 = (𝜎𝐼𝐷𝑝 +𝜎𝑇)(𝑚𝑜𝑑𝑝) and sets the proxy private key as(𝑅𝐼𝐷𝑝 , 𝑅𝑇, 𝜎).

(4) SignGen.This process is illustrated in Figure 3.The proxy𝐼𝐷𝑝 calculates the signatures for data blocks with the proxy
private key and then generates the file tag which is used to
guarantee the correctness of the file name, the warrant’s valid
time period, the proxy identity, and some verification values.
Finally, the proxy 𝐼𝐷𝑝 sends the file 𝐹, its corresponding
signature set, the file tag, the warrant’s valid time period,
and the warrant-signature pair to the cloud. The cloud firstly
checks whether the proxy is in the public revocation list, then
verifies the validity of the warrant-signature pair and the file
tag, and finally generates a signature for the upload number.

(a) The proxy 𝐼𝐷𝑝 performs the following operations.

(i) The proxy 𝐼𝐷𝑝 computes the signature 𝛽𝑖 of the
data block 𝑚𝑖 with the proxy private key 𝜎 as
follows:

𝛽𝑖 = (ℎ (𝑛𝑎𝑚𝑒 ‖𝑖‖ 𝐼𝐷𝑝) 𝑢𝑚𝑖)𝜎 , (4)

where 𝑛𝑎𝑚𝑒 ∈ 𝑍∗𝑝 is the identifier of the file F.
Denote the set of signatures asΦ = {𝛽𝑖}𝑖∈[1,𝑛].

(ii) The proxy 𝐼𝐷𝑝 calculates the file tag 𝑡𝑎𝑔 =𝑛𝑎𝑚𝑒 ‖ 𝑇𝑠 ‖ 𝑇𝑒 ‖ 𝑅𝐼𝐷𝑝 ‖ 𝑅𝑇 ‖ 𝐼𝐷𝑝 ‖𝑆𝑆𝑖𝑔𝑠𝑠𝑘(𝑛𝑎𝑚𝑒 ‖ 𝑇𝑠 ‖ 𝑇𝑒 ‖ 𝑅𝐼𝐷𝑝 ‖ 𝑅𝑇 ‖ 𝐼𝐷𝑝).
(iii) The proxy 𝐼𝐷𝑝 sends the file 𝐹, its corre-

sponding signatures set Φ, the file tag 𝑡𝑎𝑔,
the warrant’s valid time period (𝑇𝑠, 𝑇𝑒), and
the warrant-signature pair (𝑚𝑤, (𝑅1, 𝜎1)) to the
cloud.

(iv) The proxy 𝐼𝐷𝑝 sets the upload number 𝑁 =𝑁 + 1, which is used to record how many files
are uploaded to the cloud.

(b) After receiving the abovemessages, the cloud executes
the following operations.

(i) The cloud verifies whether the proxy 𝐼𝐷𝑝 is in
the public revocation list. If the proxy 𝐼𝐷𝑝 is
not in the revocation list, the cloud does the
following step (ii); otherwise, the cloud regards
the proxy 𝐼𝐷𝑝 as a revoked proxy and refuses his
request.

(ii) The cloud checks the validity of the warrant-
signature pair (𝑚𝑤, (𝑅1, 𝜎1)) based on (2). If the
current time period is not in the valid time
period (𝑇𝑠, 𝑇𝑒), then the warrant 𝑚𝑤 can be
regarded as an invalid warrant and the cloud
refuses the request of the proxy; otherwise, the
cloud continues to perform the following step
(iii).

(iii) The cloud checks the validity of the file tag by
verifying whether the signature 𝑆𝑆𝑖𝑔𝑠𝑠𝑘(𝑛𝑎𝑚𝑒 ‖𝑇𝑠 ‖ 𝑇𝑒 ‖ 𝑅𝐼𝐷𝑝 ‖ 𝑅𝑇 ‖ 𝐼𝐷𝑝) is a valid signature
or not based on the proxy identity 𝐼𝐷𝑝. If it is
not, the cloud believes this signature is invalid;
otherwise, the cloud does the last step.
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User IDu

1. sets warrant’s start time Ts and end time Te

2. selects rT and computes the time private key skT

3. generates a warrant-signature pair (m, (R1, 1))

4. sends (Ts, Te), skT, (m, (R1, 1)) and verification
value RID

Proxy IDp

5. verifies the validity of warrant-
signature pair (m, (R1, 1))

6. checks the correctness of time
private key skT

7. computes the proxy private key
(RID

, (RT, )

Figure 2: The process of proxy private key generation.

Proxy IDp Cloud

1. computes the signature i of the data blocks mi

2. calculates the file tag
3. sends the file F, its corresponding signatures set Φ,
the file tag, the warrant’s valid time period (Ts, Te),
and warrant-signature pair (m, (R1, 1))

4. sets the upload number N = N+ 1

5. verifies whether the proxy IDp is
in the public revocation list
6. checks the validity of the warrant-
signature pair (m, (R1, 1))

7. checks the validity of the file tag
8. stores the data uploaded by the
proxy IDp, and increases the upload
number he stores
9. generates a signature  for the upload
number N

Figure 3: The process of signature generation.

(iv) The cloud stores the data uploaded by the proxy𝐼𝐷𝑝 and increases the upload number he stores
to keep pace with the number 𝑁 stored by the
proxy. Then the cloud generates a signature 𝛽 =𝑆𝑆𝑖𝑔󸀠𝑠𝑘𝑐(𝑁)with its private key 𝑠𝑘𝑐 for the upload
number𝑁.

Remark 2. The proxy usually uploads data in bulk to the
cloud. Thus, the cloud may only need to generate a signature
for the newest upload number rather than every upload
number.

(5) ProofGen. The TPA firstly verifies the validity of file tag
and then generates and sends an auditing challenge to the
cloud. The cloud responds to an auditing proof to the TPA.

(a) The TPA firstly verifies the correctness of the file tag𝑡𝑎𝑔 by checking whether 𝑆𝑆𝑖𝑔𝑠𝑠𝑘(𝑛𝑎𝑚𝑒 ‖ 𝑇𝑠 ‖ 𝑇𝑒 ‖𝑅𝐼𝐷𝑝 ‖ 𝑅𝑇 ‖ 𝐼𝐷𝑝) is a valid signature. If it is not, the
TPA does not execute the auditing task; otherwise, he
parses 𝑛𝑎𝑚𝑒 ‖ 𝑇𝑠 ‖ 𝑇𝑒 ‖ 𝑅𝐼𝐷𝑝 ‖ 𝑅𝑇 ‖ 𝐼𝐷𝑝 to obtain
the file name 𝑛𝑎𝑚𝑒, the warrant’s valid time period
(start time 𝑇𝑠 and end time 𝑇𝑒), the verification values𝑅𝐼𝐷𝑝 , 𝑅𝑇, and the proxy identity 𝐼𝐷𝑝. Then the TPA
randomly picks a c-element subset I from the set [1, 𝑛]
and selects a random V𝑖 ∈ 𝑍∗𝑝 for each 𝑖 ∈ 𝐼. The TPA

sends the auditing challenge 𝑐ℎ𝑎𝑙 = {𝑖, V𝑖}𝑖∈𝐼 to the
cloud.

(b) After receiving the auditing challenge, the cloud
calculates 𝜇 = ∑𝑖∈𝐼𝑚𝑖V𝑖 and Ω = ∏𝑖∈𝐼𝛽𝑖V𝑖 . Next, the
cloud returns 𝑃 = {𝜇,Ω} as the auditing proof to the
TPA.

(6) ProofVerify. The TPA verifies whether the following
equation holds or not:

𝑒 (Ω, 𝑔) = 𝑒(∏
𝑖∈𝐼

ℎ (𝑛𝑎𝑚𝑒 󵄩󵄩󵄩󵄩󵄩𝐼𝐷𝑝󵄩󵄩󵄩󵄩󵄩 𝑖)V𝑖 ⋅ 𝑢𝜇, 𝑅𝐼𝐷𝑝 ⋅ 𝑅𝑇

⋅ 𝑅𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇)𝐼𝐷𝑢
⋅ 𝑌𝐻(𝐼𝐷𝑝 ,𝑅𝐼𝐷𝑝 )+𝐻(𝐼𝐷𝑢,𝑅𝐼𝐷𝑢 )𝐻(𝑇𝑠 ,𝑇𝑒 ,𝑅𝑇))

(5)

If (5) holds, output “1”; otherwise, output “0.”

(7) ProxyUpdate

(a) When the proxy 𝐼𝐷𝑝 is revoked by the user 𝐼𝐷𝑢
before the expiration of the valid time period, the
cloud will put this revoked proxy’s identity 𝐼𝐷𝑝 in a
public revocation list. Then, the user 𝐼𝐷𝑢 authorizes
a new proxy 𝐼𝐷𝑝󸀠 and sets the warrant’s valid time
period for this proxy 𝐼𝐷𝑝󸀠and then computes the time
private key based on the warrant’s valid time period
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and generates a warrant-signature pair for the new
proxy 𝐼𝐷𝑝󸀠 . Finally, the user 𝐼𝐷𝑢 sends all the above
messages to the new proxy 𝐼𝐷𝑝󸀠 . The proxy 𝐼𝐷𝑝󸀠 can
validate the correctness of the messages he received
and next compute the proxy private key based on the
partial private key generated by the PKG and the time
private key.

(i) The user 𝐼𝐷𝑢 sets the warrant’s start time 𝑇𝑠
and end time 𝑇𝑒. The user 𝐼𝐷𝑢 selects 𝑟𝑇∈𝑅𝑍𝑝
and computes 𝑅𝑇 = 𝑔𝑟𝑇 and 𝜎𝑇 = 𝑟𝑇 + 𝜎𝐼𝐷𝑢 ⋅𝐻(𝑇𝑠, 𝑇𝑒, 𝑅𝑇). Let (𝑅𝑇, 𝜎𝑇) be the time private
key.

(ii) The user 𝐼𝐷𝑢 generates a warrant 𝑚𝑤, which is
used to authorize a new proxy 𝐼𝐷𝑝󸀠 .Thewarrant𝑚𝑤 consists of the user’s identity 𝐼𝐷𝑢 , the proxy’s
identity 𝐼𝐷𝑝󸀠 , and the warrant’s start time 𝑇𝑠
and end time 𝑇𝑒. Let the warrant be denoted as𝑚𝑤 = 𝐼𝐷𝑢 ‖ 𝐼𝐷𝑝󸀠 ‖ 𝑇𝑠 ‖ 𝑇𝑒. The user 𝐼𝐷𝑢
picks 𝑟1∈𝑅𝑍∗𝑝 and computes the warrant 𝑚𝑤’s
signature as follows: 𝑅1 = 𝑔𝑟1 and 𝜎1 = 𝑟1 +𝜎𝐼𝐷𝑢 ⋅ 𝐻(𝑚𝑤, 𝑅1).

(iii) The user 𝐼𝐷𝑢 sends the warrant’s valid time
period (𝑇𝑠, 𝑇𝑒), the time private key (𝑅𝑇, 𝜎𝑇),
and the warrant-signature pair (𝑚𝑤, (𝑅1, 𝜎1)) to
the proxy 𝐼𝐷𝑝󸀠 .

(iv) The proxy 𝐼𝐷𝑝󸀠 verifies the validity of warrant-
signature pair (𝑚𝑤, (𝑅1, 𝜎1)) by (2). Then, the
proxy 𝐼𝐷𝑝󸀠 checks the correctness of time pri-
vate key (𝑅𝑇, 𝜎𝑇) by (3) and calculates the proxy
private key (𝑅𝐼𝐷

𝑝󸀠
, 𝑅𝑇, 𝜎) based on the time

private key (𝑅𝑇, 𝜎𝑇) and the partial private key(𝑅𝐼𝐷
𝑝󸀠
, 𝜎𝐼𝐷

𝑝󸀠
), where 𝜎 = (𝜎𝐼𝐷

𝑝󸀠
+ 𝜎𝑇)(𝑚𝑜𝑑𝑝).

(b) When the proxy 𝐼𝐷𝑝’s warrant expires, the user 𝐼𝐷𝑢
can select to continue employing this proxy. The
user 𝐼𝐷𝑢 generates a new warrant for the proxy 𝐼𝐷𝑝
by updating the warrant’s start time and end time.
The operations are similar to the above case (a) in𝑃𝑟𝑜𝑥𝑦𝑈𝑝𝑑𝑎𝑡𝑒 algorithm.

When the proxy is revoked, the cloudwill put this revoked
proxy’s identity in a public revocation list. It makes the
revoked proxy unable upload new file to the cloud any more.
In addition, when the proxy’s warrant expires, he does not
have the new valid warrant and the expired warrant he
keeps cannot pass the verification of (2) in 𝑃𝑟𝑜𝑥𝑦𝐾𝑒𝑦𝐺𝑒𝑛
algorithm. Therefore, neither the revoked proxy nor the
expired proxy can upload a new file to the cloud any more.

Remark 3. If a proxy is in the public revocation list, he can
be deleted from this revocation list when his warrant expires.
Thus, the size of public revocation list will not increase
unlimitedly.

(8) Payment. When the proxy 𝐼𝐷𝑝’s warrant expires or the
proxy 𝐼𝐷𝑝 is revoked, the user 𝐼𝐷𝑢 will pay for the proxy 𝐼𝐷𝑝
based on his workload.

(a) The proxy 𝐼𝐷𝑝 requests the cloud to send him the
signature of the newest upload number𝑁.

(b) Upon receiving the request, the cloud computes the
signature of the newest upload number as 𝛽 =𝑆𝑆𝑖𝑔󸀠𝑠𝑘𝑐(𝑁 ‖ 𝐼𝐷𝑝) and returns 𝛽 to the proxy 𝐼𝐷𝑝.

(c) The proxy 𝐼𝐷𝑝 uses the cloud identity to check the
validity of signature 𝛽 by inputting his identity 𝐼𝐷𝑝
and the upload number𝑁 he records and then shows
the signature 𝛽 from the cloud and the newest upload
number𝑁 to the user 𝐼𝐷𝑢.

(d) The user 𝐼𝐷𝑢 verifies whether the signature 𝛽 is valid
or not via the cloud identity 𝐼𝐷𝑐. When this signature
is valid, the user 𝐼𝐷𝑢 pays for the proxy 𝐼𝐷𝑝 based on
the newest upload number𝑁.

5. Security Analysis

Theorem 4 (correctness). Our proposed scheme satisfies the
following properties:

(1) Private key correctness: If the private keys and the
partial private key generated by the PKG are correct,
then these private keys and the partial private key are
able to pass the checking of the user, the cloud, and the
proxy, respectively.

(2) Warrant-signature pair correctness: If the warrant-
signature pair generated by the user is valid, then
this warrant-signature pair is able to pass the proxy’s
checking.

(3) Time private key correctness: If the time private key
generated by the user is correct, then this time private
key is able to pass the proxy’s verification.

(4) Auditing correctness: If the auditing proof generated by
the cloud is valid, this proof is able to pass the TPA’s
verification.

Proof.

(1) Given a correct private key 𝑠𝑘𝐼𝐷𝑢 = (𝑅𝐼𝐷𝑢 , 𝜎𝐼𝐷𝑢)
generated by the PKG, the verification equation (1) in
Extract algorithm can be presented as follows:

𝑔𝜎𝐼𝐷𝑢 = 𝑔𝑟𝐼𝐷𝑢+𝑥𝐻(𝐼𝐷𝑢 ,𝑅𝐼𝐷𝑢 ) = 𝑔𝑟𝐼𝐷𝑢 ⋅ 𝑔𝑥𝐻(𝐼𝐷𝑢 ,𝑅𝐼𝐷𝑢 )
= 𝑅𝐼𝐷𝑢𝑌𝐻(𝐼𝐷𝑢 ,𝑅𝐼𝐷𝑢 )

(6)

Similarly, if the private key 𝑠𝑘𝐼𝐷𝑐 = (𝑅𝐼𝐷𝑐 , 𝜎𝐼𝐷𝑐 ) and
the partial private key 𝑠𝑘𝐼𝐷𝑝 = (𝑅𝐼𝐷𝑝 , 𝜎𝐼𝐷𝑝 ) generated
by the PKG are correct, we can ensure that the private
key 𝑠𝑘𝐼𝐷𝑐 and the partial private key 𝑠𝑘𝐼𝐷𝑝 are able
to pass the verification of the cloud and the proxy,
respectively.

(2) Given a valid warrant-signature pair (𝑚𝑤, (𝑅1, 𝜎1))
generated by the user 𝐼𝐷𝑢, the verification equation
(2) in ProxyKeyGen algorithm holds.
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𝑔𝜎1 = 𝑔𝑟1+𝜎𝐼𝐷𝑢 ⋅𝐻(𝑚𝑤,𝑅1) = 𝑔𝑟1 ⋅ 𝑔𝜎𝐼𝐷𝑢 ⋅𝐻(𝑚𝑤,𝑅1)
= 𝑅1 ⋅ 𝑔(𝑟𝐼𝐷𝑢+𝑥𝐻(𝐼𝐷𝑢 ,𝑅𝐼𝐷𝑢 ))⋅𝐻(𝑚𝑤,𝑅1)
= 𝑅1 ⋅ 𝑔𝑟𝐼𝐷𝑢 ⋅𝐻(𝑚𝑤,𝑅1) ⋅ 𝑔𝑥𝐻(𝐼𝐷𝑢 ,𝑅𝐼𝐷𝑢 )⋅𝐻(𝑚𝑤,𝑅1)
= 𝑅1𝑅𝐻(𝑚𝑤,𝑅1)𝐼𝐷𝑢

𝑌𝐻(𝐼𝐷𝑢 ,𝑅𝐼𝐷𝑢 )⋅𝐻(𝑚𝑤,𝑅1)
(7)

(3) Given a time private key 𝑠𝑘𝐼𝐷𝑐 = (𝑅𝐼𝐷𝑐 , 𝜎𝐼𝐷𝑐 ) gener-
ated by the user 𝐼𝐷𝑢, the verification equation (3) in
ProxyKeyGen algorithm can be presented as follows:

𝑔𝜎𝑇 = 𝑔𝑟𝑇+𝜎𝐼𝐷𝑢 ⋅𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇) = 𝑔𝑟𝑇 ⋅ 𝑔𝜎𝐼𝐷𝑢 ⋅𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇)
= 𝑅𝑇 ⋅ 𝑔(𝑟𝐼𝐷𝑢+𝑥𝐻(𝐼𝐷𝑢,𝑅𝐼𝐷𝑢 ))⋅𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇)
= 𝑅𝑇 ⋅ 𝑔𝑟𝐼𝐷𝑢 ⋅𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇) ⋅ 𝑔𝑥𝐻(𝐼𝐷𝑢 ,𝑅𝐼𝐷𝑢 )⋅𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇)
= 𝑅𝑇𝑅𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇)𝐼𝐷𝑢

𝑌𝐻(𝐼𝐷𝑢 ,𝑅𝐼𝐷𝑢 )⋅𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇)
(8)

(4) Given a valid proof𝑃 = {𝜇,Ω} generated by the cloud,
the verification equation (5) in ProofVerify algorithm
can be proved as follows:

𝑒 (Ω, 𝑔) = 𝑒(∏
𝑖∈𝐼

𝛽𝑖V𝑖 , 𝑔)
= 𝑒(∏

𝑖∈𝐼

(ℎ (𝑛𝑎𝑚𝑒 󵄩󵄩󵄩󵄩󵄩𝐼𝐷𝑝󵄩󵄩󵄩󵄩󵄩 𝑖) ⋅ 𝑢𝑚𝑖)𝜎⋅V𝑖 , 𝑔)
= 𝑒(∏

𝑖∈𝐼

(ℎ (𝑛𝑎𝑚𝑒 󵄩󵄩󵄩󵄩󵄩𝐼𝐷𝑝󵄩󵄩󵄩󵄩󵄩 𝑖) ⋅ 𝑢𝑚𝑖)V𝑖 , 𝑔𝜎)
= 𝑒(∏

𝑖∈𝐼

ℎ (𝑛𝑎𝑚𝑒 󵄩󵄩󵄩󵄩󵄩𝐼𝐷𝑝󵄩󵄩󵄩󵄩󵄩 𝑖)V𝑖 ⋅ ∏
𝑖∈𝐼

𝑢𝑚𝑖⋅V𝑖 , 𝑔𝜎)
= 𝑒(∏

𝑖∈𝐼

ℎ (𝑛𝑎𝑚𝑒 󵄩󵄩󵄩󵄩󵄩𝐼𝐷𝑝󵄩󵄩󵄩󵄩󵄩 𝑖)V𝑖 ⋅ 𝑢∑𝑖∈𝐼 V𝑖⋅𝑚𝑖 , 𝑔𝜎)
= 𝑒(∏

𝑖∈𝐼

ℎ (𝑛𝑎𝑚𝑒 󵄩󵄩󵄩󵄩󵄩𝐼𝐷𝑝󵄩󵄩󵄩󵄩󵄩 𝑖)V𝑖 ⋅ 𝑢𝜇, 𝑔𝜎𝐼𝐷𝑝+𝜎𝑇)
= 𝑒(∏

𝑖∈𝐼

ℎ (𝑛𝑎𝑚𝑒 󵄩󵄩󵄩󵄩󵄩𝐼𝐷𝑝󵄩󵄩󵄩󵄩󵄩 𝑖)V𝑖 ⋅ 𝑢𝜇,
𝑔𝑟𝐼𝐷𝑝+𝑥𝐻(𝐼𝐷𝑝,𝑅𝐼𝐷𝑝 )+𝑟𝑇+𝜎𝐼𝐷𝑢𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇))
= 𝑒(∏

𝑖∈𝐼

ℎ (𝑛𝑎𝑚𝑒 󵄩󵄩󵄩󵄩󵄩𝐼𝐷𝑝󵄩󵄩󵄩󵄩󵄩 𝑖)V𝑖 ⋅ 𝑢𝜇, 𝑅𝐼𝐷𝑝 ⋅ 𝑌𝐻(𝐼𝐷𝑝,𝑅𝐼𝐷𝑝 )

⋅ 𝑅𝑇 ⋅ 𝑔𝜎𝐼𝐷𝑢 ⋅𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇)) = 𝑒(∏
𝑖∈𝐼

ℎ (𝑛𝑎𝑚𝑒 󵄩󵄩󵄩󵄩󵄩𝐼𝐷𝑝󵄩󵄩󵄩󵄩󵄩 𝑖)V𝑖
⋅ 𝑢𝜇, 𝑅𝐼𝐷𝑝 ⋅ 𝑌𝐻(𝐼𝐷𝑝 ,𝑅𝐼𝐷𝑝 ) ⋅ 𝑅𝑇
⋅ 𝑔(𝑟𝐼𝐷𝑢+𝑥𝐻(𝐼𝐷𝑢,𝑅𝐼𝐷𝑢 ))⋅𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇))

= 𝑒(∏
𝑖∈𝐼

ℎ (𝑛𝑎𝑚𝑒 󵄩󵄩󵄩󵄩󵄩𝐼𝐷𝑝󵄩󵄩󵄩󵄩󵄩 𝑖)V𝑖 ⋅ 𝑢𝜇, 𝑅𝐼𝐷𝑝 ⋅ 𝑌𝐻(𝐼𝐷𝑝 ,𝑅𝐼𝐷𝑝 )

⋅ 𝑅𝑇 ⋅ 𝑅𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇)𝐼𝐷𝑢
⋅ 𝑌𝐻(𝐼𝐷𝑢 ,𝑅𝐼𝐷𝑢 )𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇))

= 𝑒(∏
𝑖∈𝐼

ℎ (𝑛𝑎𝑚𝑒 󵄩󵄩󵄩󵄩󵄩𝐼𝐷𝑝󵄩󵄩󵄩󵄩󵄩 𝑖)V𝑖 ⋅ 𝑢𝜇, 𝑅𝐼𝐷𝑝 ⋅ 𝑅𝑇

⋅ 𝑅𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇)𝐼𝐷𝑢
⋅ 𝑌𝐻(𝐼𝐷𝑝,𝑅𝐼𝐷𝑝 )+𝐻(𝐼𝐷𝑢,𝑅𝐼𝐷𝑢 )𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇))

(9)

Theorem5 (auditing soundness). In our proposed scheme, the
cloud cannot pass the validation of the TPA if it does not keep
the user’s data correctly.

Proof. We construct a knowledge extractor and utilize the
method of knowledge proof to accomplish the following
proof. If the cloud does not keep the user’s data correctly but
can pass the validation of the TPA, then we can repeatedly
interact between the proposed scheme and the knowledge
extractor to extract the intact challenged data blocks. We will
prove this theorem by a sequence of games.

Game 1. The adversary sends a query to the challenger
for obtaining the signatures of a series of data blocks. The
challenger generates the corresponding signatures for these
data blocks and sends them to the adversary. Then the
challenger submits an auditing challenge 𝑐ℎ𝑎𝑙 = {𝑖, V𝑖}𝑖∈𝐼
to the adversary. The adversary generates the auditing proof𝑃 = {𝜇, Ω} and sends it to the challenger.

Game 2. Game 2 is identical to Game 1, with one difference.
That is the challenger keeps a list of responses to the queries
from the adversary. The challenger observes each instance
of the challenge-respond process with the adversary. If the
challenger finds the aggregated signature Ω is not equal to∏𝑖∈𝐼𝛽𝑖V𝑖 , he declares failure and aborts.

Analysis. Assume that the auditing proof {𝜇, Ω} is generated
by the honest prover based on the correct file 𝐹. From the
correctness of our scheme, we get

𝑒 (Ω, 𝑔) = 𝑒(∏
𝑖∈𝐼

ℎ (𝑛𝑎𝑚𝑒 󵄩󵄩󵄩󵄩󵄩𝐼𝐷𝑝󵄩󵄩󵄩󵄩󵄩 𝑖)V𝑖 ⋅ 𝑢𝜇, 𝑅𝐼𝐷𝑝 ⋅ 𝑅𝑇

⋅ 𝑅𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇)𝐼𝐷𝑢
⋅ 𝑌𝐻(𝐼𝐷𝑝,𝑅𝐼𝐷𝑝 )+𝐻(𝐼𝐷𝑢,𝑅𝐼𝐷𝑢 )𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇))

(10)

Assume that the forged auditing proof {𝜇󸀠, Ω󸀠} is gener-
ated by the adversary based on the corrupted file 𝐹󸀠, where𝐹󸀠 ̸= 𝐹. Because the forgery is successful, we get
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𝑒 (Ω󸀠, 𝑔) = 𝑒(∏
𝑖∈𝐼

ℎ (𝑛𝑎𝑚𝑒 󵄩󵄩󵄩󵄩󵄩𝐼𝐷𝑝󵄩󵄩󵄩󵄩󵄩 𝑖)V𝑖 ⋅ 𝑢𝜇󸀠 , 𝑅𝐼𝐷𝑝 ⋅ 𝑅𝑇

⋅ 𝑅𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇)𝐼𝐷𝑢
⋅ 𝑌𝐻(𝐼𝐷𝑝,𝑅𝐼𝐷𝑝 )+𝐻(𝐼𝐷𝑢,𝑅𝐼𝐷𝑢 )𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇))

(11)

Obviously, 𝜇󸀠 ̸= 𝜇; otherwise Ω󸀠 = Ω, which contradicts
our above assumption. We define Δ𝜇 = 𝜇 − 𝜇󸀠 and show a
simulator that could break the challenge CDH instance with
this adversary as follows.

Given (𝑔, 𝑔𝜀, 𝜑) ∈ 𝐺1, the simulator outputs 𝜑𝜀. Set 𝑢 =𝑔𝑎𝜑𝑏, where 𝑎, 𝑏 ∈ 𝑍∗𝑝 are two randomelements chosen by the
simulator. Meanwhile, the verification value is set as 𝑌 = 𝑔𝜀.

The simulator selects a random element 𝑟𝑖 ∈ 𝑍∗𝑝 for each𝑖 (1 ≤ 𝑖 ≤ 𝑛) in the challenge and programs the randomoracle
at 𝑖 as

𝐻(𝑛𝑎𝑚𝑒 󵄩󵄩󵄩󵄩󵄩𝐼𝐷𝑝󵄩󵄩󵄩󵄩󵄩 𝑖) = 𝑔𝑟𝑖
(𝑔𝑎𝑚𝑖 ⋅ 𝜑𝑏𝑚𝑖) (12)

The simulator can compute 𝛽𝑖, since we get
𝐻(𝑛𝑎𝑚𝑒 󵄩󵄩󵄩󵄩󵄩𝐼𝐷𝑝󵄩󵄩󵄩󵄩󵄩 𝑖) ⋅ 𝑢𝑚𝑖 = 𝑔𝑟𝑖

(𝑔𝑎𝑚𝑖 ⋅ 𝜑𝑏𝑚𝑖) ⋅ 𝑢𝑚𝑖

= 𝑔𝑟𝑖
(𝑔𝑎𝑚𝑖 ⋅ 𝜑𝑏𝑚𝑖) ⋅ (𝑔𝑎𝜑𝑏)

𝑚𝑖

= 𝑔𝑟𝑖
(𝑔𝑎𝑚𝑖 ⋅ 𝜑𝑏𝑚𝑖) ⋅ (𝑔𝑎𝑚𝑖 ⋅ 𝜑𝑏𝑚𝑖) = 𝑔𝑟𝑖

(13)

The simulator calculates 𝛽𝑖 = (ℎ(𝑛𝑎𝑚𝑒‖𝑖‖𝐼𝐷𝑝)𝑢𝑚𝑖)𝜎 =(𝑔𝑟𝑖)𝜎.
Dividing (10) by (11), we have

𝑒 ( ΩΩ󸀠 , 𝑔) = 𝑒 (𝑢Δ𝜇, 𝑅𝐼𝐷𝑝
⋅ 𝑌𝐻(𝐼𝐷𝑝 ,𝑅𝐼𝐷𝑝 )+𝐻(𝐼𝐷𝑢,𝑅𝐼𝐷𝑢 )𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇) ⋅ 𝑅𝑇

⋅ 𝑅𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇)𝐼𝐷𝑢
)

= 𝑒 ((𝑔𝑎𝜑𝑏)Δ𝜇 , 𝑔𝑟𝐼𝐷𝑝+𝑟𝑇+𝑟𝐼𝐷𝑢𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇)
⋅ 𝑌𝐻(𝐼𝐷𝑝 ,𝑅𝐼𝐷𝑝 )+𝐻(𝐼𝐷𝑢,𝑅𝐼𝐷𝑢 )𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇))
= 𝑒 (𝑔𝑎Δ𝜇, 𝑔𝑟𝐼𝐷𝑝+𝑟𝑇+𝑟𝐼𝐷𝑢𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇)
⋅ 𝑌𝐻(𝐼𝐷𝑝 ,𝑅𝐼𝐷𝑝 )+𝐻(𝐼𝐷𝑢,𝑅𝐼𝐷𝑢 )𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇))
⋅ 𝑒 (𝜑𝑏Δ𝜇, 𝑔𝑟𝐼𝐷𝑝+𝑟𝑇+𝑟𝐼𝐷𝑢𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇)
⋅ 𝑌𝐻(𝐼𝐷𝑝 ,𝑅𝐼𝐷𝑝 )+𝐻(𝐼𝐷𝑢,𝑅𝐼𝐷𝑢 )𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇))
= 𝑒 (𝑔𝑎Δ𝜇⋅(𝑟𝐼𝐷𝑝+𝑟𝑇+𝑟𝐼𝐷𝑢𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇))
⋅ 𝑌𝑎Δ𝜇⋅(𝐻(𝐼𝐷𝑝,𝑅𝐼𝐷𝑝 )+𝐻(𝐼𝐷𝑢 ,𝑅𝐼𝐷𝑢 )𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇)), 𝑔)
⋅ 𝑒 (𝜑𝑏Δ𝜇⋅(𝑟𝐼𝐷𝑝+𝑟𝑇+𝑟𝐼𝐷𝑢𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇)), 𝑔)
⋅ 𝑒 (𝜑𝑏Δ𝜇, 𝑌𝐻(𝐼𝐷𝑝 ,𝑅𝐼𝐷𝑝 )+𝐻(𝐼𝐷𝑢,𝑅𝐼𝐷𝑢 )𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇)) .

(14)

So, we obtain

𝑒 ( ΩΩ󸀠 ⋅ 𝑔−𝑎Δ𝜇⋅(𝑟𝐼𝐷𝑝+𝑟𝑇+𝑟𝐼𝐷𝑢𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇))
⋅ 𝑌−𝑎Δ𝜇⋅(𝐻(𝐼𝐷𝑝,𝑅𝐼𝐷𝑝 )+𝐻(𝐼𝐷𝑢,𝑅𝐼𝐷𝑢 )𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇))
⋅ 𝜑−𝑏Δ𝜇⋅(𝑟𝐼𝐷𝑝+𝑟𝑇+𝑟𝐼𝐷𝑢𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇)), 𝑔)
= 𝑒 (𝜑𝑏Δ𝜇, 𝑌𝐻(𝐼𝐷𝑝,𝑅𝐼𝐷𝑝 )+𝐻(𝐼𝐷𝑢,𝑅𝐼𝐷𝑢 )𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇)))
= 𝑒 (𝜑, 𝑌)(𝑏Δ𝜇(𝐻(𝐼𝐷𝑝,𝑅𝐼𝐷𝑝 )+𝐻(𝐼𝐷𝑢,𝑅𝐼𝐷𝑢 )𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇)))
= 𝑒 (𝜑, 𝑔𝜀)(𝑏Δ𝜇(𝐻(𝐼𝐷𝑝,𝑅𝐼𝐷𝑝 )+𝐻(𝐼𝐷𝑢,𝑅𝐼𝐷𝑢 )𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇)))
= 𝑒 (𝜑𝜀, 𝑔)(𝑏Δ𝜇(𝐻(𝐼𝐷𝑝,𝑅𝐼𝐷𝑝 )+𝐻(𝐼𝐷𝑢,𝑅𝐼𝐷𝑢 )𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇))) .

(15)

Then, we can learn that

𝜑𝜀 = 𝑒 ( ΩΩ󸀠 ⋅ 𝑔−𝑎Δ𝜇⋅(𝑟𝐼𝐷𝑝+𝑟𝑇+𝑟𝐼𝐷𝑢𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇)) ⋅ 𝑌−𝑎Δ𝜇⋅(𝐻(𝐼𝐷𝑝,𝑅𝐼𝐷𝑝 )+𝐻(𝐼𝐷𝑢,𝑅𝐼𝐷𝑢 )𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇))
⋅ 𝜑−𝑏Δ𝜇⋅(𝑟𝐼𝐷𝑝+𝑟𝑇+𝑟𝐼𝐷𝑢𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇)))1/(𝑏Δ𝜇(𝐻(𝐼𝐷𝑝,𝑅𝐼𝐷𝑝 )+𝐻(𝐼𝐷𝑢,𝑅𝐼𝐷𝑢 )𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇))) . (16)

Note that the probability we can find a solution to CDH
problem is the same as the probability 𝑏Δ𝜇(𝐻(𝐼𝐷𝑝, 𝑅𝐼𝐷𝑝) +𝐻(𝐼𝐷𝑢, 𝑅𝐼𝐷𝑢)𝐻(𝑇𝑠 ‖ 𝑇𝑒, 𝑅𝑇)) ̸= 0 mod 𝑝. The probability
of 𝑏Δ𝜇(𝐻(𝐼𝐷𝑝, 𝑅𝐼𝐷𝑝) + 𝐻(𝐼𝐷𝑢, 𝑅𝐼𝐷𝑢)𝐻(𝑇𝑠 ‖ 𝑇𝑒, 𝑅𝑇)) ̸=0 mod 𝑝 is 1 − 1/𝑝. Then, we can find a solution to
CDH problem with a probability 1 − 1/𝑝, which con-
tradicts the assumption that the CDH problem in 𝐺1 is
hard.

Therefore, if the difference between the adversary’s prob-
abilities of success in Game 1 and Game 2 is nonnegligible, we
can construct a simulator that utilizes the adversary to solve
the CDH problem.

Game 3. Game 3 is identical to Game 2, with one difference.
The challenger still maintains and observes each instance
of the proposed scheme. For one of these instances, if the
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challenger finds a linear combination 𝜇󸀠 of data blocks is not
equal to the expected 𝜇, the challenger declares failure and
aborts.

Analysis. Assume that the honest prover generates a corret
auditing proof {𝜇,Ω} based on the correct file 𝐹. From the
correctness of our scheme, we get

𝑒 (Ω, 𝑔) = 𝑒(∏
𝑖∈𝐼

ℎ (𝑛𝑎𝑚𝑒 󵄩󵄩󵄩󵄩󵄩𝐼𝐷𝑝󵄩󵄩󵄩󵄩󵄩 𝑖)V𝑖 ⋅ 𝑢𝜇, 𝑅𝐼𝐷𝑝 ⋅ 𝑅𝑇

⋅ 𝑅𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇)𝐼𝐷𝑢
⋅ 𝑌𝐻(𝐼𝐷𝑝,𝑅𝐼𝐷𝑝 )+𝐻(𝐼𝐷𝑢,𝑅𝐼𝐷𝑢 )𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇))

(17)

Assume that the adversary generates a forged auditing
proof {𝜇󸀠, Ω󸀠} based on the corrupted file 𝐹󸀠, where 𝐹󸀠 ̸= 𝐹.
Because the forgery is successful, we get

𝑒 (Ω󸀠, 𝑔) = 𝑒(∏
𝑖∈𝐼

ℎ (𝑛𝑎𝑚𝑒 󵄩󵄩󵄩󵄩󵄩𝐼𝐷𝑝󵄩󵄩󵄩󵄩󵄩 𝑖)V𝑖 ⋅ 𝑢𝜇󸀠 , 𝑅𝐼𝐷𝑝 ⋅ 𝑅𝑇

⋅ 𝑅𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇)𝐼𝐷𝑢
⋅ 𝑌𝐻(𝐼𝐷𝑝,𝑅𝐼𝐷𝑝 )+𝐻(𝐼𝐷𝑢,𝑅𝐼𝐷𝑢 )𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇))

(18)

According to Game 2, we learn that Ω󸀠 = Ω. Define Δ𝜇 =𝜇−𝜇󸀠, and we show a simulator that could solve the challenge
DL instance with this adversary as follows.

Given (𝑔, 𝜑) ∈ 𝐺1, the simulator would like to calculate
a value 𝑥 which satisfies 𝜑 = 𝑔𝑥. The simulator randomly
selects two elements 𝑎, 𝑏 ∈ 𝑍∗𝑝 and sets 𝑢 = 𝑔𝑎𝜑𝑏.

Based on the above two verification equations, we get

𝑒(∏
𝑖∈𝐼

ℎ (𝑛𝑎𝑚𝑒 󵄩󵄩󵄩󵄩󵄩𝐼𝐷𝑝󵄩󵄩󵄩󵄩󵄩 𝑖)V𝑖 ⋅ 𝑢𝜇, 𝑅𝐼𝐷𝑝 ⋅ 𝑅𝑇 ⋅ 𝑅𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇)𝐼𝐷𝑢

⋅ 𝑌𝐻(𝐼𝐷𝑝,𝑅𝐼𝐷𝑝 )+𝐻(𝐼𝐷𝑢,𝑅𝐼𝐷𝑢 )𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇)) = 𝑒 (Ω, 𝑔)

= 𝑒 (Ω󸀠, 𝑔) = 𝑒(∏
𝑖∈𝐼

ℎ (𝑛𝑎𝑚𝑒 󵄩󵄩󵄩󵄩󵄩𝐼𝐷𝑝󵄩󵄩󵄩󵄩󵄩 𝑖)V𝑖 ⋅ 𝑢𝜇󸀠 , 𝑅𝐼𝐷𝑝
⋅ 𝑅𝑇 ⋅ 𝑅𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇)𝐼𝐷𝑢

⋅ 𝑌𝐻(𝐼𝐷𝑝,𝑅𝐼𝐷𝑝 )+𝐻(𝐼𝐷𝑢,𝑅𝐼𝐷𝑢 )𝐻(𝑇𝑠‖𝑇𝑒 ,𝑅𝑇))

(19)

Therefore, we obtain

𝑢𝜇 = 𝑢𝜇󸀠 , (20)

and therefore that

1 = 𝑢Δ𝜇 = (𝑔𝑎𝜑𝑏)Δ𝜇 = 𝑔𝑎Δ𝜇 ⋅ 𝜑𝑏Δ𝜇. (21)

Since 𝜑 = 𝑔𝑥, we can find the solution to the DL problem
by calculating

𝜑 = 𝑔−𝑎Δ𝜇/𝑏Δ𝜇, (22)

and then𝑥 = −𝑎Δ𝜇/𝑏Δ𝜇. As defined above,Δ𝜇 ̸= 0. However,𝑏 is zero with the probability 1/𝑝, which is negligible. Then,
we can solve the DL problem with a probability of 1 − 1/𝑝,
which contradicts the assumption that the DL problem in 𝐺1
is hard.

Therefore, if the difference between the adversary’s prob-
abilities of success in Game 2 andGame 3 is nonnegligible, we
can construct a simulator that utilizes the adversary to solve
the DL problem.

From the above analysis, we can know that the malicious
cloud cannot pass the validation of the TPA if it does not keep
the user’s data correctly.

Theorem 6 (the security of proxy update). In our proposed
scheme, the revoked proxy or the expired proxy cannot process
data on behalf of the user any more.

Proof. When the revoked proxy or the expired proxy uploads
the file and its corresponding signatures to the cloud, the
cloud firstly checks whether this proxy is in the public
revocation list and then verifies the validity of the warrant-
signature pair (𝑚𝑤, (𝑅1, 𝜎1)) and the file tag 𝑡𝑎𝑔.

Firstly, if this proxy is in the public revocation list,
the cloud rejects this file and signatures from this proxy.
Secondly, the cloud checks the validity of the warrant-
signature pair (𝑚𝑤, (𝑅1, 𝜎1)) by the verification equation (2).
If the current time period is not in the valid time period(𝑇𝑠, 𝑇𝑒), then the warrant-signature pair cannot pass the
verification. The cloud regards this proxy as a revoked proxy
or an expired proxy and refuses this proxy’s request. Finally,
the cloud checks the validity of the file tag by verifying
whether 𝑆𝑆𝑖𝑔𝑠𝑠𝑘(𝑛𝑎𝑚𝑒 ‖ 𝑇𝑠 ‖ 𝑇𝑒 ‖ 𝑅𝐼𝐷𝑝 ‖ 𝑅𝑇 ‖ 𝐼𝐷𝑝) is a
valid signature or not. If it is not, the cloud considers that this
file tag is generated by a revoked proxy or an expired proxy
and then rejects the request of this proxy.

Therefore, only the proxy, who is not in the public
revocation list and possess a valid warrant, is able to process
data on behalf of the user.

Theorem 7 (the soundness of payment). In our proposed
scheme, the user will pay for the proxy based on the proxy’s
real workload assuming the cloud does not collude with the
proxy.

Proof. Firstly, when the cloud receives the data uploaded
by the proxy, it will set the upload number 𝑁 and gen-
erate the signature 𝛽 with its private key for this upload
number 𝑁. Therefore, the signature 𝛽 that the proxy
sends to the user is generated by the cloud according to
the real upload number 𝑁. The proxy cannot forge this
signature.

Secondly, the proxy can verify whether the signature 𝛽
from the cloud is valid according to his real upload number𝑁. Thus, the signature 𝛽 that the proxy sends to the user is
recognized by the proxy.

In conclusion, the user believes the signature 𝛽 sent by the
proxy is valid.The payment that the user pays for the proxy is
based on the proxy’s real workload in the absence of collusion.
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6. Performance Evaluation

In this section, we first present the functionality comparison
of our scheme with different cloud storage auditing schemes
and then compare the computation overhead and the com-
munication overhead of our scheme with that of Wang et al.
scheme [5]. At last, we show the experimental results of our
scheme.

6.1. Functionality Comparison. Table 2 shows a function-
ality comparison of our scheme with different cloud stor-
age auditing schemes [5, 6, 18, 25, 30, 31] in terms of
public verifiability, lightweight computation, proxy update,
certificate management simplification, and workload-based
payment. Our scheme is the only scheme that meets all of the
aforementioned properties.

6.2. Performance Analysis and Comparison

(1) Computation Overhead. Since the scheme of [5] is the
lightweight cloud storage auditing scheme which achieves
public verifiability and certificates management simplifica-
tion, we compare our scheme with it with regard to the
computation overhead of different entities in Table 3. In
our scheme, the main cost of the PKG is generating global
parameters, the partial private key and private keys for
the proxy, the user, and the cloud, respectively. Therefore,
the computation overhead of the PKG is 4𝐸𝐺1 + 3(𝐴𝐺1 +𝑀𝑍∗𝑝

+ 𝐻𝑍∗𝑝 ), where 𝐸𝐺1 and 𝐴𝐺1 , respectively, denote one
exponentiation operation and one addition operation in 𝐺1,
and 𝑀𝑍∗𝑝

and 𝐻𝑍∗𝑝 , respectively, denote one multiplication
operation and one hashing operation in 𝑍∗𝑝. The dominated
computation overhead of the proxy for computing proxy
private key and data signatures is𝐴𝑍∗𝑝 +𝑛(𝑀𝐺1

+2𝐸𝐺1 +𝐻𝐺1),
where 𝐴𝑍∗𝑝 denotes one addition operation in 𝑍∗𝑝, 𝑀𝐺1

and𝐻𝐺1 , respectively, denote one multiplication operation and
hash operation in 𝐺1, and n is the total number of data
blocks. When generating a warrant-signature pair and the
time private key, the cost of the user is 2(𝐴𝑍∗𝑝 +𝑀𝑍∗𝑝

+ 𝐻𝑍∗𝑝 ),
which can be done offline. The computation overhead of the
cloud for generating an auditing proof is (𝑐 − 1)𝑀𝑢𝑙𝐺1 +𝑐𝐸𝑥𝑝𝐺1 + 𝑐𝑀𝑢𝑙𝑍∗𝑝 + (𝑐 − 1)𝐴𝑑𝑑𝑍∗𝑝 , where c is the number of
challenged data blocks.The computation overhead of theTPA
mainly comes from verifying the correctness of the auditing
proof, which needs 2𝑃 + 𝑐𝐻𝐺1 + (𝑐 + 4)𝐸𝐺1 + (𝑐 + 4)𝑀𝐺1

+𝑀𝑍∗𝑝
+ 4𝐻𝑍∗𝑝 . 𝑃 denotes one pairing operation.

When the scheme is built from the bilinear parings, the
computation overhead of the scheme mainly comes from
the exponentiation operation, the pairing operation, and the
multiplication operation in 𝐺1. The other operations, such
as the operation in 𝑍∗𝑝 and hashing operation, cost less
computation overhead. Thus, comparing with the scheme of
[5], our scheme and the scheme of [5] cost almost the same
computation overhead on the proxy, the user, and the cloud
sides. In order to generate the cloud private key and perform
the auditing task, our schemeneeds to costmore computation
overhead than the scheme of [5] on the PKG and the cloud
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Figure 4:The computation overhead for generating data signatures.

sides. What is more, our scheme supports proxy update and
workload-based payment, while the scheme of [5] cannot
support that.

(2) Communication Overhead. As introduced in Section 4,
the communication overhead of the proposed schememainly
comes from the TPA and the cloud. We can see from Table 4,
for an auditing challenge 𝑐ℎ𝑎𝑙 = {𝑖, V𝑖}𝑖∈𝐼, the communication
overhead of the TPA in our scheme is 𝑐 ⋅ (|𝑛| + |𝑝|) bits, where|𝑛| is the size of an element of set [1, 𝑛], and |𝑝| is the size of
an element in 𝑍∗𝑝. In the scheme of [5], the communication
overhead of the TPA is |𝑐| +2|𝑝| bits for an auditing challenge𝑐ℎ𝑎𝑙 = {𝑐, 𝑘1, 𝑘2}, where 𝑘1, 𝑘2 ∈ 𝑍∗𝑝 are random values. For
generating an auditing proof 𝑃 = {𝜆, 𝜎}, the communication
overhead of the cloud in our scheme and the scheme of [5]
both are |𝑝|+ |𝑞| bits, where |𝑞| is the size of an element in𝐺1.
6.3. Experimental Results. In this subsection, we conduct
experiments on the proposed scheme by utilizing the GNU
Multiple Precision Arithmetic (GMP) [33] and the Pairing-
Based Cryptography (PBC) Library [34]. These experiments
are implemented on a Linux machine with an Intel Pentium
2.30GHz processor and 8GB memory and coded based on C
programming language. In experiments, we set the size of an
element in 𝑍∗𝑝 to be |𝑝| =160 bits, the base field size to be
512 bits, and the size of data file to be 20MB composed by
1,000,000 blocks.

(1) Performance of Signature Generation. In our scheme, the
proxy helps the user to generate data signatures. To evaluate
the performance of signature generation, we implement the
experiment by increasing the number of data blocks 𝑛 from
100 to 1000. From Figure 4, it is easily observed that the time
of generation signatures linearly increases with the number
of data blocks.Thus, we can conclude that our scheme greatly
alleviates the user’s computation burden for generating data
signatures.

(2) Performance of Auditing.The performance of auditing on
the TPA side and that on the cloud side are, respectively,
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Table 2: Functionality comparison of different cloud storage auditing schemes.

Schemes Public
verifiability

Lightweight
computation Proxy update

Certificate
management
simplification

Workload-based
payment

Wang et al. [5] Yes Yes No Yes No
Shen et al. [6] Yes Yes No No No
Yu et al. [18] Yes No No No No
Zhang et al. [25] Yes No No Yes No
Shacham et al. [30] Yes No No No No
Wang et al. [31] No No No No No
Ours Yes Yes Yes Yes Yes

Table 3: The computation overhead of our scheme andWang et al. scheme [5] for different entities.

Entity Computation overhead
(Our scheme)

Computation overhead
(Wang et al.[5])

PKG 4𝐸𝐺1 +3(𝐴𝐺1
+𝑀𝑍∗𝑝

+𝐻𝑍∗𝑝
) 3𝐸𝐺1 +2(𝐴𝐺1

+𝑀𝑍∗𝑝
+𝐻𝑍∗𝑝

)
Proxy 𝐴𝑍∗𝑝

+𝑛(𝑀𝐺1
+ 2𝐸𝐺1 +𝐻𝐺1

) 𝐴𝑍∗𝑝
+𝑀𝑍∗𝑝

+ 𝐻𝑍∗𝑝
+𝑛(𝑀𝐺1

+ 2𝐸𝐺1 + 𝐻𝐺1
)

User 2(𝐴𝑍∗𝑝
+𝑀𝑍∗𝑝

+ 𝐻𝑍∗𝑝
) 𝐴𝑍∗𝑝

+𝑀𝑍∗𝑝
+ 𝐻𝑍∗𝑝

Cloud
(𝑐 − 1)𝑀𝑢𝑙𝐺1 + 𝑐𝐸𝑥𝑝𝐺1 +𝑐𝑀𝑢𝑙𝑍∗𝑝 + (𝑐 − 1)𝐴𝑑𝑑𝑍∗𝑝

(𝑐 − 1)𝑀𝑢𝑙𝐺1 + 𝑐𝐸𝑥𝑝𝐺1 +𝑐𝑀𝑢𝑙𝑍∗𝑝 + (𝑐 − 1)𝐴𝑑𝑑𝑍∗𝑝
TPA

2𝑃 + 𝑐𝐻𝐺1
+ (𝑐 + 4)𝐸𝐺1 +(𝑐 + 4)𝑀𝐺1
+𝑀𝑍∗𝑝

+ 4𝐻𝑍∗𝑝

2𝑃+(𝑐+2)𝐻𝐺1
+(𝑐+3)𝐸𝐺1 +(𝑐 + 3)𝑀𝐺1

+ 3𝐻𝑍∗𝑝
+ 2𝐴𝑍∗𝑝
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Figure 5: The computation overhead of the TPA in the phase of
auditing.

shown in Figure 5 and Figure 6. In these experiments, we
select to challenge different data blocks from 100 to 1000
increased by an interval of 100. As shown in Figure 5, the
TPA’s computation overhead for generating challenge and
verifying proof both grow linearly as the number of chal-
lenged data blocks. The computation overhead for verifying
proof ranges from 1.512s to 11.931s, while the computation
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Figure 6: The computation overhead of the cloud in the phase of
auditing.

overhead for generating challenge grows slowly, just ranging
from 0.043s to 0.422s. In Figure 6, it can be seen that the
cloud’s computation overhead for generating proof ranges
from 0.371s to 3.958s. From the above analysis, we can
conclude that the more data blocks are challenged, the more
computation overhead need to be spent on the TPA and the
cloud sides.



14 Security and Communication Networks

Table 4: The communication overhead of our scheme andWang et al. scheme [5].

Entity Phase Communication overhead (Our scheme) Communication overhead (Wang et al. [5])
TPA Auditing challenge 𝑐 ⋅ (|𝑛| + |𝑝|) |𝑐| + 2|𝑝|
Cloud Auditing proof |𝑝| + |𝑞| |𝑝| + |𝑞|

7. Conclusion

In this paper, we propose an identity-based cloud storage
auditing scheme, which achieves lightweight computation on
the user side by introducing a proxy and supports proxy
update and workload-based payment for the proxy. In our
scheme, the task of generating data signatures is executed
by the proxy with a valid warrant. The revoked proxy and
the proxy with expired warrant cannot help the user process
data any more. We pay for the proxy based on the workload
in cloud storage auditing. The security analysis and the
experiment results show that our scheme provides strong
security with desirable efficient efficiency.
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