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Abstract. The description of radiation transport phenomena in the frames of collisional-radiative
models requires the solution of Holstein-Biberman equation. An advanced solutuion method for 3D
plasma obejcts is proposed. The method is applicable for various line contours in a wide range of
absorption coefficients. Developed approach is based on discretization of the arbitrary plasma volume
on a Cartesian voxel grid. Transport of photons between the cells is computed using the ray traversal
algorithm by Amanatides [1]. Solution of the particle balance equations with computed in advance
radiative transfer matrix is demonstrated for various typical arc shapes, like e.g. free-burning arc
and cylindric arc. Results are compared with corresponding calculations using previously developed
approaches. As the method is suited for finite geometries and allows for a strict solution of the radiation
transport equation, applicability ranges of previous approximations can be specified.
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1. Introduction
Trapping of line radiation is a fundamental problem of
gas discharge physics. Over the years a Holstein’s ap-
proximation of effective transition probability [2] was
used to evaluate the influence of radiation trapping.
This approximation describes the photon escape tak-
ing absorption into account rather roughly and fails to
describe the correct spatial redistribution of resonance
atoms. The description of radiation transport phe-
nomena in the frames of collisional-radiative models
requires the solution of Holstein-Biberman equation
[3]. Various solution methods of this equation were
proposed over the years (see, for example, [3, 4]).
One of promising solution approaches is the matrix
method [3]. A kernel of the integral operator is repre-
sented as a matrix, which can be successfully coupled
with self-consistent plasma models [5, 6]. Despite the
low computational cost and simple integration into
plasma-chemical schemes, this method, as well as an
another matrix approach [7], has certain limits.
The main drawback is related to the plasma do-

main geometry. Depending on the shape of a plasma
source, a discretization scheme should be specified. In
mentioned appoaches the scheme was chosen based
on the source symmetry (plane-parallel, infinite and
finite cylinder). An analytical conversion of the kernel
to the convenient form was performed, where each
type of symmetry had a unique kernel representa-
tion. Finite domains require extensive mathematical
treatment. Furthermore, the case of an asymmetric
domains was beyond the scope of the method. In
addition, inhomogeneity of absorption spatial profile
significantly complicated the derivation of suitable

radiation transport matrix.
In present work an advanced matrix method is

described. It provides a solution approach for the
Holstein-Biberman equation on a uniform cartesian
grid, which is universal for various 3D domains. The
method allows for the strict integration over the fre-
quency having spatial integrals fully discretized. Re-
sults of computations are compared to data obtained
with previously developed methods and demonstrated
for typical arc plasma domains.

2. Description of the method
2.1. Basic equations
The Holstein-Biberman equation for the case of sta-
tionary plasma reads

W (~r) = N(~r) ·A−
∫
V

N(~r ′) ·A ·K(~r, ~r ′)d3r′. (1)

Here N(~r) is the population of the excited level (den-
sity of excited atoms), W (~r) represents the excitation
source, and A is the spontaneous emisson probability.
The kernel K(~r, ~r ′) describes the absorption in the
point ~r of photons emitted in the point ~r ′:

K(~r, ~r ′) = 1
4π

∞∫
0

dν εν(~r ′)κν(~r)
|~r − ~r ′|2

exp

− ~r∫
~r ′

κν(ξ)dξ

 .

(2)
Under the assumption of complete frequency redis-
tribution the line profiles of emission and absorption
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εν ,κν fulfil the criteria
∞∫

0

ενdν = 1, κν = κ0
εν
ε0
.

Here ε0 and κ0 are the values in the line center.
For the sake of simplicity further derivation will

be performed for the case of homogeneous absorption
over the volume. Therefore, the kernel becomes the
representation

K(~r, ~r ′) = 1
4π

∞∫
0

dν ενκν

|~r − ~r ′|2
exp (−κν |~r − ~r ′|) .

(3)
To make the problem discrete the integral operator in
(1) will be replaced by a matrix dividing the entire vol-

ume into a number af small finite cells: V =
M∑
i=1

∆Vi,
where M is a number of cells. Parameters in plasma
are assumed to be constant within the subvolume.
The equation (1) then becomes

W (rk) =
M∑
i=1

N(ri)aik,

ai,k = A ·

δi,k − ∫
∆Vi

K(rk, r′)d3r′

 .

(4)

In order to calculate the integrals in (4) a certain
discretization scheme has to be chosen.

2.2. Calculation of the matrix elements
In the present approach a universal discrete scheme
based on an uniform cartesian 3D-grid (or "voxel grid")
is used. An extension of the approach for the case of
the non-uniform grids is also possible.

To calculate the distances between the points ~r and
~r ′, a fast voxel traversal algorithm by Amanatides
and Woo [1] was implemented. This algorithm casts
the ray from one voxel to another and counts all voxels
that have been crossed. The distance between the
points ~r and |~r−~r ′| = ρ can be associated with indices
i, k for each cell:

ρi,k = ∆l
√

(xi − xk)2 + (yi − yk)2 + (zi − zk)2

i, k = 1..M.
(5)

Here x, y, z denote integer voxel coordinates, M is a
total number of voxels, ∆l = 3

√
∆V is a length of the

voxel edge relative to the source volume. Considering
the homogeneous absorption only the knowledge of
i and k is necessary. In order to account for the
inhomogeneity the coordinates of all crossed voxels
should be used.

Introducing a dimensionless distance ρ̃i,k = ρi,k/∆l,
the general form of matrix coefficient reads:

ai,k = A ·

δi,k −∆V
ρ̃i,k∫
0

K(ρ̃)dρ̃

 . (6)

In the case of homogeneous absorption (κν(r) = κν)
the integral in exponent (2) is reduced to κνρi,k. The
discretization of the kernel requires consideration of
two different cases.
i 6= k: in this case ρ 6= 0 and (6) can be rewritten as

ai,k = −A · ∆V
4π

∞∫
0

ενκν
ρ2
i,k

exp (−κνρi,k) dν (7)

For the case i = k: in ρ = 0 the integral has a
singularity. It can be eliminated by the conversion to
spherical coordinates considering ρi,i → ∆r:

ai,i = A ·

1− 1
4π

∞∫
0

4π
ρi,i∫
0

ενκν

ρ′2
e−κνρ

′
ρ′

2dρ′
 dν

 =

= A ·

1−
∞∫

0

 ∆r∫
0

ενκνe
−κνrdr

dν

 ; ∆r = 3

√
3∆V
4π .

(8)

Finally, the matrix coefficients in the case of homoge-
neous absorption (κν(r) = κν) are given by

ai,k = A ·


−∆V

4π

∞∫
0

ενκν
ξ2
i,k

e−κν∆ldν, i 6= k;

1−
∞∫
0

(
∆r∫
0
ενκνe

−κνrdr
)

dν, i = k.

(9)
Considering the case of the Lorentzian line shape

and spatially homogeneous absorption the simplified
expressions for matrix coefficients can be derived to
speed up the computation. The kernel can be rewrit-
ten in following form

K(~r, ~r ′) = − 1
4π |~r − ~r ′|2

dT
dρ

∣∣∣
ρ=|~r−~r ′|

, (10)

where T (ρ) is a Biberman’s transmission factor:

T (ρ) =
∞∫

0

ενe
−κνρdν = e−

κ0ρ
2 I0

(κ0ρ

2

)
. (11)

Here Iα=0,1,2... denotes the modified Bessel function
of the first kind. Then, the expression for the kernel
reads

K(ρ) = 1
4πρ2 ·

κ0

2 e
−κ0ρ

2

[
I0

(κ0ρ

2

)
− I1

(κ0ρ

2

)]
.

(12)
Substituting of Eq.(12) into Eq. (6) gives

ai,k = A ·

−
κ0∆V
8πρ2

i,k

e−
κ0ρi,k

2
[
I0
(κ0ρi,k

2
)
− I1

(κ0ρi,k
2
)]
,

e−
κ0∆r

2 I0
(
κ0∆r

2
)
, i = k.

(13)

The benchmark tests show that the computational
time for elements decreases up to a factor of five com-
paring to numerical integration over the line contour.
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2.3. Solution algorithm
A domain with a volume V is discretized on a uniform
cartezian grid using voxelizer code [8]. Characteristic
linear size of the voxelized mesh is determined by the
maximum number of voxels along the x-dimension
ndim.

The matrix coefficients are computed in two steps:
calculation of the distances traveled by photons ρi,k
and integration of the kernel 2) for each pair of vox-
els. In order to optimize the calculation of distances,
ray tracing algorithm [1] was modified for parallel
computing using a graphical processing unit (GPU).
Each thread of GPU can handle the operations only
with scalars, therefore, the vectors with coordinates
of each (r, r′)-pair are prepared. The number of voxel
pairs being simultaneously processed (the array chunk
size) is determined by the size of the graphics card
memory. Then, the chunk with computed distances
is transferred to the CPU where the coefficients (9)
are calculated and stored in a file. After the loop
over all chunks the saved data are collected in the
matrix which represents the coupling between all cells
in plasma.
When the radiation transport matrix is ready, the

system of linear equations representing the Holstein-
Biberman equation can be solved for a given exci-
tation source in the plasma domain. This equation
system can be also easily included into a multicompo-
nent collisional-radiative model, which considers the
coupling with particle transport equations for other
plasma species.

Source

L = 2R

(a)

Figure 1. (a) Scheme of the finite cylinder domain
with a point excitation sourcein the center, (b) Spa-
tial distribution of the density of resonance atoms in
case of point source in the finite cylinder. Blue grid -
ray tracing method, orange mesh - asymptotic matrix
method.

3. Results
To validate the approach a finite cylinder geometry of
size L = 2R = 1 with a point excitation source located
in the volume center was used. In previous publica-
tion [9] a similar problem was considered for the case
of the high-opacity asymptotics for a Lorentzian line
contour. The kernel of the radiation transport oper-
ator was integrated over cylindrical layer cells. The
size of corresponding linear equation system was n2

dim.
The same problem is solved by ray tracing method
without the use of the asymptotics. The resulting lin-
ear equation system has the size of the order of n3

dim.
Figure 1 demonstrates the schematic representation
of the geometry as well as the solution of Eq. (4)
using both methods for the case with an optical depth
κ0L = 106. Linear mesh size for ray tracing method
is ndim = 45. As it becomes obvious from Fig. 1 both
approaches are in an excellent agreement. Similar
results have been obtained for various values of the
absorption coefficent as long as the later remained
high.

Anode

Cathode

Arc Plasma

(a)

Figure 2. (a) Schematic picture of a free-burning arc.
(b) Normalized solution for the case of ndim = 41,
k0L = 106.

The main advantage of the approach is the possi-
bility to solve the radiation transport equation in an
arbitrary 3D domain. As examples of non-trivial geom-
etry a "bell"-like shape of a free-burning arc (welding
arc) and two hemispherical electrodes (switching arc)
were chosen. The size of the grid in both cases was
ndim = 41 and the optical depth was set to κ0L = 106.
The excitation source is approximated by a function
W (r) = 10−ar along discharge axis.

The first example is illustrated by a Figure 2. Figure
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2a present a schematic picture of the free-burning arc.
Figure 2b demonstrates the solution of the Holstein-
Biberman equation in a discretized 3D-domain.
A typical cylindrical circuit breaker geometry is

presented in Figure 3a. The solution is demonstrated
by Figure 3b. One could see the effects of radiation
screening by electrodes. To include these effects one
needs to exclude the coupling between unit volumes
where photons cannot travel along the straight line.
For this purpose, the check is performed whether the
ray trace only allowed voxels or not.

Cathode

Anode

(a)

(b)

Figure 3. (a) Schematic picture of a switching arc
geometry. (b) Normalized solution for the case of
ndim = 41, k0L = 106.

4. Conclusions
In the present work an advanced matrix method based
on the ray tracing algorithm for the solution the
Holstein-Biberman equation is proposed. The method
is applicable for arbitrary 3D-domains discretized on
a uniform Cartezian mesh. The transformation of the
radiation transport operator was performed for the
Lorentzian line shape and high opacity. The method
can be extended for a wide range of absorption coef-
ficients and is in general not dependent on the line
shape. In the case of Lorentzian line shape and high
opacity limit the matrix coefficients can be simplified
to reduce the computation time.

The ability to solve the radiation transport equation
in complex domains is illustrated by two examples:
free-burning welding arc and cylindrical switching arc.

The results demonstrate expected qualitative distri-
bution of the radiation known from the experiments.
Developed approach is compared with the previous
matrix method for the case of a finite cylinder ge-
ometry with a point excitation source located in the
center. The results of both approaches are in excellent
agreement for the case of large absorption coefficients.
The radiation transport matrices computed with

the ray tracing method can be successfully integrated
into self-consisent multicomponent plasma models of
various complexity.
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