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Abstract—This paper presents a near real-time, multi-
stage classifier which identifies people and handguns in
images, and then further assesses the threat-level that a
person poses based on their body posture. The first stage
consists of a convolutional neural network (CNN) that
determines whether a person and a handgun are present in
an image. If so, a second stage CNN is then used to estimate
the pose of the person detected to have a handgun. Lastly,
a feed-forward neural network (NN) makes the final threat
assessment based on the joint positions of the persons
skeletal pose estimate from the previous stage. On average,
this entire pipeline requires less than 1 second of processing
time on a desktop computer. The model was trained using
approximately 2,000 images and achieved a pistol and
person detection rate of 22% and 55%, respectively. The
final stage NN correctly identified the severity of the threat
with 84% accuracy. The images used to train each stage
of our multi-classifier model are available online. With
an expanded dataset the accuracy of detecting people and
pistols can likely be improved in the future.

(a) Low-threat (b) Medium-threat (c) High-threat

Figure 1: Examples of three different body postures
corresponding to level of threat.

The views expressed are those of the authors and do not reflect the
official policy or position of the US Army, Department of Defense,
nor the US Government. Funding for this research was provided in
part by the Combatting Terrorism Technical Support Office and the
Office of Naval Research.

I. INTRODUCTION

Situational awareness (SA) is a fundamental se-
curity cornerstone. When presented with dangerous
circumstances, the awareness of an individual to
potential dangers is critical to timely and effective
decision making. This importance of SA is ac-
centuated in life-and-death scenarios during which
a timely response may be key to survival. When
considering the dangers posed by firearms, the iden-
tification of an armed threat followed by a rapid
security response is crucial. In many situations,
firearms are explicitly prohibited and the simple
presence of a firearm elevates the situation to a
critical status. For example, school zones, trans-
portation hubs, stadiums, governmental offices, and
most places of work are commonly gun-free zones.
If a weapon has been identified within such a zone,
a security response should be engaged to neutralize
any threats. Using technology, the detection and
identification of threats can reduce the amount of
harm a bad-actor can inflict.

In contrast to gun-free zones, it can be acceptable
or even expected for people to be armed in certain
locations. Naturally, in states and countries with
open carry laws, citizens are regularly armed but
do not present a threat, presenting a challenge
when differentiating between bad-actors and ordi-
nary civilians. This has been especially common
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license to publish or reproduce the published form of this work, or
allow others to do so, for United States Government purposes.



(a) Original image (b) YOLO Object Detection (c) OpenPose skeleton (d) Final classification

Figure 2: Stages of the threat classification pipeline beginning with the original image.

during the US war on terror, where armed forces
are often exposed to civilian populations intermixed
with hostile agents. Similarly, a civil police pa-
trol may be exposed to a population that contains
members of organized crime, but also in which
the open-carry of firearms is legal. Identifying and
discriminating between potential and actual threats
is very difficult in these ambiguous situations.

In this paper, we present a deep learning model
for the real-time threat classification of people with
pistols based on their body posture with the weapon.
We developed four threat categories: no threat, low
threat, medium threat, and high threat based on the
presence of both a pistol and a person as well as the
overall body posture of any individual associated
with a pistol. Examples of the three latter postures
(low, medium, and high) are shown in Fig. 1. The
no-threat condition represents a category where a
pistol is either not present or is not within reach of
anyone. Low threat occurs when a gun is holstered
or within reach but is not held/brandished. A subject
is determined to be a medium threat if their hand is
touching or holding a gun but that gun is not sighted
in line with their eyes. High threat is determined to
be the case where the gun is actively being aimed
and a shot may be imminent. In any of these con-
ditions, our system is intended to be a notification
or alert system that draws the attention of security
professionals and raises their level of awareness.
The detection is designed to be used on a wide range
of camera systems ranging from medium resolution
security cameras to body cameras to surveillance
drones.

The first stage in our procedure is a CNN trained
to detect humans and pistols within an image or
a scene. If no pistol is detected or is detected
but cannot be associated with a person, then no
further action is taken; this is considered a no-threat

situation. If there is a pistol present in the scene
and it can be associated with a person also in the
scene, then the second stage of our method uses a
another CNN to construct a notional skeleton of the
person to determine their posture. After a skeleton is
constructed, a reduced order neural network is used
to classify the posture as either low-, medium-, or
high-threat. This process is depicted in Figs. 2 and
3. The modularity of this methodology allows each
stage to designed and calibrated separately, with all
networks tied together serially.

The remainder of this article is organized as
follows. In section II we discuss the state of the art
related to this effort. Section III disusses our method
in detail in addition to our process of developing
datasets for training each network. The performance
of the developed system is provided in Section IV.
Finally, we analyze our results in terms of strength
and weaknesses in Section V.

II. RELATED WORK

Much of the literature related to assessing the
threat level of people with hand guns can be divided
into two areas of research. The first area involves
detecting guns in images and video, while the
second involves the characterization of human poses
and body postures.

A. Hand Gun Detection

Hand gun, or pistol, detection has attracted sig-
nificant attention in research due to its myriad of
applications across various security domains, such
as airport security and building surveillance. Tiwari
et al. employed color-based object segmentation
based on a template pistol feature set and an interest
point detector to find similarities between objects;
a pistol similarity threshold of 50% achieved 84%
accuracy [1]. Martinez-Diaz et al. used a three-layer



NN to classify pistols in an image by generating a
set of moments on the order of 15 milliseconds via
a GPU for each detected object that were invariant
to scale, rotation, and translation [2]. Another study
compared two classification models: a sliding win-
dow and region-based approach - which found that
an R(egion)-CNN was the better performing model,
achieving an over 84% correct prediciton rate [3].

In the context of airport security, Damashek and
Doherty developed a model to detect pistols through
x-ray images using Chamfer matching, a parametric
edge matching algorithm, which finds the minimal
distance between each edge of the object in the x-
ray and those in a template pistol image [4]. This
model performed well but was severely degraded
with slight occlusions, affecting the edge distance
calculations. Lai and Maples compared the perfor-
mance of the VGGNet model along with three in-
stances of a Tensorflow-based implementation of the
Overfeat network (each with a unique combination
of learning rate and confidence threshold) to not
only detect but also classify weapons in images.
They were able to achieve 89% accuracy in one
of the Overfeat models [5]. These works focus on
detection and classification, without further regard
to deriving context, such as the meaning of the
presence of a gun in the image.

B. Human Pose Estimation

Human pose estimation has also attracted much
attention in the past few years due to its wide spec-
trum of potential applications. Detecting a human
in an image or video is now somewhat trivial using
one of the previously mentioned object detectors.
However, detecting a specific skeletal pose to infer a
current action or intent is somewhat more complex.
Takai and Miwa sought to infer the current action
being taken by a human by first noting temporal
changes in pose (assigning normalized values from
0 to 1) and if above a certain threshold, identify
the person’s action (e.g. picking up an item off the
ground) [6]. Toshev and Szegedy were the first to
apply deep NNs to human pose estimation. They
employed multi-target joint localization regression
CNNs in a cascading architecture to leverage higher
resolution subimages, ultimately resulting in a much
more accurate pose estimation [7]. Cao et al. defined
a realtime multi-person 2D pose estimation model,

resulting in the public release of OpenPose [8]. The
model defines Part Affinity Fields, (PAFs), which
represent the position and orientation of each major
joint in the body, associating body parts to respec-
tive people in images. Shahroudy et al. designed a
Recurrent Neural Network (RNN) to model long-
term temporal correlation of body part features.
They were able to achieve an accuracy of nearly
70% [9].

A different approach by Park et al. sought to
classify a handheld device’s “pose” or position
with the respect to the body (located in the hand,
ear, pocket, or backpack) along with the person’s
walking speed using a regularized SVM [10]. Wei
et al. developed a model to predict the skeletal pose
of an action from a video using relevant action
selection that filtered out irrelevant training data so
as to train on only high quality, pertinent image
frames [11]. A survey summarized current literature
in automatic-behavior-recognition models, focusing
on human surveillance and covered different system
components from raw image processing and object
classification to recognizing abstract events like car
theft and fighting [12]. Kelley et al. presented a
pseudo two-stage system using a hidden Markov
model (HMM) to identify activity and infer intent of
another entity by training on the observing entity’s
own previous actions and intent [13]. Their ultimate
objective was to infer human intent from quantita-
tive measurements like relative angle of movement
and distance between two entities.

While there are many studies on object detection,
classification, and pose estimation, we are unaware
of any studies considering a combined workflow
of detection and intent classification based on the
presence of the object.

III. APPROACH

We are considering a constrained situation in
which the presence of firearms is ubiquitous enough
that simply detecting a weapon is not immediately
concerning. As stated earlier, this may arise in areas
where people tend to be legally armed or in a
military situation in which a patrol may encounter
armed residents with an uncertain intent. Within
these environments, we seek to establish increasing
levels of alertness that correspond with the position



Figure 3: Top-level flow of threat classification

an armed actor’s weapon hand. Pointing a gun for-
ward likely represents a greater threat than pointing
it down.Fig. 3 illustrates the flow of our method. The
process begins with a digital image. The source of
image is not specified and could be a security feed, a
body-camera, or a camera on an autonomous agent
such as a drone. For demonstrative purposes, we
are limiting the search in this study to the detection
of pistols, though these results are generalizable to
other hand-held weapons.

The first step in the process is a person/pistol
detection stage. Using a newly developed dataset,
we trained a small version of the You-Only-Look-
Once (YOLO-tiny) [14] neural network to clas-
sify pistols and people in images. The result of
this process is a labeled array of bounding boxes
corresponding to each detected person and pistol.
An example of this result is shown in Figure 2b.
After detecting the bounding boxes around all pis-
tols and people present in the image, any pair of
pistol/person bounding boxes that overlapped were
considered to be associated. Without the presence of
any overlaps, we consider the scene safe. If there
are any associations, our method would extract a
sub-image defined by the bounding box around the
associated person for further evaluation.

The second stage uses the CMU OpenPose pack-
age to generate a notional skeleton as a simplified
representation of the person [8]. This package was
used without modification and was implemented
using the provided pre-trained weights and skele-
ton models. Figure 2c illustrates the output of the
OpenPose CNN package using the BODY25 model
which is an augmented version of the 17-key-point
Common Objects in COntext (COCO) model [15].
Alternative models and weights are included in the
OpenPose repository, though each is associated with
a decrease in speed, accuracy, or both.

Finally, the resulting skeleton was processed us-

ing a neural network to classify the body language
of the person as a low-threat, medium-threat, or
a high-threat. This network is discussed further in
Section III-C.

A. Building and Compiling the Datasets

A significant challenge to implementing these
neural networks robustly is a lack of high-quality,
labeled datasets to train the pistol detector or the
pose classifier. Raw images were gathered using
a Google image search for terms such as “open-
carry”, “holding pistol”, “firing pistol”, etc. A hu-
man then evaluated those downloaded images to
remove irrelevant images, label bounding boxes
around pistols and people within the relevant im-
ages, and separated any humans holding guns into
the High/Medium/Low categories based on their
perceived threat. For a dataset of images of humans,
we used the “person” tagged images from the Com-
mon Objects in Context (COCO) image dataset.
The pistol and person images were then combined
with images from the COCO dataset that contained
neither to introduce negative training samples. The
final dataset contained approximately 2,000 pistol
images, 56,000 people images, and 60,000 with
neither. After compiling and labeling the images,
15% of each class was randomly set aside for testing
while the remaining 85% were used to train the
pistol and person detection weights.

B. Training the Human & Pistol Detecting Network

The labeled dataset was used to train the detection
weights of a YOLO network for only the two classes
of people and pistols. The YOLO framework chosen
because of the ease of implementation, speed, and
reliability of the detection compared to other object
detection networks (Fast R-CNN, R-FCN)[16]. The
specific YOLO-tiny network was chosen due to
its relative lower computational requirements when



compared to the full YOLOv3 network (23 layers
vs 106 layers respectively). The size of the network
was important because of the application base. If
deployed on a drone, a small GPU is necessary due
to the weight constraints of the drone, thereby de-
creasing the computational power accessible. YOLO
operates using a 13x13 grid structure where each
grid square is responsible for up to 5 objects. This
structure allows for fast detection, but also allows
the network to get overloaded when there are mul-
tiple classifications within a single cell leading to a
failure point in the detection. For our application,
we trained the YOLOv3 tiny network to detect
both people and guns within approximately 300,000
iterations of training.

C. Training the Skeleton Network

The images that were previously sorted into high,
medium, and low threat postures were used with
the pre-trained CMU OpenPose detector to calculate
the pixel locations of the joints of the person.
This skeleton was then sliced to only evaluate
certain joints determined to be key points; the hips,
shoulders, elbows, wrists, neck. The pixel location
of the pistol was also included as an additional
joint location. These were thought to be the most
important points as a shot can be fired from almost
any leg position, but the torso, arms, and head
have specific configurations for accurate shooting.
The subset of skeletal points were then inputs to a
small feed-forward neural network taking the 10x2
dimensional input to a 3 dimensional output (high
threat, medium threat, low threat) with a single
hidden layer of 8 nodes, a learning rate of 2.5e-3,
and a training keep probability of 0.5.

There was significant pre-processing of the data
before it was input into the neural network to
decrease the number of training samples needed and
to increase the robustness of the classification. First,
the right elbow was set as the origin and then the
rest of the values were normalized such that the
magnitude of the right elbow to the right wrist was
one. If the direction of the elbow to wrist vector
has a negative x component (i.e. the right arm is
pointed to the left of the picture), the picture is
then flipped such that the elbow to wrist vector has
a positive x component. These steps are taken to
decrease the variance of possible positions thereby

Table I: Comparison of YOLO-tiny and YOLOv3
for detecting images with people and pistols in vary-
ing levels of threatening posture. Numbers reported
are a count of images where at least one object was
detected from the 300 source images.

Object High Med. Low

YOLO-tiny Pistols 215 104 79
People 244 272 288

YOLOv3 People 297 298 296

decreasing training time and samples necessary for
robust results. The advantage to this system is it
is very fast (0.07 seconds per prediction) and does
not take significant computational overhead. The
disadvantage is it is only able to predict effectively
when all of the skeletal points described above are
visible. With a larger dataset, partial skeletons could
be evaluated as well.

IV. RESULTS

A. Object detection using YOLO
To evaluate the performance of the YOLO-tiny

detector, 300 manually classified images were ran-
domly selected from a database of high-, medium-,
and low-threat images each, leading to a test set of
900 images. Table I presents the results of YOLO-
tiny and YOLOv3 for detecting pistols and people
detecting pistols and people from the 300 images
of each threat-level class presented to the detectors.
Detections using the YOLOv3 network were calcu-
lated using the pre-trained weights from the COCO
object dataset. The weights for the YOLO-tiny net-
work were generated using the method described in
Section III-A. The results in Table I do not reflect
the association of both people and pistols, just the
ability of the detector to locate the presence of
each object in the images. On average, the YOLOv3
network took 0.024 seconds longer to process each
image. This was calculated on a desktop workstation
with an Intel i7-8700K processor, and NVIDIA
Quadro P4000 graphics card, and 16 Gigabytes of
RAM.

B. Skeletal Threat
The OpenPose skeletal detection model was

highly robust and was able to find any person that
YOLO was able to detect. After 30 training epochs



Table II: Confusion matrix of skeletons classified by
the feed-forward neural network.

Predicted
High Med Low Total

A
ct

ua
l High 62 2 0 64

Med. 6 26 17 49
Low 0 2 52 54

Total 68 30 69 167

Table III: Proportion of predicted values given the
actual values (recall) rounded to the nearest whole
number

Predicted
High Med. Low Total %

A
ct

ua
l High 97% 3% 0% 38%

Med. 12% 53% 35% 29%
Low 0% 4% 96% 32%

with a batch size of 64, the conversion from skeletal
pose to threat class had a validation accuracy of
84% overall. Table II shows the confusion matrix
presenting true- and false-positives for the skeleton-
based threat classification. This data was developed
using the pre-classified images from the dataset
developed for this study. The first row contains the
classification results of the human designated high-
threat images. In this case, 62 images were correctly
identified as high-threat and 2 images were mis-
classified as either medium-threat. This shows that
there is a high level of differentiation between low-
and high-threat evaluations as no high-threats were
classified as low-threat and vice-versa. The medium-
threat skeletons were difficult to discern as they
bridge between the two extremes, likely being more
similar to low-threat skeletons than high-threat.

The proportion of predicted classes as a function
of actual values (also known as recall) is given
in Table III. This table displays the locations and
degree of errors in prediction, which is effective for
understanding the robustness of the system. From
this, correctly predicting all classes were effective
(97%, 53%, and 96% for high, medium, and low
respectively). The medium threats had a moder-
ate likelihood of being predicted as a low threat,
however, they were more likely to be predicted as
medium. The final column presents the percentage

Table IV: Proportion of actual values given the
predicted values (precision) rounded to the nearest
whole number

Actual
High Med. Low Total %

Pr
ed

ic
te

d High 91% 9% 0% 41%
Med. 7% 87% 7% 18%
Low 0% 25% 75% 54%

of each type of image of the set of images used
(38% of the images were actually high-threat). Table
IV shows how frequently a classification is actually
correct, or the precision value. This gives an idea
of how reliable a prediction is when the outcome is
unknown. For example, of the 30 images that were
classified as medium-threat, 26 of them actually
were medium-threat (87%). These values approx-
imately fit expectations as the recall was higher
than random chance. Again, the final column is
the percentage of images that were classified as
each category out of all of the 167 images tested.
This does show a slight bias to predict low as the
proportion of low predictions is higher than the
proportion of actual low values.

Using the same computer as described in Section
IV-A, The entire pipeline was evaluated for com-
putation time. 152 images were used which con-
tained known high-threat individuals that would be
detected by YOLO-tiny and successfully classified
by the pose estimation network. On average, each
image required 0.69 seconds to process the entire
pipeline with a standard deviation of 0.12 seconds.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a multi-stage threat-
level classifier for the near real-time detection of
people with handguns. Within the field, this study
combines both context and pose to evaluate threat.
Most other research in the field is focused on
pose or context solely and not the other, allowing
our system to become more nuanced through the
combination of factors. Using this, our network was
able to classify at a high rate of 84%, with both
high and low threats being highly distinct from
each other (97% and 96% recall rates respectively).
The largest deficiency of these results is derived
from the dataset available. The most important and



difficult piece of training the YOLO network was
recognizing guns; the current configuration was only
able recognize guns in particular orientations and
struggled to locate holstered guns. We strongly
believe this is because of the limits of our pistol
dataset. By increasing the number of images as well
as augmenting the dataset to rotate the pistols more,
we should achieve an increased detection rate by
increasing variability of the possible orientations of
pistols.

With regard to classification of the threat severity,
Table IV shows that when the system predicts the
threat severity of a skeleton there is a high proba-
bility of being correct. However, these values also
display a bias of the system. By comparing the total
percentage of low-threat predictions, 54%, to the
total percentage of low-threat images in Table III,
32%, the predicted percentage is significantly higher
than the actual percentage. We believe that this bias
to predict medium-threat as low-threat is due to the
inherent similarities between a medium-threat and
a low-threat, which caused even our human classi-
fiers issues when labeling. The difference between
having a hand near a holstered pistol, such as some-
one in mid-stride, and someone actively reaching
for/touching their pistol is difficult to discern, likely
causing this discrepancy in prediction.

Separately, we also constrained the classification
to require the completely populated subset of skele-
ton joints. No attempt at classification was made
on images without a complete torso, reducing the
accuracy where a classification could have been
tried. Rather than removing these images from our
dataset, we intend to study how to best include
partial skeletons into the training process to improve
classification accuracy. Another method that may
increase accuracy would be to add an additional
class to account for the middle ground between
medium- and low-threat postures. By adding a
“moderate-threat” class for when the hand is in
close proximity to the pistol, there might be a higher
level of delineation between classes leading to a
higher accuracy.

ADDITIONAL RESOURCES

For accessing our image dataset: tinyurl.com/
threat-data. The code used for this article can be

found here: github.com/westpoint-robotics/threat
detection

REFERENCES

[1] R. K. Tiwari and G. K. Verma, “A Computer Vision based
Framework for Visual Gun Detection Using Harris Interest
Point Detector,” in Procedia Computer Science, vol. 54. El-
sevier, 2015, pp. 703–712.

[2] S. Martinez-Diaz, C. A. Palacios-Alvarado, and S. M. Chavelas,
“Accelerated pistols recognition by using a GPU device,” in
Proceedings of the 2017 IEEE 24th International Congress
on Electronics, Electrical Engineering and Computing, INTER-
CON 2017. Institute of Electrical and Electronics Engineers
Inc., 10 2017.

[3] R. Olmos, S. Tabik, and F. Herrera, “Automatic handgun de-
tection alarm in videos using deep learning,” Neurocomputing,
vol. 275, pp. 66–72, 1 2018.

[4] A. Damashek and J. Doherty, “Detecting Guns Using Paramet-
ric Edge Matching,” Tech. Rep.

[5] J. Lai and S. Maples, “Developing a Real-Time Gun Detection
Classifier,” Tech. Rep.

[6] M. Takai, “Extracting Method of Characteristic Posture From
Human Behavior for Surveillance Camera,” Tech. Rep., 2009.

[7] A. Toshev and G. Christian Szegedy, “DeepPose: Human Pose
Estimation via Deep Neural Networks,” Tech. Rep.

[8] Z. Cao, T. Simon, S. E. Wei, and Y. Sheikh, “Realtime
multi-person 2D pose estimation using part affinity fields,” in
Proceedings - 30th IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, vol. 2017-January. Institute
of Electrical and Electronics Engineers Inc., 11 2017, pp. 1302–
1310.

[9] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang, “NTU RGB+D:
A Large Scale Dataset for 3D Human Activity Analysis,” 4
2016. [Online]. Available: http://arxiv.org/abs/1604.02808

[10] J.-g. Park, A. Patel, D. Curtis, S. Teller, and J. Ledlie, “Online
pose classification and walking speed estimation using handheld
devices.” Association for Computing Machinery (ACM), 9
2012, p. 113.

[11] S.-E. Wei, N. C. Tang, Y.-y. Lin, M.-F. Weng, and H.-Y. M.
Liao, “Skeleton-augmented Human Action Understanding by
Learning with Progressively Refined Data.” Association for
Computing Machinery (ACM), 11 2014, pp. 7–10.

[12] J. Candamo, M. Shreve, D. B. Goldgof, D. B. Sapper, and
R. Kasturi, “Understanding transit scenes: A survey on human
behavior-recognition algorithms,” IEEE Transactions on Intel-
ligent Transportation Systems, vol. 11, no. 1, pp. 206–224, 3
2010.

[13] R. Kelley, A. Tavakkoli, C. King, M. Nicolescu, M. Nicolescu,
and G. Bebis, “Understanding human intentions via hidden
markov models in autonomous mobile robots.” Association
for Computing Machinery (ACM), 3 2008, p. 367.

[14] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You
Only Look Once: Unified, Real-Time Object Detection,” 6
2015. [Online]. Available: http://arxiv.org/abs/1506.02640

[15] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick,
J. Hays, P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollár,
“Microsoft COCO: Common Objects in Context,” 5 2014.
[Online]. Available: http://arxiv.org/abs/1405.0312

[16] J. Redmon and A. Farhadi, “YOLOv3: An Incremental
Improvement,” 4 2018. [Online]. Available: http://arxiv.org/
abs/1804.02767

tinyurl.com/threat-data
tinyurl.com/threat-data
github.com/westpoint-robotics/threat_detection
github.com/westpoint-robotics/threat_detection
http://arxiv.org/abs/1604.02808
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767

	Cascaded Neural Networks for Identification and Posture-Based Threat Assessment of Armed People
	Recommended Citation
	Authors

	Introduction
	Related Work
	Hand Gun Detection
	Human Pose Estimation

	Approach
	Building and Compiling the Datasets
	Training the Human & Pistol Detecting Network
	Training the Skeleton Network

	Results
	Object detection using YOLO
	Skeletal Threat

	Conclusions and Future Work
	References

