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ABSTRACT 

 

This paper serves to address the effect of time on the sales of clothing retail, from 2010 to May 

2019. The data was retrieved from the US Census, where N=113 observations were used, which 

were plotted to observe their trends. Once outliers and transformations were performed, the best 

model was fit, and diagnostic review occurred. Inspections for seasonality and forecasting was 

also conducted. The final model came out to be a ARIMA (2,0,1). Slight seasonality was present, 

but not enough to drastically influence the trends. Our results serve to highlight the economic 

growth of clothing retail sales for the past 8 years, cementing the significance of the production 

economy’s stability. The quarterly GDP data was collected in order to find out the relationship 

with the differenced clothing data. Some observations of GDP data were affected by the clothing 

data before removing the seasonality. After removing the seasonality, the clothing expense is white 

noise and not predictable from the historical GDP. 
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CHAPTER ONE: INTRODUCTION 

 

Clothing stores have been the link between designers, garment factory, and the people of a nation. 

The dependence of clothing stores has never wavered throughout the development of the United 

States.	Some local stores have gone bankrupt, only to be replaced with more successful, well-

known companies, such as Zara, H&M, Hollister, among others. 

As a community evolves, they discard outdated practices for more modern ones. This can be seen 

across the entire economy; For example, goods can now be purchased online, and - depending on 

the service being provided - can be picked up in store, or at your door. Years ago, this service 

would have never worked, as stores did not have the infrastructure, or the wealth to do so. With 

the passage of time comes innovation and increases in quality of life. 

The history of clothing store development is not as fleshed-out as other studies, however the 

important events can be broken up into two major events - pre-modernization and modernization. 

Before the clothing stores era was formed, people make their own clothes. The first documented 

clothing market was believed to be around the beginning of the 16th century (Alison). Their 

selection of produce only included second-handed clothing. With the advancement of the times, 

there were a large number of clothes shops in the 19th century and the clothing industry was steadily 

improving. Nowadays, the type of clothes shop can be divided into several types, which are 

designer stores, retail clothing stores (Urban Outfitter), and outlets. 

The data for this paper was initially collected and compiled by the United States Census Bureau 

(https://www.census.gov/retail/marts/www/adv44800.txt). The data has been collected on a 

monthly basis from 1992 until May of 2019. The data is collected as part of the Monthly Retail 
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Trade Survey, in which the United States Census surveys various retailers specified under the 

Retail Trade and clothing and clothing accessories outlined by the North American Industry 

Classification System (census.gov). It is important to note that this data includes both retailers 

defined as store retailers, including classic establishments which operate at fixed locations, as well 

as non-store retailers, which would include retailers that sell merchandise via non-traditional 

means including but not limited to online sales, television sales, phone sales, et cetera (Tran, 

Adeline, et al.).	The United States Census Bureau conducts sample revisions for the Monthly Retail 

Trade Survey almost every five to seven years in an effort to compensate for various changes in 

the market that may occur (Sartz, Rob, et. al.). 

The question is, is there a trend in clothing sales? Could implementation of more modern 

advertising and selling tactics improved the revenue of clothing stores in the United States? Do 

the clothing sales follow a defined time series, and if so, can we forecast the change in sales over 

time? Is the GDP relative to the clothing retail sales data? If they are, are those relative every 

quarter, or only some of them are relative? These are the questions that will be answered in the 

following sections. These questions deserve thorough investigation relating to several parts, 

including literature review, methodology, and discussion. 
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CHAPTER TWO: LITERATURE REVIEW 

 

The most basic model that can be used for statistical analysis is a general linear model. 

Although these models are helpful, they assume each value has significant weights for infinite 

lengths of time. For our purposes, this model alone would not suffice. Using model diagnostics, 

we explored several model types; specifically, the MA, AR, ARMA, and ARIMA. In later sections, 

we will also discuss model trends, as well as forecasting. 

 

The Moving Average: MA 

This model describes the weights of each lag K, and assigns them to each time t. The 

complexity of the model is determined by the maximum time lag that a meaningful conclusion can 

be made between two observations. For a MA model at q=2 (MA (2)), the largest meaningful lag 

between two times t and t’ would be k=2. Any lags larger than two will not produce any correlation 

between values from times t and t’. 

For example, if we were to fit a data set to a MA (2) model, then Y values for time t=10 

and t=12 should be related by -𝛳2σ2e. This correlation should exist for any differences in time 

that are two units apart. If we were to compare the results for Y values at time t=10 and t=13, there 

would be 0 correlation. This idea of comparing values of 𝑌*  from time values larger than the 

established lag K holds true for the rest of the models that will be discussed (Cryer, Chan 2011). 
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Auto-regression: AR 

Generally, for an AR(p) model to be wide-sense stationary, the roots of the polynomial 

𝜙 𝑧 = 1 − 𝜑1𝑧231
2
145  must lie inside the unit circle (Hamilton). When a model uses a previous 

value of 𝑌*36  to estimate the current 𝑌* , this is called an autoregressive model. These models 

depend on an “guessing term”, in which this term will predict the value of the 𝑌*. This guessing 

term et, is a white noise process. Once again, observations at two different times t and t’ can only 

be correlated if they are within the time lag=K values that the model specifies. If two Y values at 

times t = 5 and t = 6 were to be compared, they would be related by their autocorrelation value, 

which would be 𝜙6. This means that the lag directly affects the correlation between two values 𝑌* 

and 𝑌*36. This is a classic example of an AR (1) process. 

 Specific to an AR (1) process, the model is considered stationary if the absolute value 

of the coefficient ф is less than 1. Should the model be an AR (2) process, then the requirements 

for a stationary time series can be expressed using the	quadratic equation. The quadratic equation 

satisfies three criteria, which are the following: 

1. The sum of coefficients 𝜙5 and 𝜙7 must be less than 1 

2. The subtraction of 𝜙5 from 𝜙7 should be less than 1 

3. The absolute value of the second coefficient 𝜙7 should be less than one. 

If this criteria is not met, differencing must occur, which will be brought up later (Cryer, 

Chan 2011). 

 

The Autoregressive-Moving Average: ARMA 
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The general ARMA model was described in the 1951 thesis of Peter Whittle, who used 

mathematical analysis (Laurent series and Fourier analysis) and statistical inference (Hannan). 

ARMA models were popularized by a 1970 book by George E. P. Box and Jenkins, who 

expounded an iterative (Box–Jenkins) method for choosing and estimating them. This method was 

useful for low-order polynomials (of degree three or less) (Hannan & Deistler). When a model 

cannot be explained without both autoregressive and moving average expressions, the two are 

combined to form an ARMA model. In these cases, both models will be incorporated into one 

expression, and the overall stationarity of the model depends whether the individual autoregressive 

and moving average models satisfy said conditions. Again, when dealing with non-stationary data 

sets, differencing (Cryer, Chan 2011). 

 

The Integrated Autoregressive-Moving Average: ARIMA 

 When a model lacks the requirements to be considered stationary, modifications can be 

done to address this. Differencing occurs when one takes a 𝑌*  and subtracts it with 𝑌*35. This 

overall expression can be reduced to 𝑊*, which is often times stationary. Usually, a model only 

requires differencing to the 1st or 2nd magnitude. Differencing any further would likely induce 

another problem - overdifferencing. The ARIMA model blends the previous ideas with 

differencing, and can be broken down to its ARI and IMA counter-parts. 

Let’s take the following autoregressive model as an example: 

𝑌* = 9Yt-1 + et 
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Immediately, it should be clear that the model cannot be sustained over a long period of 

time, as the values of 𝑌* will exponentially increase. However, when the model is differenced, it 

comes out to this: 

𝑊* =  𝑌* - 𝑌*35 

𝑊* = (1/9)(	𝑌*:5 + 𝑌* + 𝑌*35) 

The resulting expression can be maintained across a long period of time rather stably (Cryer 

Chan 2011).  Seasonal ARIMA models are usually denoted ARIMA(p,d,q)(P,D,Q)m, where m 

refers to the number of periods in each season, and the uppercase P,D,Q refer to the autoregressive, 

differencing, and moving average terms for the seasonal part of the ARIMA model (Hyndman). 

Trends 

 How the model changes in response to time can be addressed with a thorough 

understanding of trends. Models can have trends that suggest the average change across time, but 

these models vary. This concept can best be described using the following example: 

𝑌* = Ut + 𝑋* ;  (where 𝑈*  is the deterministic component, and 𝑋*  is the stochastic 

component.) 

In this case, the model can have a trend that is linearly increasing or decreasing, due to 𝑈* , 

but can have a certain randomness to it, due to 𝑋*. The linear trend will be the simplest, however 

Ut can also be quadratic, square-root, exponential, logarithmic, among other possible trends. 

 Although not applicable to our data, it is important to note that intervention is not 

considered part of a trend. This is because intervention events are both rare and unexpected; these 
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events are not part of the model, and are products of influences outside of our control. The 

following are examples of interventions: 

1. Airplane ticket sales vs time, from 1990-2005* 

2. Market value of homes vs time, from 2000-2010* 

3. Number of marathon runners vs time, from 2010-2015* 

*--In the U.S. alone. 

 Most cases of intervention occur by reducing the average values of the data set at a 

specific time t, but that is not always the case. A quick look at a dataset comparing amount of 

human blood donated in Florida vs. time, from 2010-2018, should show a large positive spike, at 

time t = 2017, for the months following the Pulse nightclub shooting.  (Cryer, Chan 2011). 

 

Forecasting 

Observing the trend of a time series will often provoke the question, “what will happen 

next”? With forecasting, we use the previous data values from time t to predict further data values 

at times t + L. The usefulness becomes quickly apparent, as analysts for major companies can 

predict the growth of sales, or perhaps predict changes in the stock market (Cryer Chan 2011). 
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CHAPTER THREE: DATA, METHODOLOGY, AND RESULTS 

 

The main objective of this project was to utilize statistical analysis software, R, to analyze 

a given dataset. As previously mentioned, the dataset used was collected by the United States 

Census Bureau, monthly from 1992 until the present day (Census.gov). At the time of analysis and 

writing of this paper, the last data point available for analysis is for May 2019. Due to restrictions 

in analysis, for the purpose of this project, the dataset was cut to only include data from January 

2010 until May 2019. This was done in an effort to simplify the analysis process, as well as make 

the output easier to understand. 

 

Time Series Data Analysis 

The raw dataset obtained from the Census Bureau was originally not in time series format. 

Therefore, the first step in analysis involved transferring the raw data into a time series. Following 

this, the corresponding time series was plot and interpreted. The corresponding graph can be seen 

in [Figure 1], where the time series dataset is plotted to represent monthly clothing revenue, in 

millions of dollars, as reported to the United States Census Bureau. 

From this it can be seen that the time series follows a positive linear trend. It does not appear to 

level off in latest years. In this time series plot, one can see that separate plotting symbols are used 

to distinguish between the different months of the year. This is done in an effort to determine 

whether or not there is any evidence to indicate seasonality in our data. From the plot of the time 

series, there does not appear to be any strong indication of seasonality. 
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Figure 1: Time Series Plot for the Clothing Retail Sales Data. 

 

Seasonal-means Trend 

As previously stated, from [Figure 1], it was determined that the sales are not stationary in 

the time series plot. In fact, it slowly increases almost linearly with time. With observations from 

this time series plot, the method of least squares is used to establish two models as seasonal-means 

trend and seasonal-means trend plus quadratic time trend in order to accurately represent the 

dataset. The regression output, multiple R-squared, and standardized residuals of two models were 

interpreted and analyzed. 

Initially the method of least squares was used to fit a seasonal-means trend to this time series, as 

shown in [Figure 2]. One can note that the multiple R-squared was 0.0052 percent, which is very 

low, and Adjusted R-squared has a negative number. The residuals interval for the first linear 

model is between -3177.8 and 2533.2. In addition to this, most of the beta coefficients are not 

statistically significant. In brief, this model is not a good trend fit for our dataset. 
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Figure 2: Model for a Linear Seasonal Means Trend 

A plot of the standardized residuals of the aforementioned linear seasonal means trend 

model was created and can be seen in [Figure 3]. In this, one could clearly see the trend in residuals 

for this model.  The standardized residuals of linear model indicated that the interval of 

standardized residuals was approximately between -2 to 1. Because of the lack of normality and 

the poor significance statistics, another model is suggested to be fit to determine the trend of the 

time series. 

 

Figure 3: Standardized Residuals of Linear Seasonal Means Model 

 

In short, the linear model to this time series analyzed above is not an ideal model of the 

trend of the time series because the multiple R-squared and the standardized residuals are not 
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acceptable. Analysis of a second model is needed to compare against the first model to determine 

the proper equation of the trend of the time series. 

Once again, the method of least squares is used to obtain a summary of a seasonal-means 

trend plus quadratic time trend equation, the output can be seen in [Figure 4]. The interval of 

residual is between -702.5 and 908.5. Comparing with the linear model above, the quadratic time 

trend interval had a smaller interval. Most of the terms for the second model are statistically 

significant. The multiple R-squared and Adjusted R-squared are 95.2 percent and 94.57 percent, 

which are much higher than that of the first model. Thus far, the quadratic time trend is much 

preferred over the linear trend, however, an analysis of the residuals of this linear seasonal means 

plus quadratic time trend model must be analyzed to determine whether this is the ideal for our 

time series. 

 

Figure 4: Model for a Linear Seasonal Means Plus Quadratic Time Trend 

Next, the standardized residuals of the of the linear seasonal means model plus the 

quadratic time trend model, and the resulting output can be seen in [Figure 5]. The interval of the 

model was approximately around -2 to 3. Compared to the residuals for the first model as shown 

in [Figure 3] the residuals of the second model are much more random. 
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Figure 5: Standardized Residuals of Linear Seasonal Means Plus Quadratic Time Trend Model 

The method of least squares is used to obtain a summary of a seasonal quadratic time trend, 

the output can be seen in [Figure 6]. The interval of residual is between -1020.99 and 856.59. 

Comparing with the linear model above, the quadratic time trend interval had a smaller interval. 

Most of the terms for the second model are statistically significant. The multiple R-squared and 

Adjusted R-squared are 90.59 percent and 89.46 percent, which are much higher than that of the 

first model. Thus far, the quadratic time trend is much preferred over the linear trend, but the linear 

seasonal means plus quadratic time trend model is the best. However, an analysis of the residuals 

of this linear seasonal means plus quadratic time trend model must be analyzed to determine 

whether this is the ideal for our time series. 
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Figure 6: Model for a Linear Seasonal Quadratic Time Trend Model 

 

 

Figure 7: Standardized Residuals of Quadratic Time Trend Model 

the standardized residuals of the of the linear seasonal quadratic time trend model, and the 

resulting output can be seen in [Figure 7]. The interval of the model was approximately around -2 

to 2. Compared to the residuals for the first and second model as shown in [Figure 3] [Figure 5], 

the residuals of the second model are much more random. 
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The method of least squares was used to create two trend models in an effort to find the 

best trend fit for our time series. To compare the two, for the linear model almost all of the terms 

were not statistically significant, however its R-square and interval of residual were not acceptable 

when compared against the quadratic model. The plots of the residuals were not randomly placed 

on the linear model. Although not all of the terms in the second model containing the quadratic 

term were statistically significant, the second model had an almost perfect multiple R-squared and 

adjusted R-squared. In addition, the plots for the residuals of the second model were randomly 

placed. In summary, we will use the seasonal-means plus quadratic time trend as our model’s trend. 
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Autocorrelation and Partial Autocorrelation Functions and Their Graphs 

Following the comparison of least squares models and trends, the Autocorrelation Function 

of the original time series was plot in an effort to determine the best model fit for our time series. 

The autocorrelation function graph for our time series data is shown in [Figure 8]. One can easily 

see that the autocorrelation function for the given data does not die out at any given lag. This would 

be evidence of a lack of stationarity for the given time series. 

One can see from [Figure 8] that all of the values of the autocorrelation function are notably 

and meaningfully far from zero. This only further points to the idea that the time series is not 

stationary. Because of this, differencing must occur for meaningful conclusions to be made. 

Following this, models such as the integrated moving average model (IMA) and the autoregressive 

integrated moving average model (ARIMA) should be considered. 

 

Figure 8: Autocorrelation Function Plot 
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Following this, the partial autocorrelation function for the time series is plot. The resulting 

plot is shown in [Figure 9]. From the plot, one can determine that there is a large cut off after the 

first lag. The remaining of the shown lags do not appear to hold much significance. 

 

Figure 9: Partial Autocorrelation Function Plot 
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Following this analysis, the model was differenced. Differencing is a process used to make 

a nonstationary time series stationary. This process means that the average of the time series is 

constant over time. The autocorrelation function of the differenced time series is shown in [Figure 

10]. 

 

Figure 10: Autocorrelation Function of Differenced Time Series 

Here, one can see that there is a significant drop off after the second lag, however there are multiple 

other significant lags throughout the series. Following this the partial autocorrelation function is 

plot and shown in [Figure 11]. 

 

Figure 11: Partial Autocorrelation Function of Differenced Time Series 
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From the autocorrelation function and the partial autocorrelation function, an 

autoregressive integrated moving average model would be preferred for this given dataset. Given 

the lags shown in the autocorrelation function graph, one would be more inclined to fit an ARIMA 

(2,0,1) model to fit the given time series data. Further differencing will introduce over differencing, 

which is not ideal. 

An autoregressive integrated moving average model is created using the r software. The 

resulting output is shown in [Figure 12]. As one can see, the value for 𝜃1 is approximately equal 

to -0.5244, the value for 𝜃2 is approximately equal to -0.3683, and the value for 𝜓 is approximately 

equal to 0.1131. 

 

Figure 12: Model for an ARIMA (2,0,1) 
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A summary of statistics for the ARIMA (2,0,1) Model is shown in [Figure 13]. As one can 

see, the standardized residuals and the Quantile-Quantile plot of the standardized residuals appear 

to be normal. Also, the p-values for the Ljung-Box statistic appear to be up to par with what would 

be ideal for the model of the time series. 

 

Figure 13: Summary of Statistics of the ARIMA (2,0,1) Model 

 

Forecast for dataset 

From the previously shown ARIMA (2,0,1) model the next step is to forecast the dataset 

future two years into the future to see the future trend of clothing stores. The forecast is shown in 

[Figure 14]. The last sample size of sales in the dataset is 22,487 millions of dollars. In [Figure 14] 
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one can see the forecasting for the time series, which is denoted by the solid red points. One can 

see from the forecasted graph that the sales from June of 2019 to June of 2022 are around 22,500 

to 23,500 millions of dollars. The forecast trend is a linear line without any factors affects and the 

increase rate for the future three years is based on the past ten years’ sales rate. The gray area 

which is shown in the plot means if any factors affect the clothing retails market, the red point will 

flow up or down between the area. 

If the trend continues, more and more clothing retail stores being established not only in 

the United States but also around the world because of its convenience to the consumers. Because 

of this the trend of the sales might go faster than predicted model. It is always possible to compare 

the actual data trend after two years and the forecasting trend below. 

 

 

Figure 14: Forecast of the ARIMA (2,0,1) Model 

 



 

	 21 

CHAPTER FOUR: DISCUSSION 

As the main objective for this project has been solved in the previous chapter. The 

researcher came out with another question upon his head. Is the GDP relative to the clothing retail 

sales data? If they are, are those relative every quarter, or only some of them are relative?  The 

quarterly GDP dataset used was collected by the United States Bureau of Economic Analysis, 

quarterly from January 1993 until the present day (fred.stlouisfed.org). The last data point 

available for analysis is for July 2019. The research needed to fix his original clothing dataset from 

monthly to quarterly, since the frequency of the GDP dataset was quarterly. 

However, both of the quarterly GDP dataset and the quarterly clothing dataset are non-stationary. 

Following this analysis, two of the dataset were differenced. Differencing is a process used to 

make a non-stationary time series stationary. Also, one can find out the relationship between two 

data set each quarterly easier. 

 

Time Series Data Analysis for Quarterly GDP 

The raw dataset obtained from the United States Bureau of Economic Analysis was 

originally not in time series format. Therefore, the first step in analysis involved transferring the 

raw data into a time series. Following this, the corresponding time series was plot and interpreted. 

The corresponding graph can be seen in [Figure 15], where the time series dataset is plotted to 

represent quarterly GDP revenue, in billions of dollars, as reported to the United States Bureau of 

Economic Analysis. 
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From this it can be seen that the time series follows a positive linear trend. It does not appear to 

level off in latest years. In this time series plot, one can see that separate plotting symbols are used 

to distinguish between the different quarterly of the year. This is done in an effort to determine 

whether or not there is any evidence to indicate seasonality in our data. 

 

Figure 15: Time Series Plot for the Quarterly GDP Data 

 

The differenced Autocorrelation Function of the Quarterly GDP time series was plot in an 

effort to determine the best model fit for our time series. The autocorrelation function graph for 

our Quarterly GDP time series data is shown in [Figure 16]. The partial autocorrelation function 

of the differenced time series is shown in [Figure 17]. 
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Figure 16: Autocorrelation Function of Differenced Time Series 

 

Figure 17: Partial Autocorrelation Function of Differenced Time Series 

 



 

	 24 

The Relationship Between Quarterly GDP and Clothing Retail Sales Using Multivariate ARMAX 

Models 

Both frequency of the dataset was collected by quarter, and each quarter can be an 

independent variable. The researcher wants to know the relationship for the passing one, six and 

twelve month(s) between GDP and clothing retail sales. A multivariate ARMAX model was 

determined to solve the problem. For the two-dimensional series composed of quarterly GDP 𝑥*5, 

and clothing retail sales 𝑥*7. We can take 𝑥* = (𝑥*5, 𝑥*7)’ as a vector of dimension k = 2. 

The main objective of the topic is how GDP might affect clothing. The first step in analysis 

involved transferring the passing one month of two data into a multivariate ARMAX model. 

Following this, the independent variable is clothing retail sales, and the dependent variable is GDP. 

The passing quarter of a year for two dataset summary is shown in [Figure 18]. One can see the P-

value for the passing quarter of a year GDP was less than 0.05, so it rejected the null hypothesis. 

In other word, the passing quarter of a year GDP affected the clothing retail sales.  

 

Figure 18: The passing quarter of a year for two dataset summary in ARMAX model 
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After repeating the same steps as previously, the passing six quarters for two dataset summary is 

shown in [Figure 19]. One can see the first quarter, the fourth quarter, and the fifth quarter were 

statistically significant. 

 

Figure 19: The passing six quarters for two dataset summary in ARMAX model 
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A summary of statistics for the passing twelve quarters Model is shown in [Figure 20]. As 

one can see, the sixth quarter and the eleventh quarter were statistically significant. The rest of 

them were non-statistically significant. It means only two quarters of the GDP affected the clothing 

retail sales. 

 

Figure 20: The passing twelve quarters for two dataset summary in ARMAX model 
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Up to this point, the researcher used a VAR(p) model to find the best model. The selection 

criteria used in the package are AIC, Hannan-Quinn (HQ), BIC (SC), and Final Prediction Error 

(FPE) (Shumway). The Variable selection result is shown below [Figure 21].

 

Figure 21: VAR selection for the best model 

Fitting the model selected by BIC we obtain the first model which we analyzed was the most 

appropriate model. The prediction model for the relationship between GDP and clothing retail 

sales is estimated to be 

𝐶*=		-18.21	+	0.27t		–	0.24𝐶*35	+	1.05𝐺*35	
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The Relationship Between Quarterly GDP and Clothing Retail Sales After Removing Seasonality 

Following the prediction model, one might notice that the ACF of the original differenced GDP 

dataset had seasonality. It might impact the accuracy of the result. The researcher tried to remove 

the seasonality and extract the residuals. After removing seasonality, the multivariate ARMAX 

models and VAR(p) selection were would be used again in order to find out the best model 

equation for the relationship. 

The seasonal ARIMA model for the clothing retail sales was ARIMA (1,1,1) x (1,0,0)57. 

As one can see, the value for 𝜃1 is approximately equal to -0.2363, and the value for 𝜓 is 

approximately equal to -0.8415. 

 

Figure 22: Model for an ARIMA (1,1,1) x (1,0,0)57 

 

A summary of statistics for the ARIMA (1,1,1) x (1,0,0)57.  Model is shown in [Figure 

23]. As one can see, the standardized residuals and the Quantile-Quantile plot of the standardized 
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residuals appear to be normal. Also, the p-values for the Ljung-Box statistic appear to be up to par 

with what would be ideal for the model of the time series. 

 

Figure 23: Summary of Statistics of the ARIMA (1,1,1) x (1,0,0)57Model 
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The seasonal ARIMA model for the clothing retail sales was ARIMA (2,0,1) x (1,0,1)L. 

As one can see, the value for 𝜃1 is approximately equal to 0.7177, the value for 𝜃2 is approximately 

equal to 0.0101, and the value for 𝜓 is approximately equal to -0.3526. 

 

Figure 24: Model for an ARIMA (2,0,1) x (1,0,1)L 
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A summary of statistics for the ARIMA (2,0,1) x (1,0,1)L.  Model is shown in [Figure 25]. 

As one can see, the standardized residuals and the Quantile-Quantile plot of the standardized 

residuals appear to be normal. Also, the p-values for the Ljung-Box statistic appear to be up to par 

with what would be ideal for the model of the time series. 

 

 

Figure 25: Summary of Statistics of the ARIMA (2,0,1) x (1,0,1)L Model 
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After the seasonality has removed, the researcher can extract the residuals from both 

seasonal ARIMA model. Plus, the multivariate ARMAX model would be used again to determine 

the best model for the data. A VAR(p) model is used to find the best model, and one can see the 

best model for the passing twelve is the first month. 

 

Figure 26: VAR selection for the best model After Removing Seasonality 

Fitting the model selected by BIC we obtain the first model which we analyzed was the 

most appropriate model. The prediction model for the relationship between GDP and clothing 

retail sales is estimated to be 

𝐶*=		-16.54	+	0.41t		–	0.04𝐶*35	+	0.24𝐺*35	

The result is shown below [Figure 27]. One can tell the P-value for the GDP is not statistically 

significant. It did not reject the null hypothesis. It means the just passing quarter had no relationship 

with clothing. Plus, the P-value for the whole result is very large. However, the VAR selection 

chose the passing quarter was the best model, so the equation above would be the final result for 

the relationship between two data sets. 
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Figure 27: The passing quarter of a year for two dataset summary in ARMAX model 

A summary of statistics for the passing six quarters Model is shown in [Figure 28]. As one 

can see, the fifth quarter was extremely statistically significant. The rest of them were not 

statistically significant. It means the passing year of the GDP was not affecting the clothing retail 

sale. However, the p-value of the fifth quarter was very small, and it affected the clothing retail 

sales. 

 

Figure 28: The passing six quarters for two dataset summary in ARMAX model 



 

	 34 

The correlation plot between two data sets after removing seasonality is shown in [Figure 29]. The 

significant relationship is influenced by the extreme value.	After removing seasonal effect, the 

clothing expense is a white noise and not predictable from the historical GDP. In short, the GDP 

did not have a correlative relationship with the clothing retail sales. 

 

Figure 29: The correlation plot between two data sets after removing seasonality 
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CHAPTER FIVE: CONCLUSION 

The first step of analyzing the dataset is transferring the dataset to time series format. Once the 

dataset is transferred to time series format, three steps were taken to analyze the time series data: 

determining the most appropriate trend and trend model for the dataset, analyzing a model fit for 

the time series, and forecasting the time series to analyze the future of the time series. The model 

for linear seasonal means plus quadratic time trend is better than the linear seasonal means time 

trend for the time series dataset because the linear seasonal means plus quadratic time trend had a 

better R-squared, and the points in the standardized residuals plot are placed randomly. 

Following this, a time series model was fit to appropriately represent the model. Based on the 

partial autocorrelation and autocorrelation functions and their corresponding graphs, combined 

with the fact that our time series dataset was nonstationary, an ARIMA (2,1,1) model was chosen 

to be the best fit for our dataset. From there, a forecast was done to predict the future of the time 

series. 

Furthermore, the quarterly GDP dataset used was collected in order to find out if there is a 

relationship between each other. Both frequency of the dataset was collected by quarter, and each 

quarter can be an independent variable. A multivariate ARMAX model was determined to solve 

the problem. For the two-dimensional series composed of quarterly GDP 𝑥*5, and clothing retail 

sales 𝑥*7. Before removing the seasonality for both dataset, one could see there is relationship 

between two data. The best model is 

𝐶*=		-18.21	+	0.27t		–	0.24𝐶*35	+	1.05𝐺*35	

After removing the seasonality, the null hypothesis is not rejected since the P-value is a large 

number. The best model for after removing the seasonality is 
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𝐶*=		-16.54	+	0.41t		–	0.04𝐶*35	+	0.24𝐺*35	

The significant relationship is influenced by the extreme value.	After removing seasonal 

effect, the clothing expense is a white noise and not predictable from the historical GDP. 
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