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1 ABSTRACT

Nonlocal equations for coupled heat and mass transport are developed within the Green-

Kubo formalism. Nonlocal thermal transport in Lennard-Jones solids is computed to estab-

lish the existence of semi-ballistic transport. Deviations from the diffusive theory are shown

by comparing the Fourier transform of the response function from the nonlocal theory to

that of the diffusive one. It is shown that the deviations from the local theory correspond

to acoustic phonons, whose frequency dependence gives rise to the observed deviations from

the local theory.
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5 OBJECTIVES AND INTRODUCTION

Linear response theory assumes that response currents are linear in the driving forces. These

driving forces come in the form of gradients of physical quantities. This can be evidenced

by examining Fick’s laws, or Fourier’s law. In particular, Fick’s first law states that the flux

density, ~J is proportional to the gradient of the density, η(~r).

~J = −D~∇η(~r) (1)

Here D is called the diffusion coefficient, and ~∇η(~r) is the driving force. This equation

can be combined with the continuity equation, which states that law of conservation of

mass ∂η(~r)
∂t

= −~∇ · ~J(~r), to get Fick’s Second Law, ∂η(~r)
∂t

= D∇2η(~r). The other relevant

law, Fourier’s law, states that the current ~J(~r) is proportional to a temperature gradient,

~J(~r) = −κ~∇T (~r). Here κ is the thermal conductivity, and T is the temperature.

Note that the aforementioned laws are all local. By that we mean they depend only on

~r the point at which the response is being evaluated. This is in contrast to, for example,

electrical conduction which is considered as a nonlocal effect. Here the object of interest is

electrical conductivity, σ(~r, ~r′) which when an external electric field, ~E, is applied relates to

the current density, ~J(~r), by

~J(~r) =

∫
σ(~r, ~r′) ~E(~r)d3x (2)

Here σ is a second rank tensor. A similar equation can be written down for thermal conduc-

tivity. The response is given by

~J(~r) =

∫
κ(~r, ~r′)~∇T (~r)d3x (3)

Where κ is a second rank tensor, and T is a temperature field. Note that σ and κ also

depend on other points ~r′, which characterize the above equations as nonlocal.

While the local formalism has been sufficient for many applications in heat transport, it
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Figure 1: Distance vs. temperature graph displays
the violating of Fourier’s law, indicating a nonlocal
treatment is required to fully model the data.

has recently been shown that when temperature gradients are imposed for small systems

Fourier’s law breaks down. For example in Fig. 1 an MD simulation by Zhou et al. [1]

shows a nonlinear temperature gradient indicating partially ballistic transport and nonlocal

behavior. This issue was then investigated by Allen [2] who analyzed Eq. 3 in Fourier

space by Fourier expanding the conductivity tensor. Theoretical fits were then made using

solutions to the Boltzmann Transport equation (BTE), see Fig. 2.

Figure 2: The bold dots represent the data by Zhou
etal. [1], while P=2 and P=3 represent theoretical fits
using a Debye Model RTA fit.
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6 FLUCTUATION-DISSIPATION THEORY

In the Fluctuation-Dissipation Theorem, the basic idea is that the response to a system

perturbed by an external driving force can be understood by examining the nature of fluc-

tuations in equilibrium. There are several excellent examples of this in Brownian motion

and drag as well as with Johnson noise and resistance. Specifically for Brownian motion,

Einstein was one of the first to give a quantitative relation between random fluctuations and

mobility in the presence of an external field, now known as the Einstein relation. Consider

a system of particles with density η(x) in the presence of a scalar potential field V (x). The

dissipative part of the response will be J(x) = −µdV (x)
dx

η(x) where µ is the mobility, and the

total response will be [3],

J(x) = −Ddη(x)

dx
− µdV (x)

dx
η(x) (4)

If we allow this system to reach equilibrium J → 0, and η(x) will obey a Boltzmann

distribution, η(x) = γe−V (x)β where γ is a constant and β = 1
kBT

. Substituting back into eq.

4 with J = 0 gives

0 = Dη
dV

dx
β − dV

dx
ηγ (5)

D = µkBT (6)

This fundamental result tells us that the physical mechanism which controls fluctuations in

an equilibrium ensemble is the same as that which dictates dissipation effects. This was

the first of many results which were generalized to be called the Fluctuation-Dissipation

Theorem [3].

3



7 NONLOCAL RESPONSE FUNCTIONS

In his now famous paper, Kubo [4] was able to show that the Fluctuation Dissipation

Theorem can be used to compute transport coefficients, including the thermal conductivity.

The equations were derived under the assumption of linear response in the driving force,

and were a completely local formulation. These equations became known as the Green-

Kubo (GK) relations and are still widely used today.

In heat conduction, generally a local formulation using Fourier’s law is applied. Thermal

conductivity can be found from the GK relations [5]

κµν =
1

ΩkBT 2

∫ ∞
0

< Jµ(τ)Jν(0) > dτ (7)

Here κµν is the thermal conductivity tensor, Jµ is the heat flux density, Ω is the system

volume, kB is the Boltzmann constant, and T is the temperature. The angle brackets

signify an equilibrium ensemble average and the quantity < Jµ(τ)Jν(0) > is the current-

current autocorrelation function. Hence the fluctuations in equilibrium are connected with

the dissipation via the thermal conductivity. Note that Eq. 7 is established by assuming

diffusive transport and that Fourier’s law holds.

Many practical applications in nanoscale materials involve partially ballistic transport,

where heat carriers (e.g. the phonons ) propagate over distances comparable to the dimen-

sions of the material. For example, experiments of semiconductor alloys [6] reported thermal

conductivities which depend on the frequency of the oscillating temperature field used in the

measurement. In order to theoretically understand transport in the diffuse/ballistic limit a

nonlocal approach is required. We now begin developing such a formalism.

We aim to establish a nonlocal approach to transport, and expect the nonlocal theory to

give a result which goes beyond Eq. 7. We begin by considering a general nonlocal form

with response function Kµν(~x− ~x′, t− t′), which relates the heat flux density to the external
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heat sources and sinks,

Jµ(~x, t) = −
(

1

3kB

)∫
Ω

∫ t

−∞

∑
ν

Kµν(~x− ~x′, t− t′)
∂2∆u(ext)(~x′, t′)

∂t′∂x′ν
d3x′dt′ (8)

where ∆u(ext)(~x′, t′) represents energy density added or removed locally near ~x′. This expres-

sion takes into account the finite propagation time for the heat pulse, and hence an important

limitation on ballistic transport. While this expression is suitable for time-dependent heat

sources and sinks, it can also be applied to static nonequilibrium situations. Hence this is

compatible with the expression in Eq. [2], but goes somewhat beyond it to time-dependent

situations which would be relevant to many experiments including pulsed laser heating or

the response of materials to high-frequency heating via electron-phonon scattering in semi-

conductor devices.

We develop an approach to use Green-Kubo calculations to determine the nonlocal re-

sponse function Kµν(~x− ~x′, t− t′), which is then applied to transport in a solid Ar system.

We begin by expanding the current,

Jµ(~x, t) = J̃µ(0, t) +
∑
~k 6=0

J̃µ(~k, t)ei
~k·~x (9)

Similarly, the energy density can be expanded in a Fourier series,

∆u(ext)(~x′, t′) =
∑
~k 6=0

ũ(ext)(~k, t′)ei
~k·~x′ (10)

in which we have made the assumption that the net input energy is zero, hence ũ(~k = 0, t′) =

0 at all times. The response function is similarly expanded, with the assumption that the

system in question is isotropic,

Kµν(~x− ~x′, t− t′) = K̃µν(0, t) +
∑
~k 6=0

K̃µν(~k, t)e
i~k·(~x−~x′) (11)
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Substitution of these expressions into Eq. 8 yields,

J̃µ(~k, t) = −i
(

Ω

3kB

)∑
ν

∫ t

−∞
kνK̃µν(~k, t− t′)

∂ũ(ext)(~k, t′)

∂t′
dt′ (12)

To obtain an expression which can be used to evaluate the response functions, we consider

an external source,

∂ũ(ext)(~k, t′)

∂t′
= ũ(ext)(~k)δ(t′) (13)

in which δ(t′) is the Dirac delta function. Using Eq. 13 the integral in Eq. 12 can be

evaluated,

J̃µ(~k, t) = −i
(

Ω

3kB

)∑
ν

kνK̃µν(~k, t)ũ
(ext)(~k) (14)

This expression determines the heat-flux density which results from an input energy.

To obtain the response function, we can develop a Green-Kubo expression starting from

Eq. 14. First we assume that an external source ũ(ext)(~k) can be equated to a fluctuation of

a system in equilibrium ũ(~k). After this substitution, we multiply Eq. 14 by ikµũ(−~k), sum

over each direction µ, and take an ensemble average,

∑
µ

〈ikµJ̃µ(~k, τ)ũ(−~k)〉 = −
(

Ω

3kB

)∑
µ

∑
ν

kµkνK̃µν(~k, τ)〈ũ(~k)ũ(−~k)〉 (15)

where τ is the time relative to the fluctuation. Using the continuity equation and time-

reversal symmetry, and finally taking a derivative with respect to τ , it can then be shown

that the response function is given by,

∂K̃µν(~k, τ)

∂τ
= −

(
3kB
Ω

)
〈J̃µ(~k, τ)J̃ν(−~k, 0)〉
〈ũ(~k)ũ(−~k)〉

(16)

Integration of this expression over the time variable τ results in,

K̃µν(~k, τ)− K̃µν(~k, 0) = −
(

3kB
Ω

) ∫ τ
0
〈J̃µ(~k, τ ′)J̃ν(−~k, 0)〉dτ ′

〈ũ(~k)ũ(−~k)〉
(17)
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Taking the limit where τ →∞ we obtain,

K̃µν(~k, 0) =

(
3kB
Ω

) ∫∞
0
〈J̃µ(~k, τ)J̃ν(−~k, 0)〉dτ
〈ũ(~k)ũ(−~k)〉

(18)

Here we have used that limτ→∞ K̃µν(~k, τ) = 0. These can be combined to obtain another

relationship, namely

K̃µν(~k, τ) =

(
3kB
Ω

) ∫∞
τ
〈J̃µ(~k, τ ′)J̃ν(−~k, 0)〉dτ ′

〈ũ(~k)ũ(−~k)〉
(19)

We also see the connection between these results for finite ~k and the bulk thermal con-

ductivity defined by the Fourier law and the GK expression, namely

κµν = lim
|~k|→0

K̃µν(~k, 0) =
Ω

kBT 2

∫ ∞
0

lim
|~k|→0
〈J̃µ(~k, τ)J̃ν(−~k, 0)〉dτ (20)

in which we have used the fluctuation formula for the heat capacity and the classical equipar-

tition theorem,

〈ũ(~k)ũ(−~k)〉 =
3 (kBT )2

Ω2
(21)

Furthermore, using this expression, we can write a concise expression for K̃µν(~k, τ),

K̃µν(~k, τ) =
Ω

kBT 2

[∫ ∞
0

〈J̃µ(~k, τ)J̃ν(−~k, 0)〉dτ −
∫ τ

0

〈J̃µ(~k, τ)J̃ν(−~k, 0)〉dτ
]

(22)

In the following we consider a system with cubic symmetry, such that

K̃µν(~k, τ) = K̃(~k, τ)δµ,ν (23)

where δµ,ν is the Kroenecker delta function. In this case the current direction is exactly along

the direction ~k corresponding to the external perturbation. Hence we can define,

J̃µ(~k, τ) = J̃(~k, τ)
kµ
k

(24)

in which k = |~k|. Given these simplifications for a cubic system, it is then easy to show that
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the response function only depends on the magnitude of ~k. We obtain the expression,

K̃(k, τ) =
Ω

kBT 2

[∫ ∞
0

〈J̃(~k, τ)J̃(−~k, 0)〉dτ −
∫ τ

0

〈J̃(~k, τ)J̃(−~k, 0)〉dτ
]

(25)

There are many different vectors ~k with magnitude k. Hence, to obtain K̃(k, τ), we average

over each direction. To compare to the Fourier theory, we consider Fourier transforms of the

function K̃(k, τ),

D(~k, ω) =

∫ ∞
0

K̃(~k, τ)e−iωτdτ (26)

.

This can be contrasted with the local Fourier theory. In the Fourier theory, an external

heat pulse ũ(ext)(~k, 0) occurring at t = 0 in a system in equilibrium results in the response

for later times,

ũ(~k, τ) = e−αk
2τ ũ(ext)(~k, 0) (27)

where we have assumed an isotropic system. The thermal diffusivity is given by α = κ
cV

,

where κ is the thermal conductivity and cV is the volumetric specific heat capacity. In terms

of the Fourier components of the current density, we obtain from the Fourier theory

J̃µ(~k, τ) = −ikµ
(
κΩ

3kB

)
e−αk

2τ ũ(ext)(~k, 0) (28)

Comparison to the nonlocal expressions above, this suggests we should consider the trans-

form,

KT (k, ω) = κ

∫ ∞
0

e−αk
2τe−iωτdτ = κ

[
αk2 − iω

(αk2)2 + ω2

]
(29)

Differences between the nonlocal theory in Eq. 26 and the Fourier theory prediction in Eq.

29 represent ballistic transport processes. In the Fourier theory, if the external perturbation

is given by,

∂∆u(ext)(~x, t)

dt
=

1

4
a
(
eiωt + e−iωt

) (
ei
~k·~x + e−i

~k·~x
)

= a cos
(
~k · ~x

)
cos (ωt) (30)

8



the resulting heat flux density is,

~J(~x, t) = ~k

(
aΩκ

3kB

)
αk2 cosωt+ ω sinωt

(αk2)2 + ω2
sin
(
~k · ~x

)
(31)

This indicates that the current lags the input power in time. Specifically we can write,

~J(~x, t) = ~k

(
aΩκ

3kB

)
cos (ωt− δ)
(αk2)2 + ω2

sin
(
~k · ~x

)
(32)

with the relative phase angle given by,

tan δ =
ω

αk2
(33)

Equating the above expression to the Fourier law also yields the temperature distribution,

T (~x, t) =

(
aΩ

3kB

)
cos (ωt− δ)
(αk2)2 + ω2

cos
(
~k · ~x

)
(34)

Physically, one can see that if the driving frequency is very low, such that αk2 � ω, that

δ → 0, and the system follows the perturbation in time. However, if the frequency becomes

very large, then δ → π
2
.

In summary, the real part of KT (k, ω) corresponds to the heat-flux density which is in-

phase with the external input power, whereas the imaginary part of KT (k, ω) relates to

the tendency of the heat-flux density to lag the external input power. Another important

observation which applies to KT (k, ω) in both the nonlocal and Fourier theories is,

K∗T (k, ω) = KT (k,−ω) (35)
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8 APPROACH

The equations for nonlocal transport were used to analyze large systems of a single com-

ponent solid noble gas using Moluecular Dynamics (MD) simulations. These are computer

run simulations which model each atoms movement by numerically integrating Newton’s

2nd law under the action of a Lennard-Jones (LJ) potential. This famous pair potential is a

model for inter-atomic forces of noble gases.

Our simulation results were generated using Lennard-Jones potentials, with the interac-

tion between particles given by,

φ0(r) = −4ε

[(σ
r

)6

−
(σ
r

)12
]

(36)

where r is the separation between the particles. To ensure computational efficiency, a cutoff of

rc = 3σ was used, with σ always taken to be the size of the largest atom. For atom separations

r > rc, the interaction was taken to be zero. When r < rc, to ensure no discontinuities in

the potential or forces existed, the potentials were smoothed by calculating the interactions

from the effective potential,

φ(rij) = φ0(rij)− φ0(r = rc)− (r − rc)
[
dφ

dr

]
r=rc

(37)

Because the cutoff rc = 3σ11 is large, the effect of smoothing is minimal. The leading

discontinuity occurs in the second derivative at r = rc.

In order to obtain a microscopic definition for the heat flux, it is necessary to define a

local energy associated with each site. The local energy is chosen to be given by,

εi =
1

2
mi~vi · ~vi +

1

2

∑
j 6=i

φ(rij) (38)

In the following, the heat flux due to convective and virial contributions are separately

10



determined. For the convective heat flux,

~J (conv) =

N1∑
i=1

εi~vi (39)

Likewise for the virial contribution,

~J (vir) = −1

2

N1∑
i=1

~rij

[
1

r

dφ

dr

]
r=rij

( ~rij · ~vi) (40)

Then the net heat flux is given by the sum of the convective and virial contributions from

the two components,

~J = ~J (conv) + ~J (vir) (41)

11



9 RESULTS

MD runs were conducted for a single component (Ar) system containing 2048 atoms at

T = 10K, 20K, 30K, 40K, 50K, 60K in an fcc cubic lattice. Each simulation was run for 3×

105 MD steps and averaged over 30 separate runs. The Ar system was ran with the following

parameters for Ar: σ = 0.340nm, ε
kB

= 120K, m = 39.948amu We have tabulated other

relevant input parameters in Tbl. 1, including the reduced density and reduced temperature

ρ∗ = ρσ3, T ∗ = T
120K

respectively. Note that while our system parameters were slightly

different, our thermal conductivity results align with that of Ref. [7].

Table 1: Parameters for MD simulations

ρ* T* T [K] κ [ WmK ]
1.02 0.083 10 1.794
1.02 0.166 20 0.847
1.02 0.250 30 0.5576
1.02 0.333 40 0.4377
1.02 0.416 50 0.4234
1.02 0.500 60 0.3284

A sample run of κ(τ) = Ω
kBT 2

∫ τ
0
〈J̃(0, τ)J̃(0, 0)〉dτ for 20K is shown in Fig.3 to demonstrate

that convergence was achieved and the conductivity was recorded at 30 ps. Note how the

error grows, as we look at longer time, the signal to noise ratio becomes worse, yielding

increasing error-bars and at very long time could falsely show growth or decline in κ(τ).

12



Figure 4: Plot displaying real part of
(

Ω
kBT 2

) ∫∞
0
〈J̃(~k, τ)J̃(−~k, 0)〉dτ for k = 0, k = 2π

L at different T.

Figure 3: Real part of Ω
kBT 2

∫ τ
0
< J(0, τ)J(0, 0) > dτ vs. τ graph. This is for T=20K and convergence is

achieved by 20 ps.

We then plot
(

Ω
kBT 2

) ∫∞
0
〈J̃µ(~k, τ)J̃ν(−~k, 0)〉dτ shown in Eq. 22 for k = 0, k = 2π

L
in Fig.

4. Note, these conductivities have the expected trend that at k = 0 and k = 2π
L

they decrease

with increasing temperature. It is also evident in the figure that the response at k = 2π
L

is

strictly less than the bulk value, which is expected since even in the ballistic regime where

13



the bulk thermal conductivity should be dominant. Additionally, the lower response values

at k 6= 0 are consistent with the results of Allen [2] shown in Fig. 2.

What we found for K̃(2π
L
, τ), are properties which, we will demonstrate, contain ballistic

behavior. Fig.5 shows the real part of K̃(2π
L
, τ) for T = 10K, 30K, 60K. Notice that as

temperature increases the convergence time decreases. This signifies that as the temperature

of the system increases the ballistic phonons have shorter lifetimes.

(a)

(b)

(c)

(d)

Figure 5: Real components of K̃( 2π
L , τ) at T=10K, 30K, 60K. Temperatures increase from left to right with

(a) 10K, (c) 30K, (b) 60K. Plot (d) is a zoomed in graph to display the sinusoidal behavior of K̃( 2π
L , τ).

We then turn to Eq. 26 and examine how frequency affects the response, K̃(~k, τ) in our

nonlocal model. Figs. 6 show the real and imaginary components, respectively, of D(k, ω)

from Eq. 26 at different temperatures. Interestingly, there are peaks away from ω = 0.

Specifically, at f = ω
2π

= 0.28THz there’s a peak for all temperatures in the real and

imaginary components of D(2π
L
, ω). Fig. 8 Shows these peaks at several temperatures for

both real and imaginary components. This peak is indicative of ballistic transport and shows

that the system will have a stark reaction when probed near this frequency. Additionally,

these peaks smear out as the temperature is increased, approaching the diffusive regime at

14



high temperatures. It is also important to note that as temperature increases, the magnitude

of <D(~k, ω) decreases, indicating diminishing ballistic effects. Figs 6 also demonstrate the

adherence of D(ω,~k) to the expected parity for both real and imaginary components.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6: Real and imaginary components of D( 2π
L , ω) at T=10K,30K,60K. Real component is on the top,

imaginary is on the bottom, temperatures increase from left to right with (a) 10K and (e) 60K.

It is instructive to compare to the Fourier theory 29, whose prediction has been plotted

in Fig. 7. We compare Fig. 7 to the plots of D(ω,~k) (at 2π
L

) in Fig. 6. Fig. 6 shows that

the shape of D(ω,~k) is congruent with that of KT (k, ω) near ω = 0. Fig 7 also reinforces

our idea that the peaks from Figs 6 and 8 indeed indicate ballistic transport.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 8: Real and imaginary components of D( 2π
L , ω) at T=10K, 30K, 60K for frequencies near outlying

peaks on the positive frequency axis. Temperatures increase from left to right (a),(b) are 10K, (e),(f) are
60K The real components are on the top and imaginary components on the bottom.

(a) (b)

Figure 7: Real and imaginary components of KT ( 2π
L , ω) at T=10K; (a) real, (b) imaginary.

Suspecting that the heat carriers in this system are acoustic phonons, the speed of sound,

vs, was calculated. Since the speed of sound can be obtained from the bulk modulus, B, by

vs =
√

B
ρ

where ρ is the density of solid argon, an energy vs. volume curve fit was conducted

yielding a bulk modulus of approximately 2.21 GPa. We are then able to calculate the

density to be 1793.88 kg
m3 which gives a speed of sound vs = 1109.93 ms−1 using λmfp = 3K

Cv

16



where C = 3NkB
Vsystem

we obtain λmfp = 3.86 × 10−9m as the mean free path and a lifetime of

τp = 3.48ps, at T=10K. We then calculated the speed of the objects observed in the figures

already shown. We find the velocity of these objects to be v = ω
k

= Lf = 1208.9ms−1,

coinciding with the velocity of sound, suggesting they are acoustic phonons.

We find it important to compare length scales with the data we collected. It is estimated

that the width of the peak near f = 0.28THz at T=10K is ∆f = 0.035THz. Using the

uncertainty relation ∆f∆τ ∼ 1 we calculate ∆τ ∼ 28.5ps. This timescale corresponds to a

scattering time and is quite different than the phonon lifetime, τp, we calculated. We aren’t

sure of the origin of this discrepancy, a possible explanation lies in the diffusive theory’s

assumption that there is only one lifetime, rather than different ones for each phonon mode.

The discrepancy with the convergence times in Fig. 5 is less, and could be due to not having

enough MD data or our method for computing ∆f .
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10 CONCLUSION

We have successfully observed ballistic transport in a Lennard-Jones solid by developing

and using a nonlocal Green-Kubo formalism. By considering a general nonlocal form of

the current, we found the response function for a delta function external heat input. MD

simulations of solid Ar using a Lennard Jones potential were conducted and wave vector, ~k,

Responses were calculated. Furthermore, we have demonstrated that the response function

for an external perturbation which admits linear response has sinusoidal behavior at ~k 6= 0

and we’ve successfully been able to compute responses for these Fourier modes.

By, then, exploring the Fourier transform of the ~k dependent thermal conductivity we

have discovered peaks away from ω = 0 which aren’t present in the diffusive theory. We

show that these peaks represent acoustic phonon modes and that a smearing effect appears

as temperature is increased, demonstrating expected behavior if our formalism is to reduce to

the diffusive one at high temperature and large system size. Although further investigation

is required, we suspect this peak frequency will act as a resonance and may produce drastic

behavior in the system response.

Although experimental verification may be difficult, we wish to apply our formalism to

understand preexisting data. The nonlocal theory is typically done with the Boltzmann

Transport Equation, but hasn’t been done using nonlocal GK methods so we would like to

apply it to understand nonlocal effects. Specifically, we would like to reproduce the results

of [8] and probe systems for which the size of the heat source is not significantly larger than

the mean-free paths of the heat carriers.
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