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Abstract 

The present study empirically examined the effects of four fatiguing task domains on executive 

function through participants’ reaction time, accuracy, and brain activity in prefrontal cortex 

(PFC).  Forty college-age participants were collected (16 males and 24 females), of which eleven 

were examined using a functional near-infrared spectroscopy (fNIRS) imaging system. The 

present study used a 4×2 mixed factorial design consisting of fatiguing task (arm contractions 

task, vigilance task, distance-manipulated Fitts’ task, size-manipulated Fitts’ task) as a between-

participant variable and n-back testing period (pre-test versus post-test 3-back task) as a within-

participant variable.  Results indicated significant increases in 3-back performance after the 

fatiguing tasks, and significant increases in 3-back compensatory brain activity in dorsomedial 

and dorsolateral prefrontal cortex (dmPFC and dlPFC) after the fatiguing tasks.  Furthermore, 

results showed an interaction between 3-back target type and fatiguing task on standardized 

changes in reaction time, and an interaction between fatiguing task and testing period on brain 

activity in dmPFC.  Theoretical and practical implications are discussed.  Findings from this 

study may be used to help draw the boundaries on different domains of fatigue and their effects 

on the brain and body.  
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CHAPTER 1: INTRODUCTION 

Movement propels humans through innumerable daily tasks through controlled and 

autonomous processes.  For any movement, it may be said that increasing levels of autonomy 

emerge with skill development, with learning progressing through multiple stages (Eversheim & 

Bock, 2001; Fitts, 1964; Fitts & Posner, 1967; Taylor & Ivry, 2012).  In Fitts and Posner’s model 

of skill acquisition, learning progresses through three stages, consisting of the cognitive stage, 

associative stage, and autonomous stage (Fitts & Posner, 1967; Taylor & Ivry, 2012; Wulf, 

2007).  Proficiency increases logarithmically as practice increases, indicating that the rate of skill 

acquisition decreases across the stages.  Fundamentally, all behavior is movement guided by the 

elusive “black box” of the mind, and the study of behavior is the realm of psychology (Adolph & 

Berger, 2005).  Thus, the empirical study of movement is penultimately important to psychology, 

as behaviors are measured in the physical world (Rosenbaum, 2005).  Intriguingly, the study of 

movement has not heavily permeated psychology since the cognitive revolution in the 1950s 

(Rosenbaum, 2005), where Fitts’ Law and similar advances in cybernetics were the driving 

forces in understanding human information-processing based on mathematical models such as 

Shannon’s Information Theory (Fitts, 1954; Proctor & Vu, 2006; Shannon & Weaver, 1949).   

The development of movement is inextricably entwined with cognitive and perceptual 

abilities, such that perception serves as a closed-loop mechanism to improve movements’ 

effectiveness, efficiency, and safety (Adams, 1971; Adams, 1976; Elwell & Grindley, 1938).  As 

such, afference provides perceptual information to guide efference, a cycle which 

developmentally begins early in humans.  This developmental model for integrated movement 

and perception emerges in infancy – where infants use perceptual information to inform their 
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movements, and developments in movements lead to new perceptual experiences (Adolph & 

Franchak, 2016; Adolph & Joh, 2007; Thelen, 1995).  Furthermore, early childhood development 

is marked with increases in general behavioral performance, such as decreases in motor 

performance (increased reaction time) and increases in processing speed, working memory 

(WM), and general intelligence (Leversen et al., 2012).  Figurehead theorists in developmental 

psychology have also long touted the significance of gross and fine motor skill development for 

general psychological development, as motor behavior and other psychological behaviors are 

heavily entangled (Adolph & Franchak, 2016; Piaget, 1954; Gibson, 1988; Thelen & Smith, 

1996).  Late adolescent motor development, following late childhood development, is widely 

regarded as the peak developmental stage of motor performance (Malina, 2014; Zech et al., 

2018) – the developmental locus of our proposed study. 
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CHAPTER 2: RELEVANT RESARCH  

Executive Function 

A variety of tasks have been used to measure components of executive function, 

including simple (Case, Kurland, & Goldberg, 1982) and complex span tasks (Wilhelm, 

Hildebrandt, & Oberauer, 2013).  Two facets of executive function, short-term memory (STM) 

and working memory (WM), are both concerned with short-term encoding and retention.  

However, the defining difference between STM and WM is the nature of usage – as WM is 

concerned with not only the retention of short-term information, but its manipulation in tasks that 

require cognitive-physical engagement (Baddeley & Hitch, 1974; Baddeley, 2000).  Recent 

literature has indicated that STM and WM may have greater overlap than previously assumed 

(Aben, Stapert, & Blokland, 2012).  The full realm of executive functions may not be fully 

dissociable, but WM is generally considered to address functions of higher cognitive load and 

complexity.  One hallmark measure of working memory capacity (WMC), the individual 

differences construct of WM, is the n-back task.  The n-back task has long been purported to 

measure different facets of cognition, such as executive control, attention, and verbal memory 

(Gajewski, Hanisch, Falkenstein, Thönes, & Wascher, 2018).  However, in younger populations 

the n-back task has been largely associated with executive control – the locus of our present 

study.  Studies using the n-back task have traditionally measured participants’ reaction time and 

accuracy in response to targets and non-targets presented pictorially, textually, or auditorily.  

Here, we use one of the harder variations of the n-back task 

Fitts’ Law 
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Historically, Fitts’ Law has been well established as the most robust tool for 

understanding movements in one-dimensional and two-dimensional response space in the three-

dimensional world.  Some studies have even confirmed the applicability of Fitts’ Law to 

movements in three-dimensional response space (Campbell et al., 2008; Murata & Iwase, 2001; 

Zeng et al., 2012).  The law has been used across various domains of psychology since its 

inception in Paul Morris Fitts’ seminal paper (Fitts, 1954; MacKenzie, 1992).  Hailing as one of 

the few scientific laws in psychology, Fitts’ Law has been replicated across participants and 

conditions, serving as a predictor model for human movement.  The origins of Fitts’ Law stem 

from the speed-accuracy trade-off, where R. S. Woodworth first investigated the relationship 

between speed and accuracy in goal-directed aiming prior to the 19th century (Elliott et al., 2001; 

Hancock & Newell, 1985; Missenard et al., 2009; Woodworth, 1899).  As Fitts’ Law applies to 

all one-dimensional human movements, its applications range from performance in surgery, to 

driving, to reaching with a computer mouse (Mouloua et al., 2017, Mouloua et al., 2018).  Fitts’ 

equation is defined as ID = log2(2D/W), where the index of difficulty (ID) indicates the task’s 

difficulty in bits, where the distance between targets (D) is amplified and compared against the 

width of the individual targets (W), and the base 2 logarithm is taken against the ratio between 

distance and width for individual trials.  The logarithmic function is inverse to an exponential 

function in an analogous manner that a square root is inverse to a squaring function – where we 

find the base to a squared number.  The expansion into human performance can be determined 

by the equation IP = ID/MT, where the index of performance (IP) indicates a participant’s slope 

of performance in a given task in bits per second, movement time (MT) reflects a participant’s 
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initial movement time in seconds across N number of trials, and ID represents the difficulty in 

bits across N number of trials.   

Movements occur in appendages such as the limbs, digits, heads, tongue, and lips of 

various organisms, though their usage in Fitts’ Law has most prominently been recorded in 

humans (MacKenzie, 2018).  Notably, movements of these appendages all form the basis of 

behavioral research, a strong testament to how combinations of peripheral movements guided by 

the central nervous system create most behaviors (Bootsma et al., 2004).  A variety of Fitts’ 

studies have also examined the role of manual asymmetries in the domains of attention, bimanual 

coordination, whole-body limb tapping, and imagined task performance (Amazeen & 

Ringenbach, 2005; Hoffmann, 1997; Maruff et al., 1999; Mouloua et al., 2017; Mouloua et al., 

2018; Rohr, 2006).  These studies shed light on the significant role of laterality in appendages’ 

performance, where accrued experience and training between asymmetries explains individual 

differences in performance.  The scope of the present study encompassed strongly right-handed 

participants alone, in order to reduce confounding variables of laterality and prioritize skill from 

experience alone (Mouloua et al., 2018).   

Defining Fatigue 

 Broadly defined, fatigue is a psychophysiological state of exhaustion.  Due to the 

multidimensional nature of fatigue, research has been pioneered in domains ranging from 

exercise physiology, cognitive psychology, human factors psychology, to medicine (Pattyn et al., 

2018).  In clinical research, chronic fatigue (persisting over six months) is generally the locus of 

longitudinal research into fatigue-symptomatic disorders (Fernandez et al., 2009).  In non-
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clinical research, fatigue is voluntarily induced in experiments through mental or physical 

exercise.  The distinction between the two terms is the timescale (long-term or short-term) and 

nature (non-voluntary or voluntary) of the fatigue.  Voluntary fatigue can be defined as a 

decrease in performance following psychophysiological exertion.  The scope of the proposed 

study specifically encompasses voluntary fatigue, henceforth referred to as fatigue.   

Fatigue has been studied across various task domains, usually falling under the umbrella 

of cognitively demanding or physically demanding tasks.  Cognitively demanding tasks 

emphasize perceptual engagement, whilst physically demanding tasks emphasize physical 

engagement.  However, in practice the two are difficult, if not impossible, to dissociate – as the 

foundation of all behavioral tasks involves stimulus perception and behavior.  In physically 

demanding tasks, fatigue is elicited through physical workload and is denoted as physical fatigue 

or neuromuscular fatigue (Latash et al., 2003).  In cognitively demanding tasks, fatigue is elicited 

through mental workload and is denoted as cognitive or mental fatigue (Helton et al., 2010).  The 

distinction between cognitive and physical fatigue in the scientific literature often relies on 

central and peripheral factors, respectively (Mehta & Parasuraman, 2013).  However, the 

interaction between cognitive and physical fatigue is scarcely observed, and thus poses a 

significant gap in the literature.  The contributing central factors in both cognitive and physical 

fatigue are also unclear, with no studies directly comparing between the two.  Previous studies 

have indicated that cognitive fatigue (Causse et al., 2017; Helton et al., 2010; Loris et al., 2005; 

Wang et al., 2016,) and physical fatigue (Dai et al., 2001; Liu et al., 2002; Liu et al., 2007; 

Thomas & Stephane, 2008) each are accompanied by compensatory neural mechanisms for 

maintaining task engagement.  However, few studies have empirically examined the central and 



7 
 

peripheral factors of both cognitive and physical fatigue, which limits our understanding of 

where these relationships converge and diverge (Mehta & Parasuraman, 2013).  Some 

experiments have investigated mental-physical workload interactions on fatigue (Bray et al., 

2012; Granek & Sergio, 2015; Mehta & Agnew, 2012; Mehta & Parasuraman, 2013; Shortz et 

al., 2015), but few have examined central contributors to both types of workload (Mehta & 

Parasuraman, 2013).  Understanding the neural generators of different types of workload is 

imperative to advancing our scientific knowledge of human exhaustion and will enable us to 

better categorize different types of fatigue.  In the proposed study, we intended to induce 

physical fatigue through repeated isometric contractions with a resistance band (light load) and a 

distance constrained Fitts’ task.  Furthermore, we intended to induce cognitive fatigue through a 

vigilance task consisting of correctly identifying targets versus non-targets and a size constrained 

Fitts’ task.  After forty five minutes of each condition, participants proceeded to repeat the same 

ten-minute 3-back task previously completed before the fatiguing tasks.   

Fatigue in Fitts’ Tasks 

 A limited number of studies have investigated the effects of physical fatigue on Fitts’ 

Law, employing maximal voluntary contractions (MVCs) in order to fatigue a neuromuscular 

plant (Missenard et al., 2009).  These studies indicate differences in Fitts’ Law due to fatigue.  

However, to the best of our knowledge, no studies have empirically validated the fatiguability of 

Fitts’ Law alone.  Understanding how task performance declines with repetitions of a Fitts’ task 

will advance knowledge towards an understanding of the upper bounds on the law.  That is, we 

intend to investigate if the relationship between difficulty and performance in Fitts’ Law breaks 

down or shifts upwards in slope.  To the best of our knowledge, no other study has examined the 
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interaction of cognitive and physical fatigue on Fitts’ Law.  Understanding the influence of each 

type of fatigue on the relationship between task difficulty and performance will help understand 

the mechanisms that each type of fatigue induce decrement through.   

Phases in Reaching Movements 

Woodworth’s contributions led to the creation of the two-component model, a theory of 

goal-directed reaching that posits differences in control between movement phases (Elliott et al., 

2001; Woodworth, 1899).  Research has since established a primary phase for reaching 

movements consisting of ballistic submovements, and a secondary phase consisting of corrective 

submovements (Missenard et al., 2009; Pratt et al., 1994).  These prior studies have clearly 

demonstrated differences in movement phases using participants’ velocities, and we plan to 

incorporate these into our measures as well.  There are conceptual differences between the two 

phases of a reaching movement, consisting of a distance-covering phase (primary phase) and 

homing-in phase (secondary phase).  In Woodworth’s two-component model, the primary phase 

begins through a force impulse, and the secondary phase demonstrates a visual feedback loop 

where participants visually correct their movements.  Present research still supports this 

contention and has gone further to suggest a compromise between the primary phase and 

secondary phase for a given movement (Elliot et al., 2001; Elliot et al., 2010; Elliot et al., 2017; 

Meyer et al., 1988; Meyer et al., 1990).  In Meyer’s optimized submovement model, the speed-

accuracy tradeoff coalesces into a tradeoff between the movement phases of reaching.  Previous 

research has also accounted for several constraints in the speed-accuracy tradeoff, of which 

targets’ distance and size is most relevant to our study (Fernandez & Bootsma, 2004; Thompson 

et al., 2007).  Constraints of distance to a target (increasing distance) are referred to as effector 
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constraints, whilst constraints of target size (decreasing size) are referred to as task constraints.  

Effector constraints elicit higher peak velocities, while the shape of the velocity profile and 

duration of primary and secondary phases remain constant.  Conversely, task constraints elicit 

lower peak velocities, while the duration of the secondary phase elongates relative to the primary 

phase.  Conceptually, effector constraints emerge from limitations of an effector to cover a 

longer distance range, whilst task constraints emerge from limitations of visuo-motor corrections 

needed to accurately select a smaller target (Fernandez & Bootsma, 2004; Thompson et al., 

2007).   
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CHAPTER 3: HYPOTHESIS DEVELOPMENT 

3-Back Task 

 It is hypothesized that fatiguing task interventions will decrease performance on a 3-back 

task.  We expect that cognitively demanding tasks (vigilance task and size constraints task) will 

contribute to decreases in 3-back performance more so than physically demanding tasks (arm 

contractions task and distance constraints task).  However, we expect declines in 3-back 

performance across all fatiguing interventions.  Specifically, we expect that accuracy will 

decrease from pre-test to post-test more in the cognitively demanding tasks, and that reaction 

time will increase from pre-test to post-test more in the cognitively demanding tasks.   

Hypothesis 1: Accuracy will decrease from pre-test to post-test. 

Hypothesis 2: Reaction time will increase from pre-test to post-test. 

Hypothesis 3: Task type will moderate the relationship between pre-test and post-test accuracy 

and reaction time. 

Fitts’ Tasks 

For the Fitts’ measures, we suggest that constraint types will differentially impact 

performance in a later 3-back task.  In the Fitts’ tasks, increasing ID through task constraints and 

effector constraints will likely decrease MT in both cases.  However, it is suggested that effector 

constraints will elicit a steeper MT slope and broader range than task constraints, due to the 

higher inertia forces (greater accelerations and decelerations) of primary-phase movements 

(Hoffmann, 2017).  In traditional Fitts’ designs where distance and size manipulations are 



11 
 

intermixed, the variance accounted for in MT seems to delegate size manipulations to narrower 

ranges, and distance manipulations to broader ranges.   

Kinematics is used to quantify changes in movement that are caused by underlying forces 

(dynamics).  The use of movement velocities and accelerations will reveal participants’ physical 

performance in space-time with respect to the effector limb.  Movement velocities indicate 

participants’ speed throughout the arm-reaching motion, whilst movement accelerations infer 

participants’ relative force throughout the motion as defined in Newton’s second law of motion F 

= ma, where F denotes force acting on an object, m denotes mass of the object, and a denotes 

acceleration of the object.  An object’s acceleration is the first derivative of its velocity, which is 

the first derivative of its position in space.  Previous limb aiming studies have distinguished 

differences in velocities between the primary and secondary phase (Thompson et al., 2007).  The 

primary movement phase is largely ballistically guided, where an effector accelerates and 

decelerates towards a target.  The secondary movement phase is largely visually controlled, 

where the effector homes in on the target while compensating for undershooting or overshooting 

the target.  We suggest that movement accelerations will help to better understand the primary 

movement phase, where higher inertia forces are present than in the secondary movement phase 

(Hoffmann, 2017).  We expect that increasing task constraints will decrease only secondary 

phase velocities and accelerations whilst increasing the duration of this phase, and that increasing 

effector constraints will increase only primary phase velocities and accelerations whilst 

increasing the duration of this phase (Schmidt et al., 1979).  With longer distances, a greater 

force impulse is applied to the muscle – but the increase in force is generally not enough for the 

increase in distance, leading to an increase in the duration of the primary phase.   
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We suggest that workload from task constraints can be theorized to be more cognitively 

fatiguing, whereas workload from effector constraints can be theorized to be more physically 

fatiguing.  Task constraints may decrease movement velocities and accelerations as a function of 

primarily mental workload from smaller target sizes, whereas effector constraints may decrease 

movement velocities and accelerations as a function of primarily physical workload from longer 

arm movements.  In the 3-back tasks, we expect that fatigue from task constraints will decrease 

accuracy and increase reaction time more so than fatigue from effector constraints.  These two 

Fitts’ tasks are conjectured to be of higher visual-motor integration than the arm contractions and 

vigilance tasks. 

Neuroimaging of Fatigue 

Functional near-infrared spectroscopy (fNIRS) enables measurement of brain activity 

through hemodynamics (blood movement).  As neural activity increases in brain regions through 

more synaptic transmission and action potentials, cerebral blood flow (CBF) increases to these 

regions to deliver more oxygen to energy-depleted neurons.  Using near-infrared light, responses 

in oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin (HHb) chromophores can be 

imaged throughout the brain in real-time.  Through this neuroimaging technique, we propose to 

quantify increases in brain activity related to task fatigue and performance.  We expect that 

increasing task constraints will increase executive demand alongside decreases in target size.  In 

accordance with previous literature, we propose that increased executive demand will primarily 

activate the prefrontal cortex (PFC) as task difficulty increases (Goto et al., 2011; Mehta & 

Parasuraman, 2013; Tajima et al., 2010).  We also expect that increasing effector constraints will 

increase motor demand as larger arm muscles’ movement is challenged alongside increases in 
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distance between targets.  Previous literature (Dai et al., 2001; Liu et al., 2002; Mehta & 

Parasuraman, 2013) suggests increased motor demand will principally activate the primary motor 

cortex (M1) and supplementary motor area (SMA) as task difficulty increases.  However, 

research has also indicated increased motor demand activates PFC (Dai et al., 2001; Goto et al., 

2011; Liu et al., 2002, Pardini et al., 2013), where PFC seems to serve as a compensatory 

mechanism.  We propose that increasing task constraints will increase activity in PFC more than 

effector constraints, as less emphasis is placed on physically demanding movements with shorter 

target distances, and more emphasis is placed on visual-cognitive functions with smaller target 

sizes.  Furthermore, we hypothesize that the arm contractions task will more closely model the 

activity generated from the distance constraints task due to increased physical demand, whilst the 

vigilance task will more closely model the activity generated from the size constraints task due to 

increased cognitive demand.  However, we also expect to see increases in activity in PFC across 

all tasks, in lieu of the aforementioned literature. 

Hypothesis 4: All fatiguing tasks will increase functional compensation (HbO2) in PFC. 

Hypothesis 5: Increasing task constraints will increase functional compensation (HbO2) in PFC 

more than effector constraints. 

Hypothesis 6: The vigilance task will increase functional compensation (HbO2) in PFC more 

than the arm contractions task. 

 We suggest both task and effector constraints will increase activity in PFC, but effector 

constraints are likely to increase regional activation in M1 and SMA as well.  Research has 

indicated that PFC is largely responsible for cognitive and motor control, and M1 and SMA are 
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largely responsible for gross motor control.  However, analyses of M1 and SMA are beyond the 

scope of the present study. 
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CHAPTER 4: METHODOLOGY 

Participants and Procedure 

 Forty participants were collected (24 females and 16 males), with a subset of 11 

participants collected with our fNIRS system.  Participants were recruited from the SONA 

system at UCF.  Prerequisites for participation in this study included being from 18 to 25 years 

of age (M = 18.40, SD = .59), right handed, and with normal or corrected-to-normal visual 

acuity.  Upon completion of the experiment, participants received SONA credits towards their 

psychology classes.  All participants were treated according to the APA ethical and research 

guidelines.  According to a G-Power analysis, with a 4×2 mixed factorial design, including an 

effect size of .25, standard alpha level (.05), and power level (.80), it was estimated that 48 

participants would be needed to satisfy power requirements.  In the present study, a 4×2 mixed 

factorial design was used consisting of testing period (pre-test 3-back versus post-test 3-back) as 

a within-participant variable, and fatiguing task intervention (size constraints task, distance 

constraints task, vigilance task, arm contractions task) as a between-participant variable (see 

Figure 1, Appendix A).  A visual 3-Back task was used for the pre-test and post-test tasks and 

took participants approximately ten minutes to complete (see Figure 2, Appendix A).  A standard 

visual search vigilance task (Temple et al., 2000) was used for the vigilance task and presented to 

participants for forty five minutes (see Figure 3, Appendix A).  Participants were required to 

detect a target “O” versus a non-target forward-facing or backward-facing “D” continuously 

throughout the vigilance task (stimulus rate = 57.5 events per minute), wherein they only pressed 

the spacebar if a target was detected.  In the arm contractions task, participants were instructed to 

lift either a 2lb, 5lb, or 10lb dumbbell for one minute on and thirty seconds off repeatedly until 
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forty five minutes was reached (see Figure 4, Appendix A).  For the Fitts’ tasks, participants 

were presented with a forty five minute task consisting of either long distances between targets 

(effector or distance constraints task; see Figure 5, Appendix A) or small target sizes (task or size 

constraints task; see Figure 6, Appendix A).  Behavioral dependent variables included accuracy 

and reaction time during the 3-back tasks.  Neural dependent variables included HbO2 levels 

measured from PFC during the 3-back tasks.  Participants were presented with a 3-back task, 

followed by one of the four fatiguing task interventions, and repeated the initial 3-back task. 

Apparatus 

The experiment was presented on a Dell Workstation running Windows 7 and a BenQ 

LED gaming monitor model XL2730Z (144Hz refresh rate, 2560 x 1440 resolution with 1ms 

response time).  The 3-back and vigilance tasks were completed using a standard QWERTY 

keyboard (see Figure 7, Appendix A).  The discrete aiming tasks were completed using a Wacom 

Intuos XL digitizing tablet (active area 488 × 305 mm) and pen stylus with a standard pen nib 

(see Figure 8, Appendix A).  The tablet’s interface was comprised of circular targets, and 

participants performed a discrete aiming task wherein they pointed towards a cued target with the 

stylus.   NeuroScript MovAlyzeR software was used to present stimuli.  The Index of Difficulty 

was 5.64 bits for the size constraints task (target width = .4 cm, target amplitude = 10 cm) and 

4.39 bits for the distance constraints task (target width = 4 cm, target amplitude = 42 cm).   

fNIRS Data Acquisition 

Functional near-infrared spectroscopy (fNIRS) measurements of HbO2 and HHb were 

recorded using a 20-channel NIRSport 88 NIRx imaging system (NIRx Medical Technology, 
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New York; see Figure 1, Appendix B).  Participants were fitted with a cap consisting of 16 

optodes, including 8 source optodes and 8 detector optodes (see Figure 2, Appendix B).  

Recording optodes were placed over the prefrontal cortex, with a total of 8 source optodes and 7 

detector optodes used (see Figure 3, Appendix B).  Statistical analyses were performed in 

nirsLAB, and topographical measures of brain activity were analyzed.   

fNIRS Preprocessing Procedures 

 Data were acquired at a sampling rate of 7.8 Hz using two wavelengths of light (850nm 

and 760nm) to measure HbO2 and HHb levels.  Optodes were configured according to the 

international 10-20 system and used a 3cm long source-detector separation using plastic spacers.  

Data were preprocessed using a band-pass filter of .01 to .09 Hz in order to remove physiological 

noise (Mayer wave artifacts (0.1 Hz), respiratory activity (0.3 Hz), cardiac cycles (1 Hz)) and 

motion artifacts (Stefanovska, 2007).  Discontinuities were removed (STD threshold = 5), and 

spike artifacts were interpolated using the nearest signals (STD threshold = 5).  Optical Density 

data were converted into concentration changes using the modified Beer-Lambert Law (Cope & 

Delpy, 1988; Delpy et al., 1988).  Afterwards, all trials of the same stimulus type were block-

averaged, producing two mean hemodynamic response signals (pre-test versus post-test) for each 

channel and participant.   
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CHAPTER 5: RESULTS 

Behavioral Results 

Results showed a significant main effect of testing period on accuracy for targets F(1, 38) 

= 20.44, p < .001, η2 = .36 (see Figure 1, Appendix C).  This indicated that participants were 

significantly more accurate at detecting targets after completing the fatiguing tasks (M = 80%, 

SE = 2%) versus before completing the fatiguing tasks (M = 72%, SE = 2%).  However, there 

was no significant main effect of fatiguing task type or interaction between testing period and 

fatiguing task type on accuracy for targets.   

Figure 1: Pre- to Post-Test Differences in 3-Back Accuracy for Targets after a  

Fatiguing Task.  Error bars indicate ±2 SE. 
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Results also showed a significant main effect of testing period on accuracy for non-

targets F(1, 38) = 7.02, p < .05, η2 = .16 (see Figure 2, Appendix C).  This indicated that 

participants were significantly more accurate at detecting non-targets after completing the 

fatiguing tasks (M = 89%, SE = 1%) versus before completing the fatiguing tasks (M = 82%, SE 

= 2%).  However, there was no significant main effect of fatiguing task type on accuracy for 

non-targets.   

Figure 2: Pre- to Post-Test Differences in 3-Back Accuracy for Non-Targets 

after a Fatiguing Task.  Error bars indicate ±2 SE. 
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Results showed a significant main effect of testing period on reaction time for targets 

F(1, 38) = 7.31, p < .05, η2 =.17 (See Figure 3, Appendix C).  This indicated that participants 

were significantly faster at detecting targets after completing the fatiguing tasks (M = 838.43 ms, 

SE = 48.6) versus before completing the fatiguing tasks (M = 917.09 ms, SE = 45.14 ms). 

Figure 3: Pre- to Post-Test Differences in 3-Back Reaction Time for Targets 

after a Fatiguing Task.  Error bars indicate ±2 SE. 

However, there was no significant main effect of fatiguing task type or interaction 

between testing period and fatiguing task type on reaction time for non-targets (see Figure 4, 
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Appendix C).  Furthermore, results did not show a main effect of testing period, fatiguing task 

type, nor interaction between testing period and fatiguing task type on reaction time for non-

targets. 

Figure 4: Pre- to Post-Test Differences in 3-Back Reaction Time for Non-

Targets after a Fatiguing Task.  Error bars indicate ±2 SE. 

Standardized change scores were computed between pre-test and post-test periods for 

participants’ accuracy and reaction times collapsed across target types.  Results did not show a 
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main effect of target type, fatiguing task type, nor interaction between target type and fatiguing 

task type on participants’ accuracy (see Figure 5, Appendix C).   

 Figure 5: Pre- to Post-Test Standardized Changes in 3-Back Accuracy for 

Targets vs Non-Targets after a Fatiguing Task.  Error bars indicate ±2 SE. 

However, results showed a main effect of target type on the change in reaction time from 

pre-test to post-test F(1, 38) = 8.31, p < .01, η2 = .19.  This indicated that participants had greater 

decreases in reaction time after the fatiguing tasks for non-targets (M = -7%, SE = 3%) versus 

greater increases in reaction time after the fatiguing tasks for targets (M = 4%, SE = 4%) after the 
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fatiguing tasks.  Furthermore, significant differences were identified between the vigilance and 

distance constraints tasks (p < .05), with the vigilance task leading to the greatest increases in 3-

back reaction time (M = 16%, SE = 7%) and the distance constraints task leading to the greatest 

decreases in 3-back reaction time (M = -15%, SE = 6%) (see Figure 6, Appendix C).   

Figure 6: Pre- to Post-Test Standardized Changes in 3-Back Reaction Time 

for Targets vs Non-Targets after a Fatiguing Task.  Error bars indicate ±2 SE. 

 

Neuroimaging Results 
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Changes in 3-back HbO2 levels after the fatiguing tasks were thresholded in nirsLAB 

using statistical parametric mapping (SPM) F-tests.  Seven F-contrasts were taken across 20 

channels x 2 testing periods x 11 participants, consisting of a test of main effects for all 

participants from pre-test to post-test, and six comparisons between all combinations of fatiguing 

tasks.  Results indicated significant increases in HbO2 levels at Channel 5 (F(3, 9) = 11.9, p < 

.05) and Channel 12 (F(3, 9) = 6.96, p < .05) in a 3-back task when collapsed across all fatiguing 

tasks (see Figure 7, Appendix C).  This suggests that activity in PFC increases during a 3-back 

task after exposure to all our fatiguing task interventions, regardless of fatigue type. 

 Figure 7: F-Map for Pre- to Post-Test Increases in 3-Back HbO2 Levels After 

All Fatiguing Tasks at Channel 5 (dlPFC) and Channel 12 (dmPFC).  N = 11. 
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Furthermore, results indicated a significant interaction F-contrast between fatiguing task 

type and testing period at Channel 9 (F(1, 4) = 9.74, p < .05) and Channel 14 (F(1, 4) = 9.62, p < 

.05) for higher HbO2 levels after the size constraints task, versus the distance constraints task 

(see Figure 8, Appendix C).  This suggests that increases in activity in PFC are greater during a 

3-back task after manipulating target size rather than distance in a prior fatiguing Fitts’ task.  

However, no other differences in brain activity were observed between fatiguing task groups.   

Figure 8: F-Map for Pre- to Post-Test Increases in 3-Back HbO2 Levels for 

Size Constraints Task versus Distance Constraints Task at Channel 9 

(dmPFC) and Channel 14 (dmPFC).  N = 6. 
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Importantly, none of the tests reported here survived Bonferroni corrections at the p < 

.0025 level (accounting for multiple corrections across 20 channels).  As such, the neuroimaging 

results here are taken with a grain of caution. 
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CHAPTER 6: DISCUSSION 

The 3-back task used here is purposed to analyze participants’ WMC, regarded as the 

flexibility with which one can manipulate information short-term.  Participants improved in 

accuracy and reaction time after completing all fatiguing tasks, rather than declining in 

performance as hypothesized.  This reflects the complex and multidimensional nature of fatigue, 

such that some demanding tasks may improve rather than decrease performance as a function of 

arousal.  With optimal levels of arousal, task performance may not be inhibited and may even be 

stimulated depending on tasks’ context and interactions.  Whilst a bevy of research is available 

on the vigilance decrement, emerging studies have examined or reviewed the potential “vigilance 

increment,” or increase in performance while maintaining vigilance (Al-Shargie et al, 2019).  A 

number of studies have examined vigilance increment through cognitive enhancement 

techniques, which can range from physical exercise (Lambourne & Tomporowski, 2010) to 

mental exercise (Lutz et al., 2009).  Many of these cognitive enhancement techniques pose 

contradictory findings, likely owing to context-specific interactions between tasks and individual 

differences in vigilance monitoring.  The present thesis seems to have demonstrated mostly 

vigilance increment effects, rather than the traditional vigilance decrement.   

The fatiguing tasks in the present study may have facilitated increased cognitive 

functions from pre-test to post-test 3-back – a finding which seems supported by the increases in 

PFC activity across all task conditions.  Interestingly, the greatest increases in 3-back reaction 

time came after the vigilance task, possibly alluding to the similar nature of the vigilance task 

and 3-back tasks, where participants need to attend to targets versus non-targets.  Furthermore, 

the greatest decreases in 3-back reaction time came after administration of the distance 
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constraints task, which may allude to our suggestion that the distance constraints task is less 

cognitively demanding and more physically demanding.  Alternatively, these results may also be 

in part due to testing effects – as participants drastically improved in accuracy and reaction time 

from pre-test to post-test.  However, participants first engaged in up to three practice trials to 

achieve at least 70% baseline accuracy before continuing to the pre-test 3-back task.  This was 

chosen in order to minimize fatigue before the experimental manipulations but also allow 

participants to improve their accuracy beyond chance in cases where participants scored 50% or 

less on the practice trials.  Furthermore, the pre-test and post-test tasks were separated by 45 

minutes of a cognitively and/or physically demanding task, rather than continuously repeating 

the 3-back task in search of traditional vigilance decrement.  We suggest that the effects reported 

here are related to compensatory increases in fatigue-related brain activity, as wholesale 

increases in 3-back task performance were matched by task-wide increases in brain activity in 

dorsomedial prefrontal cortex (dmPFC) and dorsolateral prefrontal cortex (dlPFC).  These two 

regions are implicated in executive function, and compensatory activity in dlPFC has been 

reported before in the cognitive fatigue literature (Causse et al., 2017; Mehta & Parasuraman, 

2013).  However, further analyses such as brain-behavioral regressions are necessary to elucidate 

the potential compensatory neural mechanisms underlying our sample here.   

Intriguingly, the size and distance constraints groups differed in brain activity from pre-

test to post-test 3-back tasks, in accordance with our hypotheses.  The size constraints task 

elicited significantly higher brain activity in dmPFC during the post-test 3-back task compared to 

the distance constraints task, supporting our prediction that size constraints in Fitts’ Law elicit 

more cognitive demand than physical demand, as opposed to distance constraints which we 
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suggest elicit more physical demand than cognitive demand.  The neural correlates of size versus 

distance constraints have yet to be empirically analyzed, to the best of our knowledge, and 

elucidating the cognitive role in Fitts’ Law can help shed light on different forms of goal-

directed arm movements (e.g., writing, pointing with a mouse).  The present thesis marks the 

first study to empirically examine these neural correlates and shines an exploratory light on the 

fundamental central contributors to Fitts’ Law and its two primary components (Fitts, 1954; 

Elliot et al., 2010; Bohan et al., 2005).  However, future studies should examine both PFC and 

other areas related to motor demand such as primary motor cortex (M1) and supplementary 

motor area (SMA) in tandem, in order to test for potential double dissociations between 

cognitive and physical demand.  Fitts’ Law has been rigorously tested to model visual-motor 

performance since its inception more than 60 years ago (Fitts, 1954).  However, it has yet to been 

purposed to reverse-engineer the separability and integration of these visual-motor mechanisms 

in the brain, for which this thesis hopes to provide fundamental research untoward this critical 

goal.  The separability of mind and body is an ode to the original questions by Descartes on 

duality (Descartes, 1637), for which the mechanisms of fatigue domains in conjunction with 

Fitts’ constraint types may assist in scientifically testing this distinction.   

The present thesis has a variety of theoretical implications for the scientific literature on 

fatigue.  Understanding the effects of fatigue on executive function using a domain-wide 

approach may help to set the boundaries on different types of fatigue.  This study contributes to 

the explanation of different domains of fatigue through both peripheral and central factors, where 

only one other study has done so (Mehta & Parasuraman, 2013).  Furthermore, this study adds to 

the literature by empirically examining cognitively and physically fatiguing task domains 
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through different levels of visual-motor integration, which serves to elucidate theoretical levels 

of integration in the mind-body distinction.  Importantly, our findings extend the nature of 

increment versus decrement in cognitive-physical fatigue interactions, which may help to 

transform fatiguing effects into restorative effects in cognitive and physical vigilance tasks.  This 

study extends previous research on fatigue to tasks with high levels of visual-motor integration 

(e.g., the size constraints and distance constraints tasks), which may serve as more realistic 

approximators for everyday tasks that are not confined to largely cognitively versus physically 

demanding tasks.  Whilst tasks with low levels of visual-motor integration (e.g., the vigilance 

versus arm contractions tasks) fundamentally distinguish between cognitive versus physical 

fatigue, understanding the continuum of visual-motor integration may be crucial to generalizing 

empirical studies of fatigue to everyday life. 

The present study has theoretical implications for the design considerations of brain-

computer interfaces (BCIs).  Fatigue may be an important consideration in neuroadaptive 

interfaces, where changes in mental states are used to switch between levels of automation (and 

thus human operators’ roles) in an automated agent such as a self-driving car.  The Yerkes-

Dodson Law explains that an equilibrium between high and low arousal leads to optimal 

performance (Yerkes & Dodson, 1908).  Future research should aim to develop neuroadaptive 

interfaces that consider changes in mental states by fatiguing domain (including measurements of 

PFC, M1, and SMA activity among other task domain-dependent regions) and level of visual-

motor integration (including the functional and effective connectivity between these brain 

regions alongside activation).  Applying this type of neuroadaptive automation to autonomous 

vehicles such as unmanned automobiles may eventually help prevent the loss of human lives, as 
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the primary cause of countless accidents is human complacency in error and situation monitoring 

(Greenlee, DeLucia, & Newton, 2018).  Conversely, in manual vehicle operations neuroadaptive 

automation may mitigate accidents caused by human fatigue (Bener, Yildirim, Özkan, & 

Lajunen, 2017).  Further research is needed to determine how these two issues may be better 

resolved by integrating humans and machines using BCIs.  Importantly, investigating these 

changes in arousal and fatigue based on a task’s domain and level of visual-motor integration 

may help to optimize human effectiveness, efficiency, and safety using these interfaces.   

The present thesis has various practical implications within the realm of human-machine 

interaction.  These fatiguing tasks map onto high-risk scenarios in transportation, such as 

operation of automobiles, ships, or aircraft.  Furthermore, mitigating fatigue and maintaining 

performance is critical for surgical operators engaging in vigilance and reaching movements with 

specialized tools (e.g., suturing and laparoscopy).  Fatigue can be perilous in these situations and 

is usually accompanied by performance decrement, where the safety, efficiency, and 

effectiveness of operations become compromised.  However, in some cases performance 

increment occurs, and methods to maximize this enhancement should be the one of the focuses 

of fatigue studies going forward.  In understanding how we can mitigate and even reverse 

fatigue, we stand at better odds to decrease the prevalence of fatal accidents related to human 

error in the realm of human-machine interaction.  These tasks may be purposed as tests to use in 

of training or selection batteries for physical and cognitive aptitudes for a variety of operational 

disciplines such as unmanned aerial vehicle (UAV) or air traffic controller selection and training, 

teleoperation and robotic surgery, among countless others.    
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Appendix A – Task Measures. 

Figure 1: 4×2 Experimental Design and Procedures 

  

10 minutes 10 minutes 



34 
 

Figure 2: 3-Back Task Procedure 
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 Figure 3: Vigilance Task 
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Figure 4: Arm Contractions Task (Researcher Self-Depicted) 
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Figure 5: Distance Constraints Task (Index of Difficulty = 16 Bits)  

Figure 6: Size Constraints Task (Index of Difficulty = 16 Bits) 
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Figure 7: Standard QWERTY Dell Keyboard 

Figure 8: Wacom Intuos XL Digitizing Tablet (488×305 mm) and Pen Stylus 
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Appendix B – Brain Imaging Equipment and Software. 

Figure 1: 20-channel NIRx fNIRS System 
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Figure 2: 20-channel NIRx fNIRS Cap and Optodes 
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Figure 3: 10-20 Prefrontal Cortex Probe Layout  
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Appendix C – Behavioral and Neuroimaging Graphs. 

Figure 1: Pre- to Post-Test Differences in 3-Back Accuracy for Targets after a  

Fatiguing Task.  Error bars indicate ±2 SE. 
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Figure 2: Pre- to Post-Test Differences in 3-Back Accuracy for Non-Targets 

after a Fatiguing Task.  Error bars indicate ±2 SE. 
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Figure 3: Pre- to Post-Test Differences in 3-Back Reaction Time for Targets 

after a Fatiguing Task.  Error bars indicate ±2 SE. 
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Figure 4: Pre- to Post-Test Differences in 3-Back Reaction Time for Non-

Targets after a Fatiguing Task.  Error bars indicate ±2 SE. 
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 Figure 5: Pre- to Post-Test Standardized Changes in 3-Back Accuracy for 

Targets vs Non-Targets after a Fatiguing Task.  Error bars indicate ±2 SE. 

 



47 
 

Figure 6: Pre- to Post-Test Standardized Changes in 3-Back Reaction Time 

for Targets vs Non-Targets after a Fatiguing Task.  Error bars indicate ±2 SE. 
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 Figure 7: F-Map for Pre- to Post-Test Increases in 3-Back HbO2 Levels After 

All Fatiguing Tasks at Channel 5 (dlPFC) and Channel 12 (dmPFC).  N = 11. 
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Figure 8: F-Map for Pre- to Post-Test Increases in 3-Back HbO2 Levels for 

Size Constraints Task versus Distance Constraints Task at Channel 9 

(dmPFC) and Channel 14 (dmPFC).  N = 6. 
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Appendix D – Consent Form.
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Appendix E – Demographic Questionnaire. 

 

Demographic Questionnaire 

Are you right handed?  YES/NO 

Do you have normal vision?  YES/NO 

If no, do you wear corrective lenses?  YES/NO 

Are you wearing your corrective lenses at this time?    YES/NO 

Do you have any other sensory problems?  YES/NO 

Do you have any physical/motor problems that may affect your ability to perform a repetitive 
task with your right arm?  YES/NO 

 

Select your sex/gender that best describes you 

Male  Female  Other  Prefer not to Answer 

 

Enter your age: ___________ 
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