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Our response to Peterson et al.’s (2020) polemic 
can be summarised quite succinctly thus: Co-occur-
rence is a necessary but not sufficient condition for 
a biotic interaction to occur.

Unfortunately, Peterson et al.’s criticism is geared 
towards convincing the reader that we are pushing 
the thesis that “co-occurrence = biotic interaction,” 
i.e., that co-occurrence is a sufficient condition for a 
biotic interaction. 

Peterson et al. have misrepresented our “body of 
work” in several important ways. Firstly, it has been 
reduced to a discussion of only “co-occurrence net-
works” and, moreover, to a particular (over) inter-
pretation of our results. Our “body of work” is quite 
general—a Bayesian statistical inference framework 
that uses spatial data to calculate conditional proba-
bilities, P(C|X), from a definition of co-occurrences 
of C and X which represent variable(s) whose distri-
bution in space and/or time is known from empirical 
data. Its chief innovation is that it allows variables 
of any spatio-temporal resolution to be included, 
compared, contrasted and combined. The condition-
al probabilities P(C|X) can then be used as building 
blocks in the construction of models that represent 
two distinct and important elements: ecological nich-
es and communities. 

Peterson et al. pose the question of whether a con-
nection between co-occurrence and biotic interaction 
should be expected to exist, arguing that: “Quite gen-
erally, spatial co-incidence of species’ distributions 
may be a consequence of geographic constraint, his-
tory, shared climate or substrate preferences, migra-

tory patterns, or many other factors.” Of course! Our 
methodology allows for all these multiple factors to 
be included, compared and contrasted in their con-
tribution to the niche and distribution of a species. 
The only requirement is that a spatio-temporal data 
representation of the corresponding variables be at 
hand. Moreover, it allows one to study confounding 
between one type of factor and another. 

Peterson et al. also state that: “patterns of co-in-
cidence and non-co-incidence are no indication of 
the processes causing them,” citing (Bell, 2005), 
who concentrates on community assembly, showing 
that: “bulk properties of communities, such as over-
all diversity, may be strongly affected by local dis-
persal and stochastic drift and, for this reason, are 
adequately represented by neutral models in many 
cases, despite the operation of systematic process-
es of local selection.” The emphasis here is that it 
is “bulk” properties that are unlikely to reflect pro-
cesses. This is why it has been difficult to find sys-
tems where global community indices show sig-
nificantly non-neutral signatures. However, that a 
checkerboard matrix does not produce a significant 
overall score does not mean there are no significant 
correlations between a subset of species within the 
matrix. Peterson et al. further claim that we have 
tested the predictive capacity of our models in only 
one single case. However, our methodology has been 
tested in multiple scenarios, not just a “single test,” 
including tests where intensive experimental proto-
cols including large field-work and laboratory teams 
were combined to obtain data that provided a true 
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out-of-sample test of our methods (Berzunza et al., 
2015; Stephens et al., 2016). They also state that our 
result “needs to be examined critically, using a prop-
erly constructed battery of tests (Gotelli 2000).” We 
have emphasised that our methodology already uses 
a “properly constructed battery of tests” as the null 
hypothesis in our binomial test is just SIM2 of Go-
telli (2000). 

Beyond questioning whether one could possibly 
expect to see a relation between co-occurrence data 
and biotic relationships in the first place, Peterson 
et al. question the use of “primary” data sources in 
light of their well-known biases. As Peterson et al. 
in multiple papers over a long period of time have 
used such data bases for niche modelling and species 
distributions we presume that they do not believe that 
such databases are useless. Moreover, in Atauchi et 
al. (2018), Peterson and collaborators used “massive-
ly biased” primary data, such as GBIF, to model the 
Peruvian bird species Phytotoma raimondii, using as 
inputs five known food source species, to determine 
if these biotic factors played a role in the niche of 
the bird species thereby being inconsistent with the 
Eltonian Noise Hypothesis (ENH). The authors con-
cluded that: “We rejected the ENH for this case: biot-
ic interactions improved the model.” Our point here 
is not to argue that primary data sources are without 
problems but, rather, the inconsistency of Peterson et 
al.’s posture that such data cannot be used as a proxy 
representation of biotic interactions in the case of our 
work but can in theirs. However, the inconsistency of 
their argument is much less important than whether 
or not primary data sources can be used to create pre-
dictive models whose results can be validated with 
known data or new data as we have done. 

Peterson et al.’s paper mentions several criti-
cisms of our diagnostic ε: that it is asymmetric, is 
grid size dependent, can have divisions by zero and 
that we misinterpret its significance values. We em-
phasise that ε is just a binomial test, an extremely 
well known and studied statistic. The properties that 
Peterson et al. question are all well-known attributes 
of this diagnostic. Asymmetry, for example, is a di-
rect consequence of the fact that the proportion of 
occurrences of X that have a co-occurrence with C 
is not the same as the proportion of occurrences of 
C that have a co-occurrence of X. Similarly, as grid 
size determines the size of the statistical ensemble 
under consideration, and ε is a measure of statistical 
significance, it is perfectly correct that it should de-

pend on the grid size, while the fact that one can have 
divisions by zero is due to the fact that we are trying 
to approximate a smooth distribution with a finite 
sample. Thus, it is sometimes appropriate to smooth 
the approximate distribution using, for example, Ad-
ditive or Laplace smoothing.  The fourth criticism is 
our claim that associations are significant when ε > 
1.96. Here, Peterson et al. seem to be under the mis-
apprehension that it is the normality of the distribu-
tion of values of ε itself that are being discussed. The 
distribution of a statistic and the probability distribu-
tion of the data from which the statistic is derived, 
however, are not the same thing. 

The next line of criticism is that “the entire prob-
abilistic argument behind the ε index very doubtful” 
as “the numbers in that formula, in general, cannot 
be regarded as probabilities, but as proportions of 
observations, for a given species, or proportions of 
observed co-occurrences, for pairs of species, in a 
particular database.” Of course, the numbers in that 
formula refer to proportions - that is how a probabili-
ty is defined in the frequentist perspective - of obser-
vations in a particular database, but not, contrary to 
Peterson et al.’s comments, to the “true” probability 
representing the “true” species distribution in their 
terms. Obviously, the probability that is calculated 
from a database represents an under sampling rela-
tive to the true distribution. 

All Peterson et al.’s worked examples are based 
on the incorrect assumption that our work states that 
statistically significant co-occurrence is a sufficient 
condition for a biotic interaction. As the “labels” as-
sociated with the possibly interacting species are im-
portant to understand the nature of any interaction, it 
is a rather fruitless enterprise to actively seek exam-
ples where the associated labels do not naturally lead 
towards a hypothesis of a likely biotic interaction, 
as in the case of Peterson et al.’s example using the 
families Trogonidae (Aves) and Scarabeidae (Insec-
ta), where they claim that there can be no biotic com-
ponent to the interaction as scarabs are terrestrial and 
trogons are frugivorous. However, contrary to their 
statements, not all scarabs are terrestrial (Vulinec et 
al., 2007) and trogons are not exclusively frugivo-
rous (Remsen et al.,1993). Thus, some possible bi-
otic interactions are: some trogon species consume 
some scarab species, or some fruit consuming scar-
abs (Reyes and Morón, 2005) consume the same 
food source as some trogons. This does not mean, 
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of course, that co-occurrence is due exclusively to 
these potential biotic interactions. 

The second example considers the explanation 
of the significant co-occurrence of two rodents Di-
podomys merriami and Perognathus longimembris. 
Peterson et al. wish to infer, wrongly, that a large 
positive value of ε signifies within our methodology 
“mutualism, symbiosis” while, in contrast, there is 
evidence of competition between these two species 
which comes from controlled experiments where one 
set of species were excluded from a given area and 
the relative numbers of any remnant species were 
recorded. The observation that the removal of some 
species led to increases in the abundance of some 
others was interpreted as evidence of competition, 
although this might not be the case, as shown by Da-
vidson et al. (1984). This, micro-level competition 
however, will not necessarily lead to manifestations 
at a macro level, where, on the contrary, one might 
expect to see one species being a niche variable for 
the other if, for example, they share food resourc-
es. One can investigate this phenomenon by creat-
ing niche and community models using both climate 
and rodent species as covariates and noting that the 
interaction is not explainable by both species being 
adapted to the same climate. It is then an interesting 
exercise to construct the niche models and networks 
for both species by including in potential food sourc-
es. One finds for example, that Larrea tridenta (cre-
osotebush), Prosopis glandulosa (honey mesquite), 
Gutierrezia californica and Gutierrezia ramulosa all 
have significant ε values with both species. Thus, one 
can verify that one reason, among various, for a posi-
tive interaction may be due to shared food resources. 
The final worked example of Peterson et al. concerns 
calculating ε values for six cat species occurring in 
Mexico but from two distinct data sources. The crit-
icism there is that ε is “database dependent,” as the 
results they derive from the SNIB and the IUCN ex-
tent-of occurrence datasets (IUCN, 2016) are differ-
ent.” We completely agree, and so it should be. IUCN 
data are not primary data: it is the result of a subjec-
tive model based on expert opinion, so to call them 
two different data bases as if they were two different 
representations of the same thing, both using primary 
data, is extremely misleading.

In their discussion of our work in epidemiolo-
gy and public health, Peterson et al. state that our 
“key assertion is that geographic co-occurrence im-
plies biotic interactions such as vectoring and host-

ing pathogens.” No! Our key assertion, again, is 
that geographic co-occurrence is a necessary but not 
sufficient condition for such biotic interactions to be 
present. Thus, it is not a “rash” conclusion to state 
that a Leishmania vector must co-occur with one or 
more Leishmania hosts and vice versa and, contrary 
to their claim, we have never asserted that all Lutzo-
myia species are vectors, or that all are of the same 
competence. 

In the case of flavivirus, Peterson et al. state: 
“Despite known ZIKV infections in numerous spe-
cies of bats in Africa and Asia, they have not been 
found to be competent reservoirs, contra the predic-
tions of González-Salazar et al. (2017).” This is a 
false statement. In that paper, we state clearly: “Fi-
nally, we emphasise again that the scope of the model 
of the present paper is to serve as a focus for future 
studies and show that potentially useful informa-
tion can be gleaned from the method, which, at this 
level, is not capable of predicting detailed elements 
such as potential host competency.” In particular, our 
methodology is clearly predictive of contact between 
pathogen and potential mammalian hosts. The ques-
tion is more, what is the result of that contact? Given 
the enormous importance of emerging and re-emerg-
ing diseases, anything that can focus attention on po-
tential risk factors is extremely valuable. 

In closing, we note that network reconstruction 
based on co-occurrence of living entities or their 
activities in space and time is becoming a major re-
search direction in the life sciences, from biochem-
istry, to genomics, to ecology. The reason for this is 
because it is a fundamental topic, which will provide 
important clues on phenomena such as co-existence 
and ecosystem functioning.  Several techniques have 
been developed, such as MaxEnt methods, Boolean 
networks, and Bayesian approaches. As most re-
search directions and theories in ecology, they pro-
ceed by continuous refinement and approximation of 
complex natural systems. We do not claim that ours 
is the best approach; we limit ourselves to present 
it and show that it makes sensible predictions that 
can be tested, and we acknowledge that, as with most 
approaches, it can be refined. Isn’t that what science 
is about? … increasing our knowledge of nature by 
developing theories and models and testing the hy-
pothesis derived from their application in order to 
refine them?
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