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BOUNDARY REGULARITY PROBLEMS
FOR SOME ELLIPTIC-PARABOLIC EQUATIONS

GIULIO TRALLI - FRANCESCO UGUZZONI

In this note we review some recent results in [64, 95, 96] concerning
necessary and sufficient conditions for the regularity of boundary points
relatively to the Dirichlet problem for linear degenerate-parabolic oper-
ators with well-behaved fundamental solutions. The main focus is on
Wiener-type criteria for a class of operators whose degeneracy is con-
trolled by Hörmander vector fields.

1. Introduction, and an overview of the related literature

The question whether the Perron-Wiener solution of the Dirichlet problem for
the Laplace operator attains its boundary datum continuously at a particular
boundary point is, obviously, very classical. The points where the boundary
datum is attained are called regular in classical potential theory. The regular
points were characterized by Wiener in [100, 101], who proved that a boundary
point x0 of any bounded open set Ω⊂ RN is regular for the Laplace operator ∆

if and only if, for fixed µ ∈ (0,1), we have

∞

∑
k=1

cap
((

B(x0,µ
k)rB(x0,µ

k+1)
)
rΩ

)
µk(N−2) =+∞, (1)
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where cap(E) indicates the Newtonian capacity of a set E and B(x0,r) denotes
the ball centered at x0 of radius r > 0. The Wiener criterion (1) has been stated
and proved in several ways in [17, 23, 33, 52, 53]. Furthermore, many general-
izations to a wide range of elliptic operators have been obtained after the work
by Wiener. We mention here the results in [47, 81, 84, 91, 92] where it was
proved that the condition (1) is necessary and sufficient also for the regularity of
boundary points related to uniformly elliptic operators with variable coefficients
with various degree of regularity. In this direction, the most important contri-
bution is due to Littman, Stampacchia and Weinberger who proved in [67] that,
also for the case of divergence-form uniformly elliptic operators with bounded
measurable coefficients, the boundary regularity is characterized by the Wiener
condition (1). In other words, a large class of uniformly elliptic operators share
the same notion of regularity with the Laplace operator. After [67] it is known
that this is strongly related with the fact that the Green kernel of the operator
under consideration behaves near the diagonal as |x− y|2−N . For similar rea-
sons it is also known that, for nondivergence-form operators with no control
on the modulus of continuity of the matrix coefficients, the notion of regularity
fails to be characterized by condition (1) (see [74], and also [58] for recent de-
velopments). The proper characterization of the regularity for uniformly elliptic
operators in nondivergence-form with continuous coefficients has been obtained
in [8] through the study of normalized adjoint solutions (we refer the reader to
[19, 54] for related discussions for the case of bounded measurable coefficients).
Wiener tests adapted to several classes of linear degenerate-elliptic operators are
present in the literature. The first instance is probably the one in [30] where the
degeneracy of the ellipticity is controlled by Muckenhoupt weights. Other type
of operators and degeneracies were considered, e.g., in [9, 14, 46, 48, 78, 79,
94].

Let us turn our attention on the case of parabolic operators, for which the char-
acterization of the regularity of boundary point appears to be more delicate. As
a matter of fact, using the classical Petrowski’s regularity criterion in [82] (see
also [27, Theorem 8.1]) one can find an open set Ω⊂RN+1 and a point z0 ∈ ∂Ω

which is regular for α1∆− ∂t and not regular for α2∆− ∂t (if α1 > α2). This
represents a striking difference with the elliptic case: one way to see this is to
recall that the two explicit Gaussian-type fundamental solutions for α1∆− ∂t

and α2∆− ∂t have different singularities on the diagonal (just a one-side com-
parison holds if α1 6= α2).
The first (∆−∂t)-regularity criterion involving heat-capacity and the level-rings
of the fundamental solution is, to the best of our knowledge, due to Pini in [83].
Pini’s result deals with special open sets Ω with continuous boundary, and it
provides a sufficient regularity criterion for the heat equation in spatial dimen-
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sion N = 1. Concerning the true analogue of the Wiener test (1) for the heat
operator, the necessary condition was proved by Lanconelli in [60] and the suf-
ficient condition by Evans and Gariepy in [28]. We can summarize the results
in [28, 60] as follows: let Ω be a bounded open subset of RN+1, let z0 ∈ ∂Ω and
λ ∈ (0,1), then

z0 = (x0, t0) is (∆−∂t) -regular if and only if
+∞

∑
k=1

capG
(
Ω′k(z0)

)
λ k =+∞, (2)

where

Ω
′
k(z0) =

{
z = (x, t) ∈ RN+1 \Ω : λ

−k ≤ G∆(z0,z)≤ λ
−(k+1)

}
, for k ∈ N,

with G∆(·, ·) being the fundamental solution of ∆−∂t , i.e.

G∆(x, t,ξ ,τ) =
(4π)−

N
2

(t− τ)
N
2

exp

(
−|x−ξ |2

4(t− τ)

)
, if t > τ (and 0 otherwise),

and where capG indicates the capacity related to the Gauss-Weierstrass kernel
G∆ (see Section 2 for the definition). Because of the presence of Petrowski’s
counterexamples the notion of regularity cannot be independent of the choice
of the parabolic operator, and this fact makes more interesting the analysis of
Wiener criteria for variable coefficients parabolic operators. The case of uni-
formly parabolic operators in divergence form with smooth coefficients was
settled by Garofalo and Lanconelli in [39]. In their result the dependence of
the Wiener condition on the operator H under consideration is evident in the ca-
pacitary terms: compared with the one in (2), in [39] they defined the sequence
of compact sets Ω′k(z0) through the difference of superlevel sets of the funda-
mental solution Γ of the operator H and they also dealt with the capacity capΓ

related to the kernel Γ. Subsequently, in [29], Fabes, Garofalo and Lanconelli
obtained Wiener criteria for uniformly parabolic operators in divergence form
with C1-Dini continuous coefficients. We also mention the works [10, 37] for
boundary regularity conditions related to weak solutions to parabolic equations.
Before the appearance of the Evans-Gariepy Wiener criterion, a different char-
acterization of the (∆−∂t)-regularity had been proved by Landis in [66]. Lan-
dis’s criterion involves a suitable series of caloric potentials, and it can be read
as follows: let Ω be a bounded open subset of RN+1 and let z0 ∈ ∂Ω, then

z0 = (x0, t0) is (∆−∂t) -regular if and only if
+∞

∑
k=1

G∆ ∗µk(z0) = +∞, (3)

where, for any fixed k ∈ N, G∆ ∗ µk denotes the convolution of the Gauss-
Weierstrass kernel G∆ with the equilibrium measure of the compact set {z =
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(x, t) ∈ RN+1 rΩ : ρk ≤ G∆(z0,z) ≤ ρk+1}∪{z0} being {ρk}k∈N a certain se-
quence of positive real numbers such that ρk+1

ρk
grows fast at ∞. The approach

and the techniques developed by Landis for Wiener-type series have been car-
ried out for uniformly parabolic operators in nondivergence form with coeffi-
cients with various degree of regularity (Hölder continuity [66], Dini continuity
[69, 80], coefficients in special form around the boundary point [73], bounded
coefficients in domains with peculiar symmetries [70]). Related investigations
are the ones for the large-time stabilization of solutions to parabolic equations
with rough coefficients in infinite cylinders [3, 24].
Finally, we point out the investigations developed by Lanconelli in [61–63],
where he considered the behavior of Wiener-type series like

+∞

∑
h,k=1

capG
(
Ωh

k(z0,λ )
)

λ
kN
2

λ
αh (4)

(where Ωh
k(z0,λ ) can be defined as in (12) below), in order to obtain necessary

and sufficient conditions for the regularity of a boundary point which are valid
for a whole class of uniformly parabolic operators. For example, see [61, Teo-
rema A and Teorema B] and [63], one can deduce that if the series in (4) is
divergent then z0 ∈ ∂Ω is

(
1

4β
∆−∂t

)
-regular whenever 0 < β < α and, vicev-

ersa, if z0 is
(

1
4β

∆−∂t

)
-regular then the series (4) is divergent for every α ≤ β .

The main focus of this note is to present some results contained in [64, 95, 96]
concerning Wiener-type tests for degenerate-parabolic operators. The list of
papers in the literature dealing with this topic is, as far as we know, not very
long. Wiener characterizations as in (2) were proved for the heat-counterpart
of the subLaplacian in the Heisenberg group [41] and, more recently, in H-type
groups [85]. Landis-type characterizations as in (3) were obtained in [57, 89]
for Kolmogorov-type operators (and very recently in [96]). Wiener-type series
as (4) were considered in [64, 95].

Before presenting in details the results [64, 95, 96], we want to discuss which
is the type of degeneracy in the operators we would like to analyze and why
we feel it is interesting to investigate such class of equations. Consider then a
system of real C∞-smooth vector fields X1,X2, . . . ,Xp in RN satisfying the so-
called Hörmander’s condition, i.e. such that

rankLie{X1, . . . ,Xp}(x) = N at every point x.

We want to study a class of degenerate equations whose degeneracy is controlled
by such vector fields. More precisely, we can think of X1(x), . . . , . . . ,Xp(x) as
the directions of ellipticity of the operator at any point x and the directions of
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missing ellipticity (which exist if p<N) can be recovered via Lie-brackets com-
mutations. The prototype operators are ∑i X2

i and ∑i X2
i − ∂t . We mention the

monographs and surveys [2, 11, 14, 18, 38, 43, 75] where these type of equations
and their underlying geometry are explained under different perspectives. These
operators arise in fact in many different settings, both theoretical and applied.
Among others, these Hörmander-type equations have a central role in geometric
analysis problems appearing in CR-geometry and sub-Riemannian settings, see
e.g. [7, 20, 21, 35, 36, 50, 68, 72]. Speaking about regularity issues, after some
pioneering works [31, 49, 51, 59, 87] treating regularity in Hölder classes and
estimates for the fundamental kernels, there has been a huge amount of regular-
ity results for solutions to linear and nonlinear equations with this type of degen-
eracies (with no aim of completeness, we mention the following works about the
interior regularity [1, 5, 15, 25, 26, 44, 45, 76, 88, 93, 98] and the boundary be-
havior of solutions [6, 32, 65, 71, 77]). Wiener-type tests for linear degenerate-
elliptic equations (the stationary case) with underlying sub-Riemannian struc-
tures appear to be well-settled in the literature mainly thanks to upper and lower
bounds for the Green kernels near the pole (we refer the reader to the papers
[46, 48, 78, 94]). In the parabolic case, the difficulties rely on the fact that any
point z0 belongs to the boundary of every superlevel set {z : Γ(z0,z)> r} and a
very precise information on the kernel Γ is needed. In this respect, we highlight
some technical details in the proof in [39] of the Wiener criterion for the case of
smooth uniformly parabolic operators in divergence form: in that situation the
fundamental solution Γ is not explicit and they were able to make use of a re-
fined Gaussian expansion of Γ in terms of the underlying geodesic Riemannian
distance (see [40]). A sub-Riemannian analogue of this noteworthy expansion
seems to be currently not available. In the above mentioned papers [41, 85]
the authors treated special operators in the form ∑i X2

i −∂t for which the funda-
mental solution is explicit up to Fourier transform in one distinguished variable.
The lack of explicit formulas or refined estimates for the fundamental solution
is in fact one of the major obstacles to obtain Wiener-type tests for the class of
equations under discussion. The results we are presenting deal with necessary
and sufficient conditions of type (3) and (4) for the regularity of boundary points
related to the the class of Hörmander-operators

p

∑
i=1

X2
i −∂t , or more generally (5)

p

∑
i, j=1

ai, j(x, t)XiX j +
p

∑
k=1

ak(x, t)Xk−∂t (6)

with (ai, j)i, j=1,...,p symmetric, uniformly positive definite, and with smoothness
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properties for the coefficients. The extension of the Wiener criterion (2) to equa-
tions as (5) represents currently an open, and seemingly difficult, problem.

The note is organized as follows. In Section 2 we recall few classical no-
tions of potential theory. In Section 3 we discuss the approaches in [64, 96]
for establishing Wiener-type tests respectively of type (4) and (3) starting from
‘rough’ short-time upper and lower Gaussian bounds for the fundamental so-
lution of hypoelliptic operators. Such Gaussians are built with respect to a
distance function satisfying doubling conditions and segment properties. Two-
sided Gaussian bounds for parabolic operators have been studied in very gen-
eral settings (we recall [4, 42, 90, 99]), and for the class in (5)-(6) we refer the
reader to the results in [12, 13, 16, 51, 86] for Gaussian bounds with respect
to the Carnot-Caratheodory distance related to the vector fields. Thus, the re-
sults in Section 3 apply to the operators (6) as long as the coefficients ai, j(·) and
ak(·) are C∞-smooth functions. In Section 4 we deal with the non-hypoelliptic
case of coefficients ai, j(·),ak(·) being Hölder continuous with respect to the
Carnot-Caratheodory distance, and we discuss the regularity criteria found in
[95] which refer to the behavior of Wiener-series of type (4).

2. Potential theory recalling

In what follows, we always deal with second order linear operatorsH endowing
a strip S⊆RN+1 with a structure of β -harmonic space satisfying the Doob con-
vergence property. It is out of the purposes of this note to describe the classical
axiomatization which characterizes these spaces. We refer the interested reader
to the book [22] (see also [14, 56, 65, 95]).
It is important for our exposition that, being in such a β -harmonic space, for any
bounded open set Ω with Ω⊆ S and for every continuous function ϕ : ∂Ω→R,
the Dirichlet problem {

Hu = 0 in Ω,

u|∂Ω = ϕ

has a generalized solution HΩ
ϕ in the Perron-Wiener sense. Thus, we can recall

the notion ofH-regularity of a boundary point.

Definition 2.1. Let Ω be a bounded open set with Ω ⊆ S. A point z0 ∈ ∂Ω is
calledH-regular if limz→z0 HΩ

ϕ (z) = ϕ(z0) for every ϕ ∈C(∂Ω).

As we already recalled the classical results, we know that Wiener-type crite-
ria are tests to prove or disprove theH-regularity of a boundary point by check-
ing whether a suitable series is divergent or convergent. Such series has to
involve capacitary terms ‘measuring’ the behavior of ∂Ω around the point. The
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definition of the relevant capacity has to change according to the operator H
we are dealing with. We recall here the definition of capacity with respect to a
kernel K as given e.g. by Fuglede in [34].
Let K : S× S→ [0,+∞] be a lower semicontinuous function, and assume that
K(·,ζ ) 6≡ 0 for any fixed ζ ∈ S. Given a compact set F ⊆ S, we denote by
M+(F) the set of nonnegative Radon measures supported on F . We can define

CK(F) = sup
{

µ(F) : µ ∈M+(F), and (7)

K ∗µ(z) =
∫

K(z,ζ )dµ(ζ )≤ 1 ∀z ∈ S
}
.

For every F compact subset of S there exists µ ∈M+(F) with K ∗ µ ≤ 1 in S
such that µ(F) = CK(F). The measure µK is called K-equilibrium measure of
F .

Various classical characterizations of the regularity of boundary points are
given in terms of balayages. Let us recall the definition for the reader’s conve-
nience.
For a given a compact set F ⊂ S, we denote WF = inf{v∈H(S) : v≥ 0 in S, v≥
1 in F} where H(S) is the set of H-superharmonic functions in S. Then we can
define theH-balayage potential of F as

VF(z) = liminf
ζ→z

WF(ζ ), z ∈ S.

IfH is the operator with smooth coefficients described in Section 3, we can also
talk about the Riesz-measure associated to VF . We denote it by µF , and it can
be defined as the nonnegative Radon measure satisfying−HVF = µF inD′. For
any compact set F ⊂ S, we can then define the capacity capH of F as

capH(F) = µF(F).

We refer the reader to [64, Section 2] for comparisons between these different
notions of capacities. Since our primary interest concerns the case of evolution
operators, it is worth mentioning the case of the pure Gaussian kernel, i.e. when
K(·, ·) is a Gauss-Weierstrass function or (better, if you want) the fundamental
solution of α∆−∂t : for such a special choice, it was proved in [61, Proposizione
2] that Gaussian kernels with different α are equivalent on the class of compact
subsets of RN+1.
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3. Regularity characterizations under Gaussian-type estimates

Let us consider the second order linear operators in the following form

H=
N

∑
i, j=1

qi, j(z)∂ 2
xi,x j

+
N

∑
k=1

qk(z)∂xk −∂t , (8)

in the strip S = {z = (x, t) ∈ RN+1 : x ∈ RN , T1 < t < T2}, with −∞ ≤ T1 <
T2 ≤ ∞. We assume the coefficients qi, j = q j,i,qk of class C∞, and the quadratic
form relative to (qi, j(z))i, j nonnegative definite and not totally degenerate. We
also assume the hypoellipticity of H and of its adjoint H∗, and the existence
of a global fundamental solution Γ(z,ζ ) smooth out of the diagonal of S× S
satisfying the following:

(i) Γ(·,ζ ) ∈ L1
loc(S) and H(Γ(·,ζ )) = −δζ , the Dirac measure at {ζ}, for

every ζ ∈ S; Γ(z, ·) ∈ L1
loc(S) andH∗(Γ(z, ·)) =−δz for every z ∈ S;

(ii) for every compactly supported continuous function ϕ on RN and for every
x0 ∈ RN , we have ∫

RN
Γ(x, t,ξ ,τ)ϕ(ξ )dξ → ϕ(x0)

as x→ x0, t↘ τ ∈]T1,T2[ and also as x→ x0, τ ↗ t ∈]T1,T2[;

(iii) there exist constants 0 < a0 ≤ b0 and Λ≥ 1 such that the following Gaus-
sian estimates hold

1
Λ

G(d)
b0

(z,ζ )≤ Γ(z,ζ )≤ ΛG(d)
a0 (z,ζ ), ∀z,ζ ∈ S, (9)

for some distance d in RN for which
(
RN ,d

)
is a complete metric space

topologically equivalent to the Euclidean space, such that for every fixed
x ∈ RN we have d(x,ξ )→ ∞ if and only if |ξ | → ∞, and satisfies the
global doubling condition and the segment property.

For any a > 0, we have just denoted by G(d)
a the function

G(d)
a (z,ζ ) = G(d)

a (x, t,ξ ,τ) =
1

|B(x,
√

t− τ)|
exp
(
−a

d(x,ξ )2

t− τ

)
if t > τ , and 0 where {t ≤ τ}. Here |A| stands for the Lebesgue measure of A
and B(x,r) denotes the d-ball of center x and radius r > 0. We also make use
of the notation d̂ for the ‘parabolic distance’ defined by the formula d̂(z,ζ ) =(
d4(x,ξ )+(t− τ)2

) 1
4 .
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As a consequence of the results in [65, Theorem 3.9], the operatorH endows the
strip S with a structure of β -harmonic space satisfying the Doob convergence
property. As recalled in Section 2, we can thus talk about the H-regularity of
boundary points in the sense of Definition 2.1.
Under the above assumptions we have recently proved in [96] a Wiener-type
characterization of boundary regularity in the spirit of the classical result by
Landis [66]. Our condition is expressed in terms of a series of caloric Riesz
potentials or equivalently a series of balayages. If z0 ∈ ∂Ω and λ ∈]0,1[ are
fixed, we define for k ∈ N

Ω
c
k(z0)=

{
z ∈ SrΩ :

(
1
λ

)k logk

≤ Γ(z0,z)≤
(

1
λ

)(k+1) log(k+1)
}
∪{z0}. (10)

We also denote by µΩc
k(z0) the Riesz-measure associated to the compact set

Ωc
k(z0).

Theorem 3.1. [96, Theorem 1.3] Let Ω be a bounded open set with Ω⊆ S, and
let z0 ∈ ∂Ω. Then

z0 isH-regular for ∂Ω ⇐⇒
∞

∑
k=1

Γ∗µΩc
k(z0)(z0) = +∞.

We would like to make a couple of comments about Theorem 3.1. First, we
want to stress the importance of the choice of the exponent α(k) = k logk in the
definition (10) of Ωc

k(z0). The superlinear growth of α(k) is in fact crucial for
the proof in [96]. On the other hand, the exact analogue of the Evans-Gariepy
criterion in (2) would have required the sequence of level sets with α(k) = k
(see [96, Corollary 4.1]). This is why Theorem 3.1 is a Landis-type criterion
(recalling (3)). The proof of Theorem 3.1 in [96] is not performed using the
strategy of Landis. It is used instead the strategy developed in [57] for a class of
homogeneous ultraparabolic equations of Kolmogorov type. In [57] it appears
the same choice α(k) = k logk as in Theorem 3.1. We feel it is interesting
to remark that we can get the same accuracy in Theorem 3.1 knowing only
Gaussian bounds from above and from below (different from each other) for
the fundamental solution (and not an explicit expression as in [57]). Moreover,
let us comment further on some technical details of the proof given in [96].
A crucial feature in the proof strategy is to choose appropriately subregions
of Ωc

k(z0) where one can estimate uniformly the ratio Γ(z,ζ )
Γ(z0,ζ )

via Hölder-type
estimates. A delicate point in pursuing this strategy is the identification of the
balayages VF with their Riesz representatives Γ ∗ µF . In [96, Theorem 2.1] we
approached such a Riesz representation theorem by making use of mean value
formulas, even if the kernel may change sign, and we showed that

VF(z) = Γ∗µF(z) for every z ∈ S. (11)
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As corollaries of Theorem 3.1, we can deduce sufficient conditions for the reg-
ularity which can be concretely applied. For example, for the model case of
heat operators in Carnot groups, we have proved in [96, Corollary 4.4] that a
sharp geometric criterion like the existence of a suitable (log log)-paraboloid
with vertex in z0 ∈ ∂Ω contained in the exterior of Ω ensures the regularity of
z0. Such condition, in the case of the classical heat equation, is known to be
optimal (see the classical counterexamples in [82], as well as the discussions in
[27, Section 7]). We refer the interested reader to [96, Section 4] for the precise
definitions, further details, and the complete proofs.

Let us now turn our attention to Wiener-type criteria which are suitable at
the same time for the whole class of operators (8) we are considering. Keeping
in mind the discussions in the Introduction, we cannot hope for a condition
which is necessary and sufficient for every operator in our class. The sufficient
condition and the necessary condition for the regularity we are now going to
present are in fact different from each other (in the same spirit as (4)). On the
other hand, all the quantities and the objects appearing in our Wiener series
depend on the underlying metric d appearing in the Gaussian bounds for Γ, and
not on the fundamental solution of the specific operator. We have to introduce
the following notation. If z0 ∈ ∂Ω and λ ∈]0,1[ are fixed, we define or h,k ∈ N

Ω
h
k(z0,λ ) =

{
ζ = (ξ ,τ) ∈ SrΩ : λ

k+1 ≤ t0− τ ≤ λ
k, (12)

(
1
λ

)h−1

≤ exp
(

d2(x0,ξ )

t0− τ

)
≤
(

1
λ

)h

, d̂(z0,ζ )≤
√

λ

}
.

Moreove, for any a > 0, we denote by Ca the capacity with respect to the Gaus-
sian kernel G(d)

a according to the definition (7).

Theorem 3.2. [64, Theorem 1.1] Let Ω be a bounded open set with Ω⊆ S, and
let z0 ∈ ∂Ω.

(i) If there exists 0 < a≤ a0 and b > b0 such that

+∞

∑
h,k=1

Ca
(
Ωh

k(z0,λ )
)∣∣∣B(x0,

√
λ k
)∣∣∣λ bh =+∞ (13)

then the point z0 isH-regular.

(ii) If the point z0 isH-regular, then

+∞

∑
h,k=1

Cb
(
Ωh

k(z0,λ )
)∣∣∣B(x0,

√
λ k
)∣∣∣λ ah =+∞ (14)
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for every b≥ b0 and 0 < a≤ a0.

The proof of the sufficient condition (i) is obtained in [64] by estimating
the quantity |HΩ

ϕ (z)−ϕ(z0)| with a suitable Wiener-type series resembling the
one in (13). We can also derive an integral estimate involving the Lebesgue
measures of the following sections

Eλ (ρ,τ) =

{
x ∈ RN : z = (x,τ) ∈ SrΩ, d̂(z0,z)≤

√
λ ,

exp
(

d2(x0,x)
t0− τ

)
≤ ρ

}
.

As a matter of fact, it is proved in [64, Theorem 1.3] that the point z0 ∈ ∂Ω is
H-regular if ∫

λ

0

∫ +∞

1

|Eλ (ρ, t0−η)|∣∣B(x0,
√

η)
∣∣ dρ

ρ1+b
dη

η
=+∞

for some b > b0.
A concrete sufficient condition for the regularity of z0 = (x0, t0) ∈ ∂Ω is pro-
vided by the following cone-type condition at z0 (which resembles the classical
tusk condition in [27]; see also the recent developments and the references in
[55]): there exist M0,r0,θ > 0 such that∣∣∣{x ∈ B(x0,M0r) : (x, t0− r2) 6∈Ω

}∣∣∣
|B(x0,M0r)|

≥ θ for every 0 < r ≤ r0. (15)

The fact that (15) is enough to ensure the H-regularity had been proved in [65,
Theorem 4.11]. Under such geometrical condition, one can show that also the
series in (13) diverges for any b. Moreover, it is possible to prove a quanti-
tative rate for the divergence of that series which yields a Hölder-modulus of
continuity at z0 for the HΩ

ϕ . This can be summarized in the following result

Theorem 3.3. [64, Theorem 1.4] Assume the exterior d-cone condition (15)
holds at z0. Let ϕ ∈C(∂Ω,R) be such that

[ϕ]z0,δ = sup
ρ>0

sup
d̂(z,z0)≤ρ

|ϕ(z)−ϕ(z0)|
ρδ

< ∞

for some δ > 0. Then, there exist 0 < α0 ≤ 1 and c > 0 only depending on
Λ,a0,b0,d,δ ,Ω, and the constants M0,r0,θ in the d-cone condition (15) such
that

|HΩ
ϕ (z)−ϕ(z0)| ≤ c[ϕ]z0,δ

(
d̂(z0,z)

)α0 for all z ∈Ω.
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4. Regularity criteria for Hörmander operators

Let X1,X2, . . . ,Xp be a system of real smooth vector fields which are defined in
some bounded open set D0 ⊂ RN , and satisfy the Hörmander’s condition in D0,
i.e. rankLie{X1, . . . ,Xp}(x) = N at every point x ∈ D0. Denote by d the related
Carnot-Carathéodory control distance. Let us also fix D a bounded open set
compactly contained in D0, and −∞ < T1 < T2 <+∞. Let us now consider the
family of partial differential operators in the form

H=
p

∑
i, j=1

ai, j(z)XiX j +
p

∑
j=1

b j(z)X j−∂t ,

where ai, j,b j are d-Hölder continuous functions in D0×]T1,T2[, and the ma-
trix (ai, j)i, j is symmetric and uniformly positive definite. We want to study the
Cauchy-Dirichlet problem associated with H in bounded sets Ω ⊂ D×]T1,T2[.
It is possible to extend suitably the operatorH in the whole RN+1 with a proce-
dure described in [16, Section 2-19] (see also [95, Section 2]). In particular it is
possible to construct a system of smooth Hörmander vector fields X̃1, X̃2, . . . , X̃m

in RN (m = p+N) coinciding in D with the system {X1, . . . ,Xp,0, . . . ,0}, and
outside D0 with the Euclidean system {0, . . . ,0,∂x1 , . . . ,∂xN}. Moreover, the
Carnot-Carathéodory control distance d̃ relative to the new system of vector
fields satisfies a global doubling condition, the segment property, and also the
other conditions for the metric space (RN ,d) we required in the previous sub-
section. The main difference with respect to the equation (8) relies on the regu-
larity of the coefficients ai, j,b j which prevents these Hörmander-type operators
H from being hypoelliptic. Nonetheless, in [16, Theorem 10.7] it is proved
that such extended operators have a global fundamental solution Γ (of ‘intrin-
sic’ regularity C2+α

X out of the diagonal of RN+1×RN+1) satisfying two sided
Gaussian-type estimates on strips as in (9). This is the main tool which allowed
us to prove in [95] the following result

Theorem 4.1. [95, Theorem 1.1] Let Ω be a bounded open set with closure Ω

contained in D×]T1,T2[. Let z0 = (x0, t0) ∈ ∂Ω, and λ ∈]0,1[. Then there exist
positive numbers a0 ≤ b0 ≤ β0, depending just on the vector fields X1, . . . ,Xp,
on the eigenvalue bounds for the matrix (ai, j)i, j, and on the Hölder norms of
ai, j,b j, such that

(i)
+∞

∑
h,k=1

Ca
(
Ωh

k(z0,λ )
)∣∣∣B(x0,

√
λ k
)∣∣∣λ bh =+∞ for some 0 < a≤ a0 and b > b0

=⇒ z0 isH-regular.
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(ii) z0 isH-regular =⇒
+∞

∑
h,k=1

Cb
(
Ωh

k(z0,λ )
)∣∣∣B(x0,

√
λ k
)∣∣∣λ ah =+∞ for every b≥ β0 and 0 < a≤ a0.

Here we used the same notations of Theorem 3.2. Moreover, again as in
Theorem 3.2, we can remark that the sufficient condition and the necessary
condition are different. On the other hand, all the quantities and the objects
appearing in our Wiener series depend on the underlying metric, and not on the
fundamental solution of the specific operatorH.
With respect to the hypoelliptic case treated in the previous section, the presence
of non-smooth coefficients forced us to follow in [95] a different approach for
the proof of part (ii). As a consequence, the necessary condition (14) turns out
to be slightly weaker. The main technical reason is the lack of suitable Riesz-
type representations forH-superharmonic functions (such as the one in (11)).
Analogously to Theorem 3.3, one can deduce as a by-product of Theorem 4.1
that the cone-type condition (15) ensures the Hölder-regularity of the Perron-
Wiener solution at the boundary point. As a consequence, exploiting also the
results in [16], we obtained the following result

Corollary 4.2. [95, Corollary 1.2] (see also [97, Theorem 4.1]) Denote

E =

z0 ∈ ∂Ω :
+∞

∑
h,k=1

Ca
(
Ωh

k(z0,λ )
)∣∣∣B(x0,

√
λ k
)∣∣∣λ bh =+∞ for

some 0 < a≤ a0 and b > b0

}
.

Then, for every continuous datum ϕ on ∂Ω and for every d-Hölder continuous
function f in a neighborhood of Ω, there exists

u ∈C(Ω∪E)∩C2
X(Ω) such that

{
Hu = f in Ω,

u = ϕ on E.

In particular the above statement holds true even letting E be the set of points
of ∂Ω where the exterior d-cone condition (15) is satisfied.

From Corollary 4.2, one can deduce the existence of a unique solution to
the Cauchy-Dirichlet problem related toH in the following cylindrical domains.



130 GIULIO TRALLI - FRANCESCO UGUZZONI

Suppose Ω=A×]t1, t2[ is a bounded open set compactly contained in D×]T1,T2[
satisfying

∀x0 ∈ ∂A ∃r0,θ0 > 0 such that
|B(x0,r)rA|
|B(x0,r)|

≥ θ0 for all 0 < r ≤ r0. (16)

We can denote by ∂pΩ the parabolic boundary of Ω, i.e. ∂pΩ = (∂A× [t1, t2])∪(
A×{t1}

)
. It is proved in [65, Proposition 6.1] that the condition (16) implies

the validity of the cone condition (15) at any parabolic boundary point. Then, for
every continuous function ϕ on ∂pΩ and for every d-Hölder continuous function
f in a neighborhood of Ω, there exists a unique solution u∈C(Ω∪∂pΩ)∩C2

X(Ω)
to the problem {

Hu = f in Ω,

u = ϕ on ∂pΩ.
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potentiels, Académie Royale de Belgique, Bull. Classe des Sciences 24 (1938),
368–384 and 672–689.

[24] V. N. Denisov - A. A. Martynova, Necessary and sufficient conditions for the sta-
bilization of a solution to the Dirichlet problem for parabolic equation, J. Math.



132 GIULIO TRALLI - FRANCESCO UGUZZONI

Sci. (N. Y.) 189 (2013), 422–430.
[25] G. Di Fazio - M. S. Fanciullo - P. Zamboni, Harnack inequality for a class

of strongly degenerate elliptic operators formed by Hörmander vector fields,
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Via Marzolo, 9 - 35131 Padova, Italy
e-mail: giulio.tralli@unipd.it

FRANCESCO UGUZZONI
Dipartimento di Matematica, Università degli Studi di Bologna
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