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ON THE HARMONIC CHARACTERIZATION OF DOMAINS
VIA MEAN VALUE FORMULAS

GIOVANNI CUPINI - ERMANNO LANCONELLI

The Euclidean ball have the following harmonic characterization, via
Gauss-mean value property: Let D be an open set with finite Lebesgue
measure and let x0 be a point of D. If

u(x0) =
∫

D
u(y)dy

for every nonnegative harmonic function u in D, then D is a Euclidean ball
centered at x0. On the other hand, on every sufficiently smooth domain D
and for every point x0 in D there exist Radon measures µ such that

u(x0) =
∫

D
u(y)dµ(y)

for every nonnegative harmonic function u in D. In this paper we give
sufficient conditions so that this last mean value property characterizes
the domain D.

1. Introduction

Let Ω be an open subset of Rn, n ≥ 3, and let Br(x0) be the open Euclidean
ball with center x0 and radius r > 0. If Br(x0) ⊆ Ω, by the Gauss mean value
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Theorem
u(x0) =

1
|Br(x0)|

∫
Br(x0)

u(y)dy, ∀u ∈H(Ω),

whereH(Ω) denotes the linear space of the harmonic functions in Ω and |Br(x0)|
stands for the Lebesgue measure of Br(x0).

From this result, by using the dominated and the monotone convergence
theorems, one gets:

u(x0) =
1

|Br(x0)|

∫
Br(x0)

u(y)dy, ∀u ∈H(Br(x0))∩L1(Br(x0)), (1)

and
u(x0) =

1
|Br(x0)|

∫
Br(x0)

u(y)dy, ∀u ∈H(Br(x0)), u≥ 0, (2)

respectively.
In particular, if we consider the family of integrable and nonnegative har-

monic functions

Br(x0) 3 y 7→ Γ(y− x), x ∈ Rn \Br(x0),

where Γ denotes the fundamental solution of the Laplacian, both (1) and (2)
imply

Γ(x0− x) =
1

|Br(x0)|

∫
Br(x0)

Γ(y− x)dy ∀x ∈ Rn \Br(x0). (3)

The Euclidean balls are the only sets satisfying identity (1), identity (2) or
identity (3). The proofs of these rigidity results, giving harmonic characteri-
zations of the Euclidean balls, has a long history, starting with the pioneering
papers [8], [9], continued in [12] and [1], and recently resumed in [6], [7]. In
these papers the following rigidity theorems were proved.

Theorem K (Kuran [12]). Let D ⊂ Rn, n ≥ 3, be an open set with finite
Lebesgue measure and let x0 ∈ D be such that

u(x0) =−
∫

D
u(x)dx ∀u ∈H(D)∩L1(D).

Then D is a Euclidean ball centered at x0.

Theorem CL (Cupini-Lanconelli [6], [7]). Let D⊂ Rn, n≥ 3, be an open
set such that |D|< ∞, and let x0 ∈ D. Assume that

u(x0) =−
∫

D
u(x)dx ∀u ∈H(D), u≥ 0.

Then D is a Euclidean ball centered at x0.
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Theorem ASZ (Aharonov-Schiffer-Zalcman [1]). Let D⊂Rn, n≥ 3, be a
bounded open set such that D = intD and |∂D|= 0.

For a fixed x0 ∈ D assume

Γ(x0− x) =−
∫

D
Γ(y− x)dy ∀x ∈ Rn \D. (4)

Then D is a Euclidean ball centered at x0.

We would like to stress that Theorem ASZ gives an affirmative answer to
the following question:

Let D be a homogeneous body whose Newtonian potential, outside D, is
proportional to the Newtonian potential of a mass concentrated at a point x0 ∈
D. Then: is it true that D is a ball centered at x0?

As a by-product of the general results presented in this paper, we obtain that
Theorem ASZ and Theorem CL hold true merely assuming |D|< ∞. Therefore,
given this improvement for granted, the following implications hold:

Theorem ASZ ⇒ Theorem CL ⇒ Theorem K.

The starting point of our investigations is the paper [10] - by Hansen and
Netuka - together with the papers [2] and [3] - by Aikawa. In these works the
authors showed that, for any sufficiently smooth open set Ω, and for every point
x0 ∈ Ω, there exist not trivial Radon measures µ in Rn such that the following
Gauss-type Theorem holds:∫

Ω

u(x)dµ(y) = u(x0) ∀x ∈H(Ω),u≥ 0. (5)

Then, a question naturally arises: is it possible to trace the path described
above by replacing the Euclidean balls and the Lebesgue measure with Ω and
µ , respectively? Or, roughly speaking: does the mean value formula (5) char-
acterize the open set Ω? Or even, stronger question: does Theorem ASZ extend
to nonhomogeneous bodies?

To put this last question in a precise form we introduce the notion of rigidity
triples (Ω,µ,x0), that, in the case of the identity (3), will be the triple(

B(x0,r),
1

|B(x0,r)|
mxB(x0,r),x0

)
, (6)

where m is the n-dimensional Lebesgue measure.
Precisely, we give the following definition,

Definition 1.1 (Rigidity triple). Let Ω be an open subset of Rn, Ω 3 x0, µ be a
non-negative Radon measure, µ(Rn\Ω)= 0. We say that (Ω,µ,x0) is a rigidity-
triple if
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• Ω is solid (i.e., Ω = intΩ and Rn \Ω is connected)

• the ASZ-property holds, i.e.,

Γ(x0− x) =
∫

Ω

Γ(y− x)dµ(y), ∀ x ∈ Rn \Ω (7)

• the interior potential property holds, i.e.,

Γ(x0− x)>
∫

Ω

Γ(y− x)dµ(y) ∀ x ∈Ω\{x0}. (8)

By (3) and by the Poisson-Jensen formula (see e.g. [4, Theorem 9.5.2]) it
turns out that the triple in (6) is a prototype of rigidity triple.

Our question can now be formalized as follows:

Let (Ω,µ,x0) be a rigidity triple. Let D be an open subset of Rn, D 3 x0,
and let ν be a non-negative Radon measure satisfying the ASZ-property:

Γ(x0− x) =
∫

D
Γ(y− x)dν(y) ∀x ∈ Rn \D. (9)

If µx(Ω∩D) = νx(Ω∩D), is it true that D = Ω and ν = µ?

Of course, if this question has an affirmative answer, we will have also the
following CL-type result:

u(x0) =
∫

D
u(y)dν(y) ∀u ∈H(D),u≥ 0 ⇒ D = Ω. (10)

In Section 2 we exhibit explicit examples of rigidity triples. In particular, by
improving some results by Aikawa and by Hansen-Netuka, we show that every
solid ∆-regular open set (i.e. bounded open sets for which the Dirichlet problem
is solvable for every continuous boundary data) supports a rigidity triple. The
results we present in that section are basically contained in the papers [6] and
[7]. We provide a complete proof to put into light the crucial role played by a
deep result: the Poisson-Jensen formula for superharmonic functions.

In Section 3 we state several rigidity results. Our main rigidity result is The-
orem 3.1. This theorem improves, as for the Laplacian operator is concerned,
the rigidity results [6, Theorem 1.1] and [7, Theorem 3.4].

In Section 4 we prove Theorem 3.1. We also show how the same strategy
for proving Theorem 3.1 allows to obtain a proof of the original rigidity result
for compact sets proved by Aharonov, Schiffer and Zalcman in [1] that avoids
Kuran’s result, which plays a crucial role in the proof given in [1].
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All the main results in this paper can be extended to the L-harmonic func-
tions, i.e. to the solutions to Lu = 0, for a wide class of linear second order
PDE’s L with nonnegative characteristic form. However we decided to confine
our presentation here to classical harmonic functions, to put into evidence the
main ideas and reduce the technicalities.

We remark that a research problem on the Gauss mean value formula, other
than the rigidity one, is that of its stability. Roughly speaking, this problem can
be stated as follows:

Let D ⊆ Rn be an open set with finite Lebesgue measure and let x0 ∈ D. If

u(x0) is close to −
∫

D
udx for every u ∈H(D)∩L1(D), is it true that D is close to

a Euclidean ball centered at x0?
The answer is yes. This has been proved, together with other related results

on this subject, in a joint paper with N. Fusco and X. Zhong, see [5].

2. Examples of rigidity triples

As we announced in the Introduction, aim of this section is to exhibit rigidity
triples. We first show that they can be defined on every solid and ∆-regular open
sets. Then, with an ad hoc procedure, we construct rigidity triples on every
bounded strongly star-shaped domain.

As far as the ∆-regular open sets are concerned, we state here an improve-
ment of Aikawa’s Theorem in [2].

Proposition 2.1. Let Ω be a bounded, connected and ∆-regular open set and let
x0 ∈Ω.

Let ϕ :]0,∞[→]0,∞[ be a measurable function, such that
∫

∞

0 ϕ(t)dt = 1.
Define

w(x) := ϕ(G(x0,x))|∇G(x0,x)|2, x ∈Ω\{x0},

where G(x0, ·) is the Green function of the Laplace operator in Ω with pole at
x0.

If we denote µ := wmxΩ, then

u(x0) =
∫

Ω

u(x)w(x)dx, ∀u ∈H(Ω),u≥ 0, (11)

and (8) hold. If moreover Ω is solid then (Ω,µ,x0) is a rigidity triple.

Before giving the proof of this result, we exhibit other rigidity triples.
Let d : Rn→ [0,∞[ be a smooth homogeneous norm in Rn; i.e. d ∈C∞(Rn \

{0}),
d(x)≥ 0, = 0 iff x = 0, d(λx) = λd(x) if λ > 0,
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and denote Bd
r (x0) the d-balls of radius r centered at x0; i.e.,

Bd
r (x0) := {y ∈ Rn : d(y− x0)< r}.

Notice that every d-ball is smooth, solid, bounded, star-shaped and open set
with respect to x0.

Define

Pd : ∂Bd
1(0)→ R, Pd =−∂G

∂ν
,

where G is the Green function of Bd
1(0) with pole at the origin and ν is the

outward normal to Bd
1(0); moreover we let

md(y) := |∇d(y)|Pd

(
y

d(y)

)
, y 6= 0.

The following result is a refinement of Theorem 1.2 in [6].

Proposition 2.2. Let Bd
r (x0) be a d-ball in Rn and for every α > 0 define

wα(y) :=
α

rα

md(y− x0)

(d(y− x0))n−α
, y ∈ Bd

r (x0)\{x0}.

Let µα be the measure
µα := wα mxBd

r (x0). (12)

Then
u(x0) =

∫
Ω

u(x)wα(x)dx, ∀u ∈H(Ω),u≥ 0, (13)

and (Bd
r (x0),µα ,x0) is a rigidity triple.

This proposition slightly improves Theorem 1.2 in [6], where α was as-
sumed greater than n−2.

Notice that if d is the Euclidean norm then

md(y) =
1

nωn
and wα(y) =

α

nωnrα

1
|y− x0|n−α

;

thus, if α = n, µn =
1

|Br(x0)|mxBr(x0). Therefore, formula (2) for non-negative
harmonic functions is a particular case of Proposition 2.2.

The following lemma, proved in [6], will be used to prove Propositions 2.1
and 2.2. We provide the proof also of this result, to put into light the role played
by a deep result: the Poisson-Jensen formula for superharmonic functions.

Lemma 2.3 (Lemma 3.1 in [6]). Let Ω be a connected bounded open subset of
Rn and assume that there exists a family of open sets (Ωt)0<t<T , 0 < T ≤ ∞,
such that
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(i) Ω = ∪0<t<T Ωt ,

(ii) Ωt ⊆Ωτ if 0 < t < τ < T ,

(iii) Ωt is connected and ∆-regular for a.e. t ∈]0,T [.

Fixed x0 ∈Ω, for every non-negative and superharmonic function u in Ω we
define,

mt(u)(x0) :=
∫

∂Ωt

u(y)dµ
Ωt
x0
(y),

where µΩt
x0

denotes the harmonic measure of Ωt at x0 and

M(u)(x0) :=
∫ T

0
ϕ(t)mt(u)(x0)dt,

where ϕ :]0,T [→]0,∞[ is measurable and such that

∫ T

0
ϕ(t)dt = 1 (14)

holds.
Then

(a) u(x0)≥M(u)(x0),

(b) u(x0) = M(u)(x0) if u is harmonic in Ω,

(c) u(x0)> M(u)(x0) if u(x0)< ∞ and ∆u 6≡ 0 in Ω.

Proof. If Ωt is ∆-regular, we set

nt(u)(x0) :=
∫

Ωt

GΩt (x0,y)dνu(y). (15)

where GΩt (x0, ·) stands for the Green function of Ωt with pole at x0, and νu is
the Riesz measure of u; i.e.,

νu :=−∆u in the weak sense of distributions.

By Poisson-Jensen formula (see e.g. [11, Theorem 5.27], see also [4, Theorem
9.5.1]) and the assumptions on (Ωt)0<t<T , we have

u(x0) = mt(u)(x0)+nt(u)(x0) for a.e. t ∈]0,T [. (16)
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Since u is non-negative, then mt(u)(x0)≥ 0. Moreover, since Ωt ⊆Ωτ if t ≤ τ ,
and νu ≥ 0, the function t 7→ nt(u) is increasing and non-negative. By (16) and
(14) we get

u(x0) =
∫ T

0
ϕ(t)mt(u)(x0)dt +

∫ T

0
ϕ(t)nt(u)(x0)dt =: M(u)(x0)+N(u)(x0).

(17)
Since N(u)(x0)≥ 0 and (17) hold, then (a) follows.

If u is harmonic in Ω then N(u)(x0) = 0 and, by (17), (b) follows. More-
over, if ∆u 6≡ 0 in Ω then νu 6= 0 in Ω. Therefore, there exists t0 > 0 such that
νu(Ωt0) > 0. On the other hand νu(Ωt) ≥ νu(Ωt0) if t ≥ t0, and GΩt (x0, ·) > 0
since Ωt is connected. Then

nt(u)(x0) :=
∫

Ωt

GΩt (x0,y)dνu(y)> 0 ∀t ≥ t0,

so that

N(u)(x0) :=
∫ T

0
ϕ(t)nt(u)(x0)dt > 0.

Using this information in (17) together with the assumption u(x0) ∈ R, we im-
mediately get (c).

Let us now prove the Propositions above.

Proof of Proposition 2.1. For every t ∈]0,∞[ we let

Ωt :=
{

x ∈Ω : G(x0,x)>
1
t

}
.

Then (Ωt)0<t<∞ satisfies conditions (i)-(iii) in Lemma 2.3. Since

G(x0, ·)−
1
t

is the Green function of Ωt , the Green representation formula for harmonic func-
tions implies that

dµ
Ωt
x0
(y) =− ∂

∂ν

(
G(x0,y)−

1
t

)
dσ(y) =− ∂

∂ν
G(x0,y)dσ(y)

= 〈∇G(x0,y),∇G(x0,y)〉
dσ(y)
|∇G(x0,y)|

= |∇G(x0,y)|dσ(y),

where ν is the outward normal. Then given a measurable function ψ :]0,∞[→
]0,∞[, with

∫
∞

0
ψ(t)dt = 1, by Lemma 2.3-(b) every non-negative harmonic

function u in Ωt satisfies

u(x0) =
∫

∞

0

(
ψ(t)

∫
G(x0,y)= 1

t

u(y)|∇G(x0,y)|dσ(y)
)

dt.



ON THE HARMONIC CHARACTERIZATION OF DOMAINS 339

The change of variable t = 1
s gives

u(x0) =
∫

∞

0

(
ψ

(
1
s

)∫
G(x0,y)=s

u(y)|∇G(x0,y)|dσ(y)
)

ds
s2

and, by the coarea formula, setting

ϕ(s) := s−2
ψ

(
1
s

)
, w(y) := ϕ(G(x0,y))|∇G(x0,y)|2

we get

u(x0) =
∫

Ω

u(y)ϕ(G(x0,y))|∇G(x0,y)|2 dy =
∫

Ω

u(y)w(y)dy. (18)

This proves (11), since∫
∞

0
ϕ(s)ds =

∫
∞

0
ψ

(
1
s

)
ds
s2 =

∫
∞

0
ψ(t)dt = 1.

Let us now prove property (8). If in (18) we use the family of non-negative
harmonic functions

Ω 3 y 7→ Γ(y− x) =: ux(y), x ∈ Rn \Ω

we obtain
Γ(x0− x) =

∫
Ω

Γ(y− x)dµ(y) ∀x ∈ Rn \Ω, (19)

where µ := wmxΩ. Moreover, since ux is superharmonic in Rn and ∆ux =−δx,
the Dirac measure at x, by Lemma 2.3-(c) we have

Γ(x0− x)>
∫

Ω

Γ(y− x)dµ(y) ∀x ∈Ω\{x0}.

This proves (8).
Keeping in mind (19), and noting that (11) implies (7), if Ω is solid, then

(Ω,µ,x0) is a rigidity triple.

We now provide a proof of Proposition 2.2.

Proof of Proposition 2.2. The set Bd
r (x0) is solid, bounded and open subset of

Rn. The following properties hold:

(i) Bd
r (x0) = ∪0<t<rBd

t (x0),

(ii) Bd
t (x0)⊆ Bd

τ (x0) if 0 < t < τ < r,
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(iii) Bd
t (x0) is connected and ∆-regular for a.e. t ∈]0,r[.

For every non-negative and superharmonic function u in Bd
r (x0) we define,

mt(u)(x0) :=
∫

∂Bd
t (x0)

u(y)dµ
Bd

t (x0)
x0 (y),

where µ
Bd

t (x0)
x0 denotes the harmonic measure of Bd

t (x0) at x0.

It is a standard fact that the measure µ
Bd

1(0)
0 is such that

dµ
Bd

1(0)
0 (y) := Pd(y)dσ(y),

where

Pd : ∂Bd
1(0)→ R, Pd(y) :=−∂G

∂ν
(0,y)

with G(0, ·) the Green function of Bd
1(0) with pole at 0, and ν is the outward

normal.
Then, since ∆ is left translation invariant and homogeneous of degree two

w.r.t. the dilation y 7→ λy, one has

dµ
Bd

t (x0)
x0 (y) :=

1
tn−1 Pd

(
y− x0

t

)
dσ(y).

For α > 0 the function

ϕα :]0,r[→]0,∞[, ϕα(t) :=
α

rα
tα−1

is non-negative and measurable, and∫ r

0
ϕα(t)dt = 1.

Define

M(u)(x0) :=
∫ r

0
ϕα(t)mt(u)(x0)dt

=
α

rα

∫ r

0

(
1

tn−α

∫
d(y−x0)=t

u(y)Pd

(
y− x0

t

)
dσ(y)

)
dt

By the coarea formula, the right hand side is equal to

α

rα

∫
Bd

r (x0)
u(y)

|∇d(y− x0)|
(d(y− x0))

n−α
Pd

(
y− x0

d(y− x0)

)
dy

=
α

rα

∫
Bd

r (x0)
u(y)

md(y− x0)

(d(y− x0))
n−α

dy.
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Thus, keeping in mind the definition of µα , see (12), we have

M(u)(x0) =
α

rα

∫
Bd

r (x0)
u(y)

md(y− x0)

(d(y− x0))
n−α

dy =
∫

Bd
r (x0)

u(y)dµα(y).

By Lemma 2.3 (b), we obtain

u(x0) = Mu(x0) =
∫

Bd
r (x0)

u(y)dµα(y) (20)

for every u ∈H(Bd
r (x0)), u≥ 0. We have so proved (7).

Using in (20) the family of functions

y 7→ ux(y) := Γ(y− x), x /∈ Bd
r (x0),

which are non-negative and harmonic in Bd
r (x0), we get

Γ(x0− x) =
∫

Bd
r (x0)

Γ(y− x)dµα(y), ∀x /∈ Bd
r (x0).

On the other hand, if x ∈ Bd
r (x0)\{x0} then

ux is superharmonic in Bd
r (x0), ux(x0) = Γ(x0− x)< ∞

and
∆ux =−δx,

where δx is the Dirac measure at {x}. Then, by Lemma 2.3 (c ),

Γ(x0− x)>
∫

Bd
r (x0)

Γ(y− x)dµα(y) ∀x ∈ Bd
r (x0), x 6= x0.

The conclusion follows.

3. Rigidity results

In this section we state our main result, Theorem 3.1 below, its corollaries and
other related results.

Theorem 3.1 is a general rigidity result of Aharonov-Schiffer-Zalcman’s-
type for open sets and general Radon measures. Roughly, it says that any time
that a rigidity triple is given, then a rigidity result can be established. For the
classical Laplacian, Theorem 3.1 improves [7, Theorem 3.4], since the assump-
tion (i) below is weaker than Rn \ (Ω∪D) 6= /0, previously assumed. This appar-
ently irrevelant modification, allows to establish Corollary 3.3, and the Kuran’s-
type rigidity result for non-negative harmonic functions, see Corollary 3.4.
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Before stating the main result, we recall that the support of a measure µ in
Rn can be defined as follows:

supp µ := {x ∈ Rn : (A open set, x ∈ A) ⇒ µ(A)> 0}.

Theorem 3.1. Let D be an open subset of Rn, x0 ∈ D, and let ν be a non-
negative Radon measure, ν(Rn \D) = 0, such that ∂D⊆ suppν and

Γ(x0− x) =
∫

D
Γ(y− x)dν(y) ∀x ∈ Rn \D. (21)

If there exists a rigidity triple (Ω,µ,x0) such that

(i) Rn \ (Ω∪D) 6= /0,

(ii) µx(Ω∩D) = νx(Ω∩D),

then D = Ω and ν = µ .

Before discussing the sharpness of the assumptions, we list some conse-
quences of this result.

Corollary 3.2. Let D be an open subset of Rn, x0 ∈ D, and let ν be a non-
negative Radon measure, ν(Rn \D) = 0, such that ∂D⊆ suppν and

u(x0) =
∫

D
u(x)dν(x) ∀u ∈H(D), u≥ 0.

If there exists a rigidity triple (Ω,µ,x0) such that

(i) Rn \ (Ω∪D) 6= /0,

(ii) µx(Ω∩D) = νx(Ω∩D),

then D = Ω and ν = µ .

Proof. Since for every x ∈ Rn \D

y 7→ Γ(y− x) is a non-negative harmonic function in D

the conclusion immediately follows by Theorem 3.1.

As a consequence of this result we obtain an improvement of Theorem ASZ
already announced in Introduction.
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Corollary 3.3. Let D be an open subset of Rn with finite Lebesgue measure and
x0 ∈ D.

Assume that

−
∫

D
Γ(y− x)dy = Γ(x0− x) ∀x ∈ Rn \D.

Then D is a Euclidean ball centered at x0.

Proof. Let r be the positive real number such that |B(x0,r)|= |D|.
Since B(x0,r)∪D has a finite Lebesgue measure, then

|Rn \ (B(x0,r)∪D)|=+∞,

so the set Rn \ (B(x0,r)∪D) is not empty.
Define µ and ν the Radon measures

µ :=
1

|B(x0,r)|
mxB(x0,r), ν :=

1
|D|

mxD.

Trivially,

µx(B(x0,r)∩D) = νx(B(x0,r)∩D), ∂D⊆ suppν .

Since (B(x0,r),µ,x0) is a rigidity triple, we conclude by using Theorem 3.1.

Since for every x /∈ D the function D 3 y 7→ Γ(y− x) is harmonic and non-
negative in D, a straightforward consequence of the above result is the follow-
ing.

Corollary 3.4. Let D be an open subset of Rn with finite Lebesgue measure and
x0 ∈ D.

Assume that

−
∫

D
u(x)dx = u(x0) ∀u ∈H(D), u≥ 0. (22)

Then D is a Euclidean ball centered at x0.

Notice that this result is more general than Theorem K and Theorem CL.
Indeed, asking that the mean value formula holds for every non-negative, har-
monic functions, is weaker than asking that the mean value formula holds true
for every summable, harmonic functions, being

{u ∈H(D) : u≥ 0, −
∫

D
u(x)dx = u(x0)}

= {u ∈H(D)∩L1(D) : u≥ 0, −
∫

D
u(x)dx = u(x0)}

( {u ∈H(D)∩L1(D) : −
∫

D
u(x)dx = u(x0)}.
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A result analogous to Corollary 3.3, stated for a bounded set D, is Corollary
3.5 below.

Corollary 3.5. Let D be an open, bounded subset of Rn and x0 ∈ D.
Assume that ∫

D
Γ(y− x)dy = cΓ(x0− x) ∀x ∈ Rn \D (23)

for some c > 0. Then c = |D| and D is a Euclidean ball centered at x0.

Proof. By (23)

c = lim
|x|→+∞

∫
D

Γ(y− x)
Γ(x0− x)

dy =
∫

D
1dy = |D|,

therefore
−
∫

D
Γ(y− x)dy = Γ(x0− x) ∀x ∈ Rn \D.

The conclusion follows by Corollary 3.3.

This last result is a version for open sets of the following result proved by
Aharonov, Schiffer and Zalcman in [1] for closed sets:

Theorem 3.6 (Aharonov-Schiffer-Zalcman [1]). Let P be a compact set in Rn,
n≥ 3, such that P = intP. Assume that∫

P
Γ(y− x)dy = cΓ(x0− x) ∀x ∈ Rn \P (24)

for some x0 ∈ P and c ∈ R. Then c = |P| and P is a closed Euclidean ball
centered at x0.

The proof given in [1] uses in a crucial way the Kuran’s result and it cannot
be immediately deduced by our previous results, since, up to now, we dealt with
open sets. Nevertheless our technique works equally well also for closed sets,
by allowing to prove Theorem 3.6 by-passing the Kuran’s result. For the sake
of completeness, we will provide in Section 4 the complete proof of Theorem
3.6 by using our method.

Theorem 3.1, together with Theorem 2.2, gives the following d-spherical
symmetry result.

Theorem 3.7. Let d be any smooth homogeneous norm in Rn.
Let D⊂ Rn be an open bounded set and x0 ∈ D.
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Using the notation and the definitions in Proposition 2.2, assume that for
α > 0 and c > 0

Γ(x0− x) = c
∫

D
Γ(y− x)

md(y− x0)

(d(y− x0))n−α
dy, ∀x ∈ Rn \D.

Then c =
(∫

D
md(y−x0)

(d(y−x0))n−α dy
)−1

and D = Bd
r (x0) with r = (α

c )
1
α .

Note that if α = n and d is the Euclidean norm, then Theorem 3.7 gives back
Corollary 3.5.

We conclude this section, by exhibiting examples to show that in Theorem
3.1 neither (ii) nor ∂D ⊆ suppν can be removed, see Examples 3.8 and 3.9.
We also show that in the definition of rigidity triple, see (i) of Theorem 3.1, the
property (8) cannot be removed, otherwise the rigidity result fails, see Example
3.10.

Example 3.8. Assumption (ii) in Theorem 3.1 cannot be removed.
For instance, if Ω is the ball Br(x0) and D is the ball in Br′(x0), with r 6= r′,

and µ = 1
|Br(x0)|mxBr(x0) and ν = 1

|Br′ (x0)|mxBr′(x0) then

µx(Ω∩D) 6= νx(Ω∩D).

It is easy to prove that all the other assumptions of Theorem 3.1 are satisfied.

Example 3.9. The assumption ∂D⊆ suppν in Theorem 3.1 cannot be removed.
Indeed, consider Ω = Br(x0), D = BR(x0), with 0 < r < R. Define µ = ν =

1
|Br(x0)|mxBr(x0). Of course supp(ν) = Br(x0), therefore ∂D 6⊆ supp(ν). It is
easy to prove that all the other assumptions of the theorems are satisfied. In
particular, for every x ∈ Rn \D⊂ Rn \Ω

Γ(x0− x) =
1

|Br(x0)|

∫
Br(x0)

Γ(y− x)dy =
∫

BR(x0)
Γ(y− x)dν(y),

which implies that ν satisfies (21) with Ω = BR(x0).

Example 3.10. The request that µ satisfies (8) cannot be removed in Theorem
3.1.

Indeed, consider the balls Ω = BR(x0), D = Br(x0), with 0 < r < R. Define
µ = ν = 1

|Br(x0)|mxBr(x0). Obviously µ satisfies (7) on the set BR(x0) and ν

satisfies (21) on the set Br(x0), ∂D⊆ suppν . For every x ∈ BR(x0)\Br(x0), by
(3)

Γ(x0− x) =
1

|Br(x0)|

∫
Br(x0)

Γ(y− x)dy =
∫

BR(x0)
Γ(y− x)dµ(y),

which implies that (8) does not hold, so (BR(x0),µ,x0) is not a rigidity-triple.
All the other assumptions in Theorem 3.1 hold.
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4. Proofs of Theorems 3.1 and 3.6

We begin by proving Theorem 3.1.

Proof of Theorem 3.1. We split the proof in four steps. Denote the Γ-potentials
of µ and ν as follows:

Γµ(x) :=
∫

Ω

Γ(y− x)dµ(y) x ∈ Rn,

Γν(x) :=
∫

D
Γ(y− x)dν(y) x ∈ Rn.

STEP 1. Let us prove that Γµ ≤ Γν in Rn \{x0}.
Since (Ω,µ,x0) is a rigidity triple, then (7) and (8) hold. Using also the

assumption (21) we get

Γµ(x)≤ Γ(x0− x)< ∞ ∀x ∈ Rn \{x0}, Γν(x) = Γ(x0− x) ∀x ∈ Rn \D.
(25)

Then, since x0 ∈ D,

Γµ(x)≤ Γν(x) ∀x ∈ Rn \D.

It remains to prove that Γµ ≤ Γν in D \ {x0}. We first remark that, by the
first chain of inequalities in (25),

Γµ −Γν is well defined and < ∞ in D\{x0}.

Moreover, by using (ii), one easily recognizes that

Γµ(x)−Γν(x) =
∫

Ω\D
Γ(y− x)dµ(y)−

∫
D\Ω

Γ(y− x)dν(y) ∀x ∈ D\{x0}.

(26)
Hereafter we agree to let an integral be equal to zero, if the integration domain
is empty.

The functions

h(x) :=
∫

Ω\D
Γ(y− x)dµ(y), x ∈ D

and
v(x) :=

∫
D\Ω

Γ(y− x)dν(y), x ∈ D

are, respectively, harmonic and superharmonic in D, see e.g. Appendix in [7].
As a consequence,

ũ := h− v is subharmonic in D;
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moreover, keeping in mind (26),

ũ = Γµ −Γν in D\{x0}.

On the other hand, by the first item in (25), the lower semicontinuity of Γν , and
(21)

limsup
D3y→x

ũ(y) = limsup
D3y→x

(Γµ −Γν)(y)≤ limsup
D3y→x

(Γ(x0− y)−Γν(y))

≤ Γ(x0− x)−Γν(x) = 0 ∀x ∈ ∂D.

Moreover,

limsup
D3y→∞

ũ(y)≤ limsup
D3y→∞

(Γ(x0− y)−Γν(y))≤ limsup
y→∞

Γ(x0− y) = 0.

By the maximum principle for subharmonic functions (see [4, Theorem 8.2.19
(ii)]) we get ũ≤ 0 in D; hence Γµ ≤ Γν in D\{x0}.

STEP 2. Let us prove that ∂D⊆Ω.
By contradiction, assume there exists a point x ∈ ∂D such that x /∈Ω. Then

x ∈ suppν (by assumption ∂D⊆ suppν) and Rn \Ω is an open set containing x.
As a consequence

ν(Rn \Ω)> 0. (27)

Since µ has its support contained in Ω, Γµ is harmonic in Rn \Ω, see e.g. Ap-
pendix in [7], so that

Γµ −Γν is subharmonic in Rn \Ω.

On the other hand, by what we proved in Step 1, Γµ −Γν ≤ 0 in Rn \Ω. More-
over, since (7) and (21) imply

Γµ = Γν in Ω
c∩Dc,

then
(Γµ −Γν)(x) = 0.

Since Ω is a solid set, then Rn \Ω is a connected set, so the strong maximum
principle for subharmonic functions (see in [4, Theorem 8.2.19 (i)]) imply

Γµ −Γν = 0 in Rn \Ω,

so that
∆(Γµ −Γν) = 0 in Rn \Ω.

On the other hand, in Rn \Ω, ∆(Γµ −Γν) = ν . Therefore, ν(Rn \Ω) = 0, in
contradiction with (27).
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STEP 3. Let us prove that D⊆Ω.
We have

Rn \Ω = (D∪Dc)\Ω = (D\Ω)∪ (Dc∩ (Ω)c) = (D\Ω)∪ (D∪Ω)c.

Notice that D\Ω and (D∪Ω)c are disjoint sets. By assumption (i), (D∪Ω)c is
not empty and by Step 2, we have

(D∪Ω)c = (∂D\Ω)∪ (Dc∩Ω
c
) = (D∪Ω)c,

thus, (D∪Ω)c is an open set. Since Rn \Ω is connected, because Ω is a solid
set, the open set D\Ω must be empty. We have so proved that D⊆Ω. Since Ω

is solid, then intΩ = Ω. We conclude that D⊆Ω.

STEP 4. Let us prove that Ω ⊆ D. We argue by contradiction; i.,e, we
assume that there exists x ∈ Ω \D. In particular, x 6= x0. By Step 3, D ⊆ Ω.
Therefore, since (Ω,µ,x0) is a rigidity triple and using (ii) and (21), we have

Γ(x0− x)> Γµ(x) =
∫

D
Γ(y− x)dµ(y)+

∫
Ω\D

Γ(y− x)dµ(y)

≥
∫

D
Γ(y− x)dµ(y) =

∫
D

Γ(y− x)dν(y) = Γ(x0− x).

This is an absurd.
We have so proved that D = Ω and, consequently, that µ = ν .

We now give our proof of the Aharonov-Schiffer-Zalcman’s result, Theorem
3.6.

Proof of Theorem 3.6. Let r be the positive real number such that |B(x0,r)| =
|P| and define the measures

µ :=
1

|B(x0,r)|
mxB(x0,r), and ν :=

1
|P|

mxP.

Denote the Γ-potentials of µ and ν as follows:

Γµ(x) :=−
∫

B(x0,r)
Γ(y− x)dy x ∈ Rn,

Γν(x) :=−
∫

P
Γ(y− x)dy x ∈ Rn.

The functions Γµ ,Γν : Rn → [0,∞[ are continuous, being the convolution of
a locally integrable function with a bounded measurable function of compact
support. By (24) it follows that x0 must lie in the interior of P, for otherwise the
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right-hand side of (24) would be unbounded as x goes to x0, while the left hand
side remains bounded. Moreover, if (xn) is a sequence in Rn, such that |xn|→∞,
by (24) and the dominated convergence theorem we get

c = lim
n→∞

∫
P

Γ(y− xn)

Γ(x0− xn)
dy = |P|.

We now split the rest of the proof into steps.

STEP 1. Let us prove that Γµ ≤ Γν in Rn.
Since (B(x0,r),µ,x0) is a rigidity triple, then (7) and (8) hold. Using also

the assumption (24) we get

Γµ(x)≤ Γ(x0− x) ∀x ∈ Rn, Γν(x) = Γ(x0− x) ∀x ∈ Rn \P. (28)

Then
Γµ(x)≤ Γν(x) ∀x ∈ Rn \P.

It remains to prove that Γµ ≤ Γν in P. One easily recognizes that

Γµ(x)−Γν(x) =
1
|P|

(∫
B(x0,r)\P

Γ(y− x)dy−
∫

P\B(x0,r)
Γ(y− x)dy

)
∀x ∈ Rn,

(29)
where we agree to let an integral be equal to zero, if the integration domain is
empty.

The functions

h(x) :=
1
|P|

∫
B(x0,r)\P

Γ(y− x)dy, x ∈ Rn

and
v(x) :=

1
|P|

∫
P\B(x0,r)

Γ(y− x)dy, x ∈ Rn

are, respectively, harmonic and superharmonic in intP, thus

ũ := h− v is subharmonic in intP.

Moreover, by (29),
ũ = Γµ −Γν in Rn.

Consider x ∈ ∂P and let (yh) be a sequence in Pc, convergent to x. By the first
item in (28), and (24), we have

lim
y→x

ũ(y) = lim
h→∞

ũ(yh) = lim
h→∞

(Γµ −Γν)(yh)

≤ lim
h→∞

(Γ(x0− yh)−Γν(yh)) = lim
h→∞

(Γ(x0− yh)−Γ(x0− yh)) = 0.

By the maximum principle for subharmonic functions, we get ũ≤ 0 in intP;
hence Γµ ≤ Γν in intP. By continuity, we conclude that Γµ ≤ Γν in P.
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STEP 2.
Let us prove that ∂P⊆ B(x0,r).
By contradiction, assume there exists a point x ∈ ∂P such that x /∈ B(x0,r).

Γµ is harmonic in Rn \B(x0,r), so that

Γµ −Γν is subharmonic in Rn \B(x0,r).

On the other hand, by what we proved in Step 1, Γµ −Γν ≤ 0 in Rn \B(x0,r).
Moreover, since (7) and (24) imply

Γµ = Γν = Γ in B(x0,r)c∩Pc,

then, by continuity, (Γµ −Γν)(x) = 0.
Since Rn \B(x0,r) is a connected set, by the strong maximum principle for

subharmonic functions we get

Γµ −Γν = 0 in Rn \B(x0,r),

so that
∆(Γµ −Γν) = 0 in Rn \B(x0,r).

On the other hand, in Rn \B(x0,r), ∆(Γµ −Γν) =−µ +ν = ν . Therefore,

ν(Rn \B(x0,r)) = 0.

This is an absurd. Indeed, P = intP implies ∂P⊆ suppν . Since Rn \B(x0,r) is
an open set containing x ∈ ∂P, then ν(Rn \B(x0,r))> 0.

STEP 3. Let us prove that P⊆ B(x0,r).
We have

Rn \B(x0,r) = (P∪Pc)\B(x0,r) = (P\B(x0,r))∪ (Pc∩ (B(x0,r))c)

= (P\B(x0,r))∪ (P∪B(x0,r))c

= (intP\B(x0,r))∪ (P∪B(x0,r))c.

where the last equality follows by the inclusion ∂P⊆ B(x0,r) proved in Step 2.
Notice that intP\B(x0,r) and (P∪B(x0,r))c are open, disjoint sets. By the

boundedness of P the set (P∪B(x0,r))c is not empty. Since Rn \B(x0,r) is a
connected set, the set intP\B(x0,r) must be empty; i.e. intP⊆ B(x0,r). Since
P = intP we conclude that P⊆ B(x0,r).
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STEP 4. Let us prove that B(x0,r)⊆ P. It suffices to prove that B(x0,r)⊆ P.
We argue by contradiction. Assume that there exists x ∈ B(x0,r)\P. By Step 3,
P ⊆ B(x0,r). Therefore, using that (B(x0,r), 1

B(x0,r)
mxB(x0,r),x0) is a rigidity

triple, (24) and recalling that |B(x0,r)|= |P|, we have

Γ(x0− x)> Γµ(x) =−
∫

B(x0,r)
Γ(y− x)dy

=−
∫

P
Γ(y− x)dy+

1
|P|

∫
B(x0,r)\P

Γ(y− x)dµ(y)

≥−
∫

P
Γ(y− x)dy = Γ(x0− x).

This is an absurd.

Collecting Steps 3 and 4, we get the conclusion.
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