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 The flavivirus epidemiology has reached an alarming rate which haunts the 

world population including Malaysia. In fact, World Health Organization has 

proposed and practised many methods of vector control through 

environmental management, chemical and biological orientations but still 

cannot fully overcome the problem. This paper proposed a detection of 

Aedes Aegypti larvae in water storage tank using Single Shot Multibox 

Detector with transfer learning. The objective of the study was to acquire the 

training and the performance metrics of the detection. The detection was 

done using SSD with Inception_V2 through transfer learning. The 

experimental results revealed that the probability detection scored more than 

80% accuracies and there was no false alarm. These results demonstrate the 

effectiveness of the model approach. 
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1. INTRODUCTION  

Advances in machine learning era has started when a classifier model has successfully trained using 

convolutional neural network architecture [1]. The reasons of the success are attributed to the computational 

power and the second one is due to a lot of database library for training purposes. Object detection is one of 

machine learning techniques. Basically, object detection is slightly different from classifier where it does not 

only find object inside the image, but also a pixel to localize the position of the object inside the image. 

Dengue, chikungunya and yellow fever are acute febrile viral disease. The viruses are members of 

flavivirus family and have been transmitted by Aedes mosquitoes. In fact, World Health Organization has 

proposed and practised many methods of vector control through environmental management, chemical and 

biological orientations [2] yet they cannot fully overcome the problem. From the listed vector control, the 

most crucial part to be heeded are non-accessible places like water storage and artificial container [3]. This 

paper hence, proposed a detection of Aedes Aegypti larvae in water storage tank using Single Shot Multibox 

Detector with transfer learning. Therefore, the objective of the study was to acquire the training and 

performance metrics of the detection. 

Lately, convolutional neural network has been a huge success in object detection. The first advance 

of machine learning in object detection is overfeat where the technique has proposed the sliding window 

algorithm using convolutional neural network to detect object [4]. However, the technique is very 
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computational expensive. Just after the overfeat, region based convolutional neural network or R-CNN is 

published which triggers almost 50% improvement [5]. The algorithm has proposed several approaches 

where it has created the bounding box using the region proposal method, features extraction using 

convolutional neural network, and classify the bounding box using support vector machine. This technique 

has rapidly evolved where Fast R-CNN [6] and Faster R-CNN [7] have yet to publish to improve the  

existing performance.  

Shortly after the discovery of R-CNN, You Only Look Once or YOLO algorithm which use simple 

pipeline on yet convolutional neural network has resulted in high speed detection compared with Fast R-

CNN [8, 9]. Subsequently, Region-based fully convolutional network or R-FCN is developed, and this 

approach is likely to adopt Faster R-CNN architecture but with only convolutional networks [10]. Finally, 

Single shot multibox detector or SSD is developed to take on YOLO using the multiple size of convolutional 

feature maps which offer better results and speed in object detection [11]. 

Since most discoveries of viral disease are caused by the Aedes Aegypti, a lot of effort has been 

generated to combat this problem. Many methods are discovered including the use of neural network. Neural 

network has been used to identify the different of wingbeat frequencies of insects in flight [12]. Not just that, 

neural network has also been used to predict the day of defervesce of fever in dengue fever and dengue 

haemorrgic fever [13]. Besides, that backpropagation learning algorithm has also been used to predict and 

recognize dengue confirmed-case based on four important features-: mean relative humidity, total rainfall, 

mean temperature and total number of dengue confirmed-cases [14, 15]. 

 

 

2. RESEARCH METHOD  

This section focuses on the development process of Aedes Aegypti larvae detection inside the water 

storage tank. The detection was done using SSD with Inception_V2 through transfer learning. SSD technique 

is based on feed-forward convolutional network and it is the first deep network pipe line based on object 

detector that does not need resample features or pixels for bounding box [11]. Figure 1 shows the architecture 

of SSD with Inception_V2 classifier. 

 

 

 
 

Figure 1. Architecture of SSD with Inception_V2 classifier 

 

 

The first network layers were standard architecture used for image classification which also known 

as the base network. This experiment implemented the transfer learning where the inception_V2 was used for 

base network. Subsequently, the frame size and layers decreased progressively. In addition, each 

convolutional feature layer was truncated to detection layer, allowing multi-scale feature maps detection.  

Transfer learning has improved accuracies and shown the tremendous classification in many and 

various object detection applications [16-19]. The dataset was first constructed to perform the transfer 

learning. The dataset was constructed by capturing the Aedes Aegypti larvae image during experiments in 

lab. The samples then were split into two groups to acquire the training and test patch images. About 176 

images were created, then, the location of Aedes Aegypti larvae was labelled and identified. The trained 

model, then, was tested to measure the performance. Figures 2 and 3 shows the flowchart of the experiment 

and illustrate the default box procedure on detecting Aedes Aegypti larvae. 
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Figure 2. Flowchart of the experiment 

 

 

 
 

Figure 3. Default box working on detecting Aedes Aegypti larvae 

 

 

In SSD framework, only input image and ground truth boxes were needed for detecting Aedes 

Aegypti during training. The box was evaluated in different aspect ratios at each location. In this case, feature 

maps of 4x4 scales is predicted the shape offsets and the confidence of Aedes Aegypti where the default box 

was treated as the positives and the rest as negatives. The cross-entropy loss is weighted sum between the 

confidence loss and localization loss. The overall training objective loss is defined as below [11]: 

 

1
( , , , ) ( ( , ) ( , , ))conf locL x c l g L x c L x l g

N
   (1) 

 

where N is number of default boxes, L is localization loss, c is offset for center, l is predicted box and g is the 

ground truth box parameters. 

 

 

3. RESULTS AND ANALYSIS  

This section discusses the result on the detection retrained model. Figure 4 shows the training loss of 

the model. The result showed the unfiltered trained model. In the training, about 110k steps before were 
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covered before the training stopped. Initially, the training phase declined drastically from beginning until 20k 

step before it declined evenly from 20k step until 80k step. Then the training loss was saturated at 1.5 from 

80k step until the end of training which was 110k step. The final precision mAP@0.5IOU of the training was 

0.8562. After the training, test image was implemented to evaluate the model. About 5 images containing 48 

Aedes Aegypti larvae were used for the test trained model. The evaluation performance of Aedes Aegypti 

larvae included probability of detection Pd and probability of false alarm Fa. The results are shown in  

Table 1. 

 

 

 
 

Figure 4. Training loss of the model  

 

 

Table 1. Result of Aedes aegypti larvae test images 
Model Ntotal_larva Ndetect_larva Nfalse_larva Pd Fa 

SSD 46 37 0 0.8043 0.0000 

 

 

The results showed that SSD performed about 80% accuracy in detecting Aedes Aegypti larvae. The 

loss of accuracies may bw attributed to the data fed during training because the Aedes Aegypti larvae was too 

small and may made the images too sparse for training. However, even the data used for Aedes Aegypti 

larvae detection were quite small, the overall test was still satisfactory and there was no false alarm in the 

test. Figure 5 shows the Aedes Aegypti larvae detection in water storage tank. 

 

 

  
  

Figure 5. Aedes aegypti larvae detection in water storage tank 
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4. CONCLUSION 

To conclude, trained inference graph has successfully produced and trained to detect and localize 

Aedes Aegypti larvae in images. SSD is used with transfer learning to perform the Aedes Aegypti larvae 

detection. The results reveal that the model has achieved satisfactory probability of detection and performed 

better in probability of false alarm. Further study should focus on detecting small objecst in image to improve 

detection of Aedes Aegypti larvae. 
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