

Faculty of Electrical Engineering

IDENTIFICATION OF HARMONIC SOURCE FOR ELECTRIC ARC FURNACE LOAD USING FAST-FOURIER TRANSFORM

NurHazwani Binti Saleh

Master of Electrical Engineering (Industrial Power)

2018

C Universiti Teknikal Malaysia Melaka

IDENTIFICATION OF HARMONIC SOURCE FOR ELECTRIC ARC FURNACE LOAD USING FAST-FOURIER TRANSFORM

NURHAZWANI BINTI SALEH

A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Electrical Engineering (Industrial Power)

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2018

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitle "Identification of Harmonic Source for Electric Arc Furnace Load Using Fast-Fourier Transform" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	·
Name	:
Date	:

APPROVAL

I hereby declare that I have read this dissertation and in my opinion this dissertation is sufficient in terms of scope and quality as a partial fulfillment of Master of Electrical Engineering (Industrial Power)

Signature	·
Supervisor Name	:
Date	·

DEDICATION

To my beloved family,

Khairul Taib, Khairul Darwisy Fasyin and Khairul Daiyyan Fithri.

To my helpful supervisor and co-supervisor,

Dr. Hyreil Anuar Kasdirin and Assoc. Prof Ir. Dr. Abdul Rahim Abdullah.

And above all,

Allah Subhanu Wa Ta''ala.

ABSTRACT

Harmonic pollution has become a major problem in electrical power networks which can cause problems like the reduction load's lifetime, failure of protection devices to operate efficiently, instabilities of power system interference in operating systems and all these can contribute to economic losses and downtime. Therefore, harmonic source identification is one of the major problems. Proper identification of the harmonics source is an essential for developing penalty based schemes for harmonic generation and for the design of mitigation equipment to reduce harmonic. This dissertation aims to identify and analyze the harmonics source in power system using Fast-Fourier Transform (FFT) with effective cost efficiencies using single-point measurement approach. The sources of harmonic that been focused in this study is Electric Arc Furnace and finally, the applicability of the modelling system is tested with another harmonic source, Rectifier. The signification finding of this research shows the harmonic sources location can be identified by referring to the relationship between fundamental impedance (Zf) and harmonic impedance (Zh).

ABSTRAK

Pencemaran harmonik telah menjadi masalah utama dalam rangkaian kuasa elektrik yang boleh menyebabkan masalah seperti pengurangan hayat beban, kegagalan peranti perlindungan untuk beroperasi dengan cekap, ketidakstabilan sistem kuasa, gangguan dalam sistem operasi dan semua ini boleh menyumbang kepada kerugian ekonomi dan downtime. Oleh itu, mengenalpasti sumber harmonik adalah salah satu masalah utama. Pengenalpastian tepat sumber harmonik adalah penting untuk membangunkan skim penalti berasaskan generasi harmonik dan untuk mereka bentuk peralatan bagi mengurangkan harmonik. Disertasi ini bertujuan untuk mengenal pasti dan menganalisis sumber harmonik dalam sistem kuasa menggunakan Jelmaan Fourier Pantas (FFT) dengan kecekapan kos yang efektif dan menggunakan pendekatan mengukur pada satu titik. Sumber harmonik akan telah difokuskan dalam kajian ini ialah Relau Arka Elektrik dan diakhirnya, kebolehgunaan model sistem diuji dengan sumber harmonik yang lain iaitu Penerus. Penemuan signifikasi kajian ini menunjukkan lokasi sumber harmonik boleh dikenal pasti dengan merujuk kepada hubungan antara impedans asas (**Zf**) dan impedans harmonik (**Zh**).

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude and appreciation to my supervisors, Dr Hyreil Anuar Bin Kasdirin for his interest and encouragement during the work. His guidance, training, constant encouragement and the countless enlightening conversations have helped me to achieve this goal, I am indebted to his support and guidance.

I would like to acknowledge the efforts of Assoc. Prof Ir. Dr. Abdul Rahim Bin Abdullah in completion of this work, and thank him for the innumerable technical discussions and warm encouragement. His immense experience and understanding of the subject helped me tackle some of the difficult challenges in this dissertation.

Nothing in life is possible without the love and support from one's family along the journey. I would like to thank my husband Khairul Taib Bin Khairul Anuar and my kids Khairul Darwisy Fayin and Khairul Daiyyan Fithri for their sacrifices, patience, support and unconditional love. Last but not the least; I would like to express my undying love and gratitude to my mother and father for a lifetime of support, encouragement and education. Their love and blessings made everything I have accomplished possible.

May Allah Azza Wa Jalla bless all of you with His love in this life and hereafter.

TABLE OF CONTENTS

DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF EQUATIONS	xi
LIST OF ABBREVIATION	xiii
LIST OF APPENDICES	xiv
LIST OF PUBLICATION	xvi

CHAPTER

1.

2.

INTI	RODUCTION	1
1.1	Research Background	1
1.2	Problem Statement	2
1.3	Research Objectives	4
1.4	Scope of Research	5
1.5	Research Contribution	5
1.6	Thesis Organization	6
LITI	ERATURE REVIEW	7
2.1	Introduction	7
2.2	Linear Load	7
2.3	Non-Linear Load	9
2.4	Definition of Harmonics	10
2.5	Classification of Harmonics	12
2.6	Waveform Shape Types	13
2.7	Harmonic Flow	15
2.8	Harmonic Source	16
2.9	Harmonic Producing Load	17
	2.9.1 Rectifier	17
	2.9.2 Inverter	19
	2.9.3 Electric Arc Furnace	21
2.10	Load Modelling EAF	23
	2.10.1 Hyperbolic Model	24
	2.10.2 Exponential Model	24
	2.10.3 Exponential-Hyperbolic Model	25

PAGE

	2.11	Impact of Harmonics	25
		2.11.1 Effects of Harmonics on Power Factor	25
		2.11.2 Effects of Harmonics on Rotating Machines	26
		2.11.3 Effects of Harmonics on Transformers	26
		2.11.4 Effects of Harmonics on Lines and Cables	27
		2.11.5 Effects of Harmonics on Converter Equipments	27
		2.11.6 Effects of Harmonics on Protective Relay	27
		2.11.7 Effects of Harmonics on Capacitor	28
		2.11.8 Effects of Harmonics on Residential and Commercial	28
		Equipment	
	2.12	Harmonic Standards	29
		2.12.1 IEC 6100	29
		2.12.2 IEEE Std.519	30
	2.13	Harmonic Indices	32
		2.13.1 Total Harmonic Distortion (<i>THD</i>)	33
		2.13.2 Total Harmonic Distortion of Current (<i>THDi</i>)	33
		2.13.3 Total Harmonic Distortion of Voltage (<i>THDv</i>)	34
		2.13.4 Total non-harmonic distortion (<i>TnHD</i>)	34
		2.13.5 Total Waveform Distortion (TWD)	35
		2.13.6 Total Distortion Demand (TDD)	35
	2 14	Different Techniques for Harmonic Source Identification	36
		2 14 1 Single-point measurement	37
		2 14 2 Multipoint Methods	37
	2 1 5	Harmonic Source Identification Method	39
	2.10	2.15.1 Power Direction Method (Power Flow Method)	39
		2.15.2 Harmonic State Estimation (HSE) by Least Square	40
		2.15.3 Neural Network	41
		2.15.4 Kalman Filter	42
		2.15.5 Independent Component Analysis	42
		2.15.6 Critical Impedance Method	43
		2.15.7 Bayesian Approach	44
		2.15.8 Impedance-Based Method	44
	2.16	Signal Processing Technique for Harmonic Source Detection	46
		2.16.1 Fast Fourier Transform	47
	2.17	Summary	47
3	RES	EARCH METHODOLOGY	49
	31	Introduction	49
	32	Proposed Electric Arc Eurnace Model	50
	33	Harmonic Source Localization	53
	3.4	Concept of Point of Common	54
	3.5	Analysis by Fast-Fourier Transform	56
	3.6	Signal Parameters	50
	2.0	3.6.1 RMS Current and Voltage	57
	37	Impedance Based Method	58
	3.8	Summary	59
	2.0	~	0)

4.	RES	SULTS AND DISCUSSIONS	60
	4.1	Introduction	60
	4.2	Harmonic Source Identification for EAF Load	61
		4.2.1 Case 1: N-N Model	62
		4.2.2 Case 2: N-H Model	64
		4.2.3 Case 3: H-N Model	66
		4.2.4 Case 4: H-H Model	69
	4.3	Harmonic Source Identification for Rectifier Load	71
		4.3.1 Case 1: N-N Model	72
		4.3.2 Case 2: N-H Model	74
		4.3.3 Case 3: H-N Model	76
		4.3.4 Case 4: H-H Model	78
	4.4	Result on Harmonic Distortion	80
	4.5	Summary	83
5.	CO	NCLUSION AND RECOMMENDATIONS	84
	5.1	Conclusion	84
	5.2	Research Contribution	85
	5.3	Future Work	85
REI	FEREN	ICES	87
APF	PENDI	CES	96

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Harmonic Orders	12
2.2	Harmonic numbers	19
2.3	Selected Utility Standards	30
2.4	Voltage Distortion Limit	31
2.5	Maximum Harmonic Current Distortion	31
3.1	EAF Load Model Parameter	53
3.2	Load Localization	53
4.1	Three-Phase Rectifier Load Model Parameter	71
4.2	Result on Voltage THD between EAF and Rectifier	80
4.3	Result on Current THD between EAF and Rectifier	81
4.3	Impedance Characteristic for EAF Load vs Rectifier Load	83

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Voltage and Current Waveform for Linear Load	8
2.2	Voltage Waveforms for Non-Linear Load	10
2.3	Resolution of Non-Sinusoidal Current Waveform into Harmonic Components	11
2.4	Fundamental Waveform	13
2.5	Complex Waveform due to Harmonics	14
2.6	Normal Harmonic Flow	16
2.7	Three-Phase Full Bridge Rectifier Circuit	18
2.8	Three-Phase Inverter	21
2.9	Typical Electrical Arc Furnace	23
2.10	Classification of Harmonic Identification Method	30
2.11	Single Point Measurement Scheme	42
2.12	Multipoint Measurement Scheme	43
2.13	Relationship between System Impedance and Voltage Distortion	45
2.14	Basic principle of harmonic impedance measurement	46
3.1	Flowchart of Overall Research Stage	50
3.2	Electric Arc Furnace Model	51
3.3	EAF Subsystem Block	51
3.4	EAF Function Model in MATLAB Function Block	52

3.5	Point of Common Coupling	54
3.6	Illustration for Case 1, 2, 3, and 4	55
3.7	Point of Common Coupling Measurement	55
3.7	Powergui Block Parameter	56
4.1	Flowchart of Analysis Harmonic Source	61
4.2	Model of Case 1 (N-N) for EAF Load	62
4.3	(a) Voltage Waveform of Case 1 (N-N) for EAF Load	63
	(b) Current Waveform of Case 1 (N-N) for EAF Load	63
4.4	Impedance Spectrum of Case 1 (N-N) for EAF Load	63
4.5	Model of Case 2 (N-H) for EAF Load	64
4.6	(a) Voltage Waveform of Case 2 (N-H) for EAF Load	65
	(b) Current Waveform of Case 2 (N-H) for EAF Load	65
4.7	Impedance Spectrum of Case 2 (N-H) for EAF Load	66
4.8	Model of Case 3 (H-N) for EAF Load	67
4.9	(a) Voltage Waveform of Case 3 (H-N) for EAF Load	67
	(b) Current Waveform of Case 3 (H-N) for EAF Load	68
4.10	Impedance Spectrum of Case 3 (H-N) for EAF Load	68
4.11	Model of Case 4 (H-H) for EAF Load	69
4.12	(a) Voltage Waveform of Case 4 (H-H) for EAF Load	70
	(b) Current Waveform of Case 4 (H-H) for EAF Load	70
4.13	Impedance Spectrum of Case 4 (H-H) for EAF Load	70
4.14	Rectifier Circuit in Subsystem Block	72
4.15	Model of Case 1 (N-N) for Rectifier Load	73
4.16	(a) Voltage Waveform of Case 1 (N-N) for Rectifier Load	73
	(b) Current Waveform of Case 1 (N-N) for Rectifier Load	73

4.17	Impedance Spectrum of Case 1 (N-N) for Rectifier Load	74
4.18	Model of Case 2 (N-H) for Rectifier Load	75
4.19	(a) Voltage Waveform of Case 2 (N-H) for Rectifier Load	75
	(a) Current Waveform of Case 2 (N-H) for Rectifier Load	75
4.20	Impedance Spectrum of Case 2 (N-H) for Rectifier Load	76
4.21	Model of Case 3 (H-N) for Rectifier Load	77
4.22	(a) Voltage Waveform of Case 3 (H-N) for Rectifier Load	77
	(b) Current Waveform of Case 3 (H-N) for Rectifier Load	77
4.23	Impedance Spectrum of Case 3 (H-N) for Rectifier Load	78
4.24	Model of Case 4 (H-H) for Rectifier Load	79
4.25	(a) Voltage Waveform of Case 4 (H-H) for Rectifier Load	79
	(b) Current Waveform of Case 4 (H-H) for Rectifier Load	79
4.26	Impedance Spectrum of Case 4 (H-H) for Rectifier Load	80
4.27	Graph <i>THDv</i> between EAF and Rectifier	81
4.28	Graph THDi between EAF and Rectifier	82

LIST OF EQUATIONS

EQUATION	TITLE	PAGE
2.1	Basic Harmonic Equation	10
2.2	Hyperbolic Model Equation	24
2.3	Exponential Model Equation	24
2.4	Exponential-Hyperbolic Model Equation	25
2.5	Total Harmonic Distortion of Current (THDi)	33
2.6	Total Harmonic Distortion of Voltage (THDv)	34
2.7	Total non-harmonic distortion (TnHD)	35
2.8	Total Waveform Distortion (TWD)	35
2.9	Total Distortion Demand (TDD)	36
2.10	Fast-Fourier Transform Equation	47
3.1	Electric Arc Furnace Hyperbolic Equation	52
3.2	Threshold Voltage Equation	52
3.3	RMS Current	57
3.4	RMS Voltage	57
3.5	Impedance Based Method Equation	58
4.1	No Harmonic Source Equation	64
4.2	Harmonic Source at Downstream	66
4.3	Harmonic Source at Upstream	69
4.4	Harmonic at both Upstream and Downstream	71

LIST OF ABBREVIATION

AC	- Alternating Current
DC	- Direct Current
EAF	- Electric Arc Furnace
FFT	- Fast-Fourier Transform
HSE	- Harmonic State Estimation
THD _V	- Total Voltage Harmonic Distortion
THD _i	- Total Current Harmonic Distortion
VIC	- Voltage – Current Characteristic
PCC	- Point of Common Coupling

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A1	Voltage of Case 1 (N-N) for EAF Load	96
A2	Current of Case 1 (N-N) for EAF Load	97
A3	Impedance of Case 1 (N-N) for EAF Load	98
A4	Calculation of <i>THDv</i> and <i>THDi</i> of Case 1 (N-N) for EAF Load	99
B1	Voltage of Case 2 (N-H) for EAF Load	100
B2	Current of Case 2 (N-H) for EAF Load	101
B3	Impedance of Case 2 (N-H) for EAF Load	102
B 4	Calculation of THDv and THDi of Case 2 (N-H) for EAF Load	103
C1	Voltage of Case 3 (H-N) for EAF Load	104
C2	Current of Case 3 (H-N) for EAF Load	105
C3	Impedance of Case 3 (H-N) for EAF Load	106
C4	Calculation of <i>THDv</i> and <i>THDi</i> of Case 3 (H-N) for EAF Load	107
D1	Voltage of Case 4 (H-H) for EAF Load	108
D2	Current of Case 4 (H-H) for EAF Load	109
D3	Impedance of Case 4 (H-H) for EAF Load	110
D4	Calculation of $THDv$ and $THDi$ of Case 4 (H-H) for EAF Load	111
E1	Voltage of Case 1 (N-N) for Rectifier Load	112
E2	Current of Case 1 (N-N) for Rectifier Load	113

E3	Impedance of Case 1 (N-N) for Rectifier Load	114
E4	Calculation of <i>THDv</i> and <i>THDi</i> of Case 1 (N-N) for Rectifier Load	115
F1	Voltage of Case 2 (N-H) for Rectifier Load	116
F2	Current of Case 2 (N-H) for Rectifier Load	117
F3	Impedance of Case 2 (N-H) for Rectifier Load	118
F4	Calculation of <i>THDv</i> and <i>THDi</i> of Case 2 (N-H) for Rectifier Load	119
G1	Voltage of Case 3 (H-N) for Rectifier Load	120
G2	Current of Case 3 (N-H) for Rectifier Load	121
G3	Impedance of Case 3 (N-H) for Rectifier Load	122
G4	Calculation of <i>THDv</i> and <i>THDi</i> of Case 3 (N-H) for Rectifier Load	123
H1	Voltage of Case 4 (H-N) for Rectifier Load	124
H2	Current of Case 4 (N-H) for Rectifier Load	125
Н3	Impedance of Case 4 (N-H) for Rectifier Load	126
H4	Calculation of THDv and THDi of Case 4 (N-H) for Rectifier Load	127

LIST OF PUBLICATIONS

A. Journal

- Jopri, M H., Abdullah, A.R., Manap, M., Ghani, A.b. and Saleh, N .H., 2017 'Harmonic Contribution Analysis of Electric Arc Furnace by Using Spectrogram', *International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS*, 17(3), pp. 28–36
- Saleh, N.H., Kasdirin, H.A. and Abdullah, A.R., 2018 'Identification of Harmonic Source for Electric Arc Furnace Load Using Fast-Fourier Transform'. *Journal of Telecommunication, Electronics and Computer Engineering (JTEC).*

B. Conference

 Saleh, N.H., Kasdirin, H.A. and Abdullah, A.R., 2018 'Identification of Harmonic Source for Electric Arc Furnace Load Using Fast-Fourier Transform'. In Postgraduate Research Conference (PReCON), January 24, 2018, Faculty of Electronics and Computer Engineeering, Universiti Teknikal Malaysia Melaka (UTeM).

CHAPTER 1

INTRODUCTION

1.1 Research Background

Power quality can be defined as a set of electrical boundaries allowing an equipment to function in its intended manner with no significant loss of performance or life expectancy. A power system ideal when is define when a perfect sinusoidal voltage signal is seen at loadends (Durdhavale, S.R. and Ahire, D.D., 2016). As stated by (Huda, Abdullah and Jopri, 2013), power quality is the ability of pure sinusoidal voltage and current waveforms at 50 Hz (frequency power-line in Malaysia) without any disturbances at the approaching side of the supply system. The quality of power delivered to the end user is very important as the performance of the consumer's equipment is heavily dependent on it. But, the power quality is affected by various factors like voltage and frequency variations, presence of harmonics, faults in the power network etc. Among them harmonic is one of the most frequently occurring problem.

Harmonic distortion come generally from equipment with a non-linear voltage or current characteristic. Nowadays a large part of industrial, commercial and domestic loads is non-linear, making the distortion level on the low-voltage supply network a serious concern. As time goes on, more and more equipment is being used that creates harmonics in power systems. These loads disturb the current and voltage waveforms. Consequently, pure sinusoidal currents and voltages cannot be provided to the customers (Yilmaz, A.S., Alkan, A. and Asyali, Musa H. 2008). Due to non-sinusoidal voltage and current waveform, the quality of power delivered to the end user may turn out to be degraded. Presently, most of industries are very sensitive to harmonic disturbances. Power quality problems associated with harmonics are not new to utility and industrial system. The quality of electrical power in commercial and industrial installation is undeniably decreasing. With the increasing use of solid-state circuit equipment such fluorescent lights, adjustable speed drives, three phase converters (rectifiers and inverters), motor drives, arc furnaces, static VAR compensators and rotating electrical machines becomes more frequent and severe due to non-linear characteristics of such circuits create harmonics by drawing current in abrupt short pulses, rather than in a smooth sinusoidal manner (Soni, M.K. and Soni, N., 2014).

The growing applications of power electronic apparatus and non-linear can result in serious harmonic pollution in electrical power systems (Zang *et al.*, 2016). The voltage or current distortions may cause unsafe and unreliable electrical power supplies, malfunction of equipment, overheating of conductors and can reduce the efficiency, and life of most connected loads. Therefore, harmonic distortion is an undesirable effect for electrical power networks (Yilmaz, A.S., Alkan, A. and Asyali, Musa H., 2008). Harmonic distortion can be considered as a sort of pollution of the electric system which can cause problems if exceeds certain limits.

1.2 Problem Statement

Harmonic distortions are major problems which have become a great concern nowadays to maintain power quality (Ingale, R., 2014). Electric arc furnace (EAF) is one of the typical industrial non-linear loads responsible for deteriorating the power quality in the distribution network by introducing harmonics causing unbalance in voltages and currents (Bhonsle, D.C. and Kelkar, R.B., 2013). Harmonic can cause problems like reduction load's lifetime, failure of protection devices to operate efficiently, instabilities of power system, interruption in production and above all it can contribute to economic losses and downtime (Abidullah *et al.*, 2014).

(Yilmaz, A.S., Alkan, A. and Asyali, Musa H. 2008) states that, harmonics have to be determined at an early stage and distinguished for developing solutions for harmonic elimination. Fast detection on power quality problem enable the utility personnel to mitigate efficiently, and at the same time it will improve the reliability and quality of the power system network (Abdullah *et al.*, 2015). According to (Supriya, P. and Padmanabhan, N., 2012), proper identification of the harmonics generated or absorbed by consumer is essential for developing penalty based schemes for harmonic generation and for the design of mitigation equipment. A simple, cost-effective and accurate method for harmonic source detection is yet to make a deep mark in the power sector. Therefore, harmonic source identification have drawn wide concern globally for power system researchers (Zang *et al.*, 2016).

In the recent past, there are many techniques was presented by various researcher for analyze harmonic signal for identifying the location of harmonic sources in power systems based on different theoretical principles, features, advantages and limitations. The real power flow method is one of the earliest method proposed in locating harmonic sources (Abdullah *et al.*, 2014; Abdullah, A. R. *et al.*, 2017). The drawbacks of power flow was covered by Harmonic state estimation (HSE) techniques.

The first the idea of using least square based state-estimation technique to identify the locations of the harmonic sources was proposed by Heydt (1989) (Kumar, A., Das, B. and Sharma, J., 2004). However, this technique required details and an accurate knowledge of network parameters. Poor knowledge of network parameters may lead to large errors in the results (Gursoy, E. and Niebur, D., 2009).

3

An improvement of HSE method involves the developments in the field of artificial intelligent (AI) techniques (Janani, K. and Himavathi, S., 2013). The problem of identification and tracking of harmonic source using Neural Network has been solved by using the Kaman filter (Kumar, A., Das, B. and Sharma, J., 2004). However, it was successful only for periodic signals and it required lot of computation time (Supriya, P. and Padmanabhan, N., 2012). To overcome the problem related to the solutions of Kalman Filter, Bayesian approach is proposed (D'Antona, G., Muscas and Sulis, S., 2008). However, this technique requires a high multiplicity in the algorithm and very expensive cost to setup the distributed measurement system station (Abdullah, A. R. *et al.*, 2017).

By concerning the mentioned limitations and to solve the related problem, this research proposed frequency domain analysis Fast Fourier Transform (FFT) for identification harmonic source disturbance. FFT is a reasonable approach for stationary signal, which is high accuracy, fast estimation and costs efficient for harmonic source identification.

1.3 Research Objectives

This research has three (3) objectives that are stated as follows:

- To analyze and detect harmonic signals of EAF using Fast-Fourier Transform (FFT) technique.
- ii. To estimate parameter for identifying harmonic source location of EAF by Fast-Fourier Transform (FFT).
- iii. To identify the location of EAF as harmonic source based on impedance characteristic.