
Medical Hypotheses 83 (2014) 668–672

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by eprints Iran University of Medical Sciences
Contents lists available at ScienceDirect

Medical Hypotheses

journal homepage: www.elsevier .com/locate /mehy
Acidic pH derived from cancer cells may induce failed reprogramming of
normal differentiated cells adjacent tumor cells and turn them into
cancer cells
http://dx.doi.org/10.1016/j.mehy.2014.09.014
0306-9877/� 2014 Elsevier Ltd. All rights reserved.

⇑ Address: Department of Medical Nanotechnology, School of Advanced Tech-
nologies in Medicine, Tehran University of Medical Sciences, Tehran 1417755469,
Iran. Tel.:+98 21 88992117, +98 21 88992118, +98 93 84940462.

E-mail address: sh_tavakol@razi.tums.ac.ir
Shima Tavakol ⇑
Razi Drug Research Center (RDRC), Iran University of Medical Sciences, Tehran, Iran
Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
Advanced Medical Sciences and Technologies Assosiation, Student’s Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran

a r t i c l e i n f o a b s t r a c t
Article history:
Received 23 April 2014
Accepted 23 September 2014
Background: Eelier studies demonstrated the up-regulation of some transcriptional factors such as Oct4,
Nanog, Sox2 in undifferentiated cancer cells. These transcriptional regulators are up-regulated in plurip-
otent cells, as well and are responsible for cell reprogramming in normal cells. It might be said that nor-
mal cells adjacent tumor site are undergone of failed cell reprogramming.
Presentation of the hypothesis: Extracellular pH of cancer cell is acidic and recent studies reveal the role of
acidic environment in cell reprogramming of normal cells. This hypothesis deals with the potential role of
acidic pH in malignant tumor development through normal cells adjacent cancer cells. It seems that can-
cer cells are more intelligent and acid release from these cells is not just a by-product but also and more
important reason, is a tool to up-regulate cell reprogramming markers, induce epigenetic modification
and tumor progress in normal cells adjacent cancer cells. If this is correct, then it could be expected that
with alkaline targeting of tumor environment, failed cell reprogramming, aberrant epigenetic modifica-
tion will decrease in normal cells adjacent cancer cells and afterward metastasis will decrease.
Testing the hypothesis: It is proposed to investigate altered genetic and epigenetic modification (DNA
methylation, histone modification) in cancer, early cancer and cells in vicinity of cancer cells at different
pH range of 5.8–7.8. This study is performed to determine whether acidic pH induces reprogramming,
global hypomethylation and promoter hypermethylation in cancer cells and cells in vicinity of cancer
cells at different pH values.
Implications of the hypothesis: This hypothesis deal with the ability of acidic pH to convert normal cells
adjacent cancer cells to cancerous cells and its inductive potential on genetic and epigenetic modification
of normal cells adjacent cancer cells and will further emphasize the important of extracellular acidic tar-
geting in cancer therapy.

� 2014 Elsevier Ltd. All rights reserved.
Background

Cancer is one of the most major causes of death worldwide. It
has done a lot of efforts to cure it and increase the patient survival
and it has been demonstrated a lot of mechanisms involve in. To
improve survival of patient, it is noticeable to elucidate the exact
mechanisms that control tumor initiating and development.

Cancer stem cells have been identified in many malignant solid
tumors [1–4]. The most cancer cells overexpress Oct4 and some of
them Sox-2 and these genes are overexpressed in pluripotent cells
[5,6]. Cancer cells overexpress higher level of Nanog and Oct4 as
compared to normal cells and lower than induced pluripotent cells
(iPS). However, up-regulation of Nanog and Oct4 are in good agree-
ment with tumorogensis, malignancy and metastasis in poorly
undifferentiated tumors [7–13]. Thus, cancer is an obvious case
of pathological reprogramming [14,15].

For the first time, Yamanaka et al. investigated reprogramming
of fibroblast cells via plasmid gene of Oct4, Sox2, Klf4 and C-Myc
[16,17] and then, it was demonstrated by other scientist [18–21].
Later, it was optimized via non-coding RNA of Oct4, Sox2 and
Nanog and they revert somatic differentiated cells towards iPS
[22]. However, other studies showed that knockdown of Oct4
and Nanog genes of cancer cells significantly decreased their drug
resistance, tumorigenicity and metastasis [6,12]. Some studies
indicated that reprogramming of cancer cells via these genes plus
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Nanog and Lin28 invert them towards normal phenotype and
reduce drug resistance and their tumorigenicity, and this mecha-
nism might be helpful in cancer treatment. The most important
note is that iPS derived from cancer cells need c-myc for repro-
gramming [23,24]. Replacement of L-Myc and Glis 1 instead of C-
Myc, decreases risk of tumorogensis in iPS-derived chimeric mice
[25,26]. Before activation of the pluripotency regulators, C-myc
activates and in partially reprogramming, self-renewal and main-
tenance genes are more overexpressed than pluripotency ones,
and the lineage-specific transcription factors will not been com-
pletely supressed [26]. Based on this data, failed or partially cell
reprogramming occurs in cancer cells and this hypothesis suggests
one of the most important causes of this event.

iPS has some similarities to cancer cells same as self-renewing,
high proliferative activity, domination of glycolysis metabolism
[27,29], expression of pluripotency transcriptional regulators [8],
alteration in gene methylation pattern and high telomerase activ-
ity [27].

The first trigger of cancer starting has not been clearly demon-
strated, however genetic and epigenetic dysregulation (global DNA
hypomethylation, promoter hypermethylation and histone modifi-
cation) [28–30], inflammation [31–33] have been widely accepted
for tumor development.

Early studies indicated that interacellular pH of cancer cells is
neutral to alkaline [34,35] that sustain cytotoxicity resistance
[36,37] and extracellular pH is more acidic than healthy tissues;
sometimes, in metastases the pH drops to 6.0 and even 5.8 and
almost, tumor size is in good agreement with decrease in pH
[27,38–41]. The low extracellular pH exhibits chemoresistance
and increase rate of proliferation [27,35].

Acidic pH makes stress condition for normal cells. Oct4 overex-
press in stress response [7] and it can reprogram cells to pluripo-
tency behavior. Beside, since acidic pH around 5.4–5.8 can
reprogram cells and induces up-regulation of Oct4, Sox2 [42], it
may act as a trigger for tumor progress. However, based on epige-
netic modification derived from acidic pH, its reprogramming will
not be completed and will induce cancer phenotype.

In this paper, the author subsequently proposed a hypothesis
that acidic pH derived from cancer cells might induce premature
termination of reprogramming and rather failed reprogramming
of normal cells adjacent cancer cells and development of metasta-
sis and malignancy in solid tumors.
Presentation of the hypothesis

As mentioned above, extracellular pH of cancer cell is acidic;
sometimes, in metastases the pH drops to 6.0 and even 5.7 and it
is due to altered metabolism of tumor cell towards glycolysis and
high activity of some ion/proton pumps such as V-ATPase in cancer
cells [43]. Although, low extracellular pH is favorable for cancer
progress and proliferation but low intracellular pH triggers apopto-
sis via caspase cascade pathway [37,44] and less important mito-
chondrial membrane depolarization [45]. Interestingly, studies
showed that alkalinisation of extracellular environment decreases
tumor progress and metastasis [39,46] and HIF2a [38]. Recent
study indicated that acidic environment induces cell reprogram-
ming. Reprogramming of stimulus-triggered acquisition of pluripo-
tency cells (STAP) occurs at pH of 5.4–5.8 [42]. The author
proposed that acidic pH present in solid tumors may be a key fac-
tor for up-regulation of cell reprogramming markers and may
induce premature termination of reprogramming in normal cell
surrounded cancer cells via epigenetic modification that is resulted
in tumor progress. It means that acidic pH not only affects cancer
cells but also via genetic and epigenetic modification influences
normal cells adjacent cancer cells and progress tumor (Fig. 1).
Acidic pH through the lactate dehydrogenase (LDH) release – as
a by-product of glycolysis and transcriptional target of oncogenic
signalling – up-regulates oncogenic genes such as C-Myc. C-Myc
through PI3K/AKT signalling increases activity of HIF-1 and this
factor induces glycolysis [47]. Notable that LDH release via this
pathway maintains extracellular tumor in the range of acidic pH.

Paolo et al. indicated that methylation pattern and rather epige-
netic regulation will determine failed or successful cell reprogram-
ming fate [48].Ohnishi et al. demonstrated that transient and
forced expression of Oct3/4, Klf4, Sox2, and C-Myc exhibit DNA
methylation changes and tumor development in vivo [24]. Since,
acidic pH up-regulates reprogramming genes, so acidic pH may
involve in aberrant reprogramming via epigenetic modification in
normal cells adjacent cancer cells.

Besides, C-Myc binds to H3K4me histone and exhibits epige-
netic modification. However, histone methylation pattern is not
permissive to bind with Oct4, sox2 and Klf4 [49,50]. Cancer cells
have stable epigenetic regulations and this is significant difference
between reprogramming of cancer cells with healthy ones [51].

Hjelmeland et al. demonstrated that acidic pH induces HIF2a
and Glioblastoma growth [38]. On the other hand, acidic pH
derived from cancer cells up-regulates HIF2a as a specific target
genes same as Oct4 [52,53]. HIFa promotes transcription of impor-
tant stem cell factors through epigenetic modifications and induce
the histone demethylases (Jumonji family) to promote chromatin
modification and tumor growth [54–57]. Chromosomal transloca-
tion count in modification of histone genes-epigenetic modifica-
tion – is very fast oncogenic event [58,59]. It is noticeable that
the effect of low pH is independent of hypoxia in tumor microen-
vironment and acidic pH can affect cells independent of HIF factors
[45]. As well as the effect of acidic pH through HIF factors, it can
directly affect p53 conformation and turn p53 structure into mol-
ten globule. This form is dysfunctional structure of p53 and is
resulted in decrease of apoptosis in cells faced to acidic pH [60]
and increase rate of proliferation in mutation-bear cells and tumor
progress.

It is demonstrated that the level of extracellular LDH and acidic
pH significantly increases intracellular ROS production [61] and
afterward, ROS induces methylation of CpG island in promoter of
miR-199a/125b, E-cadherin and catalase genes. These up-regulate
ERBB2 or ERBB3 and down-regulate E-cadherin and catalase,
respectively that are resulted in silencing of DNA repair transcrip-
tion gene, DNA damage, tumor progress, metastasis and poor prog-
nosis [62–64].

In this sense, it can be hypothesized that acidic pH derived from
cancer cells induces epigenetic modification and premature termi-
nation of reprogramming and rather failed reprogramming of nor-
mal cells adjacent cancer cells and promote tumor and metastasis.
Testing the hypothesis

The understanding the rule of acidic pH in failed reprogram-
ming and epigenetic modification of normal cells surrounded can-
cer cells and early cancer cells requires the investigation of the
altered genetic and epigenetic factors that are essential to the
reprogramming, proliferation and metastasis in cancer cells and
cells that are in close proximity to cancer cells in range of pH
between 5.8 and 7.8 in vitro and in vivo.

To adjust an acidic extracellular pH, 2-(N-morpholino)-ethane-
sulfonic acid and tris-(hydroxymethyl)-aminomethane [65] and or
citrate-based acidic medium can applied.

Proton–Electron Double-Resonance Imaging and P magnetic
resonance spectroscopy (MRS) can be applied to non-invasively
measure extracellular and intracellular pH of cancer, early cancer



Fig. 1. Genetic and epigenetic modification in cells via acidic pH. LDH induce over expression of C-Myc and afterwards, it up-regulates HIF-1a and induces the Jumonji family
of histone demethylases [54–57] and makes epigenetic modification. HIF-1 a with positive regulation induces LDH production. LDH as a source of acidic pH, up-regulates
HIF2a-specific target genes same as Oct4-[52,53] and promotes chromatin modification and tumor growth. Besides, acidic pH changes conformation of p53 to molten globule,
this structure is dysfunction and apoptosis is suppressed. Acidic pH through MAP kinase (MAPK) induces ROS and it up-regulates DNA methyl transfer 1 (DNMT-1) [71,72]
and along with histone deacetylase (HDAC) through promoter hypermethylation supress tumor suppressor and epithelial markers and progress tumor and metastasis.
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and cells in vicinity of cancer cells at different pH range of 5.8–7.8
in-vivo [40,66].

Based on genetic approach, early cancer cells and cells in near
proximity of cancer cells up-regulate reprogramming genes such
as Oct-4, C-Myc, SOX2, Nanog dependent on proton concentration
in extracellular environment. Besides, since epithelial–mesenchy-
mal transition (EMT) is associated with cancer malignancy and
metastasis, mRNA and protein level of epithelial markers such as
E-cadherin and Cytokeratin 18, and the mesenchymal markers
such as Slung, Snail, Vimentin and N-cadherin and reprogramming
markers containing Oct-4, C-Myc, SOX2, Nanog, Flk1 is suggested
to assess at a pH range of between 5.8 and 7.8 via real-time PCR
and Western-blot and flow-cytometry, respectively. It is expected
that all genes and proteins except epithelial markers are up-regu-
lated gradually in a decreasing pH manner.

Base on epigenetic approach, methylation-specific polymerase
chain reaction (MSP), high performance liquid chromatography
(HPLC), EMT ChIP PCR Array (histone modification) EMT DNA
Methylation PCR Array (DNA methylation) are performed to deter-
mine the respective percentages of genomic C methylated in nor-
mal, cancer, early cancer and cells surrounded cancer cells at
different pH range of 5.8–7.8 [67]. Since, global genomic hypome-
thylation is an important cause of aberrant reprogramming, it is
expected that m5C contents decrease gradually with decrease of
pH.

Restriction landmark genomic scanning (RLGS) of NotI/EcoRV
fragments is performed to investigate methylation in CpG islands
[67].
Implications of the hypothesis

Since, decrease of oct-4 level in tumor cells increases tumor cell
apoptosis, neutralizing of the tumor microenvironment will
increase apoptosis via Oct4/Tcl1/Akt1 pathway [68], Stat3/survival
pathway [69] or the Trp53 pathway [70] and decrease of wrong
differentiation and reprogramming program in cells surrounded
cancer cells. The confirmation of this hypothesis opens another
perspective to chemical cues such as acidic environment around
the cancer cells as a hidden Trojan, reprogramming and aberrant
epigenetic factor for normal cells surrounded cancer cells. It will
be helpful in the field of cancer therapy and further emphasizes
the importance of targeting of acidic microenvironment.
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Conclusion

Extracellular acidic pH of tumor tissue is by-product of cancer
cells and studies showed that is in concordance with tumor pro-
gress. In this sense this hypothesis dealing with acidic pH present
in solid tumors may be a key factor to induce up-regulation of cell
reprogramming markers and epigenetic modification in normal
cells adjacent tumor cells. Information from cancer signalling and
epigenetic modification derived from acidic pH suggests that acidic
pH derived from cancer cells can induce failed reprogramming and
tumor progress in normal cells surrounded cancer cells.
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