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Putting the “k” in Curvature:
k-Plane Constant Curvature Conditions

By Maxine Calle

Abstract. This research generalizes the two invariants known as constant sectional cur-
vature (csc) and constant vector curvature (cvc). We use k-plane scalar curvature to
investigate the higher-dimensional analogues of these curvature conditions in Rieman-
nian spaces of arbitrary finite dimension. Many of our results coincide with the known
features of the classical k = 2 case. We show that a space with constant k-plane scalar
curvature has a uniquely determined tensor and that a tensor can be recovered from
its k-plane scalar curvature measurements. Through two example spaces with canon-
ical tensors, we demonstrate a method for determining constant k-plane vector cur-
vature values, as well as the possibility of a connected set of values. We also generate
loose bounds for candidate values based on sectional curvatures. By studying these
k-plane curvature invariants, we can further characterize model spaces by generating
basis-independent numbers for various subspaces.

1 Introduction and Background

Differential geometry uses the tools of calculus to study local behaviors of manifolds,
which (as topological entities) do not have an intrinsic ‘shape.’ Consequently, we are
interested in developing invariants that can characterize a space independently from
any choice of coordinate system, and so be able to tell when two spaces are ‘the same.’
Curvature provides some of the most fundamental tools with which we can describe
spaces. Gaussian curvature, as studied extensively by the famous mathematician Carl
Friedrich Gauss in the 19th century, is an intrinsic property independent of the isometric
embedding of the surface in Euclidean space. Bernhard Riemann extended this notion of
instrinsic curvature for higher-dimensional Riemannian manifolds, which are (smooth)
manifolds equipped with an inner product on the tangent space at each point. A Rieman-
nian curvature tensor, arising out of the family of inner products, can be used to define
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2 k-Plane Constant Curvature Conditions

familiar geometric notions on Riemannian manifolds. This tensor acts as a measure of
the local isometric difference between the inner product at that point and the standard
inner product of Euclidean space. In this sense, the surface will be locally ‘flat’ when
the tensor vanishes. The interested reader can look to [10, 12] for further reading on
differential geometry and modern Riemannian geometry.

This work concerns two curvature invariants, known as constant sectional curvature
and constant vector curvature. Classically, the former idea is very well-understood:
spaces with this condition are the so-called space forms (see, for example, [12, §7] and
[10, §4.3, §5.4]). Moreover, the constancy of the sectional curvature uniquely determines
the Riemannian metric, and so there is only one example of constant sectional curvature
(up to reasonable equivalence). Constant vector curvature uses sectional curvature to
develop a less restrictive condition, as first introduced in 2011 by Schmidt and Wolfson
[14]. Since their original work, constant vector curvature has been studied extensively in
3-dimensional spaces [13, 15].

Since sectional curvature measures can only provide information about subspaces
of dimension 2, previous literature had primarily utilized these invariants to study man-
ifolds of relatively low dimension. It seems natural to generalize these conditions to
consider k-dimensional planes in a space of arbitrary finite dimension, and this work
does so by utilizing the k-plane scalar curvature, as presented in [3]. These generalized in-
variants, called k-plane constant sectional curvature (k-csc) and k-plane constant vector
curvature (k-cvc), exhibit many of the same features as their 2-dimensional counterparts.
In particular, we show that spaces with the k-csc condition have a uniquely determined
algebraic curvature tensor (see Corollary 4.3), and consequently the classical case and
the generalized case are equivalent (see Corollary 4.4). We use specific examples to
demonstrate the variety of k-cvc structure (see Example 5.2 and Example 5.4).

Outline.

Section 2 is dedicated to discussing some central concepts from differential geometry.
Section 3 introduces the definitions of k-csc and k-cvc and gives some immediate
generalizations of known results for the classical 2-csc and 2-cvc conditions. Section 4
focuses on the k-csc condition. Theorem 4.1 shows that a model space with k-csc(0) (for
2 ≤ k ≤ n −2) must have the zero tensor. This result gives several corollaries, including
that including that there is a unique tensor that gives rise to the k-csc condition, which
coincides with the tensor known to give 2-csc (see Corollary 4.3). Section 5 investigates
k-cvc in the context of model spaces with canonical tensors and we present two different
examples of k-cvc spaces. Example 5.2 demonstrates a method for calculating possible
k-cvc values, and shows that a model space can have multiple values for a given k.
Example 5.4 has k-cvc for any value in [0,1], and we can also bound other possible values
based on the sectional curvatures measurements. Section 6 presents more general k-cvc
results for model spaces with canonical tensors and discusses open areas for further

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 2, 2019
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research.

2 Background: Curvature

Working locally, we can create algebraic representations of the manifold at a point. Such
a model space is denoted by M = (V,〈 , 〉,R) and defined as a triple of an n-dimensional
vector space V, a non-degenerate inner product 〈 , 〉 on V, and an algebraic curvature
tensor R. Given a manifold, metric, and point on the manifold, we can build a model
space from the tangent space, the metric, and the Riemannian curvature tensor at that
point. If we are interested in the behavior of a manifold at a point, we can study the
properties of the representative model space. In this more abstract setting, algebraic
curvature tensors are a central tool to understanding and investigating properties of the
space.

Definition 2.1. An Algebraic Curvature Tensor (ACT) is a multilinear function from
four tangent vectors in V to a scalar,

R : V ×V ×V ×V →R

with the following properties, for all x, y, z, w ∈ V:

1. Skew-symmetry in the first two slots: R(x, y, z, w) =−R(y, x, z, w),

2. Interchange symmetry: R(x, y, z, w) = R(z, w, x, y),

3. The Bianchi identity: R(x, y, z, w)+R(z, x, y, w)+R(y, z, x, w) = 0.

For an orthonormal set of vectors {ei ,e j ,ek ,el }, let Ri j kl denote R(ei ,e j ,ek ,el ) .

As algebraic entities, ACTs are subject to quite a bit of algebraic structure. In par-

ticular, the ACTs over an n-dimensional space V form an n2(n2−1)
12 -dimensional vector

space, denoted A (V). Thus we can add and scale ACTs as we would any other object
from linear algebra, so

(λR1 +R2)(x, y, z, w) = λR1(x, y, z, w)+R2(x, y, z, w)

for any R1,R2 ∈A (V), x, y, z, w ∈ V, and λ ∈R. Based on the work of Fiedler [6, 7], Gilkey
showed that A (V) is spanned by canonical tensors [8, Theorem 1.8.2]. A canonical ACT
Rφ is defined with respect to a symmetric, bilinear form φ, where

Rφ(x, y, z, w) =φ(x, w)φ(y, z)−φ(x, z)φ(y, w).

For example, we can consider the canonical ACT with respect to the inner product,
denoted R∗. Recall that the inner product 〈 , 〉 is a symmetric, bilinear form such that
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4 k-Plane Constant Curvature Conditions

〈ei ,e j 〉 = δi j for a pair of orthonormal vectors ei , e j . For the purposes of this research,
we assume that inner products are positive-definite, although it is likely that this work
could be extended to Lorentzian spaces (for merely non-degenerate inner products).
Thus, for a pair of orthonormal vectors ei , e j , (R∗)i j j i = δi iδ j j −δ2

i j = 1.
The connection between canonical ACTs and linear algebra makes the study of

these tensors particularly appealing. Given a symmetric, bilinear form φ on a vector
space equipped with a non-degenerate inner product, there is a unique self-adjoint
linear transformation A (with a corresponding matrix representation) such that φ(x, y) =
〈Ax, y〉. For this reason, we can discuss aspects of φ (such as rank, kernel, or eigenvalues)
in terms of the same aspects of A.

In particular, the kernel of a tensor R is defined by

ker(R) = {v ∈ V | R(v, y, z, w) = 0, for any y, z, w ∈ V}.

By the various symmetry properties of ACTs, it is clear that we need not restrict v ∈ ker(R)
to appear only in the first slot, as discussed in [5]. For canonical tensors, we can equate
the kernel of the tensor with the kernel of its form.

Proposition 2.2. [9, Lemma 1.6.3] If rank(φ) ≥ 2 for a symmetric, bilinear form φ, then
ker(φ) = {v ∈ V|φ(v, w) = 0, ∀w ∈ V} = ker(Rφ).

Using algebraic curvature tensors, we can develop and compute different curvature
invariants. As manifolds rely heavily on a choice of coordinate systems, we are interested
in finding characterizations independent of this choice. An invariant central to our study
is the sectional curvature.

Definition 2.3. Let x, y ∈ V be tangent vectors. Let π= span{x, y} be a non-degenerate
2-plane. The sectional curvature is a form κ : V ×V →R, where

κ(π) = R(x, y, y, x)

〈x, x〉〈y, y〉−〈x, y〉2
.

This measurement is a curvature invariant since κ(π) is independent of the chosen
basis for π [8, Lemma 1.6.4]. Note that (under the assumption of a positive-definite inner
product) κi j = Ri j j i , where κi j denotes the sectional curvature of the plane spanned by
orthonormal vectors ei and e j .

A closely related measurement is the scalar curvature (or Ricci scalar), which can be
defined as the average of sectional curvatures scaled by n(n −1). Given an orthonormal
basis {e1, . . . ,en} for V, the scalar curvature is given by τ=∑

i , j Ri j j i . Taking V to be the
tangent space at a point of a manifold, the scalar curvature assigns a real number based
on the local intrinsic geometry of the manifold at that point. In two dimensions, the
scalar curvature completely characterizes the curvature of a surface.

This measurement can also be defined in terms of the Ricci tensor, which is a sym-
metric, bilinear form given by Ric(x,y) =∑n

i=1 R(x,ei,ei,y). The scalar curvature is thus

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 2, 2019



M.Calle 5

the trace of the Ricci tensor. In lower dimensions, the Ricci curvature is completely deter-
mined by sectional curvatures, and in turn can completely determine the full curvature
tensor. For a more in-depth treatment of these concepts, see [8] or [10, Chapter 4].

Our research uses a generalized version of sectional curvature to investigate two cur-
vature invariants, known as constant sectional curvature and constant vector curvature.
A space has constant sectional curvature (csc) when κ(π) = ε for some ε ∈ R and every
2-plane π. This property results in spaces that are locally homogeneous, meaning that
there is a (local) distance-preserving map between any two points, and consequently
such spaces are well-behaved and well-understood. The weaker condition of constant
vector curvature (cvc) implies that every non-zero v ∈ V lies in some 2-plane with sec-
tional curvature ε, and was developed by Schmidt and Wolfson in 2011 in their work with
three-manifolds [14].

Since the seminal paper on cvc, the condition has been completely resolved for
3-dimensional model spaces. Through a combined effort, it has been shown that all
3-dimensional Riemannian model spaces have cvc(ε) for some ε ∈R, however this is not
necessarily the case for Lorentzian model spaces [13, 15]. Additionally, as noted by the
referee, Schmidt and Wolfson have since altered the definition of cvc. According to the
definition given in [16], a manifold (or model space) has CVC(ε) if it has cvc(ε) and ε is
extremal, meaning that ε is a bound on all other sectional curvatures. While this paper
utilizes the original definition of cvc, future research might extend our work to include
the updated definition.

3 k-plane Curvature: General Results

While both csc and cvc are well-studied in the three-dimensional case, higher dimen-
sional model spaces are relatively unexplored. This research builds upon previous work
in this area to generalize both curvature conditions for model spaces of arbitrary finite
dimension. To do so, we require a higher-dimensional analogue of sectional curvature,
known as k-plane scalar curvature. This measurement, like 2-plane sectional curva-
ture, is a geometric invariant in the sense of generating representative numbers that are
independent of a chosen basis for the k-plane.

Definition 3.1. [3, Section 2] Let M = (V,〈 , 〉,R) with an orthonormal basis {e1, . . . ,en}
for V. Define ML = (L,〈 , 〉,RL) with an orthonormal basis { f1, . . . , fk } for L ⊆ V, 〈 , 〉L =
〈 , 〉|L, and RL = R|L ∈ A (L). Define the k-plane scalar curvature of L as a mapping
KR : Gr(k,M ) →R given by

KR(L) =
k∑

j>i=1
κ( fi , f j ).

Here Gr(k,M ) is the Grassmannian, the space of k-dimensional linear subspaces of
M . For L = span{e1, . . . ,ek }, if it is clear we are computing KR(L) with respect to a certain
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6 k-Plane Constant Curvature Conditions

tensor, we let KR(L) =K (L) =K (e1, . . . ,ek ) for the ease of notation. Similarly, although
it is understood we are evaluating K (L) with respect to the restricted space ML, we will
discuss K (L) mostly in terms of the given model space M .

Note that on an orthonormal basis, calculating K (L) amounts to summing over
certain Ri j j i terms (assuming a positive-definite inner product). If L is a 2-plane,
K (L) = κ(L), and when k = n, we have K (L) = τ

2 . Since the only n-plane curvature
is characterized by the curvature of the entirity of V, we are mostly interested in k-planes
for 2 ≤ k ≤ n −1.

Given this tool for calculating k-plane curvatures, we can study constant curvature
conditions on model spaces of any finite dimension. Intuitive adaptations of the csc and
cvc conditions follow:

Definition 3.2. A model space M has k-plane constant sectional curvature ε, denoted
k-csc(ε), if K (L) = ε for all non-degenerate k-planes L.

Definition 3.3. A model space M has k-plane constant vector curvature ε, denoted
k-cvc(ε), if for all v ∈ V where v 6=~0 there is some non-degenerate k-plane L containing
v such that K (L) = ε.

Some intuitive properties follow immediately from the construction of the two con-
ditions. In particular, it is clear from the definitions that the k-csc condition implies
the k-cvc condition, by simply choosing a k-plane L that contains the vector under
examination. Most of the following propositions are natural generalizations of results
from the classical case, as given in [1, Section 2].

Proposition 3.4. Let M1 = (V,〈 , 〉,R1) have k-csc(ε) and M2 = (V,〈 , 〉,R2) have k-cvc(δ).
Then M = (V,〈 , 〉,R = R1 +R2) has k-cvc(ε+δ).

Proof. Let M1,M2 and M be given as above. Let v ∈ V be non-zero and L be a k-plane
containing v such that KR2 (L) = δ. Note also that KR1 (L) = ε. Then by the vector space
properties of A (V),

KR(L) =
k∑

j>i=1
Ri j j i =

k∑
j>i=1

(R1 +R2)i j j i =
k∑

j>i=1
(R1)i j j i +

k∑
j>i=1

(R2)i j j i = ε+δ.

Proposition 3.5. Suppose M = (V,〈 , 〉,R) has k-cvc(ε), and let c ∈R. Then Mc = (V,〈 , 〉,cR)
has k-cvc(cε).

Proof. Let M = (V,〈 , 〉,R) have k-cvc(ε) and consider Mc = (V,〈 , 〉,cR) for some c ∈ R.
Let v ∈ V be non-zero and L be a k-plane containing v such that KR(L) = ε. Again using
the vector space properties of A (V),

KcR(L) =
k∑

j>i=1
(cR)i j j i =

k∑
j>i=1

c(Ri j j i ) = c
k∑

j>i=1
Ri j j i = cε.

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 2, 2019



M.Calle 7

Proposition 3.6. Let M = (V,〈 , 〉,R) with dim(ker(R)) ≥ k −1. Then M has k-cvc(0).

Proof. Let M be a model space and suppose the nullity of R is α≥ k −1. Take {e1, . . . ,eα}
as an orthonormal basis for ker(R) and extend to {e1, . . . ,en} an orthonormal basis for V.
Take v =∑n

i=1 xi ei to be non-zero, and construct a k-plane L spanned by

f1 = e1, . . . , fk−1 = xk−1ek−1 +·· ·+xαeα/
√

x2
k−1 +·· ·+x2

α,

and fk = xα+1eα+1 +·· ·+xnen/
√

x2
α+1 +·· ·+x2

n .

Note that since α≥ k −1, fk−1 6= 0. In the event that xk−1 = ·· · = xα = 0, set fk−1 = ek−1.
Similarly, if xα+1 = ·· · = xn = 0, set fk = en . So when K (L) = ∑k

j>i=1 R( fi , f j , f j , fi ) is
written in terms of the ei ’s, an ei ∈ ker(R) appears in each Ri j kl term. So K (L) = 0 and
M has k-cvc(0).

This final proposition generalizes a previously-known result which states that ACTs
with non-trivial kernels give 2-cvc(0) and only 2-cvc(0).

Proposition 3.7. [1, Theorem 2.1] For a given model space M , if ker(R) is non-trivial,
then M has 2-cvc(0) and not 2-cvc(ε) for any other value of ε.

Note that the relationship between the nullity and the value k generalizes to higher
dimensions, although it is not necessary that we get only k-cvc(0) for k > 2, as we will
see in later examples.

4 k-plane Constant Sectional Curvature

Having defined a general notion of k-plane constant sectional curvature, we can present
our main result. We generalize the well-known fact that an ACT whose sectional curva-
tures vanishes must itself be the zero tensor. The classical k = 2 result follows since a
tensor R can be written in terms of sectional curvatures (see [10, Lemma 4.3.3] or [12,
Theorem 6.5]). We employ a method inspired by Klinger [11] to isolate tensor compo-
nents as 0 by considering particular ‘skewed’ k-planes.

Theorem 4.1. Take 2 ≤ k ≤ n −2 and let M = (V,〈 , 〉,R) be a model space. If K (L) = 0 for
all k-planes L, then R ≡ 0.

Proof. Let M be a model space and take e1,e2 ∈ V an arbitrary pair of orthonormal
vectors. Extend to an orthnormal basis {e1, . . . ,en} for V. Since the result is already known
for k = 2, suppose M has k-csc(0) for some 3 ≤ k ≤ n−2. First we will prove that the ACT
entries of the form Ri j j k are 0 (for i 6= k), which then implies that the sectional curvature

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 2, 2019



8 k-Plane Constant Curvature Conditions

vanishes. Since R can be written in terms of sectional curvatures, it follows that R must
be the zero tensor.

Consider the k-plane L = span{cosθe1+sinθe2,e3, . . . ,ek+1}. For the sake of notation,
call ek+1 := eα. By hypothesis, the k-plane scalar curvature of L is 0, regardless of the
value of θ, so

0 =K (cosθe1 + sinθe2,e3, . . . ,eα)

=cos2θ (R1331 +·· ·+R1αα1)+ sin2θ(R2332 +·· ·+R2αα2)

+2cosθsinθ(R1332 +·· ·+R1αα2)+
α∑

j>i=3
Ri j j i

=cos2θ

(
α∑

j=3
R1 j j 1 +

α∑
j>i=3

Ri j j i

)
−cos2θ

(
α∑

j>i=3
Ri j j i

)

+ sin2θ

(
α∑

j=3
R2 j j 2 +

α∑
j>i=3

Ri j j i

)
− sin2θ

(
α∑

j>i=3
Ri j j i

)

+
α∑

j>i=3
Ri j j i +2cosθsinθ(

α∑
j=3

R1 j j 2).

But observe that

α∑
j=3

R1 j j 1 +
α∑

j>i=3
Ri j j i =K (e1,e3, . . . ,eα) and

α∑
j=3

R2 j j 2 +
α∑

j>i=3
Ri j j i =K (e2,e3, . . . ,eα).

Since both are 0 by supposition,

0 =−cos2θ

(
α∑

j>i=3
Ri j j i

)
− sin2θ

(
α∑

j>i=3
Ri j j i

)
+

α∑
j>i=3

Ri j j i

+2cosθsinθ

(
α∑

j=3
R1 j j 2

)

=(cos2θ+ sin2θ)

(
−

α∑
j>i=3

Ri j j i

)
+

α∑
j>i=3

Ri j j i +2cosθsinθ

(
α∑

j=3
R1 j j 2

)

=2cosθsinθ

(
α∑

j=3
R1 j j 2

)
.

Since the equation must hold true for all values of θ,

0 =
α∑

j=3
R1 j j 2. (1)

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 2, 2019
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Since we were considering k ≤ n −2, we can construct a new k-plane by setting fk = en

and keeping all other fi basis vectors the same. We repeat the process above to get

0 =
n∑

n−1 6= j=3
R1 j j 2. (2)

Now, subtracting (3.2) from (3.1):

0 = R1αα2 −R1nn2,

hence R1αα2 = R1nn2. Since our choices of eα and en were arbitrary, we could permute
any ei , e j basis vectors to get R1i i 2 = R1 j j 2. Since 0 =∑α

j=3 R1 j j 2 = (α−2)R1332, and since
α> 2, we can conclude that R1332 = R1 j j 2 = 0 for all j ∈ {1, . . . ,n}. Since e1 and e2 were
arbitrary, we have Ri j j k = R j i k j = 0 for any distinct i , j ,k ∈ {1, . . . ,n}.

To show that R1221 = 0, set f1 = ei , f2 = cosθe j+sinθek , f3 = cosθek−sinθe j for some
ei ,e j ,ek ∈ {e1, . . . ,en}. Extend { f1, f2, f3} to an orthonormal basis for V. Since Ri j j k = 0 on
any orthonormal basis, we get

0 = R( f2, f1, f1, f3)

= cos2θRi j ki − sinθcosθRi j j i − sin2θRi k j i + sinθcosθRi kki

=−sinθcosθRi j j i + sinθcosθRi kki .

Again this equation must hold for all θ, so 0 = Ri kki −Ri j j i , meaning that Ri j j i = Ri kki .
Since 0 =K (L) for all k-planes L, including the coordinate plane spanned by e1, . . . ,ek ,
we get that

k∑
j>i=1

Ri j j i = k(k −1)

2
R1221 = 0,

and hence R1221 = Ri j j i = 0 for all i , j ∈ {1, . . . ,n}. Since the sectional curvature vanishes
and R can be written in terms of sectional curvatures, R ≡ 0.

This result immediately gives some pleasing corollaries. Just as a tensor can be
recovered from its sectional curvatures, it can also be recovered from k-plane scalar
curvatures. Further, there is only one example (up to reasonable equivalence) of an ACT
with the k-csc condition.

Corollary 4.2. Set 2 ≤ k ≤ n −2. Let M1 = (V,〈 , 〉,R1) and M2 = (V,〈 , 〉,R2) be model
spaces. Suppose KR1 (L) =KR2 (L) for all k-planes L. Then R1 = R2.

Proof. Let M1 = (V,〈 , 〉,R1) and M2 = (V,〈 , 〉,R2) be model spaces. Construct M =
(V,〈 , 〉,R) and set R = R1 −R2. Then any L = span{e1, . . . ,ek } has k-plane scalar curvature

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 2, 2019



10 k-Plane Constant Curvature Conditions

0, since

KR(L) =
k∑

j>i=1
R(ei ,e j ,e j ,ei )

=
k∑

j>i=1
(R1 −R2)(ei ,e j ,e j ,ei )

=
k∑

j>i=1
R1(ei ,e j ,e j ,ei )−

k∑
j>i=1

R2(ei ,e j ,e j ,ei )

=KR1 (L)−KR2 (L)

= 0.

Since K (L) = 0 for any k-plane, 0 = R = R1 −R2 by Theorem 4.1.

Recalling that R∗ denotes the canonical tensor with respect to the inner product, we
get the following corollary.

Corollary 4.3. The ACT R = 2ε
k(k−1) R∗ is the unique ACT that has k-csc(ε) for 2 ≤ k ≤ n −1.

Proof. Let M be a model space with R = 2ε
k(k−1) R∗. Let L = span{e1, . . . ,ek } for some set

of orthonormal vectors. Then

K (L) =
k∑

j>i=1
Ri j j i

=
k∑

j>i=1

2ε

k(k −1)
(R∗)i j j i

= 2ε

k(k −1)

k∑
j>i=1

1

= 2ε

k(k −1)
(

1

2
)

k∑
i=1

k−1∑
j=1

1 since j > i and Ri i i i = 0,

= ε

k(k −1)
(k −1)

k∑
i−1

1

= ε

k
k

= ε.

By Corollary 3.1.1, any other tensor that gives the same k-plane scalar curvature mea-
surements must in fact be R itself.
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An equivalent statement is that M has k-csc(ε) if and only if R = 2ε
k(k−1) R∗. This result

coincides with the known fact that M has 2-csc(γ) if and only if R = γR∗.

Corollary 4.4. M has k-csc(ε) if and only if it has j -csc(δ), where δ= ε
j ( j−1)
k(k−1) .

Proof. Suppose M has k-csc(ε) for some 2 ≤ k ≤ n − 2 and ε ∈ R. By Corollary 4.2,

R = 2ε
k(k−1) R∗. So M has 2-csc(γ) where γ= 2ε

k(k−1) . Set δ= ε
j ( j−1)
k(k−1) for some 2 ≤ j ≤ n −2.

Then γ = 2δ
j ( j−1) , so γR∗ = 2δ

j ( j−1) R∗ and hence M has j -csc(δ). The argument from
j -csc(δ) to k-csc(ε) merely swaps k and ε with j and δ.

The only case that escapes these methods is k = n −1, as our approach relied on the
extra codimensions to give a certain degree of freedom in isolating curvature compo-
nents. In the case where the (n −1)-plane scalar curvature vanishes, some interesting
phenomenon arise. In particular, the Ricci curvature vanishes (Theorem 4.5), and we
can equate the k-plane scalar curvature of a plane with the (n−k)-plane scalar curvature
of its orthogonal complement (Theorem 4.6).

Theorem 4.5. Suppose a model space M has (n −1)-csc(0). Then the Ricci scalar τ= 0
and the Ricci tensor Ric = 0.

Proof. Suppose M has k-csc(0) for k = n − 1. In particular, 0 = ∑n−1
j>i=1 Ri j j i since∑n−1

j>i=1 Ri j j i =K (L) for L spanned by {e1, . . . ,en−1}. Then

τ

2
=

n∑
j>i=1

Ri j j i

=
n−1∑

j>i=1
Ri j j i +

n−1∑
j>i=1

Ri nni

=
n−1∑

j>i=1
Ri nni

= Ric(en,en).

By permuting the ei , we get n > 2 equations τ
2 = Ric(ei,ei). Summing over the equations,

we get nτ
2 = ∑n

i=1 Ric(ei,ei). But then τ = ∑n
i=1 Ric(ei,ei) = n

2τ, and since n > 2 it must
be that 0 = τ = Ric(ei,ei) for all i ∈ {1, . . . ,n} on any orthonormal basis. Since Ric is a
symmetric, bilinear form, there is a particular orthonormal basis upon which Ric is
diagonalized, so the Ricii entries are the only possible non-zero entries. But Ricii = 0 on
this basis as well, and hence Ric ≡ 0.

Theorem 4.6. Suppose a model space M has (n −1)-csc(0). If L is a k-plane for some
2 ≤ k ≤ n −2, then K (L) =K (L⊥).
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12 k-Plane Constant Curvature Conditions

Proof. Given a model space M with (n−1)-csc(0), consider a 2-plane L spanned by some
orthonormal vectors {e1,e2}. Extend this set to an orthonormal basis for V, {e1, . . . ,en}.
Let L⊥ = span{e3, . . . ,en} be an (n −2)-plane. Now consider the (n −1)-plane L′ spanned
by {e1,e3, . . . ,en}. By assumption,

0 =K (L′) =
n∑

j=3
R1 j j 1 +

n∑
j>i=3

Ri j j i = (Ric(e1,e1)−R1221)+
n∑

j>i=3
Rijji,

but the final expression is just =−κ(e1,e2)+K (e3, . . . ,en). This shows that the sectional
curvature of the 2-plane spanned by two arbitrary orthonormal vectors is equal to
the k-plane scalar curvature of the (n −2)-plane that is the remaining subspace of V.
Induction on the original number of orthonormal vectors shows that the result holds
for any 2 ≤ k ≤ n −2. Given a k-plane L spanned by some set of orthonormal vectors
{e1, . . . ,ek }, we again extend this set to be an orthonormal basis for V and consider
L⊥ = span{ek+1, . . . ,en}. Supposing that K (L) =K (L⊥),

−K (e1, . . . ,ek+1)+K (ek+2, . . . ,en) =−
(

k+1∑
j>i=1

Ri j j i

)
+

n∑
j>i=+2

Ri j j i

=−
(

k∑
j>i=1

Ri j j i +
k∑

j=1
Rk+1, j , j ,k+1

)

+
n∑

j>i=k+2
Ri j j i

=−
k∑

j>i=1
Ri j j i +Ric(ek+1,ek+1)

−
k∑

j=1
Rk+1, j , j ,k+1 +

n∑
j>i=k+2

Ri j j i

=−
k∑

j>i=1
Ri j j i +

n∑
j=k+2

Rk+1, j , j ,k+1

+
n∑

j>i=k+2
Ri j j i

=−
k∑

j>i=1
Ri j j i +

n∑
j>i=k+1

Ri j j i

=−K (e1, . . . ,ek )+K (ek+1, . . . ,en)

=0,

by the induction hypothesis. Since we have shown the desired equality for (k +1)-planes
and (n − (k +1))-planes, the result follows by induction.
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Despite these structural conditions, we could not prove that such a model space must
have R ≡ 0 and in fact suspect the opposite. The proposed tensor R (on an orthonormal
basis) takes the values R1221 = R3443 = 1, R1331 = R2442 =−1, and otherwise is 0. The high
degree of symmetry in this tensor seems sufficient to satisfy all the requirements given
by the theorems above. In order to prove or disprove this conjecture, our current method
requires searching for particular (n − 1)-planes that would allow us to isolate tensor
components, although perhaps another method could be employed more effectively.

5 k-plane Constant Vector Curvature: Examples

Having fully characterized model spaces with k-plane constant sectional curvature (for
2 ≤ k ≤ n −2), we now investigate model spaces with k-plane constant vector curvature
(for 3 ≤ k ≤ n −1). Although it follows immediately that a k-csc model space also has
k-cvc, there are many model spaces with only the second, weaker condition.

Given an arbitrary vector v ∈ V, we seek to construct a k-plane L such that v ∈ L and
K (L) does not depend on the components of v . That is, the construction of L should
work indiscriminately for v with non-zero components in any number of dimensions.
The following examples consider model spaces with canonical tensors, and we utilize the
eigenspaces of the associated symmetric, bilinear form φ to appropriately decompose v .

Given a linear transformation A : V → V, recall that an eigenvector of A is a non-zero
v ∈ V with eigenvalue λ ∈ R such that Av = λv . Further, the eigenvalues of a linear
transformation are basis independent, as λ is an eigenvalue if and only if det(A−λIn) = 0,
and this calculation is independent of a chosen basis.

We can also discuss eigenvalues in the context of symmetric, bilinear forms, defining
the eigenvalues ofφ as the eigenvalues of A. So for any eigenvector vi and w ∈ V, we know
φ(vi , w) = 〈Avi , w〉 = λi 〈vi , w〉. Given an eigenvalue λi , there is an eigenspace spanned
by the associated eigenvector vi , denoted Ei . Finally, recall that the spectrum of φ,
denoted spec(φ), is the collection of eigenvalues of φ repeated according to multiplicity.

Investigating the k-cvc condition in model spaces with canonical tensors, we express
the k-plane scalar curvature in terms of eigenvalues of the associated form φ. We can
relate these two objects through sectional curvatures.

Theorem 5.1. Let M = (V,〈 , 〉,Rφ) be a model space. For i 6= j , if fi , f j are unit vectors in
the eigenspaces for λi , λ j , respectively, then the sectional curvature is κ( fi , f j ) = λiλ j .

Proof. By the Spectral Theorem, there is some change of basis that diagonalizes φ, so
φ(ei ,e j ) = 0 for i 6= j . For unit vectors fi ∈ Ei and f j ∈ E j (with i 6= j ), we have

κ( fi , f j ) = Rφ( fi , f j , f j , fi ) =φ( fi , fi )φ( f j , f j )−φ( fi , f j )2 = λiλ j .
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14 k-Plane Constant Curvature Conditions

This theorem allows us to easily calculate k-plane scalar curvatures with respect to
canonical tensors Rφ, particularly for diagonalized φ. We can see this result in action in
the following example.

Example 5.2. Consider the model space M = (V,〈 , 〉,R) with the orthonormal basis
{e1, . . . ,e6} for V, a positive-definite inner product 〈 , 〉, a canonical tensor R = Rφ, where
φ is represented by  I2 02 02

02 − I2 02

02 02 02


where I2 is the 2×2 identity matrix and 02 is the 2×2 matrix whose entries are all 0.
Note that we have three two-dimensional eigenspaces, E1 = span{e1,e2} with λ1 = 1,
E2 = span{e3,e4} with λ2 =−1, and E3 = span{e5,e6} = ker(R). We will show that M has
multiple k-cvc values for different choices of k. One way to approach this problem is to
decompose the given vector into compo that are contained entirely in some eigenspace.
Such a construction is often possible in multiple ways for a given k.

Proposition 5.3. The model space M of Example 5.2 has the following properties:

(i) k-cvc(0) for k = 2,3,

(ii) k-cvc(−1) for k = 3,4,5,

(iii) k-cvc(−2) for k = 5.

Note that (i) follows immediately from Proposition 3.6, since dim(ker(R)) ≥ 2. Fur-
ther, M cannot have 2-cvc(ε) for any ε 6= 0 by Proposition 3.7. Given a non-zero vector
v ∈ V, we take the decomposition v = a1v1 +a2v2 +a3v3 where vi ∈ Ei are unit vectors
and ai ∈ R. Using such a decomposition, we can construct planes spanned by combi-
nations of the vi and ei that have the desired k-plane scalar curvature. For example,
considering the 3-plane spanned by {v1, v2, v3}, we have

K (v1, v2, v3) = κ(v1, v2)+κ(v1, v3)+κ(v2, v3) =−1

by Theorem 5.1 and since v3 ∈ ker(R). In the case where some ai = 0, we can replace vi

with an appropriate e j . For example, if v = a1v1, we can consider the 3-plane spanned
by {v1,e4,e6} which has 3-plane scalar curvature −1 (by a similar calculation). Since such
a 3-plane exists for any v ∈ V, we can say our model space has 3-cvc(−1).

We can take a similar approach for k = 4,5. In fact, there are multiple possible
constructions of 4-planes that give the desired result. One of these possibilities is the
4-plane spanned by {e1,e2, v2, v3}. Similarly, the 5-plane spanned by {v1,e3, . . . ,e6} shows
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M has 5-cvc(−1), while the plane spanned by {e1, . . . ,e4, v3} shows 5-cvc(−2). Even
if some ai = 0, as before we can make suitable adjustments to these planes without
changing the result.

This first model space exemplifies how studying the k-cvc condition can generate
a wide variety of representative numbers, which can aid in the characterization of the
model space. Now we consider and example that has the interesting property of giving
k-cvc values for a connected interval.

Example 5.4. Let M = (V,〈 , 〉,R) be a model space such that dim(V) = n ≥ 4, the inner
product 〈 , 〉 is positive definite, and R = Rφ where φ is represented by

I2 02 . . . 02

02 0 . . . 0
...

...
. . .

...
02 0 . . . 0


where I2 and 02 are expressed as in the previous example. Here we have two eigenspaces,
a two-dimensional eigenspace E1 = span{e1,e2} with λ1 = 1, and E2 = span{e3, . . . ,en} =
ker(R) of dimension n −2.

Proposition 5.5. The model space M in Example 5.4 has the following properties:

(i) k-cvc(0) for k ≥ 2,

(ii) k-cvc(1) for k ≥ 3,

(iii) 3-cvc([0,1]) and only 3-cvc([0,1]),

(iv) at least k-cvc([0,1]) for k ≥ 4,

(v) For k ≥ 4, if M has k-cvc(ε) then ε ∈ [0,k −1),

As before, (i) follows from Proposition 3.6 and the nullity of R. More explicitly,
we can take the same approach as in the previous example and decompose a given
v ∈ V into v = a1v1 +a2v2. Since dim(E2) = n −2, we can create an orthonormal basis
for E2 by finding vectors w1, . . . , wn−3 perpendicular to v2. Then {v1, v2, w1, . . . wk−2}
spans a k-plane L0 with K (L0) = 0, since all the vectors besides v1 are in the kernel of
R. For (ii), instead consider the span of {e1,e2, v2, w1, . . . , wk−3}. Call this plane L1. So
K (L1) = κ(e1,e2) = 1 since v2, w1, . . . , wk−3 ∈ ker(R).

Results (iii)–(v) involve generating a connected set of k-cvc values and bounding
possible k-cvc values, both of which are rich areas for future research.

The claim that M has k-cvc([0,1]) is to say that for nonzero v ∈ V and ε ∈ [0,1], we
can construct a k-plane that contains v and has k-plane scalar curvature ε. We do so by
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16 k-Plane Constant Curvature Conditions

rotating (k−1)-planes in v⊥ via a linear transformation represented by a matrix in SO(n),
the group of orthogonal matrices with determinant 1. Let the linear transformation
Aθ : [0, π2 ] → SO(n) be represented by

Aθ =
Ik−1 0 0

0 R 0
0 0 In−k−1


where

R =
[

cosθ sinθ
−sinθ cosθ

]
This matrix rotates the k th vector into the (k +1)th , and the (k +1)th into the −k th . We
can construct two k-planes L0,L1 containing v such that K (L0) = 0 and K (L1) = 1, and
use the above special orthogonal matrix to rotate between the two. Thus we can obtain
a connected set of k-cvc values, that is to say, for every ε ∈ [0,1], there is some k-plane
containing v such that K (L) = ε. To show (iv) and the first part of (iii), we take k ≥ 3,
n ≥ 4.

We decompose V into E1 and E2 = ker(R), where E1 is the eigenspace associated
with λ1 = 1. Then take v = av1 + bv2, where vi ∈ Ei are unit vectors. Since E1 is 2-
dimensional, span{v1,u} = E1 for some unit vector u⊥v1. Similarly, we can construct an
orthonormal basis {v2, w1, . . . , wn−3} that spans the (n −2)-dimensional ker(R). Now, set
f1 = v1, f2 = v2, f3 = w1, . . . , fk = wk−2, fk+1 = u. Extend this to an orthonormal basis
for all of V. Then for the k-plane L = span{ f1, . . . , fk },

K (AθL) =K (Aθ f1, . . . , Aθ fk )

=K (v1, v2, w1, . . . , wk−3,cosθwk−2 + sinθu)

= R(v1,cosθwk−2 + sinθu,cosθwk−2 + sinθu, v1

= R(v1, sinθu, sinθu, v1)

= sin2θR(v1,u,u, v1)

= sin2θ,

since span{v1,u} = E1 has sectional curvature 1. If a = 0, then v ∈ E2. So E1 = span{e1,e2}.
Set f1 = e1 and fk+1 = e2, and keep all other fi the same. Extend this to an orthonormal
basis for V. Then, as before,

K (AθL) = R(e1, sinθe2, sinθe2,e1) = sin2θR1221 = sin2θ.

If b = 0, then v ∈ E1. So V1 = span{e3, . . . ,en}. Now, set f2 = e3, . . . , fk = ek+1 and
keep all other fi the same. Extend this to an orthonormal basis for V. Then, as before,
K (AθL) = R(v1, sinθu, sinθu, v1) = sin2θ.
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Note K (A0L) = 0 and K (A π
2

L) = 1. Further, L 7→K (L) is continuous, and so by the
Intermediate Value Theorem, for all ε ∈ [0,1], there is some θ such that K (AθL) = ε, where
L contains an arbitrary v ∈ V. Further, we explicitly determine this θ to be arcsin(

p
ε).

Let ε ∈ [0,1], and set θ= arcsin(
p
ε). Then

K (AθL) = sin2θ= sin2(arcsin(
p
ε)) =p

ε
2 = ε.

To bound the k-cvc values, we suppose M has k-cvc(ε) for some ε ∈ R and k ≥ 3.
Take v = e1 and let L be a k-plane containing v such that K (L) = ε. Without loss of
generality, since v is contained in L, we can set f1 = v , and extend to an orthonormal
basis { f1, . . . , fk } for L. So each fi = ai 2e2+·· ·+ai nen for some ai j ∈Rwhere

∑n
j=2 a2

j i = 1.
Since e3, . . . ,en ∈ ker(R),

ε=K (L) =
k∑

i=2
a2

i 2R1221 =
k∑

i=2
a2

i 2 <
k∑

i=2
1 = k −1.

The strict inequality holds since fi are orthonormal, so if any of the a2
i 2 = 1 then a j 2 = 0

for all j 6= i . We get a lower bound of 0, as K (L) is a sum of squares of real numbers and
so cannot be negative. Hence 0 ≤K (L) = ε< k −1, which proves (v).

Finally to finish (iii), we suppose M has 3-cvc(ε) for some ε ∈R and consider v = e3.
Let L = span{ f1, f2, f3} be a 3-plane containing v such that K (L) = ε. As before, we
can construct an orthonormal basis for L such that f1 = v . Let f2 = a1e1 + ·· · + anen

and f3 = b1e1 + ·· · + bnen . Since f1 ∈ ker(R), K (L) = R( f2, f3, f3, f2). By [2, Theorem
1.1], the sectional curvature values are bounded by the products of eigenvalues, so for
π= span{ f2, f3}, 0 ≤ κ(π) = R( f2, f3, f3, f2) ≤ 1. Hence 0 ≤K (L) = ε≤ 1.

6 k-plane Constant Vector Curvature: General Discussion

Based on the work done in these examples, we can obtain results that apply more gener-
ally to model spaces with canonical curvature tensors. Given our previous results, we can
construct a model space with the k-cvc condition for any connected interval of values,
and further we can establish loose bounds on possible values based on eigenvalues.

Theorem 6.1. For any interval [a,b] in R, there exists M = (V,〈 , 〉,R) such that M has
k-cvc([a,b]) for k ≥ 3.

Proof. Let [a,b] ∈ R be an interval. Let M1 = (V,〈 , 〉,R1) have k-csc(a), and let M2 =
(V,〈 , 〉,R2) where R2 = (b − a)Rφ for Rφ as in Example 5.4. So by Proposition 3.5 and
Example 5.4, M2 has k-cvc((b−a)[0,1]), in other words, it has k-cvc([0,b−a]). Construct
M = (V,〈 , 〉,R) such that R = R1+R2. Then by Proposition 3.4, M has k-cvc(a+[0,b−a])
which is to say M has k-cvc([a,b]).
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18 k-Plane Constant Curvature Conditions

Theorem 6.2. Suppose a model space M = (V,〈 , 〉,Rφ) has k-cvc(ε) for some ε ∈R. Then(
k

2

)
min{λiλ j |i 6= j } ≤ ε≤

(
k

2

)
max{λiλ j |i 6= j }.

Proof. Let M has k-cvc(ε) for some ε ∈R. By [2, Theorem 1.1], the sectional curvatures
are bounded by products of eigenvalues of φ. Since calculating the k-plane scalar
curvature amounts to summing over

(k
2

)
sectional curvatures, we know we could sum at

least
(k

2

)
minimal sectional curvatures and at most

(k
2

)
maximal sectional curvatures.

Clearly for model spaces with a canonical ACT there is some relationship between
the eigenvalues of φ and the possible k-cvc values. We suspect that the multiplicity
of eigenvalues can determine whether a model space has k-cvc(ε) for some ε ∈ R. In
particular, if there are no more than k distinct eigenvalues, we conjecture that M has
k-cvc(ε) for some ε ∈R. There is a lot of room for further research in this area, particularly
in sharpening bounds on possible values.

Another interesting problem is in the realm of geometric realization, and creating
good examples of realizable k-cvc model spaces. A manifold is said to be a geometric
realization of R at a point in the manifold if there is an isometry from the tangent space
at the point to V that appropriately relates R to the Riemannian curvature tensor (see
[8, Section 1.12] for a more precise description). Although every ACT is geometrically
realizable (see [8, Theorem 1.12.2]), such realizations are quite complicated in general. As
noted by the referee, many known examples of of cvc(ε) spaces (for ε 6= 0) are symmetric
spaces such as CPn and S2 ×S2. It would be both challenging and interesting to develop
a method of creating k-cvc examples that can be realized across a manifold.

Finally, the k-plane sectional curvature measurement is adopted from work by Chen
on submanifolds [3, Section 2, (2.6)]. Using a similar tool, the k-Ricci curvature, Chen
goes on to develop the notion of a k-Einsteinian space, where a k-dimensional subspace
of V is k-Einsteinian if the k-Ricci curvature is constant across the space. This curvature
condition is similar (but not equivalent) to our generalized notions of csc and cvc. Future
research might build upon the work presented here by incorporating this curvature
condition, or by studying related curvature conditions such as Schmidt and Wolfson’s
updated k-CVC conditon [16]. The full potential of these curvature conditions has yet to
be explored, and further studies could yield exciting and interesting results.
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