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Combinatorial Identities on Multinomial
Coefficients and Graph Theory

By Seungho Lee

Abstract. We study combinatorial identities on multinomial coefficients. In particular,
we present several new ways to count the connected labeled graphs using multinomial
coefficients.

1 Introduction

The number of ways to put k distinct items into n distinct bins, with bin number 1
holding k1 of the items (without considering the order of the items there), bin number 2
holding k2 of the items, and so on, is given by

k !

k1!k2! · · ·kn !
,

which is denoted by (
k

k1 k2 . . . kn

)
,

called a multinomial coefficient. This also counts the number of ways you can permute
k items, with k1 of them being identical to each other, k2 of them being identical to
each other, and so on, into a sequence of lengh k (with the order of the items being
considered). Here, k1 +k2 +·· ·+kn = k. See Roberts and Tesman [7] for more detail.

Given how useful these multinomial coefficients are in counting, it is not surprising
to see them frequently in combinatorial identities. In this paper, we present a few
combinatorial identities involving multinomial coefficients. Section 2 of our paper
states how to write a power of a natural number as a sum of multinomial coefficients.
This will serve as a warm-up that introduces the reader to multinomial coefficients
and to combinatorial proofs. We present three proofs for the identity: two different
combinatorial proofs, and a purely algebraic proof. In Section 3, we consider how to
count the number of connected labeled graphs. After briefly reviewing some previous
results, we present new recursive ways to count these graphs.

Mathematics Subject Classification. 05C30
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2 Identities on Multinomial Coefficients and Graph Theory

2 Rewriting a power of a natural number

Let’s take a look at how to write a power of a natural number as a sum of multinomial
coefficients. This section will serve as a warm-up that introduces the reader to multino-
mial coefficients and to combinatorial proofs. LetN0 be the set of whole numbers, that
is, the set of zero and natural numbers.

Theorem 2.1. For a natural number n and a whole number k ≥ 0, we have

nk = ∑
(k1,k2,...,kn )∈Nn

0
k1+k2+···+kn=k

k !

k1!k2! · · ·kn !
. (1)

We will prove theorem 2.1 in three different ways.

First Proof. We will count the number of ways to do the following: From n distinct
items, we select k of them with repetition and then put them in a sequence of length k
(therefore, the order of the items matters). For each selection, we have n items to choose
from, and we are making k selections. So we have n ×n ×·· ·×n = nk .

On the other hand, we may start by selecting the first item k1 times, the second item
k2 times, and so on, where k1 +k2 + ·· ·+kn = k. Then we have k1 identical items, k2

identical items, and so on, to be arranged into a sequence of length k. We can do this
in

( k
k1 k2 ... kn

)
different ways. In order to count the number of sequences that we are

considering, we add these multinomials over all possible such k1,k2, . . . ,kn .

Second Proof. Recall that the binomial theorem states that

(x + y)k =
k∑

i=0

(
k

i

)
xk−i y i

for variables x and y and for a whole number k. Similarly, for variables x1, x2, . . . , xn , and
a whole number k, we have

(x1 +x2 +·· ·+xn)k = ∑
(k1,k2,...,kn )∈Nn

0
k1+k2+···+kn=k

(
k

k1 k2 . . . kn

)
xk1

1 xk2
2 · · ·xkn

n . (2)

You can see the above by the following argument: Clearly, k1 +k2 +·· ·+kn = k since we
are expanding (x1 +x2 +·· ·+xn)k to obtain terms of the form xk1

1 xk2
2 · · ·xkn

n . In

(x1 +x2 +·· ·+xn)k = (x1 +x2 +·· ·+xn) · · · (x1 +x2 +·· ·+xn),

everytime you multiply (x1 +x2 +·· ·+xn) and expand, you are basically deciding which
one to choose from x1, x2, . . . , xn to distribute to other factors, in order to form xk1

1 xk2
2 · · ·xkn

n .

For given k1,k2, . . . ,kn , there are
( k

k1 k2 ... kn

)
ways to form xk1

1 xk2
2 · · ·xkn

n .
Now, we set x1 = x2 = ·· · = xn = 1 in (2) to prove theorem 2.1.
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Seungho Lee 3

Third Proof. We will use induction on n. The claim is clearly true for n = 1 for any whole
number k. Now, we assume that

n j = ∑
( j1, j2,..., jn )∈Nn

0
j1+ j2+···+ jn= j

j !

j1! j2! · · · jn !

is true for n −1 and any j , 0 ≤ j ≤ k.
Then, for any t , 0 ≤ t ≤ k, we have

nt = (1+ (n −1))t =
t∑

j=0

(
t

j

)
1t− j (n −1) j

=
t∑

j=0

(
t

j

) ∑
( j1, j2,..., jn−1)∈Nn−1

0
j1+ j2+···+ jn−1= j

j !

j1! j2! · · · jn−1!

=
t∑

j=0

∑
( j1, j2,..., jn−1)∈Nn−1

0
j1+ j2+···+ jn−1= j

(
t

j

)
j !

j1! j2! · · · jn−1!
.

However, (
t

j

)
j !

j1! j2! · · · jn−1!
= t !

j !(t − j )!
· j !

j1! j2! · · · jn−1!

= t !

j1! j2! · · · jn−1!(t − j )!

= t !

j1! j2! · · · jn−1! jn !

where jn = t − j . Therefore,

nt =
t∑

j=0

∑
( j1, j2,..., jn−1)∈Nn−1

0
j1+ j2+···+ jn−1= j

(
t

j

)
j !

j1! j2! · · · jn−1!

=
t∑

jn=0

∑
( j1, j2,..., jn−1)∈Nn−1

0
j1+ j2+···+ jn−1= j

t !

j1! j2! · · · jn−1! jn !

= ∑
( j1, j2,..., jn )∈Nn

0
j1+ j2+···+ jn=t

(
t

j1 j2 . . . jn

)

for any t , 0 ≤ t ≤ k. Thus, the induction hypothesis is true for every n.
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4 Identities on Multinomial Coefficients and Graph Theory

The first proof is obtained by answering a question in two different ways, giving us
the identity. This idea of answering one question in two different ways can be quite
useful for producing combinatorial identities. See Benjamin and Quinn [1] for more
detail.

Example 2.2. Let n = 2 and k = 3. Then nk = 8. For theorem 2.1, the corresponding
(k1,k2) are (3,0), (2,1), (1,2) and (0,3). Each contributes 3!

3!0! ,
3!

2!1! ,
3!

1!2! , and 3!
0!3! , which add

up to 8.

Example 2.3. Let n = 3 and k = 5. Then nk = 243. For theorem 2.1, the corresponding
(k1,k2,k3) are (5,0,0), (4,1,0), (4,0,1), (3,2,0), (3,1,1), (3,0,2), (2,3,0), (2,2,1), (2,1,2),
(2,0,3), (1,4,0), (1,3,1), (1,2,2), (1,1,3), (1,0,4), (0,5,0), (0,4,1), (0,3,2), (0,2,3), (0,1,4), and
(0,0,5). Their multinomial coefficients add up to 243.

3 The number of connected labeled graphs

Now we consider how to count the number of connected labeled graphs. After briefly
reviewing some previous results, we will see new recursive ways to count these graphs.
We only consider graphs that do not have any loops or parallel edges here. A graph of
order p means a graph that has exactly p vertices. We consider a labeled graph of order
p, which is a graph whose vertices are assigned with integers from 1 through p. When
constructing a labeled graph of order p, there are

(p
2

)
possible edges between its vertices,

and we choose whether or not to include each possible edge in the graph. Thus the
number of labeled graphs of order p, denoted by Gp , is 2(p

2).
A connected graph is a graph in which any two vertices are joined by a path within

the graph. If a graph is not connected, the graph is called disconnected. A component
of a graph is a maximal connected subgraph. A rooted subgraph has one of its vertices,
called the root, distinguished from the others.

It turns out that you can count the number of connected labeled graphs of order p.
The following theorem appears in Harary and Palmer [3].

Theorem 3.1. The number Cp of connected labeled graphs of order p satisfies

Cp = 2(p
2)− 1

p

p−1∑
k=1

k

(
p

k

)
2(p−k

2 )Ck . (3)

Here, we reproduce the proof that appears in Harary and Palmer [3].

Proof. We observe that a different rooted labeled graph is obtained when a labeled graph
is rooted at each of its vertices. Hence the number of rooted labeled graphs of order p is
pGp .

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 2, 2019



Seungho Lee 5

Next, we consider the number of rooted labeled graphs in which the root is in a
component of exactly k vertices. First, there are

(p
k

)
ways to choose the vertices for the

component. Over these vertices, the component can happen in Ck ways, so the rooted
component can happen in kCk ways over the chosen k vertices. And the remaining p−k
vertices can form other parts of the graph in Gp−k ways. Thus, the number of rooted
labeled graphs in which the root is in a component of exactly k vertices is kCk

(p
k

)
Gp−k .

On summing from k = 1 to p, we arrive again at the number of rooted labeled graphs,
that is,

∑p
k=1 k

(p
k

)
Ck Gp−k . So, we have

pGp =
p∑

k=1
k

(
p

k

)
Ck Gp−k

=
p−1∑
k=1

k

(
p

k

)
Ck Gp−k +pCp .

So,

pCp = pGp −
p−1∑
k=1

k

(
p

k

)
Ck Gp−k ,

which means,

Cp = Gp − 1

p

p−1∑
k=1

k

(
p

k

)
Ck Gp−k

= 2(p
2)− 1

p

p−1∑
k=1

k

(
p

k

)
Ck 2(p−k

2 ).

See Wilf [9] for an alternative proof.
The values of Cp are listed in The On-Line Encyclopedia of Integer Sequences [5,

sequence A001187]. Here are the first few terms:

p 1 2 3 4 5 6 7
Cp 1 1 4 38 728 26704 1866256

Although (3) is the standard reference for Cp , other expressions of Cp can be useful.
Using an exponential generating function, Flajolet and Sedgewick [2, pp. 138] wrote Cp

as

Cp = 2(p
2)− 1

2

∑(
p

p1 p2

)
2(p1

2 )+(p2
2 )

+ 1

3

∑(
p

p1 p2 p3

)
2(p1

2 )+(p2
2 )+(p3

2 )−·· ·

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 2, 2019



6 Identities on Multinomial Coefficients and Graph Theory

where the kth term is a sum over p1 + ·· · + pk = p, with 0 < p j < p. Although quite
complicated, this expression is useful in determining that almost all labeled graphs of
order p are connected. See Flajolet and Sedgewick [2] for more details.

We can also write Cp as

Cp =
p−1∑
k=1

(
p −2

k −1

)
(2k −1)Ck Cp−k (4)

which was obtained by Riordan using a generating function, as mentioned in Harary and
Palmer [3]. Nijenhuis and Wilf [4] proved (4) combinatorically. Nijenhuis and Wilf [4]
found (4) useful since it provided them with a recursive recipe for the construction of
connected graphs.

Motivated by these alternative expressions of Cp and their usefulness, we derive
other expressions of Cp . Let n1 + ·· · +nk = p, n1 ≥ n2 ≥ ·· · ≥ nk , where the largest
value n1 repeats m1 times in the sum, the next largest value repeats m2 times, and
so on. We use m! to denote

∏
mi !. As an example, in 33 = 6 + 6 + 6 + 5 + 4 + 4 + 2,

m1 = 3,m2 = 1,m3 = 2,m4 = 1, and m! = 12.

Lemma 3.2. The number of disconnected labeled graphs of order p is given by

∑
n1+···+nk=p

k≥2
n1≥···≥nk>0

p !

n1!n2! · · ·nk !
· 1

m!
·Cn1 Cn2 · · ·Cnk

where the sum is taken over k and n1,n2, · · · ,nk .

Proof. A disconnected graph has two or more components. Let k ≥ 2 be the number of
components. Given k, let n1 be the order of the largest component, n2 be the order of
the second largest component, and so on, with n1 ≥ n2 ≥ ·· · ≥ nk and n1 +·· ·+nk = p.
Given the order of each component, there are

( p
n1 ··· nk

) 1
m! ways to arrange vertices into

these components. Here we need to divide by m! because the multinomial coefficient
counts the number of ways to put vertices into distinct components, whereas we do not
differentiate between components of equal order. Once vertices are decided for all the
components, then there are Cn1 Cn2 · · ·Cnk ways to actually form components.

The following Theorem is immediate.

Theorem 3.3.

Cp = 2(p
2)− ∑

n1+···+nk=p
k≥2

n1≥···≥nk>0

p !

n1!n2! · · ·nk !
· 1

m!
·Cn1 Cn2 · · ·Cnk . (5)

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 2, 2019



Seungho Lee 7

Remark 3.4. There is an interesting way to interpret theorem 3.3. Let C(x) be the
exponential generating function for {Cp }, and let G(x) be the exponential generating

function for {Gp }, where Gp is the number of labeled graphs of order p, 2(p
2). Riddell [6]

found that C(x) = log(1+G(x)), which implies that {Cp } and {Gp } can be interpreted as
sequences of cumulants and moments. Let λ= n1 +·· ·+nk be a partition of p, denoted
λ` p, and let λ! = n1!n2! · · ·nk ! and Cλ = Cn1 Cn2 · · ·Cnk . Rewriting (5) as

Gp = ∑
λ`p

Cλ

λ!

p !

m!
,

we recover identities relating moments and cumulants. See Rota and Shen [8] for more
on cumulants. However, note that our proof here is entirely combinatorial, contrary to
Rota and Shen [8].

Comparing theorem 3.3 with theorem 3.1, we obtain

Corollary 3.5.

1

p

p−1∑
k=1

k

(
p

k

)
2(p−k

2 )Ck = ∑
n1+···+nk=p

k≥2
n1≥···≥nk>0

p !

n1!n2! · · ·nk !
· 1

m!
·Cn1 Cn2 · · ·Cnk .

Example 3.6. a. Let p = 3. Then 3 is either 2+1 or 1+1+1 with m1 = 3. Thus,

C3 = 2(3
2)− 3!

2!
C2C1 − 3!

1

1

3!
C1C1C1 = 4.

b. Let p = 4. Then 4 is either 3+1,2+2,2+1+1, or 1+1+1+1. Thus,

C4 = 2(4
2)− 4!

3!
C3C1 − 4!

2!2!

1

2!
C2C2 − 4!

2!

1

2!
C2C1C1 −4!

1

4!
C4

1 = 38.

c. Let p = 5. Then 5 is either 4+1,3+2,3+1+1,2+2+1,2+1+1+1, or 1+1+1+1+1.
Thus,

C5 = 2(5
2)− 5!

4!
C4C1 − 5!

3!2!
C3C2 − 5!

3!

1

2!
C3C1C1

− 5!

2!2!

1

2!
C2C2C1 − 5!

2!

1

3!
C2C3

1 −5!
1

5!
C5

1 = 728.

d. Let p = 6. Then 6 is either 5+1,4+2,4+1+1,3+3,3+2+1,3+1+1+1,2+2+2,2+
2+1+1,2+1+1+1+1, or 1+1+1+1+1+1. Thus,

C6 = 2(6
2)− 6!

5!
C5C1 − 6!

4!2!
C4C2 − 6!

4!

1

2!
C4C1C1

− 6!

3!3!

1

2!
C3C3 − 6!

3!2!
C3C2C1 − 6!

3!

1

3!
C3C3

1 −
6!

2!2!2!

1

3!
C3

2

− 6!

2!2!

1

2!2!
C2

2C2
1 −

6!

2!

1

4!
C2C4

1 −6!
1

6!
C6

1 = 26704.
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8 Identities on Multinomial Coefficients and Graph Theory

We can count Cp in a different way, building up from subgraphs.

Theorem 3.7.

Cp+1 =
∑

n1+···+nk=p
k≥1

n1≥···≥nk>0
1≤ ji≤ni , i=1,...,k

p !

n1!n2! · · ·nk !
· 1

m!
·
(

n1

j1

)
· · ·

(
nk

jk

)
Cn1 Cn2 · · ·Cnk .

Proof. In order to obtain a connected labeled graph of order p +1, we first construct its
subgraph H formed by vertices 1 through p, which is a labeled graph of order p. Similar
to the proof of lemma 3.2, but now with k ≥ 1 since it could be connected, the number
of labeled graphs of order p is∑

n1+···+nk=p
k≥1

n1≥···≥nk>0

p !

n1!n2! · · ·nk !
· 1

m!
·Cn1 Cn2 · · ·Cnk .

To this subgraph H, we join the vertex p +1. For it to be connected, the vertex p +1 has
to have at least one edge to every component of H. For the component of order ni , there
are ni possible edges between the component and the vertex p +1. Let ji ,1 ≤ ji ≤ ni be
the number of edges between the component and the vertex p +1. Then there are

(ni
ji

)
ways to choose the edges between them.

Example 3.8. Let p = 5. Then 5 is either 5,4+1,3+2,3+1+1,2+2+1,2+1+1+1, or
1+1+1+1+1. Thus,

C6 = 5!

5!

[(
5

1

)
+

(
5

2

)
+

(
5

3

)
+

(
5

4

)
+

(
5

5

)]
C5

+5!

4!

[(
4

1

)
+

(
4

2

)
+

(
4

3

)
+

(
4

4

)]
C4C1

+ 5!

3!2!

[(
3

1

)(
2

1

)
+

(
3

1

)(
2

2

)
+

(
3

2

)(
2

1

)

+
(

3

2

)(
2

2

)
+

(
3

3

)(
2

1

)
+

(
3

3

)(
2

2

)]
C3C2

+5!

3!

1

2!

[(
3

1

)
+

(
3

2

)
+

(
3

3

)]
C3C1C1

+ 5!

2!2!

1

2!

[(
2

1

)(
2

1

)
+

(
2

1

)(
2

2

)
+

(
2

2

)(
2

1

)
+

(
2

2

)(
2

2

)]
C2C2C1

+5!

2!

1

3!

[(
2

1

)
+

(
2

2

)]
C2C3

1 +5!
1

5!
C5

1 = 26704.
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