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REV I EW ART ICLE Open Ac ce s s

Transactivation of human endogenous
retroviruses by tumor viruses and their
functions in virus-associated malignancies
Jungang Chen1, Maryam Foroozesh2 and Zhiqiang Qin1,3,4

Abstract
Human endogenous retroviruses (HERVs), viral-associated sequences, are normal components of the human genome
and account for 8–9% of our genome. These original provirus sequences can be transactivated to produce functional
products. Several reactivated HERVs have been implicated in cancers and autoimmune diseases. An emerging body of
literature supports a potential role of reactivated HERVs in viral diseases, in particular viral-associated neoplasms.
Demystifying studies on the mechanism(s) of HERV reactivation could provide a new framework for the development
of treatment and prevention strategies targeting virus-associated tumors. Although available data suggest that co-
infection by other viruses, such as Kaposi’s Sarcoma-associated herpesvirus (KSHV) and Epstein–Barr virus (EBV), may be
a crucial driving force to transactivate HERV boom, the mechanisms of action of viral infection-induced HERV
transactivation and the contributions of HERVs to viral oncogenesis warrant further studies. Here, we review viral co-
infection contributes to HERVs transactivation with focus on human viral infection associated oncogenesis and
diseases, including the abilities of viral regulators involved in HERV reactivation, and physiological effects of viral
infection response on HERV reactivation.

Background
Human endogenous retroviruses (HERVs) are a sub-

group of retroviruses integrating their sequences into host
genome after exogenous retrovirus infection millions of
years ago, which account for about 8–9% of human
genome1,2. Due to the accumulation of mutation, most
HERVs are commonly inactive and unable to replicate.
However, some HERVs still have open reading frames and
keep a potential for protein expression3,4. A growing
number of findings suggest that viral products of HERVs
may have a role in species evolution, as well as various
diseases3,5–7.

Retroviruses are double-stranded positive-sense RNA
viruses encoding and carrying reverse transcriptase (RT)
to reversely transcribe RNAs to DNAs. These viral DNAs
are then integrated into the host DNA mediated by its
integrase enzyme (IN), thus creating a provirus, which can
translate and transcribe viral products8,9. Similar to inte-
grated retrovirus, a complete sequence of HERVs are
mainly composed of gag, pro, pol, and env regions sand-
wiched between two long terminal repeats (LTRs) (Fig. 1).
LTRs contain main promoters, enhancers, and transacti-
vation regions for HERV transcription, thus regulating
activation and expression of HERV genes10. The gag and
pol usually encode polyproteins, which are then processed
into individual proteins. The products of gag are struc-
tural proteins and pol codes for the RT, IN, and RNAse H.
Notably, unlike HIV genome, the pro gene of HERVs is
separated from the pol reading frame. The product of env
gene is a glycosylated protein and is cleaved into two viral
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envelope proteins, a surface unit (SU) and a transmem-
brane unit (TM)3,11,12.
Currently, HERVs are classified into 22 independently

acquired families based on the first-letter amino-acid core
of the tRNA of the primary binding site used by HERV to
start reverse transcription13. Of these, some HERV
families, such as HERV-K, were identified to be relevant
with the development of human cancers, such as breast
cancer14, lung cancer15, prostate cancer16, hepatocellular
carcinoma (HCC)17, melanomas18, germ cell tumor19,
leukemia20 and, lymphoma21. HERV-K is the most recent
HERV family acquired by humans at around three million
years ago22. In contrast to all other HERVs, some HERV-
Ks are to date the only known human endogenous pro-
viruses that have retained open reading frames for all viral
proteins, such as HERV-K (HML-2)8,23. HERV-Ks are
formed by 11 subgroups (HML-1-HML-11), with the
most-studied one in cancers being HERV-K (HML-2)8.
HERV-K (HML-2) has two major types of proviruses (type
I and II), for which the nomenclature is based on the
presence (type I) or absence (type II) of a 292-bp deletion
at the pol/env boundary encoding two variant proteins,
Np9 and Rec, respectively11,24. The type II provirus pro-
duces the regulatory protein Rec by a singly spliced
transcript, while the type I provirus produces Np9
through a doubly spliced transcript in the pol/env
boundary region. HML-2 also expresses a 1.5-kb tran-
script with unknown function referred to as the hel

transcript11,12 (Fig. 1). Furthermore, both Rec and Np9
have been reported as oncogenic proteins and are present
in a variety of tumors and transformed cells.
Although the precise role of HERVs in development of

tumors has not been fully elucidated, there are increasing
data suggesting that HERVs are closely related to human
malignancies. Many studies have identified high levels of
the expressed products of HERVs in cells, tissues, and
blood of patients with cancers14–22. The transactivation of
HERVs may affect carcinogenesis process through directly
expressing viral mRNA, functional proteins, and/or viral
particles, or indirectly activating tumor-associated genes.
Viral products of many HERVs, such as the K, H, R, and T
families, have been detected in cells, blood and tissues of
patients with lung cancer or breast cancers. Levels of
HERVs transactivation have been shown to be much
higher in these patients than those in healthy volun-
teers25–27. The positive correlation of HERVs transacti-
vation with cancer is strongly supported by the
observation that some specific antibodies or shRNAs
against HERV-K possess inhibitory effect on the growth of
cancer cells in vitro and in vivo28,29. Thus, HERVs could
be considered as suitable prognostic markers for a variety
of malignant diseases, such as lung cancers and HCC17,25.
Additional studies have found that Np9 and Rec proteins
of HERV-K physically and functionally interact with the
promyelocytic leukemia zinc finger (PLZF) tumor sup-
pressor to regulate cancer cell proliferation and survival

Fig. 1 Diagrams of HERV-K proviruses and their transcripts. A compete sequence of HERVs are composed of gag, pol, pro, and env regions
sandwiched between two long terminal repeats (LTRs). Gag encodes the structural components of matrix (MA), capsid (CA), and nucleocapsid (NC).
The products of pol gene are reverse transcriptase (RT), integrase (IN), and RNase H (RH). The pro mainly encodes the enzyme protease (PR), while env
encodes Env surface (SU) and transmembrane (TM) subunits. LTRs are composed of U5 region, U3 region and repeat sequences (R). The HERV-K
(HML-2) usually expresses a full-length transcript (8.6-kb) and encodes the gag, pro, and pol polyproteins. Env gene transcripts two singly spliced
products, a 3.3-kb product to encode Env polyprotein, and a 1.5-kb product of unknown function known as the hel transcript, and a doubly spliced
product (1.8-kb) to encode either the Rec or Np9 accessory proteins depending on the presence or absence of a 292-bp deletion at the pol/env
boundary

Chen et al. Oncogenesis             (2019) 8:6 Page 2 of 9

Oncogenesis



through altering the expression of the c-Myc proto-
oncogene30,31.

Viral infection and HERVs transactivation
Although the detailed mechanisms of HERVs transac-

tivation remain largely unclear, a variety of inducers have
been reported, including some external and internal sig-
nals. Of these, viral infection plays important roles in the
regulation of HERVs transactivation (Table 1). Many
recent studies have shown that infection with exogenous
viruses, such as HIV-1, HBV, HTLV-1, Influenza A virus,
and herpesviruses, can induce significant HERVs trans-
activation, which in turn, co-contributes to the develop-
ment of viral diseases, including virus-associated
tumors32–37. For instance, many HERVs are activated in
HIV-1-infected patients, and the levels of HERV products
are decreased in patients with anti-HIV treatment38.
Studies on mechanisms of HERV-K transactivation show
that HIV-1 Tat protein can induce HERV-K expression
through regulating the NF-κB and NF-AT pathways39,40.
Also, Influenza A/WAN/33 virus infection can induce
transcriptional de-repression of the ERVWE1 of HERV-
W by increasing transcription of GCM1 and reducing
H3K9me341. Another example is that of Herpes simplex
virus 1 (HSV-1) infections, which can activate both
HERV-W and HERV-K through two different pathways,
in which viral IE1 enhances the activity of Oct-1 to sti-
mulate HERV-W42, while ICP0 upregulates the activity of
AP-1 to activate HERV-K43. In fact, ~20% of human

cancers have been found to be related to viral infections,
but the mechanism of viral oncogenesis is largely unclear.
However, recent data about HERVs transactivation
induced by tumor viruses and their function in malignant
diseases indicate that HERVs transactivation may act as
potential regulators or co-contributors to viral oncogen-
esis. Here, we present a summary of recent findings
regarding the relationship of different tumor viruses with
HERVs transactivation.

Tumor virus infections and HERVs transactivation
KSHV infection and HERVs transactivation
Kaposi’s sarcoma-associated herpesvirus (KSHV) is a

double-strand DNA virus classified as a type 8 member of
human herpesvirus family (HHV-8)44. Previous studies
have confirmed that KSHV infection is capable of causing
Multicentric Castleman’s disease (MCD) and several
cancers, such as Kaposi’s sarcoma (KS), and primary
effusion lymphoma (PEL)45. KSHV-induced KS is one of
the most common acquired immuno-deficiency syn-
drome (AIDS)-associated tumors. Despite recent progress
in the development of treatments for KSHV-associated
malignancies, more effective therapies remain urgently
needed.
KSHV infection has two alternative life cycle programs,

latent and lytic phases, both of which can contribute to
the development of KSHV-induced cancers46. Generally,
latent infection is established and persists in host cells
following KSHV de novo infection, with only a small

Table 1 Viral infections induced HERVs transactivation

Viruses HERV family Possible mechanisms Ref.

HSV-1 W, K IE1 stimulates LTR of HERV-W trough enhancing the activity of Oct-1;

ICP0 increases transcription LTR of HERV-K through AP-1 site.

36,42,43

VZV Unknown VZV can sustain the increase in the RT expression. 89

HCMV T, W, F, K, L HCMV-induced cytokines and growth factors may enhance HERV activation. 68,69

EBV W, K LAM-2A and LMP-1 activate HERV-K in infected B lymphocytes;

EBV infection activates HERV-K in resting B lymphocytes through binding CD21;

HERV-W activation was regulated by EBV gp350 in PBMC.

37,57–59,90

HHV-6 K HHV-6A induces HERV-K18-encoded superantigen through IFN-α;

HHV-6B induced superantigen HERV-K18, which may have consequences for the development of

autoimmunity.

91,92

KSHV K LANA induces env transcripts through enhancing ERK activity;

vFLIP induces env transcripts through activating NF-κB activity.

33

HIV-1 K, E, W, T HERV-K (HML-2) is activated by Tat through regulating NF-κB and NF-AT. 2,32,40

HTLV-1 K, E, W, H Tax is able to activate HERV LTRs, mainly of HERV-W and -H. 35,74

HBV W HBV X Protein induces overexpression of HERV-W env through NF-κB. 34

Influenza A virus W Influenza A virus infection can transactivate ERVWE1 by increasing the transcription of GCM1 and reducing

the repressive histone mark H3K9me3.

36,41
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population of cells undergoing spontaneous lytic replica-
tion in a temporally ordered manner. During latency, only
a limited number of latent genes, such as ORF71 (v-FLIP),
ORF72 (v-Cyclin), ORF73 (LANA), K12 (Kaposin), and
viral miRNAs are constitutively expressed to be involved
not only in the maintenance of viral genome stabilization,
but also in the regulation of host microenvironment. Of
the latent gene products, LANA and v-FLIP play critical
roles in viral pathogenesis, especially KSHV-induced
tumorigenicity47.
KSHV-induced tumors are found most frequently in

HIV-1-infected or other immunosuppressed patients48.
HERVs have also been associated with HIV-1-infected
and autoimmune diseases6,32. Thus, these data hint the
potential relevance of KSHV infection with HERVs
expression. Interestingly, the hypothesis is supported by
the observation that the high levels of HERV-K (HML-2)
env transcripts has been found in peripheral blood
mononuclear cell (PBMC) from KSHV-infected HIV+
patients33. Although HIV-1 is one of the viral factors
inducing HERVs transactivation and HIV-1 Tat promotes
expression of HERVs transcripts through regulating NF-
κB and NF-AT signals, the level of HERV env transcripts
are much lower in PBMC from HIV+ patients without

KSHV co-infection, suggesting that KSHV is also an
activator or co-factor of HERVs transactivation.
Additional experimental data support that HERV-K

(HML-2) transactivation is closely related to KSHV
infection. The significantly higher levels of transcriptional
products of HERV-K (HML-2) are found in KSHV+ PEL
tumor cells and KSHV de novo infected endothelial cells
when compared to virus-negative control cells33. How-
ever, the levels of HERV-K associated transcripts are
almost not changed in UV-inactivated KSHV-infected
cells, implying HERV-K transactivation by KSHV infec-
tion may require the expression of KSHV latent tran-
scripts. Mechanistic studies on KSHV-activated HERV-K
(HML-2) show that two viral latent proteins, LANA and
v-FLIP, regulate the transcription of HERV-K through
both classical intracellular signaling pathways and cellular
transcriptional factors (Fig. 2). LANA induces HERV-K
env transcription through enhancing ERK signaling
activity33. Furthermore, LANA may regulate HERV-K
LTRs, which contain potential binding sites for viral and
cellular transcriptional factors, through directly interact-
ing with Sp1, a classical modulator of HERV-K LTR
activities33. In fact, some other mechanisms, including
DNA methylation, histone modification and the Rb

Fig. 2 Schematic diagram of potential mechanisms for KSHV promoting HERV transactivation. During KSHV de novo infection, LANA induces
env transcripts through enhancing ERK activity, and vFLIP induces env transcripts through activating NF-κB activity. Np9 expression mediated by KSHV
can promote virus-induced anchorage-independent growth (AIG) and invasion through the CD147-ADAMTS1/ADAMTS9-VEGF/VEGFR1 axis. LANA: a
latency-associated nuclear antigen; vFLIP: viral FADD-like interleukin-1-β-converting enzyme (FLICE)/caspase-8-inhibitory protein; ERK: extracellular-
signal-regulated kinase; ADAMTS1: a disintegrin and metalloproteinase with thrombospondin motifs 1; ADAMTS9: a disintegrin and
metalloproteinase with thrombospondin motifs 9; VEGF: vascular endothelial growth factor; VEGFR1: vascular endothelial growth factor receptor 1
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(retinoblastoma) pathway, are also involved in the reg-
ulation of HERV-K transactivation33. Interestingly, LANA
has been found to interact with or regulate Rb/E2F
pathway and many epigenetic factors, such as EZH2,
KDM3a, and DNMT3a49,50. Therefore, these additional
mechanisms need to be further investigated. HERV-K env
transcripts are also upregulated by another KSHV-
encoded latent protein, v-FLIP, potentially through the
activation of NF-κB pathway33.
HERV-K env transcripts encode two oncogenic pro-

teins, Rec and Np9, both of which can promote cancer
development. However, more prominent expression of
Np9 than Rec has been found in KSHV-infected cells and
AIDS-KS tumor tissues33. Moreover, Np9 is closely rela-
ted to KSHV-induced invasion and anchorage-
independent growth of primary endothelial cells through
the regulation of the CD147-ADAMTS1/ADAMTS9-
VEGE/VEGFR1 axis, enhancing viral pathogenesis in
infected cells. Interestingly, silencing Np9 by RNAi in
KSHV-infected TIVE-LTC cells dramatically reduced cell
growth in vitro and suppressed the formation of KSHV-
induced tumors in nude mice, suggesting that Np9 pro-
tein is an important co-factor for KSHV-induced tumor-
igenesis33. Therefore, the detailed function of HERVs
transactivation in KSHV-related cancer progression,
which may represent a promising direction for developing
targeted therapy for KSHV-associated malignancies,
needs to be further investigated.

EBV infection and HERVs transactivation
Epstein–Barr virus (EBV), the type 4 member of the

HHV family, is a ubiquitous virus. Studies show that up to
95% of all adults in the world have antibodies against this
virus51. Previous studies confirmed that EBV infection has
been linked to a number of malignant diseases, such as
infectious mononucleosis, Burkitt’s lymphoma, Hodgkin’s
lymphoma, naso-pharyngeal cancer, NK/T-cell lym-
phoma, post-transplant lymphoma, and multiple
sclerosis44.
Similar to other herpesviruses, EBV infection has two

alternative life cycle programs, latent and lytic phases52.
While the lytic replication of EBV is pivotal to viral
transmission and genome maintenance, the latency makes
a more direct contribution to lymphoproliferative dis-
eases53. EBV latent infection is established and persists in
B cells and epithelial cells, however different latency
programs are possible in these two types of cells. Based on
which latent genes are expressed, latency of EBV can be
divided into three distinct stages, Latency I, II, or III54.
The latent gene products mainly include Epstein–Barr
nuclear antigen 1 (EBNA1)/EBNA2/EBNA3A, EBNA3B,
and EBNA3C, latent membrane protein 1 (LMP-1)/LMP-
2A and LMP-2B, nuclear antigen leader protein, and
virus-encoded small RNAs (EBERs), all of which are

involved in the regulation of host gene expression and
viral pathogenesis53.
EBV infection usually induces superantigens (SAgs)-

activated T-cell immune response55. T-cell activation
mediated by SAgs plays important roles in viral main-
tenance and the development of virus-associated dis-
eases55,56. Interestingly, Sutkowski et al. found that EBV
infection transactivates the expression of HERV-K18 env
gene that possesses SAg activity, which was further
demonstrated by MHC class II dependent preferential
activation of TCRVB13 T cells in response to murine B
cells transfected with the HERV-K18 env gene37. Further
studies revealed that EBV transactivates the HERV-K18
SAg through viral latent protein LMP-2A, LMP-1, and its
cellular receptor, CD2157,58. While LMP-2A and LMP-1
each contribute to the induction of the SAg activity of
HERV-K18 env gene in latently infected cells in vitro,
EBV-encoded gp350 protein also triggers the expression
of HERV-K18 env gene in resting B cells through binding
to human CD2158. Data show that the immunoreceptor
tyrosine-based activation motif (ITAM) of LMP-2A is
important for HERV-K18 env transactivation through
CrKL pathway57. The activation of ERK and NF-κB
pathways may be important steps in LMP-1-mediated
HERV-K activation, whereas gp350 activates HERV-K
through protein kinase C, protein tyrosine kinase, and
NF-κB pathways58 (Fig. 3). A recent study found that
EBV-encoded gp350 also activates HERV-W/syncytin-1
in cells derived from blood and brain through the NF-κB
pathway or some pro-inflammatory cytokines59, implying
that HERV-W may be a potent contributor involved in
the pathogenesis of multiple sclerosis.
Interestingly, HERV-K transactivation induced by EBV

infection may in turn regulate viral gene expression. One
study shows that HERV-K Np9 is strongly upregulated in
EBV-transformed lymphocytes and is detected in many
EBV+ tumor cells60. These data show that Np9 protein is
able to hijack EBNA2 to reduce the binding ability of
EBNA2 to DNA-bound RBP-Jκ leading to the down-
regulation of the EBNA2-mediated activation of the viral
C- and LMP-2A promoters60 (Fig. 3). Inhibitory effect of
EBV-induced Np9 on viral gene expression may represent
a protective mechanism, which controls excessive
expression of viral products to promote proliferation of
infected cells.

HCMV infection and HERVs transactivation
Human cytomegalovirus (HCMV), a double-strand

DNA virus, belongs to HHV family (also known as
human herpesvirus-5, HHV-5)61. HCMV remains in
latent phase within the body throughout life following
primary infection, but it can be reactivated at any time62.
HCMV infection is typically unnoticed in healthy people,
but may cause life-threatening diseases in
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immunocompromised hosts, such as HIV-infected per-
sons, organ transplant recipients, or newborn infants63.
Increasing data show that HCMV may possess oncogenic
or onco-modulatory functions in human cancers, because
of its high prevalence in cancers of different origin, such
as glioblastoma, medulloblastoma, neuroblastoma, colon,
breast, and prostate cancers, and its ability to control the
expression of host genes, especially the activation of cel-
lular oncogenes and inhibition of tumor suppressor
genes64–67.
Recent studies have revealed that in GliNS1 cells,

HCMV infection regulates the transactivation of HERV-
T, HERV-W, HERV-F, ERV-9, HERV-K (HML-2, -3, -4,
-7, and -8 groups), and HERV-L groups, and in HUVEC
cells from healthy donors, ERV-9, HERV-F, and HERV-K
(HML-2, -5, and -6 groups) were upregulated under
HCMV infection condition68. Furthermore, in kidney
transplant recipients, HCMV induces HERV-K and
HERV-W expression, demonstrating its clinical rele-
vance69. However, lytic replication of HCMV may not be
the reason of HERV-K expression due to no inhibitory
effect of blocking HCMV replication by ganciclovir or

silencing of IE1/IE2 on HERV-K transactivation68. Inter-
estingly, in contrast to KSHV, UV-inactivated HCMV still
activates HERV-K expression, but the increase in the
HERV-K activity is far less pronounced than in normal
HCMV infection68. Thus, activation of HERVs by HCMV
infection may be directly induced through some cytokines
and/or growth factors in response to viral infection.

HTLV-1 infection and HERVs transactivation
Human T-lymphotropic virus 1 (HTLV-1) belongs to a

group of human retroviruses and is known as the causa-
tive agent in adult T-cell leukemia (ATL) and HTLV-1-
associated myelopathy/tropical spastic paraparesis
(HAM/TSP)70. Although most HTLV-1 infected patients
maybe asymptomatic throughout their lives, this virus is
now estimated to infect 5–10 million people worldwide71.
The viral Tax protein has been considered to play an
important role in the development of HTLV-1-associated
diseases. HTLV-1 Tax protein performs the powerful
function of activator to modulate the expression of many
viral and cellular genes, such as CREB, NF-κB, and
SRF72,73.

Fig. 3 Schematic diagram of potential mechanisms for EBV promoting HERV transactivation. EBV infection can activate HERV expression
through its gp350 protein interaction with its cellular receptor CD21 in the resting B-lymphocytes and PBMC. In infected B-lymphocytes, viral LAM-2A
and LMP-1 activate the expression of HERV-K as superantigens (SAgs) to activate T-cell-mediated SAgs immune response. HERV-K Np9 binds to
EBNA2 and negatively affects the EBNA2-mediated activation of the viral C- and LMP2A promoters. LAM-2A: Latent membrane proteins 2A; ITAM
motif: an immunoreceptor tyrosine-based activation motif; LMP-2A: LMP-1 latent membrane proteins 1; EBNA2: viral nuclear antigen 2; gp350:
glycoprotein 350
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It has been found that HTLV-1 Tax protein activates
LTR of several HERVs, including HERV-W, HERV-H,
HERV-E, and HERV-K families, speculating a potential
link between HERVs transactivation and HTLV-1-
associated diseases35. Moreover, the data from HLTV-1
infected patients show an increased prevalence of anti-
bodies to Pol and Gag peptides of the retrovirus HERV-
K10, homologous to HTLV-1 gp21 envelope and p24 Gap
protein, respectively74. This prevalence was observed to
be higher in HLTV-1 infected patients with myelopathy
(87%) vs non-myelopathy (5.2%)74. Thus, HTLV-1 Tax-
activated HERVs and/or HTLV-1-induced immuno-
cross-reactivity may be involved in the pathogenesis of
these virus-associated diseases.

HBV infection and HERVs transactivation
Hepatitis B virus (HBV), a small double-stranded DNA

virus, causes acute and chronic hepatitis B in humans75.
Chronic hepatitis B caused by HBV infection is the major
cause of HCC worldwide, and remains therefore a major
public health problem globally75,76. HBV-encoded X
protein (HBx) is believed to be a potent regulator in the
pathogenesis of HBV-related HCC77.
HBx is a multifunctional oncogenic protein that mod-

ulates and activates the expression of many viral and
cellular factors77. A recent study showed that HBx
increased the promoter activity of HERV-W env to up-
regulate its expression through the NF-κB pathway in
human hepatoma HepG2 cells34. However, elucidating
the function of HERVs transactivation in HBV-induced
HCC still requires further investigation. Although the
association of HERVs transactivation with HBV-induced
HCC remains largely unclear, an interesting study showed
that HERV-K transactivation is correlated with the
prognosis and progress of HCC17. These data may provide
a new insight about HERVs transactivation in HBV-
associated HCC development.

Conclusion
In contrast to other “conventional” cancers, the role of

HERVs transactivation in viral oncogenesis remains lar-
gely unknown. In recent years, the mechanisms of tumor
virus-induced HERVs transactivation have been partially
explored: (1) Virus-mediated transcriptional factors—the
LTR regions of HERVs carry binding sites for many
transcriptional factors (e.g., NF-κB), which can be acti-
vated by viral products and result in the induction of
HERVs gene expression78,79. For example, KSHV LANA,
EBV LMP-1, and HBV HBx can induce HERV transacti-
vation through the NF-κB signaling pathway33,34,57.
HLTV-1 Tax is also a classical activator of gene expres-
sion through modulating NF-κB activity, contributing to
Tax-induced HERVs transactivation35. (2) Viral products
directly regulate HERVs transactivation—many viral

products can bind to the promoters of viral or host genes
to regulate gene expression as transcriptional factors, such
as EBV EBNAs and KSHV LANA80,81. Therefore, these
viral products may directly bind to the LTR regions of
HERVs to mediate their transactivation, although these
still need experimental evidence support. (3) Viral
infection-induced epigenetic modification—DNA tumor
viruses have developed various mechanisms to affect the
status of chromosome modification through the mod-
ulation of some key enzymes activities, such as DNA
methyltransferase and histone deacetylase, further reg-
ulating viral and host gene expression82. For example,
KSHV vFLIP can induce AXL expression potentially
through AXL gene hypomethylation82,83. However, DNA
methylation is considered as an important mechanism for
silencing of HERVs, and hypomethylation in tumors and/
or treatment with DNA-demethylating agents, such as 5-
aza-2-deoxycytidine and 5-azacytidine, may lead to
HERVs transactivation84,85. Therefore, a change in the
epigenetic modification induced by viral infection may
drive HERV transactivation. (4) Modification of host
immune system by viral infection—previous studies have
shown that the antibodies of HERVs were found in the
sera of patients with autoimmune diseases, such as mul-
tiple sclerosis, rheumatoid arthritis, and lupus erythema-
tosus, indicating the association between HERVs
transactivation and host immune system6,12. Interestingly,
the envelop protein of HERVs, such as HERV-H and
HERV-K family, displays immunosuppressive properties
in vivo86,87. DNA tumor viruses have developed various
mechanisms to regulate host immune system82,88. Thus,
virus-mediated host immune system modification may
cause HERV transactivation, which in turn, contributes to
the development of virus-associated malignancies.
Increasingly, recent literature supports that HERVs

transactivation may be a potential contributor to the
development of virus-associated tumors. Thus, studies on
HERVs transactivation by different tumor viruses might
provide new insights and strategies for the prevention
and/or treatment of these special malignancies.
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