Existence and multiplicity results for a doubly anisotropic problem with sign-changing nonlinearity

Ahmed Réda Leggat
Laboratoire d'Analyse Non Linéaire et Mathématiques Appliquées, Tlemcen University, BP 119 Tlemcen. Algeria
leggat2000@yahoo.fr
\section*{Sofiane El-Hadi Miri}
Laboratoire d'Analyse Non Linéaire et Mathématiques Appliquées, Tlemcen University, BP 119 Tlemcen. Algeria
mirisofiane@yahoo.fr

Received: 8.5.2018; accepted: 24.6.2019.
Abstract. We consider in this paper the following problem

$$
\left\{\begin{array}{cc}
-\sum_{i=1}^{N} \partial_{i}\left[\left|\partial_{i} u\right|^{p_{i}-2} \partial_{i} u\right]-\sum_{i=1}^{N} \partial_{i}\left[\left|\partial_{i} u\right|^{q_{i}-2} \partial_{i} u\right]=\lambda f(u) & \text { in } \Omega, \\
u=0 & \text { on } \partial \Omega .
\end{array}\right.
$$

Where Ω is a bounded regular domain in $\mathbb{R}^{N}, 1<p_{1} \leq p_{2} \leq \ldots \leq p_{N}$ and $1<q_{1} \leq q_{2} \leq \ldots \leq$ q_{N}, we will also assume that f is a continuous function, that have a finite number of zeroes, changing sign between them.

Keywords: Anisotropic problem, exitence and mutiplicity, variational methods.
MSC 2000 classification: primary 35J66, secondary 35J35

1 Introduction

$$
\left\{\begin{array}{cc}
-\sum_{i=1}^{N} \partial_{i}\left[\left|\partial_{i} u\right|^{p_{i}-2} \partial_{i} u\right]-\sum_{i=1}^{N} \partial_{i}\left[\left|\partial_{i} u\right|^{q_{i}-2} \partial_{i} u\right]=\lambda f(u) & \text { in } \Omega, \tag{1.1}\\
u=0 & \text { on } \partial \Omega .
\end{array}\right.
$$

Where Ω is a bounded regular domain in \mathbb{R}^{N}, we will assume that f fulfill some suitable hypotheses, $1<p_{1} \leq p_{2} \leq \ldots \leq p_{N}$ and $1<q_{1} \leq q_{2} \leq \ldots \leq q_{N}$.

We will often use the notation

[^0]$$
L_{\left(p_{i}\right)} u=\sum_{i=1}^{N} \partial_{i}\left[\left|\partial_{i} u\right|^{p_{i}-2} \partial_{i} u\right],
$$

There is a huge literature related to the anisotropic operator, when considered with a linear, non-linear or singular terms we invite the reader to see $[1,4,5,6,7,9,13,25]$
f is supposed to be such that
(H1) f is a continuous function such that $f(0) \geq 0$, and there are $0<a_{1}<$ $b_{1}<a_{2}<\ldots<b_{m-1}<a_{m}$ the zeroes of f such that

$$
\left\{\begin{array}{c}
f \leq 0 \quad \text { in }\left(a_{k}, b_{k}\right) \\
f \geq 0 \quad \text { in }\left(b_{k}, a_{k+1}\right)
\end{array}\right.
$$

(H2) $\int_{a_{k}}^{a_{k+1}} f(t) d t>0 ; \quad \forall k=1,2, . ., m-1$.
These kind of hypotheses, was introduced by different authors in the some early works $[3,8,11]$, with the aim to study the problem

$$
\begin{cases}-\triangle u=\lambda f(u) & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega .\end{cases}
$$

More recently, the results obtained there was generalized in [2] for the $p \& q-$ laplacian, that is

$$
\left\{\begin{array}{cc}
-\triangle_{p} u-\triangle_{q} u=\lambda f(u) & \text { in } \Omega, \\
u=0 & \text { on } \partial \Omega,
\end{array}\right.
$$

and in the case of the ϕ-laplacian in [18], where the considered problem

$$
\left\{\begin{array}{cc}
-\operatorname{div}(\phi(|\nabla u|) \nabla u)=\lambda f(u) & \text { in } \Omega, \\
u=0 & \text { on } \partial \Omega,
\end{array}\right.
$$

ϕ being a function fulfilling some suitable conditions.
Observe that the anisotropic operator, and the doubly anisotropic operator considered in this paper cannot be obtained as a particular case of the previous cited, and his its own structure, as we will present in this paper.

In the whole paper C will denote a constant that may change from line to line.

2 Preliminary results

Problem (1.1) is associated to the following anisotropic Sobolev spaces

$$
W^{1,\left(p_{i}\right)}(\Omega)=\left\{v \in W^{1,1}(\Omega) ; \partial_{i} v \in L^{p_{i}}(\Omega)\right\}
$$

and

$$
W_{0}^{1,\left(p_{i}\right)}(\Omega)=W^{1,\left(p_{i}\right)}(\Omega) \cap W_{0}^{1,1}(\Omega)
$$

endowed by the usual norm

$$
\|v\|_{W_{0}^{1,\left(p_{i}\right)}(\Omega)}=\sum_{i=1}^{N}\left\|\partial_{i} v\right\|_{L^{p_{i}}(\Omega)}
$$

As we are dealing with a doubly anisotropic operator, the natural functional space is

$$
X=W_{0}^{1,\left(p_{i}\right)}(\Omega) \cap W_{0}^{1,\left(q_{i}\right)}(\Omega)
$$

endowed with the norm

$$
\|v\|_{X}=\|v\|_{W_{0}^{1,\left(p_{i}\right)}(\Omega)}+\|v\|_{W_{0}^{1,\left(q_{i}\right)}(\Omega)} .
$$

Definition 1. We will say that $u \in W_{0}^{1,\left(p_{i}\right)}(\Omega)$ is a weak solution to (1.1) if and only if
$\sum_{i=1}^{N} \int_{\Omega}\left|\partial_{i} u\right|^{p_{i}-2} \partial_{i} u \partial_{i} \varphi+\sum_{i=1}^{N} \int_{\Omega}\left|\partial_{i} u\right|^{q_{i}-2} \partial_{i} u \partial_{i} \varphi=\lambda \int_{\Omega} f(u) \varphi \quad \forall \varphi \in W_{0}^{1,\left(p_{i}\right)}(\Omega)$.
We will also use very often the following indices

$$
\frac{1}{\bar{p}}=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{p_{i}}
$$

and

$$
\bar{p}^{*}=\frac{N \bar{p}}{N-\bar{p}}, p_{\infty}=\max \left\{p_{N}, \bar{p}^{*}\right\}
$$

without loss of generality we will assume that $\bar{p}^{*} \leq \bar{q}^{*}$
The following Sobolev type inequalities will be often used in this paper, we refer to the early works [23], [16] and [20].

Theorem 1. There exists a positive constant C, depending only on Ω, such that for every $v \in W_{0}^{1,\left(p_{i}\right)}(\Omega)$, we have

$$
\begin{gather*}
\|v\|_{L^{\bar{p}^{*}}(\Omega)}^{p_{N}} \leq C \sum_{i=1}^{N}\left\|\partial_{i} v\right\|_{L^{p_{i}}(\Omega)}^{p_{i}} \tag{2.1}\\
\|v\|_{L^{r}(\Omega)} \leq C \sum_{i=1}^{N}\left\|\partial_{i} v\right\|_{L^{p_{i}}(\Omega)} \quad \forall r \in\left[1, \bar{p}^{*}\right] \tag{2.2}\\
\|v\|_{L^{r}(\Omega)} \leq C \prod_{i=1}^{N}\left\|\partial_{i} v\right\|_{L^{p_{i}}(\Omega)}^{\frac{1}{N}} \quad \forall r \in\left[1, \bar{p}^{*}\right] \tag{2.3}
\end{gather*}
$$

and $\forall v \in W_{0}^{1,\left(p_{i}\right)}(\Omega) \cap L^{\infty}(\Omega), \bar{p}<N$

$$
\begin{equation*}
\left(\int_{\Omega}|v|^{r}\right)^{\frac{N}{p}-1} \leq C \prod_{i=1}^{N}\left(\int_{\Omega}\left|\partial_{i} v\right|^{p_{i}}|v|^{t_{i} p_{i}}\right)^{\frac{1}{p_{i}}} \tag{2.4}
\end{equation*}
$$

for every r and t_{j} chosen such a way to have

$$
\left\{\begin{array}{c}
\frac{1}{r}=\frac{\gamma_{i}(N-1)-1+\frac{1}{p_{i}}}{t_{i}+1} \\
\sum_{i=1}^{N} \gamma_{i}=1
\end{array}\right.
$$

We also have the following algebraic inequalities :

- There exists a $C>0$ not depending on $\rho \in(0,1)$ such that for given $\sigma_{i}>0, i=1,2 \ldots N$ we have

$$
\begin{equation*}
\sum_{i=1}^{N} \sigma_{i}=\rho \Longrightarrow \sum_{i=1}^{N} \frac{\sigma_{i}^{p_{i}}}{p_{i}} \geq C \rho^{p_{N}} \tag{2.5}
\end{equation*}
$$

- For $p_{i} \geq 2$

$$
\begin{equation*}
C|a-b|^{p_{i}} \leq\left(|a|^{p_{i}-2} a-|b|^{p_{i}-2} b\right)(a-b) \tag{2.6}
\end{equation*}
$$

- For $1<p_{i} \leq 2$

$$
\begin{equation*}
C \frac{|a-b|^{2}}{(|a|+|b|)^{2-p_{i}}} \leq\left(|a|^{p_{i}-2} a-|b|^{p_{i}-2} b\right)(a-b) \tag{2.7}
\end{equation*}
$$

In view of applying the above inequalities, allthrough this pper we will suppose that all the p_{i} are neither $p_{i} \geq 2$ nor $1<p_{i} \leq 2$ and the same for the q_{i} for $i=1, \ldots, N$.

Lemma 1. Let $g \in C(\mathbb{R})$ be a continuous function and $s_{0}>0$ be such that

$$
\begin{aligned}
& g(s) \geq 0 \quad \text { if } s \in(-\infty, 0) \\
& g(s) \leq 0 \quad \text { if } s \in\left[s_{0},+\infty\right)
\end{aligned}
$$

then if u is a solution of

$$
\left\{\begin{array}{cc}
-\sum_{i=1}^{N} \partial_{i}\left[\left|\partial_{i} u\right|^{p_{i}-2} \partial_{i} u\right]-\sum_{i=1}^{N} \partial_{i}\left[\left|\partial_{i} u\right|^{q_{i}-2} \partial_{i} u\right]=\lambda g(u) \tag{2.8}\\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

it verifies $u \geq 0$ a.e.in $\Omega, u \in L^{\infty}(\Omega)$ and $\|u\|_{L^{\infty}}<s_{0}$.

Proof. We recall that $u=u^{+}-u^{-}$where $u^{-}=\max (-u, 0)$ and $u^{+}=\max (0, u)$; as $\partial_{i} u^{-}=\left\{\begin{array}{ll}-\partial_{i} u & \text { if } u<0 \\ 0 & \text { if } u \geq 0\end{array}\right.$ we have that $u^{-} \in W_{0}^{1,\left(p_{i}\right)}(\Omega)$ whenever $u \in$ $W_{0}^{1,\left(p_{i}\right)}(\Omega)$. Using u^{-}as a test function in (2.8) we obtain

$$
\sum_{i=1}^{N} \int_{\Omega}\left|\partial_{i} u\right|^{p_{i}-2} \partial_{i} u \partial_{i} u^{-}+\sum_{i=1}^{N} \int_{\Omega}\left|\partial_{i} u\right|^{q_{i}-2} \partial_{i} u \partial_{i} u^{-}=\int_{\Omega} g(u) u^{-}
$$

that is

$$
\sum_{i=1}^{N} \int_{\Omega \cap[u<0]}\left|\partial_{i} u\right|^{p_{i}}+\sum_{i=1}^{N} \int_{\Omega \cap[u<0]}\left|\partial_{i} u\right|^{q_{i}}=\int_{\Omega \cap[u<0]} g(u) u
$$

by the definition of $g, g(u) u \leq 0$ when $u<0$ so

$$
\sum_{i=1}^{N} \int_{\Omega \cap[u<0]}\left|\partial_{i} u\right|^{p_{i}}+\sum_{i=1}^{N} \int_{\Omega \cap[u<0]}\left|\partial_{i} u\right|^{q_{i}} \leq 0
$$

and thus necessarily the set $(\Omega \cap[u<0])$ is a null measure set, and so $u=u^{+} \geq$ 0 .

On the other hand observe that $\partial_{i}\left(u-s_{0}\right)^{+}=\left\{\begin{array}{ll}+\partial_{i} u & \text { if } u>s_{0} \\ 0 & \text { if } u \leq s_{0}\end{array}\right.$ we have that $\left(u-s_{0}\right) \in X$ whenever $u \in X$. Using $\left(u-s_{0}\right)^{+}$as test function in (2.8) we obtain
$\sum_{i=1}^{N} \int_{\Omega}\left|\partial_{i} u\right|^{p_{i}-2} \partial_{i} u \partial_{i}\left(u-s_{0}\right)^{+}+\sum_{i=1}^{N} \int_{\Omega}\left|\partial_{i} u\right|^{q_{i}-2} \partial_{i} u \partial_{i}\left(u-s_{0}\right)^{+}=\int_{\Omega} g(u)\left(u-s_{0}\right)^{+}$
that is

$$
\sum_{i=1}^{N} \int_{\Omega \cap\left[u>s_{0}\right]}\left|\partial_{i} u\right|^{p_{i}}+\sum_{i=1}^{N} \int_{\Omega \cap\left[u>s_{0}\right]}\left|\partial_{i} u\right|^{q_{i}}=\int_{\Omega \cap\left[u>s_{0}\right]} g(u)\left(u-s_{0}\right)
$$

by the definition of $g, g(u)\left(u-s_{0}\right) \leq 0$

$$
\sum_{i=1}^{N} \int_{\Omega \cap\left[u>s_{0}\right]}\left|\partial_{i} u\right|^{p_{i}}+\sum_{i=1}^{N} \int_{\Omega \cap\left[u>s_{0}\right]}\left|\partial_{i} u\right|^{q_{i}} \leq 0
$$

and thus necessarily the set $\left(\Omega \cap\left[u>s_{0}\right]\right)$ is a null measure set, and so $u \leq$ s_{0}.

QED

3 Existence and multiplicity results

For each $k=1,2, . ., m-1$, consider the following problem

$$
\left\{\begin{array}{cc}
-\sum_{i=1}^{N} \partial_{i}\left[\left|\partial_{i} u\right|^{p_{i}-2} \partial_{i} u\right]-\sum_{i=1}^{N} \partial_{i}\left[\left|\partial_{i} u\right|^{p_{i}-2} \partial_{i} u\right]=\lambda f_{k}(u) \tag{3.1}\\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where

$$
f_{k}(s)=\left\{\begin{array}{cc}
f(0) & \text { if } s \leq 0 \\
f(s) & \text { if } \\
0 \leq s \leq a_{k} \\
0 & s>a_{k}
\end{array}\right.
$$

Proposition 1. There exists $\bar{\lambda}>0$ such that for every $\lambda \in(\bar{\lambda},+\infty)$, problem (3.1) posses a nonnegative solution $u=u_{k, \lambda}$ such that $\left\|u_{k}\right\|_{L^{\infty}} \leq a_{k}$.

Proof. As a direct consequence of Lemma 1 we have $\left\|u_{k}\right\|_{L^{\infty}} \leq a_{k}$.
Let

$$
\Phi_{k, \lambda}(u):=\sum_{i=1}^{N} \frac{1}{p_{i}} \int_{\Omega}\left|\partial_{i} u\right|^{p_{i}}+\sum_{i=1}^{N} \frac{1}{q_{i}} \int_{\Omega}\left|\partial_{i} u\right|^{q_{i}}-\lambda \int_{\Omega} F_{k}(u)
$$

where $F_{k}(t)=\int_{0}^{t} f_{k}(s) d s$, the set $\boldsymbol{C}_{k, \lambda}$ of the critical points of $\Phi_{k, \lambda}(u)$ corresponds to the set of solution to (3.1). Observe that as f_{k} is a bounded function we have

$$
\begin{aligned}
m_{k}|t| \leq \int_{0}^{t} m_{k} d s & \leq F_{k}(t) \leq \int_{0}^{t} M_{k} d s \leq M_{k}|t|, \text { thus } \\
\Phi_{k, \lambda}(u) & =\sum_{i=1}^{N} \frac{1}{p_{i}} \int_{\Omega}\left|\partial_{i} u\right|^{p_{i}}+\sum_{i=1}^{N} \frac{1}{q_{i}} \int_{\Omega}\left|\partial_{i} u\right|^{q_{i}}-\lambda \int_{\Omega} F_{k}(u) \\
& \geq \sum_{i=1}^{N} \frac{1}{p_{i}} \int_{\Omega}\left|\partial_{i} u\right|^{p_{i}}+\sum_{i=1}^{N} \frac{1}{q_{i}} \int_{\Omega}\left|\partial_{i} u\right|^{q_{i}}-\lambda M_{k} \int_{\Omega}|u|,
\end{aligned}
$$

by Hölder inequality we obtain that

$$
\Phi_{k, \lambda}(u) \geq \sum_{i=1}^{N} \frac{1}{p_{i}} \int_{\Omega}\left|\partial_{i} u\right|^{p_{i}}+\sum_{i=1}^{N} \frac{1}{q_{i}} \int_{\Omega}\left|\partial_{i} u\right|^{q_{i}}-\lambda M_{k}\|u\|_{L^{\bar{p}^{*}}}
$$

by Sobolev inequality

$$
\Phi_{k, \lambda}(u) \geq \sum_{i=1}^{N} \frac{1}{p_{i}} \int_{\Omega}\left|\partial_{i} u\right|^{p_{i}}+\sum_{i=1}^{N} \frac{1}{q_{i}} \int_{\Omega}\left|\partial_{i} u\right|^{q_{i}}-\lambda M_{k} C \sum_{i=1}^{N}\left\|\partial_{i} u\right\|_{L^{p_{i}}},
$$

as $p_{N} \geq p_{i}$ for every i

$$
\Phi_{k, \lambda}(u) \geq \frac{1}{p_{N}} \sum_{i=1}^{N}\left\|\partial_{i} u\right\|_{L^{p_{i}}}^{p_{i}}+\frac{1}{q_{N}} \sum_{i=1}^{N}\left\|\partial_{i} u\right\|_{L^{q_{i}}}^{q_{i}}-\lambda M_{k} C \sum_{i=1}^{N}\left\|\partial_{i} u\right\|_{L^{p_{i}}}
$$

by the fact that

$$
\|u\|_{X} \rightarrow+\infty \Rightarrow\left\|\partial_{i} u\right\|_{L^{p_{i}}} \rightarrow+\infty \text { or }\left\|\partial_{i} u\right\|_{L^{q_{i}}} \rightarrow+\infty \text { for some } i
$$

we obtain the coercivity of $\Phi_{k, \lambda}(u)$ that is

$$
\Phi_{k, \lambda}(u) \rightarrow+\infty \text { when }\|u\|_{X} \rightarrow+\infty
$$

On the other hand, as $\Phi_{k, \lambda}(u)$ continuous it is also lower semi continuous, and thus by Weirstrass theorem, it is also possible to show that a Palais Smail séquence $\left\{u_{n}\right\}_{n}$ converges strongly, indeed as $\left\{u_{n}\right\}_{n}$ is bounded in X

$$
u_{n} \rightharpoonup u \text { weakly in } X
$$

thus

$$
u_{n} \rightarrow u \text { strongly in } L^{r}(\Omega) \text { for evry } 1 \leq r<\bar{p}^{*}
$$

and in particular

$$
\int_{\Omega}\left|u_{n}\right| \rightarrow \int_{\Omega}|u| ;
$$

using $\left(u_{n}-u\right)$ as test function in (3.1) we obtain

$$
\sum_{i=1}^{N} \int_{\Omega}\left|\partial_{i} u\right|^{p_{i}-2} \partial_{i} u \partial_{i}\left(u_{n}-u\right)+\sum_{i=1}^{N} \int_{\Omega}\left|\partial_{i} u\right|^{q_{i}-2} \partial_{i} u \partial_{i}\left(u_{n}-u\right)=\lambda \int_{\Omega} f_{k}(u)\left(u_{n}-u\right)
$$

which gives

$$
\begin{aligned}
& \sum_{i=1}^{N}\left[\int_{\Omega}\left(\left(\left|\partial_{i} u_{n}\right|^{p_{i}-2} \partial_{i} u_{n}-\left|\partial_{i} u\right|^{p_{i}-2} \partial_{i} u\right) \partial_{i}\left(u_{n}-u\right)+\partial_{i} u_{n}\left|\partial_{i} u\right|^{p_{i}-2} \partial_{i} u-\left|\partial_{i} u\right|^{p_{i}}\right)\right] \\
+ & \sum_{i=1}^{N}\left[\int_{\Omega}\left(\left(\left|\partial_{i} u_{n}\right|^{q_{i}-2} \partial_{i} u_{n}-\left|\partial_{i} u\right|^{q_{i}-2} \partial_{i} u\right) \partial_{i}\left(u_{n}-u\right)+\partial_{i} u_{n}\left|\partial_{i} u\right|^{q_{i}-2} \partial_{i} u-\left|\partial_{i} u\right|^{q_{i}}\right)\right] \\
= & \lambda \int_{\Omega} f_{k}(u)\left(u_{n}-u\right),
\end{aligned}
$$

that is

$$
\begin{aligned}
& \sum_{i=1}^{N}\left[\int_{\Omega}\left(\left|\partial_{i} u_{n}\right|^{p_{i}-2} \partial_{i} u_{n}-\left|\partial_{i} u\right|^{p_{i}-2} \partial_{i} u\right) \partial_{i}\left(u_{n}-u\right)+\int_{\Omega}\left(\partial_{i} u_{n}\left|\partial_{i} u\right|^{p_{i}-2} \partial_{i} u-\left|\partial_{i} u\right|^{p_{i}}\right)\right] \\
+ & \sum_{i=1}^{N}\left[\int_{\Omega}\left(\left|\partial_{i} u_{n}\right|^{q_{i}-2} \partial_{i} u_{n}-\left|\partial_{i} u\right|^{q_{i}-2} \partial_{i} u\right) \partial_{i}\left(u_{n}-u\right)+\int_{\Omega}\left(\partial_{i} u_{n}\left|\partial_{i} u\right|^{q_{i}-2} \partial_{i} u-\left|\partial_{i} u\right|^{q_{i}}\right)\right] \\
= & \lambda \int_{\Omega} f_{k}(u)\left(u_{n}-u\right)
\end{aligned}
$$

by inequality (2.6) for $p_{i}, q_{i}>2$

$$
\begin{gathered}
\sum_{i=1}^{N} \int_{\Omega}\left|\partial_{i}\left(u_{n}-u\right)\right|^{p_{i}}+\sum_{i=1}^{N} \int_{\Omega}\left(\partial_{i} u_{n}\left|\partial_{i} u\right|^{p_{i}-2} \partial_{i} u-\left|\partial_{i} u\right|^{p_{i}}\right)+\sum_{i=1}^{N} \int_{\Omega}\left|\partial_{i}\left(u_{n}-u\right)\right|^{q_{i}}+ \\
\quad+\sum_{i=1}^{N} \int_{\Omega}\left(\partial_{i} u_{n}\left|\partial_{i} u\right|^{q_{i}-2} \partial_{i} u-\left|\partial_{i} u\right|^{q_{i}}\right) \leq \lambda C \int_{\Omega} f_{k}(u)\left(u_{n}-u\right)
\end{gathered}
$$

$$
\begin{aligned}
& \sum_{i=1}^{N} \int_{\Omega}\left|\partial_{i}\left(u_{n}-u\right)\right|^{p_{i}}+\sum_{i=1}^{N} \int_{\Omega}\left|\partial_{i}\left(u_{n}-u\right)\right|^{q_{i}} \\
\leq & \lambda C \int_{\Omega} f_{k}(u)\left(u_{n}-u\right)-\sum_{i=1}^{N} \int_{\Omega}\left(\partial_{i} u_{n}\left|\partial_{i} u\right|^{p_{i}-2} \partial_{i} u-\left|\partial_{i} u\right|^{p_{i}}\right) \\
- & \sum_{i=1}^{N} \int_{\Omega}\left(\partial_{i} u_{n}\left|\partial_{i} u\right|^{q_{i}-2} \partial_{i} u-\left|\partial_{i} u\right|^{q_{i}}\right),
\end{aligned}
$$

by the weak convergence of $\left\{u_{n}\right\}_{n}$
$-\sum_{i=1}^{N} \int_{\Omega}\left(\partial_{i} u_{n}\left|\partial_{i} u\right|^{p_{i}-2} \partial_{i} u-\left|\partial_{i} u\right|^{p_{i}}\right)-\sum_{i=1}^{N} \int_{\Omega}\left(\partial_{i} u_{n}\left|\partial_{i} u\right|^{q_{i}-2} \partial_{i} u-\left|\partial_{i} u\right|^{q_{i}}\right)=o(1)$
thus

$$
\begin{aligned}
\sum_{i=1}^{N} \int_{\Omega}\left|\partial_{i}\left(u_{n}-u\right)\right|^{p_{i}}+\sum_{i=1}^{N} \int_{\Omega}\left|\partial_{i}\left(u_{n}-u\right)\right|^{q_{i}} & \leq \lambda C \int_{\Omega} f_{k}(u)\left(u_{n}-u\right)+o(1) \\
& \leq \lambda C M_{k} \int_{\Omega}\left(u_{n}-u\right)+o(1)
\end{aligned}
$$

as $u_{n} \rightarrow u$ strongly in $L^{r}(\Omega)$ for every $1 \leq r<\bar{p}^{*}$, we conclude that

$$
\left\|u_{n}-u\right\|_{X} \rightarrow 0 .
$$

The same result can be obtained for the cases ($p_{i}<2$ and $q_{i}>2$) and ($p_{i}<2$ and $q_{i}<2$) by using in a smililar way inequality (2.7) instead of (2.6), which ends the proof.

Theorem 2. There exists $\bar{\lambda}>0$ such that for every $\lambda \in(\bar{\lambda},+\infty)$, problem (1.1) posses at least $(m-1)$ nonnegative solutions u_{i} such that $u_{i} \in X$ and $a_{i} \leq\left\|u_{i}\right\|_{L^{\infty}} \leq a_{i+1}$.
Proof. Let u be a solution of (3.1), so by lemma1 it is necessarily such that, $u \in L^{\infty}(\Omega)$ and $0 \leq u<a_{k-1}$ a.e.in Ω thus $f_{k-1}(u)=f(u)$ and then u is also a solution to (1.1). To prove the last part of the theorem we claim that for each k $\in\{2, \ldots m\}$ there is $\lambda_{k}>0$,such that for all $\lambda>\lambda_{k}$ we have $u_{k, \lambda} \notin \boldsymbol{C}_{k-1, \lambda}$ where $\Phi_{k, \lambda}\left(u_{k, \lambda}\right)=\min _{v \in X} \Phi_{k, \lambda}(v)$, first let $\delta>0$ and consider

$$
\Omega_{\delta}=\{x \in \Omega, \operatorname{dist}(x, \partial \Omega)<\delta\},
$$

and

$$
\alpha_{k}=F\left(a_{k}\right)-\max _{0<s<a_{k-1}}|F(s)|=F\left(a_{k}\right)-C_{k}
$$

by hypothesis (H2) $\alpha_{k}>0$. Consider $w_{\delta} \in C_{0}^{\infty}(\Omega)$ such that

$$
0 \leq w_{\delta} \leq a_{k}
$$

and

$$
w_{\delta}=a_{k}, \text { when } x \in \Omega \backslash \Omega_{\delta}
$$

we have

$$
\int_{\Omega} F\left(w_{\delta}\right) \geq \int_{\Omega} F\left(a_{k}\right)-2 C_{k}\left|\Omega_{\delta}\right|
$$

which yields to

$$
\int_{\Omega} F\left(w_{\delta}\right)-\int_{\Omega} F(u) \geq \alpha_{k}|\Omega|-2 C_{k}\left|\Omega_{\delta}\right|
$$

since $\left|\Omega_{\delta}\right| \rightarrow 0$ as $\delta \rightarrow 0$ there must exit a δ such that

$$
\beta_{k}=\alpha_{k}|\Omega|-2 C_{k}\left|\Omega_{\delta}\right|>0
$$

for that δ we put $w_{\delta}=w$, we have

$$
\begin{aligned}
\Phi_{k, \lambda}(w) & -\Phi_{k-1, \lambda}\left(u_{k-1, \lambda}\right)=\sum_{i=1}^{N} \frac{1}{p_{i}} \int_{\Omega}\left|\partial_{i} w\right|^{p_{i}}+\sum_{i=1}^{N} \frac{1}{q_{i}} \int_{\Omega}\left|\partial_{i} w\right|^{q_{i}}-\lambda \int_{\Omega} F_{k}(w) \\
& -\sum_{i=1}^{N} \frac{1}{p_{i}} \int_{\Omega}\left|\partial_{i} u_{k-1, \lambda}\right|^{p_{i}}-\sum_{i=1}^{N} \frac{1}{q_{i}} \int_{\Omega}\left|\partial_{i} u_{k-1, \lambda}\right|^{q_{i}}+\lambda \int_{\Omega} F_{k}\left(u_{k-1, \lambda}\right) \\
& \leq \sum_{i=1}^{N} \frac{1}{p_{i}} \int_{\Omega}\left|\partial_{i} w\right|^{p_{i}}+\sum_{i=1}^{N} \frac{1}{q_{i}} \int_{\Omega}\left|\partial_{i} w\right|^{q_{i}}-\lambda \int_{\Omega}\left(F_{k}(w)-F_{k}\left(u_{k-1, \lambda}\right)\right) \\
& \leq \sum_{i=1}^{N} \frac{1}{p_{i}} \int_{\Omega}\left|\partial_{i} w\right|^{p_{i}}+\sum_{i=1}^{N} \frac{1}{q_{i}} \int_{\Omega}\left|\partial_{i} w\right|^{q_{i}}-\lambda \beta_{k}
\end{aligned}
$$

for λ large enough we have

$$
\Phi_{k, \lambda}(w)-\Phi_{k-1, \lambda}\left(u_{k-1, \lambda}\right)<0
$$

that is

$$
\Phi_{k, \lambda}(w)<\Phi_{k-1, \lambda}\left(u_{k-1, \lambda}\right)
$$

so

$$
\Phi_{k, \lambda}\left(u_{k, \lambda}\right) \leq \Phi_{k, \lambda}(w)<\Phi_{k-1, \lambda}\left(u_{k-1, \lambda}\right)
$$

so we have proved that $u_{k, \lambda}$ and $u_{k-1, \lambda}$ are two distinct solutions to (1.1). Now suppose by contradiction that

$$
0 \leq u_{k, \lambda}<a_{k-1}
$$

we necessarily would have

$$
\Phi_{k-1, \lambda}\left(u_{k-1, \lambda}\right) \leq \Phi_{k-1, \lambda}\left(u_{k, \lambda}\right)=\Phi_{k, \lambda}\left(u_{k, \lambda}\right)
$$

wich is a contradiction, and in conclusion

$$
a_{k-1}<\left\|u_{k, \lambda}\right\|_{L^{\infty}} \leq a_{k}
$$

which ends the proof.
Remark 1. Obviously, and under the same conditions on f, all the results obtained here are still valid for the following simply anisotropic problem:

$$
\left\{\begin{array}{cc}
-\sum_{i=1}^{N} \partial_{i}\left[\left|\partial_{i} u\right|^{p_{i}-2} \partial_{i} u\right]= & \lambda f(u) \quad \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

References

[1] Boukarabila, Youssouf Oussama, and Sofiane El-Hadi Miri: Anisotropic system with singular and regular nonlinearities, Complex Variables and Elliptic Equations, (2019), 1-11. https://doi.org/10.1080/17476933.2019.1606802
[2] Corra, Francisco Julio SA, Amanda Suellen S. Corra, and Joo R. Santos JuNIOR: Multiple ordered positive solutions of an elliptic problem involving the pq-Laplacian, J. Convex Anal, 21 (4) (2014), 1023-1042.
[3] Dancer, E. N., and Klaus Schmitt: On positive solutions of semilinear elliptic equations, Proceedings of the American Mathematical Society, 101 (3) (1987), 445-452.
[4] A. Di Castro: Elliptic problems for some anisotropic operators, Ph.D. Thesis, University of Rome "Sapienza", a. y. 2008/2009
[5] A. Di CASTRO: Existence and regularity results for anisotropic elliptic problems, Adv. Nonlin.Stud, 9 (2009), 367-393.
[6] A. Di Castro: Anisotropic elliptic problems with natural growth terms, Manuscripta mathematica, 135 (3-4) (2011), 521-543.
[7] El Hamidi, Abdallah, and J. M. Rakotoson: Extremal functions for the anisotropic Sobolev inequalities, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 24 (2007), 741-756.
[8] De Figueiredo, Djairo G: On the existence of multiple ordered solutions of nonlinear eigenvalue problems, Nonlinear Analysis: Theory, Methods \& Applications, 11 (4) (1987), 481-492.
[9] Fragalà, Ilaria, Filippo Gazzola, and Bernd Kawohl: Existence and nonexistence results for anisotropic quasilinear elliptic equations, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 21 (5) (2004), 715-734.
[10] Ghergu, Marius, and Vicentiu Radulescu: Singular elliptic problems. Oxford Univ. Press, 2008.
[11] Hess, Peter: On multiple positive solutions of nonlinear elliptic eigenvalue problems, Communications in Partial Differential Equations, 6 (8) (1981), 951-961.
[12] S.N. Kruzhkov, I.M. KolodiI: On the theory of embedding of anisotropic Sobolev spaces, Russian Math. Surveys 38 (1983), 188-189.
[13] Ahmed Réda Leggat , Sofiane El-Hadi Miri: Anisotropic problem with singular nonlinearity, Complex Variables and Elliptic Equations, 61 (4) (2016), 496-509.
[14] N. H. Loc and K. Schmitt: On positive solutions of quasilinear elliptic equations, Differential Integral Equations, 22 (2009), 829-842.
[15] Miri, Sofiane El-Hadi: On an anisotropic problem with singular nonlinearity having variable exponent, Ricerche di Matematica 66 (2) (2017), 415-424.
[16] S. M. NIKOLSKII: Imbedding theorems for functions with partial derivatives considered in various metrics, Izd. Akad. Nauk SSSR, 22 (1958), 321-336.
[17] V. Radulescu, D. Repovs: Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, CRC Press, Taylor \& Francis Group, Boca Raton FL, 2015.
[18] Silva, Edcarlos D., Jose VA Goncalves, and Kaye O. Silva: On Strongly Nonlinear Eigenvalue Problems in the Framework of Nonreflexive Orlicz-Sobolev Spaces, arXiv preprint arXiv:1610.02662 (2016).
[19] Stampacchia, G: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), 189-258.
[20] M. Troisi: Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche Mat, 18 (1969), 3-24.

[^0]: http://siba-ese.unisalento.it/ © 2019 Università del Salento

