Sample Weights

Sample weights are necessary to make accurate estimates in the population from a complex household survey. Sample weights are presented below. Inputs include three sources of information:

- GridSample: PSU population and strata population
- Fieldwork: Number of segments created in the PSU during pre-field enumeration, number of segments created in the PSU during post-field enumeration (one-stage only), total number of dwellings/households listed in the final (segmented) PSU, and number of households selected for sampling (two-stage only)
- Interview: Number of non-responding households per PSU (household questionnaire), and number of non-responding individuals per PSU (individual questionnaire)

Household sample (base) weight. The formulas use 2 indices: 1...k strata (or entire coverage area) and 1...i PSU. The household sample (design) weight – the probability that PSU i is selected – is given by:

$$w_{hh.b} = \frac{G_k/g_{ik}}{n_k} \times \frac{M_{ik}}{m_{ik}} \times (b1_{ik} * b2_{ik})$$

Where:

 n_k is the number of selected PSUs in stratum k

 G_k is the estimated total population in stratum k from GridSample g_{ik} is the estimated population in PSU i in stratum k from GridSample m_{ik} is the number of households sampled in PSU i and stratum k during fieldwork

 M_{ik} is the number of total households enumerated in PSU i and stratum k during fieldwork

blik is the number of pre-field segments

b2ik is the number of post-field segments

Household response weight. Interviewers will list households and record household and individual response rates during fieldwork. After interviews are completed, calculate household response weight - the probability that cluster *i* is found and sampled, and households are found and respond – is given by:

$$w_{hh.r} = \frac{n_k}{n_{k*}} \times \frac{m_k}{m_{k*}}$$

Where:

 n_k is the number of selected PSUs in stratum k m_k is the number of households sampled in stratum k during fieldwork n_{k^*} is the number of found and sampled PSUs in stratum k m_{k^*} is the number of found and responded households in stratum k

Household sample weight. To calculate the raw household sample weight, multiply the sample base weight and household response weight like this:

$$w_{hh} = \frac{G_k/g_{ik}}{n_k} \times \frac{M_{ik}}{m_{ik}} \times (b1_{ik} * b2_{ik}) \times \frac{n_k}{n_{k*}} \times \frac{m_k}{m_{k*}}$$

Note that in one-stage samples, $\frac{M_{ik}}{m_{ik}}$ is equal to 1, and in two-stage samples, $b2_{ik}$ is equal to 1.

Individual sample weight. The individual sample weight includes four additional terms to account for the sampling of one adult among all eligible adults in the household, and the response rate of those adults. The individual sample weight is given by:

$$w_{ind.s} = \frac{G_k/g_{ik}}{n_k} \times \frac{M_{ik}}{m_{ik}} \times (b1_{ik} * b2_{ik}) \times \frac{n_k}{n_{k*}} \times \frac{m_k}{m_{k*}} \times \frac{U_{ik}}{u_{ik}} \times \frac{u_k}{u_{k*}}$$

Where:

 n_k is the number of selected PSUs in stratum k G_k is the estimated total population in stratum k from GridSample g_{ik} is the estimated population in PSU i in stratum k from GridSample m_{ik} is the number of households sampled in PSU i and stratum k M_{ik} is the number of total households enumerated in PSU i and stratum k $b1_{ik}$ is the number of pre-field segments $b2_{ik}$ is the number of post-field segments n_{k^*} is the number of found and sampled PSUs in stratum k m_k is the number of households sampled in stratum k during fieldwork m_{k^*} is the number of found and responded households in stratum k U_{ik} is the number of eligible adults in PSU i and stratum k U_{ik} is the number of sampled adults in PSU i and stratum k U_{ik} is the number of sampled adults in stratum k

Calculate sample weights in Excel. Calculate sample weights in Excel, or a statistical software programme such as Stata. See Figure 25 for example.

Normalizing sample weights. Household surveys are often "normalized" or "standardized" such that the sum of weighted respondents equals the sum of respondents. Conceptually, each observation in the sample represents slightly more or slightly less than 1 household or person. To normalize sample weights, apply the below formulas:

$$w_{hh_norm} = w_{hh} \times \frac{\sum (m_{ik*})}{\sum (w_{hh} \times m_{ik*})}$$

Where:

 m_{ik^*} is the number of adults with a completed interview in PSU *i* in stratum *k* who is the raw household sample weight in PSU *i* in stratum *k*

$$w_{ind_norm} = w_{ind} \times \frac{\sum (u_{ik*})}{\sum (w_{ind} \times u_{ik*})}$$

Where:

 u_{ik^*} is the number of adults with a completed interview in PSU *i* in stratum *k* w_{ind} is the raw individual sample weight in PSU *i* in stratum *k*

1 2 3 4 6	Stratum_ID 1 2	<u>g_ik</u> 872.0	n_k 15	<u>G_k</u> 112020.6		M ik		n_k*	<u>m_k</u>	m_k*	m_ik*	w_hh	w_hh * m_ik*	
3 4 6						12	12	15	292	292	12	119.901	1438.809	0.93
3 4 6		91.4	5	1318.6			11	5	95	90	11	51.763	569.392	0.40
6	1	830.1	15	112020.6			24	15	292	292	24	143.936	3454.476	1.11
	1	245.5	15	112020.6		24	24	15	292	292	24	334.641	8031.387	2.59
	1	888.2	15	112020.6				15	292	292	16	134.527	2152.435	1.04
7	2	230.7	5	1318.6		27	27	5	95	90	26	16.890	439.150	0.13
8	2	94.1	5	1318.6				5	95	90	12	124.305	1491.654	0.96
9	1	1142.9	15					15	292	292	25	98.016	2450.404	0.76
10	1	317.1	15	112020.6			16	15	292	292	16	306.135	4898.162	2.37
12	1	702.8	15	112020.6				15	292	292	18	127.509	2295.163	0.98
13	1	617.3	15	112020.6				15	292	292	7	169.376	1185.629	1.31
14	2	172.7	5	1318.6		15		5	95	90	15	17.735	266.018	0.13
15	2	133.7	5	1318.6				5	95	90	26	14.573	378.888	0.11
16	1	721.4	15				21	15	292	292	21	196.692	4130.526	1.52
18	<u>i</u>	728.6	15					15	292	292	25	92.244	2306.104	0.71
20	1	844.2	15	112020.6				15	292	292	19	150.396	2857.520	1.16
22	<u>i</u>	871.0	15	112020.6				15	292	292	12	128.607	1543.286	0.99
23	1	840.8	15	112020.6		_		15	292	292	15	142.106	2131.588	1.10
24	1	605.1	15	112020.6				15	292	292	35	111.083	3887.898	0.86
25	1	666.7	15	112020.6				15	292	292	23	145.617	3349.183	1.12
PSU_ID	Stratum_ID	w_l	_				ik*	u_k*		_ind	w_ind '		norm	
1	1	119.90	_	292		12	12	288		.437		3.245	0.979	
2	2	51.76		90		11	11	88		.443		2.878	0.479	
3	1	143.93	_	292		24	23	288		.404		0.283	1.158	
4	1	334.64		292		24	24	288	876	.496		5.913	2.491	
6	1	134.52	27	292		16	16	288		.791		4.659	0.775	
7	2	16.89	_	90		26	26	88		.809		1.037	0.159	
8	2	124.30		90		12	12	88		.824		3.889	0.903	
9	1	98.01	_	292		25	25	288		.431		0.782	0.712	
10	1	306.13	_	292		16	15	288		.968		9.513	2.205	
12	1	127.50		292		18	18	288		.929		4.722	1.000	
13	1	169.37	76	292	19	7	7	288		.119	326	2.832	1.325	
14	2	17.73	_	90		15	14	88		.158		0.208	0.134	
15	2	14.57	73	90		26	25	88		.954		3.852	0.088	
16	1	196.69	92	292	52	21	21	288	493	.811	1037	0.024	1.403	
18	1	92.24	14	292	86	25	25	288	321	.727	804	3.178	0.914	
20	1	150.39	96	292	46	19	19	288	369	.173	701	4.293	1.049	
22	1	128.60	07	292	27	12	12	288	293	.385	352	0.620	0.834	
23	1	142.10	06	292	43	15	15	288	413	.028	619	5.421	1.174	
24	1	111.08	_			35	34	288		.631		9.453	1.244	
25	1	145.61	17	292		23	22	288		.793		3.441	0.949	
	1			<u> </u>										

Figure 26. Example household and individual sample weights calculations