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A Global Perspective on Microplastics
Robert C. Hale1, Meredith E. Seeley1, Mark J. La Guardia1, Lei Mai2, and Eddy Y. Zeng2

1Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, USA, 2Guangdong Key Laboratory of
Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China

Abstract Society has become increasingly reliant on plastics since commercial production began in
about 1950. Their versatility, stability, light weight, and low production costs have fueled global demand.
Most plastics are initially used and discarded on land. Nonetheless, the amount of microplastics in
some oceanic compartments is predicted to double by 2030. To solve this global problem, we must
understand plastic composition, physical forms, uses, transport, and fragmentation into microplastics
(and nanoplastics). Plastic debris/microplastics arise from land disposal, wastewater treatment, tire wear,
paint failure, textile washing, and at‐sea losses. Riverine and atmospheric transport, storm water, and
disasters facilitate releases. In surface waters plastics/microplastics weather, biofoul, aggregate, and sink,
are ingested by organisms and redistributed by currents. Ocean sediments are likely the ultimate destination.
Plastics release additives, concentrate environmental contaminants, and serve as substrates for biofilms,
including exotic and pathogenic species. Microplastic abundance increases as fragment size decreases,
as does the proportion of organisms capable of ingesting them. Particles <20 μm may penetrate cell
membranes, exacerbating risks. Exposure can compromise feeding, metabolic processes, reproduction,
and behavior. But more investigation is required to draw definitive conclusions. Human ingestion of
contaminated seafood and water is a concern. Microplastics indoors present yet uncharacterized risks,
magnified by the time we spend inside (>90%) and the abundance of polymeric products therein.
Scientific challenges include improving microplastic sampling and characterization approaches,
understanding long‐term behavior, additive bioavailability, and organismal and ecosystem health risks.
Solutions include improving globally based pollution prevention, developing degradable polymers and
additives, and reducing consumption/expanding plastic reuse.

1. Overview

Microplastics (1 to 5,000 μmparticles) captured widespread attention after reports detailed massive “garbage
patches” in the world's great oceanic gyres. Concern followed over possible negative impacts on marine life.
While plastic wastes in the environment is truly a global and multi‐media issue, popular press and scientific
attention has predominantly been “ocean‐centric” (e.g. Cole et al., 2011). Like climate change and persistent
organic pollutants, plastic debris exemplifies our capacity to alter the environment on a global scale.
Villarrubia‐Gómez et al. (2018) argued that marine plastic contamination is irreversible and globally ubiqui-
tous and therefore meets two of the three conditions for a chemical pollution planetary boundary threat. The
third condition is demonstrated widespread ecological disruption. Investigation of the possibility for such
disruption has only recently begun but will become more critical as plastic contamination rises.
Indeed, Koelmans et al. (2017) recently argued that it is time to move beyond conjecture and proposed a
frame work for evaluating toxicological risks of microplastics.

Microplastics are found in diverse forms, including spheres, fragments, and fibers. Most (with the exception
of intentionally manufactured microbeads) arise from the deterioration of larger plastics (macroplastics).
Microplastics fragment into ever‐smaller debris over time, eventually becoming nanoplastics (<1 μm;
Lambert & Wagner, 2016; Hartmann et al., 2019). Hence, microplastics are largely a transitionary state
between macrodebris and nanomaterials. Besseling et al. (2018) estimated that fragmentation of spherical
microplastics could generate >1014 times greater numbers of nanoparticles. To understand microplastic
sources, fate, and consequences, one must consider the continuum, from plastic products/debris to micro-
plastics and nanoplastics. Hence, this review will encompass all three size classes.

Despite growing attention, the actual amounts of plastics in environmental compartments (terrestrial, mar-
ine, freshwater, and atmospheric) and their ecological significance are still unclear. This is in part due to the
recency of attention and lack of adequate sampling and analysis approaches, as well as the immensity and
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diversity of the oceans. Estimates of the amount of floating plastic in the ocean are as high as 236,000 metric
tons (Van Sebille et al., 2015). Jambeck et al. (2015) suggested that 4.8 to 12.7 million tons of plastic debris per
year enter the ocean and projected cumulative inputs will increase tenfold by 2025.

Most published plastic debris surveys have focused on the ocean's surface (e.g., Cózar et al., 2014), but efforts
are now expanding into deeper waters, sediments, freshwaters, soils, air, and biological systems. In part, this
is based on ease of sampling and a predilection toward floating plastics. This is being remedied as the
research field matures. Microplastics have recently been discovered in presumably pristine locales, including
Arctic sea ice (Peeken et al., 2018), the Antarctic (Waller et al., 2017), remote mountain ranges (Allen et al.,
2019), and deep ocean trenches (Jamieson et al., 2019). As is common with emerging environmental issues,
much early work focused on describing the extent of microplastic contamination, although sampling and
analytical methods are not yet up to the challenge. Research is now also expanding to the processes of micro-
plastic formation, transport, fate, organismal exposure, and ecosystem effects.

As immense as the issue of microplastics in the world's ocean is, it is only part of a larger, more complex rea-
lity. Most waste plastics are disposed of in landfills, incinerated, or recycled, although much is mismanaged
and enters the natural environment. Over the last 70 years the nations of the world have become increasingly
dependent on plastics. Between 1950 and 2015 the annual growth rate of production has been 8.4% (Geyer
et al., 2017). Emerging and poor countries are now adopting usage of plastics en masse (Lwanga et al.,
2017), resulting in an upsurge in global plastic manufacture and consumption. The rate of plastic production
has recently surpassed that for carbon emissions (Figure 1). Ironically, affluent nations have shipped sub-
stantial amounts of plastic wastes, including obsolete electronics (e‐waste), to poorer countries for recycling.
In many cases these materials have been mishandled and much of the remnants (after removal of valuable
components such as copper and circuit boards) discarded improperly or even burned (Asante et al., 2016).
For these reasons and a lack of waste management infrastructure, the Asian Pacific region is believed to have
overtaken Western countries as the major contributor of plastic debris to coastal ocean waters (Jambeck
et al., 2015). However, China, a major waste recipient, recently disrupted the plastics recycling market by
restricting foreign imports (Tan et al., 2018). Other importing nations are following suit. This may alter
future plastic debris distributions and force more affluent countries to invest in solutions.

Figure 1. While the global emission of carbon exceeds that of plastic production, the rate of increase of the latter now exceeds that of the former. Figure from
Borrelle et al. (2017).
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To comprehend and ultimately resolve the microplastics problem, we must consider the nature, usage, and
fate of plastics in terrestrial, atmospheric, and aquatic compartments. We must balance the positive and
negative consequences of plastics, in order to prioritize actions to best protect global health. Currently, most
people researching microplastics in the environment have operated largely within individual specialties, for
example, polymer chemistry, waste management, atmospheric, terrestrial, freshwater, and marine science.
Delineation and resolution of the plastics issue will require wider participation/collaboration, adoption of
more holistic, interdisciplinary approaches, and recognition of plastic pollution as a risk to the global envir-
onment. This review is intended to facilitate that transition and will conclude with the identification of key
challenges to achieve these ends.

2. The Nature of Plastics and Microplastics

While the public often assumes that all plastics are compositionally the same and thus behave analogously in
the environment, this is not the case. To understand the behavior, fate, and consequences of microplastics, we
must first consider their composition and diversity. Identification ofmicroplastics in the environment presents
a multidimensional challenge that is yet unmet. Their complexity parallels that of naturally occurring, parti-
culate organic matter (Hoellein et al., 2019). Plastics (and thus microplastics) vary in chemical composition,
physical form, size, texture, and shape. These characteristics evolve while in use and after discard.

Intentionally manufactured microplastics, designated primary microplastics, include microbeads in perso-
nal care products and industrial abrasives for delicate surfaces. Microbeads are also used in cleaning agents,
coatings and paints, drilling fluids in the oil and gas industry, and as precursor resins and pellets for theman-
ufacture of finished plastic products. In the U.S. theMicrobeads Free Waters Act of 2015was enacted to elim-
inate microbeads from rinse‐off personal care products (McDevitt et al., 2017), but not from nonrinse off
(e.g., sunscreen and cosmetic makeup) or industrial applications. Similar regulations have been enacted
elsewhere. Secondary microplastics are formed from the fragmentation of larger plastics during usage
(e.g., wear particles from tires) or after disposal. Secondary are far more abundant than primary microplas-
tics. Environmental half‐lives of plastics vary by polymer type and ambient conditions but range from days to
centuries (Ward et al., 2019). Most have not been evaluated scientifically. Andrady (2017) postulated that a
majority of plastic fragmentation occurs on land due to greater ambient temperatures, frictional forces, and
UV exposure.

2.1. Uses and Properties of Plastics

Due to their attributes, synthetic polymers have supplanted many naturally derived materials in modern
society (Lebreton & Andrady, 2019). Applications include single‐use food and beverage containers, thermal
insulation, home and workplace furnishings, electrical and electronic devices, vehicle interiors, toys, fabrics,
surface coatings, and even medical devices (e.g., artificial joints, incubators, intravenous (IV) fluid bags, and
drug delivery devices).

The design of plastics determines their properties and fitness for desired applications. Plastics are composites
of long chain organic polymers. Finished products may be homogeneous in terms of constituent polymer or
contain different types blended or cross‐reacted to achieve the desired characteristics. Polymer chains are
produced by combining chemical monomers, often derived from fossil fuels, into strands of repeating units.
Polymers also occur naturally in molecules such as biodegradable deoxyribonucleic acid or starch, as well as
more environmentally persistent cellulose and chitin. Microorganisms capable of degrading these natural
polymers have evolved over time. In contrast, synthetic polymers have only been produced in large amounts
since about 1950. For this reason and their compositional features, most synthetic polymers exhibit greater
resistance to biodegradation.

The densities of plastics vary by composition and span those of water. Most early observations of plastics
focused on macrodebris floating at the water's surface or stranded on shorelines. These include low‐density
polymers used in single‐use containers such as polyethylene and polypropylene. However, many other poly-
mers (e.g., polyethylene terephthalate, polycarbonate, and polyvinyl chloride) are denser than water and
thus are expected to sink. In aquatic environments, even these simple predictions as to fate may be mislead-
ing, as over time most surfaces develop a biofilm (Zettler et al., 2013) or form aggregations, which may even-
tually cause even buoyant plastics to sink. Polystyrene foam is common in fishing floats but will sink after air
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spaces within become waterlogged. In contrast, surface tension can main-
tain dense plastic resins at the water's surface.

Organic or inorganic additives are used to modify plastic properties such
as color, flexibility, flame retardancy, and ultraviolet (UV) resistance.
These additives may be present at percent by weight levels and will travel
with fragments formed from the parent products. Nonpolymeric fillers,
either functional or simple extenders, may also be added to plastics during
their formation to modify performance or reduce cost. It is noteworthy
that these amendments can even alter the overall density of the product
and thus its physical fate in aquatic systems. Additives, unreacted mono-
mers, degradates, and other materials (including nanoparticles) may be
released from the polymer matrix as a function of their properties and
environmental conditions. Indeed, researchers reported that some of
these plastic‐associated components may contribute to oceanic dissolved
organic carbon (DOC) pools (Romera‐Castillo et al., 2018).

A plastic product's mode of use and disposal influences its fate. To illus-
trate, automobile tires are subject to frictional road wear and weathering

while in use. In contrast, the plastic casings of electronics typically reside indoors and release minimal
microplastics during their in‐use lifetimes. Diversity of composition and the presence of potentially toxic
additives in plastics complicate reuse and environmental consequences. For example, if the host polymer
breaks down rapidly in the environment, the additives therein may be released. In recycling, banned addi-
tives may carry over into the new products. For example, flame retardant polybrominated diphenyl ether
(PBDE) polymer additives were removed from production in the U.S. in 2004. However, residues may be pre-
sent in contemporary carpet underlayment formed from recycled materials (DiGangi et al., 2011). Recycling
of e‐wastes in developing countries often involves shredding and burning plastics and hence releases micro-
plastics locally (Labunska et al., 2013).

2.2. Weathering and Degradation of Plastics

Plastics are vulnerable to weathering to varying degrees. Chemical oxidation of the polymer as a result of expo-
sure to sunlight is often themost impactful (Andrady, 2015). As noted above, additivesmay reduce such degra-
dation. Photooxidation is most rapid at the water surface, on beaches, and in exposed terrestrial scenarios,
negligible if shielded in aquatic sediments, soil, or landfills. Weinstein et al. (2016) noted that biofilm forma-
tion on plastic surfaces reduced UV light penetration by up to 99%. Interestingly, Khaled et al. (2018) reported
that incorporation of brominated flame retardant additives into polystyrene film increased UV absorption and
subsequent photooxidation of the polymer. They observed that byproducts were generated from the flame
retardants themselves and from the reaction of the polystyrene with bromine radicals. The amount of degra-
dation products leached into water constituted up 14% of the weight of the original polymeric film.Weathering
of plastics by UV oxidation may also increase vulnerability to later biodegradation.

Some polymers are composed of monomers derived from renewable, nonpetroleum sources, for example,
rayon and cellulose acetate (used in textiles and cigarette filters). Hartmann et al. (2019) included these as
“plastics,” although others have excluded them due to their cellulose‐derived origin. Additionally, polyhy-
droxyalkanoate from bacterial precursors and polyactic acid from plant starch have recently been produced
to bemore inherently biodegradable (Harrison et al., 2018). The goal is to allow complete degradation to CO2

after the end of product service life, as partial breakdown may generate intermediates of unknown proper-
ties, as well as microplastics. The rate of polymer biodegradation increases as particle size decreases and sur-
face area increases (Chinaglia et al., 2018), although this has not been well investigated under marine
conditions. This may be an important factor in long‐term fate of microplastics (Figure 2). Characteristics
of the surrounding environment are also controlling (Dilkes‐Hoffman et al., 2019). For example, the above
biopolymers are denser than water and hence will sink. There, it may encounter lower ambient oxygen
levels, temperature, and light exposure, reducing the subsequent rate of degradation.

Recent work indicates that certain microorganisms may be capable of degrading petrobased synthetic poly-
mers. For example, Yang et al. (2015) observed that the gut bacteria of mealworms can slowly breakdown

Figure 2. Proposed relationship betweenmicroplastic size, particle number,
and total mass over time. We postulate that as particle size decreases and
surface area increases, environmental reactivity will increase. This may
result in a decrease in total mass due to enhanced biodegradation.
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polystyrene, although residues remain. Yoshida et al. (2016) reported that bacteria exposed to polyethylene
terephthalate at a recycling site produced enzymes that could degrade it to its constituent monomers.
However, polymers with greater crystallinity, such as polyethylene, may be more resistant. Nonetheless,
Brandon et al. (2018) observed similar rates of degradation of polyethylene and polystyrene by
mealworms and that this was facilitated by adaption of their microbiomes. Microbial growth during use is
a concern in a number of plastic applications, such as kitchenware. Thus, some manufacturers have
added antimicrobial agents, for example, triclosan, to products. Alternatively, the so‐called oxodegradable
plastics are imbued with additives (e.g., transition metals) to accelerate polymer oxidation and
fragmentation of the plastic (Ammala et al., 2011). This was initially promoted as an attractive feature for
plastic sheeting (also known as plastic mulch or plasticulture) used to block weeds and maintain soil
moisture and temperature in crop farming (Steinmetz et al., 2016). However, biodegradation of the
residual plastic has been found to be slow and to release microplastics. Hence, the European Union has
taken steps to restrict their usage (European Union, 2018). However, a new polymer called poly
(diketoenamine) was recently synthesized that may be readily disassembled into its monomers
(Christensen et al., 2019). This allows flexibility of reuse and an opportunity to separate out unwanted
additives from previous applications.

2.3. Analysis of Microplastics

An overview of current sampling and analytical approaches for determining microplastics in complex envir-
onmental media is provided here to allow the reader to evaluate the completeness and accuracy of the avail-
able literature detailing their presence in the global environment. The first crucial step for quantifying
microplastics in matrices from the field is collecting a representative sample consistent with the desired
research objectives. Many published studies have focused on specific zones where plastics are obvious, such
as the sea surface, shorelines, and beaches. Water sampling has often been conducted by towing a mesh net
(often 300 μm). However, this distorts the true size distribution of microplastics in the water, as shown in
Figure 3, which compares data from Cózar et al. (2014) versus Enders et al. (2015). Further, Chae et al.

Figure 3. Microplastic size distributions depend on sampling location (geographically and vertically in the water
column) and analytical methods applied. For example, Enders et al. (2015) pumped North Atlantic surface waters
through a 10 μm filter and then analyzed microplastics with Raman microspectroscopy. Cózar et al. (2014) collected
floating microplastics with a 200 μm net during the Malaspina global circumnavigation. They selected candidate micro-
plastics with a dissecting scope and evaluated composition of random particles with Raman spectroscopy. Selection of
surface waters, use of large mesh nets (>200 μm), and FTIR detection (minimum detection limit 20 μm, but often larger)
has been common and hence will underestimate the contribution of small microplastics or dense polymers that sink.
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(2015) collected orders of magnitude greater microplastics from water when using a 20 μm hand net versus
300 μm trawl net. In addition, higher‐density and biofouled microplastics will sink; thus, water surface‐
focused approaches will not collect these.

Organisms may be evaluated for microplastic content in their entirety, or specific organs targeted. In any
event, researchers (e.g., Erni‐Cassola et al., 2017) commonly utilize a digestion step to eliminate labile tis-
sues, leaving behind the more recalcitrant microplastics. Evaluation of small microplastics (on the order
of 10 μm) and nanoplastics that may have penetrated cell membranes should be considered as these may
have greater toxicological implications (Triebskorn et al., 2018) than those in the lumen of the gut (which
may be quickly egested). Care to prevent and monitor contamination by nonsample‐related microplastics
during collection, processing, and detection are essential. Lab environments, where sample processing
occurs, are major sources of microplastics due to the abundance of synthetic fibers and other plastic products
indoors. This portends the extent of our personal exposure to microplastics indoors.

To understand the fate and consequences of microplastics in the environment, we must be able to measure
their full range of sizes and composition. Efforts to date examining their distribution and abundances have
been hampered by inadequate methods. Matrices where microplastics reside include water, sediment, bio-
logical tissues, soil, wastewater sludge, and air. Approaches to sampling, cleanup, and detection of micro-
plastics in these media are still evolving. Multistep procedures are common in environmental chemistry
due to the need to extract the analytes from the bulk matrix and remove interfering materials before final
microplastic detection and quantitation. Ideally, the detection technique provides both quantitative and
qualitative information (e.g., polymer type and quantity, additive content, fragment dimensions, and shape).
Analysis should be automated where feasible to reduce costs and accelerate sample throughput. To date,
researchers in the field have utilized different techniques for extraction from environmental matrices
(Fuller & Gautam, 2016; Hurley, Lusher, et al., 2018; Hurley, Woodward, et al., 2018; Wagner et al., 2017)
and for polymer identification (Fries et al., 2013; Käppler et al., 2018; Mintenig et al., 2017). Differences in
method effectiveness make comparison of data between studies more difficult.

As microplastics breakdown continuously in the environment, smaller fragments become increasingly
abundant over time (see Figures 2 and 3). While the fate of these minute particles has not yet been deter-
mined, they hold the key to the ultimate destiny of microplastics in the environment. Nonetheless, the
majority of published reports have focused on materials >100 μm due to methodological constraints.
Published studies also present the presence of microplastics in different ways, for example, number or
weight of microplastics per sample volume or weight. This further impairs comparison of studies.

Several reviews of microplastic detection methods have been published (e.g., Mai et al., 2018; Prata, 2018;
Zarfl, 2019). Early approaches often relied on light microscopy. However, this technique cannot provide che-
mical composition and thus is weak for differentiating synthetic polymers from sample interferences.
Fourier transform infrared spectroscopy (FTIR) has been widely used for polymer identification, producing
spectra that can bematched to library standards. The development of FTIRmicrospectroscopy, allowing par-
ticle chemical mapping, has substantially advanced microplastic characterization capabilities. In sophisti-
cated instruments sample filtrates may be automatically scanned for microparticles and fibers and
tentative polymer types assigned using, for example, a focal plane array detector (e.g., Primpke et al.,
2017). Unfortunately, conventional FTIR is typically limited to targets >10 μm due to diffraction limit con-
siderations. Raman microspectroscopy can provide detection down to about 1 μm and is being increasingly
utilized (Schymanski et al., 2018). Polymers may be weathered and thus produce spectra deviating from vir-
gin standards, complicating identification. In response, some researchers have created their own libraries of
weathered materials to assist identification (e.g., Choy et al., 2019). Attenuated total reflectance FTIR and
atomic force microscopy have also been used but require physical contact of the probe with the targeted
material. Thus, these tools may not be optimal for samples containing numerous minute targets. Optical
photothermal infrared spectroscopy, offering submicron spatial resolution, has recently been commercia-
lized. This technique uses a visible light probe to measure the photothermal response of targeted particles
following IR absorption (Figure 4). Configurations are available that permit both IR and Raman scans to
be performed on a given target, providing increased compositional information (Marcott et al., 2019).

Alternatively, Erni‐Cassola et al. (2017) applied a lipophilic fluorescent dye (Nile red), in combination with
fluorescence microscopy, to reveal microplastics in samples. Use of image analysis software allowed
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automated measurements. Prior to detection, the authors applied a hydrogen peroxide treatment (see
discussion below) to reduce/eliminate fluorescent biogenic materials. However, some less intense
fluorescence by residual chitin was observed. Fluorescence intensity was also less for more polar polymers
(e.g., polycarbonate, polyurethane, polyethylene terephthalate, and polyvinyl chloride) than lipophilic
polymers such as polyethylene and polypropylene. Fluorescence may also be used to prescreen targets for
further micro FTIR or Raman investigation (e.g., Maes et al., 2017). Finally, destructive techniques such
as pyrolysis‐GC/MS can be employed, whereby microplastic(s) is vaporized at between 600 and 700 °C
and resulting components chromatographically separated and identified by mass spectrometry (Käppler
et al., 2018). However, destructive techniques such as this do not allow evaluation of particle shape and size.

Alternatively, samples can be presieved to isolate the desired size ranges. Resulting fractions may then be
extracted/dissolved and then subjected to pyrolysis or other techniques. For example, Ceccarini et al.
(2018) applied differential solvent extraction, pyrolysis gas chromatography/mass spectrometry (GC/MS),
FTIR, size exclusion chromatography, and nuclear magnetic resonance to the analysis of microplastics in
to beach sediment samples. They observed (1) substantially greater amounts of microplastics than com-
monly reported in samples due to their detection of microplastics less than 20 μm; (2) extensive oxidation
of olefinic and polystyrene polymers due to weathering; and (3) fractionation of different microplastics by
size, polymeric composition, and degree of chemical weathering across beach transects. They further
observed that denser microplastics (such as polyester, polyamide, and polyvinyl chloride), as well as oxidized
microplastics, accumulated preferentially in aquatic versus beach sediments.

Figure 4. Schematic of an optical photothermal IR/Raman spectrometer (a), a visible image of a microparticle in an indoor dust sample (b), and corresponding
FTIR (c) and Raman (d) spectra.The microparticle was tentatively identified as a poly (methyl methacrylate) based on comparison to library spectra. Analysis
and graphics courtesy of Debra Cook and Jay Anderson, Photothermal Spectroscopy Corp., Santa Barbara, CA, USA.
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Environmental samples commonly contain interfering, nonplastic materials. Widely used treatments
employ the low specific gravity and high chemical resistance of synthetic polymers (Stock et al., 2019) to
remove interfering materials. Flotation/sedimentation to separate microplastics from denser materials, such
as minerals, is regularly utilized. This may be conducted in simple glass separatory funnels or more elaborate
apparatuses, such as the stainless steel Munich Plastic Sediment Separator (Coppock et al., 2017). As some
polymers (e.g., polyethylene terephthalate, acrylonitrile butadiene styrene, and nylon) have densities
exceeding water, a high‐density saline solution (e.g., NaCl, NaI, or ZnCl2) may be employed to facilitate their
flotation. In addition, researchers often employ a step to destroy interfering natural materials such as bio-
fouling on plastic surfaces and cellulose and chitin particles (Stock et al., 2019). Hydrogen peroxide and
Fenton's reagent are most commonly employed, although alternatives include acid, base, or a suite of
enzymes that target specific classes. Care must be exercised to include the full range of polymers during den-
sity separation and not destroy more labile polymers during caustic treatment. Differential extraction may
also be used. For example, Fuller and Gautam (2016) applied a two‐step, pressurized fluid extraction with
different organic solvents to separate microplastics from municipal waste and industrial soil samples. The
first step used methanol at 100 °C to remove coincident fats and oils. The second step employed methylene
chloride at 180 °C to yield the plastics. The extraction process could be conducted using an automated com-
mercial instrument. The extracted material solidified after solvent evaporation into a composite plastic resi-
due. Limitations were that shape and size data for individual particles were lost, and interpretation of the
combined IR spectra from multiple, coincident polymers was more difficult. Alternatively, C. Liu, Li, et al.
(2019) quantified polycarbonate and polyethylene terephthalate microplastics in a variety of matrices by first
depolymerizing them via alkali‐assisted thermal hydrolysis. They then used liquid chromatography/mass
spectrometry (LC/MS) to detect the resulting bisphenol A and p‐phthalic acid, respectively.

In summary, available sampling and analysis approaches have rapidly advanced in the past decade, yet they
still fail to fully meet the challenges presented by microplastics in the environment and must be improved.
Data on environmental microplastics levels should be scrutinized for methodological rigor and complete-
ness. In most studies to date, published concentration values are underestimates, as they do not encompass
important environmental compartments, polymer types, microplastic or nanoplastic sizes, or chemically
weathered materials.

3. Microplastics in the Indoor and Terrestrial Environment

Residents of developed countries spend >90% of their lives indoors (Bernstein et al., 2008), and homes and
workplaces are increasingly airtight and insulated with additive‐treated insulation such as polystyrene.
Consequently, our exposure to microplastics from inhalation and dust ingestion indoors may have toxicolo-
gical consequences, but scant research exists on the subject. In one of the few published studies, Dris et al.
(2017) reported indoor air concentrations of microfibers of between 1.0 and 60.0 fibers m−3, exceeding out-
door levels (0.3 to 1.5 fibers m−3). Indoor microfibers consisted of 67% natural or hybrid materials (primarily
cellulose fibers, acetate cellulose, or keratinous wool). The remaining fibers were wholly synthetic polymers,
dominated by polypropylene (Dris et al., 2016).

Polymer‐based products often contain chemical additives (e.g., flame‐retardants, dyes, plasticizers, and UV‐
inhibitors). Such additives were long‐assumed to be completely sequestered within the polymer matrix.
However, we now recognize that they may enter indoor air and dust by volatilization, polymer degradation,
and fragment dispersal. Additives in indoor dust samples have been shown to correlate with the number of
polymer‐related consumer products in the room (Marklund et al., 2003). A review by Lucattini et al. (2018)
described multiple studies detecting polymer additives in indoor air and dust. Indoor levels generally exceed
those outdoors (Melymuk et al., 2016; Wong et al., 2018). Potential health effects may be linked. For exam-
ple, Pauly et al. (1998) examined 114 human malignant lung specimens and found that 87% contained cel-
lulosic or other polymeric fibers.

Volatilization of chemicals (e.g., styrene, vinyl chloride, and formaldehyde) from polymers is a major source
of indoor air pollution; however, microplastic dispersal is an underappreciated pathway for semivolatile che-
mical dissemination. Concentration variations in indoor dust samples of up to 6 orders of magnitude for
phthalates and flame retardant additives have been reported (Harrad et al., 2008; Lucattini et al., 2018);
likely due to the heterogeneous distribution of microplastics within the indoor spaces sampled. Webster
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et al. (2009) supported the premise that additive‐laden microplastics play a role in contaminant dispersal.
Using X‐ray energy dispersive spectrometry, they imaged bromine‐rich sites (a marker of brominated flame
retardant additives) on microparticles in indoor dust samples from homes and vehicles. The particles them-
selves consisted of a calcium‐containing acrylic polymer (calcium carbonate is a common polymer filler;
Thenepalli et al., 2015).

Suzuki et al. (2009) detected microplastics in indoor dust samples from Japanese households and work
places. Again, bromine‐rich clusters within the dust samples were observed. Particle textures, colors, and
fibrous shapes were consistent with microplastics and textile fibers, ranging in size from 500 to 1,500 μm.
Wagner et al. (2013) identified BDE‐209 (a common flame retardant) containing microplastics in dust using
Ramanmicrospectroscopy. Fluorescent pigments, dyes, and optical brightening or whitening agents are also
widely used in the plastic and textile industry (Christie, 1994). Dehghani et al. (2017) employed fluorescence
microscopy to assess microplastics in urban street sweeping samples from the central district of Tehran, Iran.
Fluorescent particles and fibers were visible in all samples. Samples were also analyzed by energy dispersive
X‐ray spectroscopy for Al, Na, Ca, Mg, and Si, elements common in polymer antioxidants. Concentrations of
microplastics in the dust samples ranged from 2.8 to 20 particles g−1 and from <100 to 5,000 μm in size. C.
Liu, Li, et al. (2019), using the thermal hydrolysis/LC MS approach previously described, reported polyethy-
lene terephthalate levels in Chinese indoor and outdoor dust up to 120,000 and 9,020 mg/kg, respectively.
Polycarbonate concentrations were lower, that is, 4.6 and 2.0 mg/kg, respectively. The authors also
employed FTIR microscopy and confirmed substantial numbers of polyester fibers in the dust, supporting
the polyethylene terephthalate findings. The authors projected that the estimated daily intake of polyethy-
lene terephthalate via dust ingestion for infants was 89,700 ng/kg‐bw/day (C. Liu, Li, et al., 2019)

Catarino et al. (2018) compared microplastic exposure from eating mussels to that acquired from indoor dust
fallout during the meal. The authors concluded that the latter likely contributed orders of magnitude more
microplastics than did the former, highlighting the importance of human exposure in the indoor environment.

3.1. Terrestrial Inputs of Microplastics to the Oceans

Plastics are manufactured, used, and predominantly first disposed of on, or into, soils. Plastics at the soil
surface are subjected to greater UV exposure, abrasion, and temperatures than water‐immersed materials
(Ng et al., 2018). Upon entering soils, microplastics can penetrate vertically via water infiltration
(O'Connor et al., 2019), facilitated by wet/dry weather cycles or tilling (Rillig, Ingraffia, et al., 2017) and
by the actions of soil organisms (Rillig, Ziersch, et al., 2017). Smaller particles are more likely to move hor-
izontally and vertically. Panno et al. (2019) recently detected microplastics, exclusively fibers, up to 15.2 par-
ticles L‐1 in 16 of 17 groundwater samples from two karst aquifers in Illinois (USA). They hypothesized these
microplastics may have been derived from drainage from private septic systems. Treated wastewater efflu-
ents are increasingly being injected into aquifers to replenish groundwater. Oil and gas production water
and other industrial wastes may contain microplastics and are also injected for disposal purposes. As to orga-
nismal uptake and transfer, Lwanga et al. (2017) measured microplastic and macroplastics from discarded
packaging in home gardens in southeast Mexico. Analyses showed that microplastics increased approxi-
mately tenfold between soil (0.87 particles g−1), earthworms (14.8 particles g−1), and chicken feces (130 par-
ticles g−1). Macroplastics were also confirmed in the chickens' gizzards and crops. The authors suggested
that the chickens' feeding and digestive processes further fragmented the ingested macroplastics. In addi-
tion, the presence of microplastics in soils has been observed to alter resident microbial respiration and other
processes (Yang et al., 2018). Such “ecosystem”metabolic consequences require greater investigation in both
terrestrial and aquatic environments.

Land‐based microplastic sources are diverse and include landfills, wastewater solids and effluents, losses
from industrial facilities (including plastics manufacturing), plastic agricultural mulch, polymer paints,
and vehicle tire abrasion (Chae & An, 2018).
3.1.1. Landfills and Dumps
Most plastics are disposed of in landfills in developed countries. These vary from secure, lined, and covered
facilities to open trash piles that are later abandoned. However, even developed countries have had issues
with off‐site losses or mismanaged waste. For example, activities associated with the Fresh Kills landfill that
served New York City were suggested as a major source of the medical waste (the so‐called “syringe tide”)
that washed up on nearby beaches in 1987–1988 (Sheer & Moss, 2011). Historically, and in developing
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countries today, many dumps have been located in low‐lying areas, as such lands were deemed of limited
value due to flooding (Brand et al., 2018). As sea level rises, these zones will be subject to greater flooding
and erosion, contributing to additional release of plastic debris. Construction and demolition (C&D) landfills
often serve as the repositories for debris following disasters such as hurricanes, tsunamis, and wildfires.
These landfills are typically engineered and regulated less strictly than municipal landfills. C&D debris is
presumed to be less hazardous than other wastes but may contain large amounts of plastics (e.g., furniture
and insulation) with high additives levels. In the U.S. in 2002 alone, 610–780 million tons of C&D debris
were generated, versus 214 million tons of municipal solid waste (Powell et al., 2015). Leachates and erosion
from C&D landfills may thus also be a source of microplastics and additives to surrounding areas.
3.1.2. Burning of Plastics
Plastic trash and e‐wastes are often burned under poorly controlled conditions liberating contaminants
(Gullett et al., 2007; Asante et al., 2016). Releases of microplastics and additives as a result of these, as well
as wildfires, have been inadequately evaluated. In the U.S. in 2016, 1.3 million fires occurred (https://www.
usfa.fema.gov/data/statistics/#causesR). A total of 347 fires at waste and recycling facilities were reported in
North America from April 2017 to 2018 alone (Fogelman, 2018). Additionally, wildfires are increasing in fre-
quency worldwide with climate change (Keeley & Syphar, 2016). These fires engulf homes, businesses, and
vehicles that contain abundant polymeric materials. The charred, disintegrating plastics may be transported
offsite and into waterways. Airborne particulates are also produced and include plastic additives. For exam-
ple, Ni et al. (2016) reported that airborne particulates and residual ash exhibited mg kg−1 concentrations of
flame retardant polymer additives after plastic wastes were burned. Dust collected from New York City
streets following the 2001 World Trade Center terrorist attack contained flame retardant polymer additives
(Lioy et al., 2002). Resulting particulate matter may be small (<2.5 μm: PM2.5) and can penetrate deeply into
respiratory tracts of air breathing organisms, including humans (Liu et al., 2016).
3.1.3. Tire Wear
Another source of microplastics to terrestrial ecosystems is from vehicle tire wear. Modern tires contain
fillers (e.g., carbon black), additives, metallic and polymeric fibers, and natural and synthetic rubbers
(primarily butadiene and styrene‐butadiene polymers). Kole et al. (2017) estimated that each person in
the U.S. generated 4.7 kg year−1 of tire wear microplastics, equivalent to 1.8 million metric tons year−1.
These authors hypothesized that tire wear may contribute 5–10% of global ocean plastics loading, as well
as 3–7% of PM2.5 in urban air. Transport of this material to waterways may occur via surface runoff, exacer-
bated by the impermeability of road surfaces. Alternatively, tire wear fragments enter sewer systems and
then wastewater treatment plants. Locally, amounts released will vary depending on miles driven, climate,
and topography. An estimate for the OSPAR catchment (essentially, the European countries bordering the
North‐East Atlantic Ocean) suggested that the amount of microplastics transported to local marine environ-
ments from tire wear was comparable to land‐based litter. This was followed by that from paints, preproduc-
tion pellets, cosmetics, and laundry fibers. However, estimated ranges spanned orders of magnitude
(OSPAR, 2017).
3.1.4. Paint and Coatings
Paints and surface coatings often contain polymers. Painted surfaces include structures, roadway markings,
and vessels and are subject to weathering. Abrasive blasting (occasionally using microbeads) prior to
repainting of surfaces will also generate microparticles. Paint often contain metal‐based pigments (e.g.,
Cu and Zn). Takahashi et al. (2012) observed that up to 0.2% of the mass of cored sediments from the
Plymouth estuary (UK) consisted of paint particles. Song et al. (2015) investigated microplastics in waters
of Jinhae Bay, Korea. They reported that the abundance of paint particles exceeded those of other micro-
plastic types and that size frequencies peaked in the 50 to 100 μm range. The authors indicated that alkyd
ship paint resins and poly (acrylate/styrene) from fiberglass resins were dominant polymers. They also
noted that microplastics concentrated in the surface microlayer, a biologically important interface. Chae
et al. (2015) published similar findings for the Incheon/Kyeonggi coastal region (Korea). Gove et al.
(2019) observed that surface slicks contained a plastics‐to‐larval fish ratio that was sixtyfold higher than
that of adjacent waters. They further estimated that such slicks represented only 8.3% of ocean surface habi-
tat in a coastal Hawai'i ecosystem but contained 91.8% of floating plastic. Imhof et al. (2016) reported micro-
plastics and paint particle loads in beach sediments from an Italian subalpine lake. They observed that the
paint particles typically were smaller than other types of microplastics, mostly 1 to 50 μm, likely due to
their brittleness.
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3.1.5. Microplastics From Clothes Washing
Habib et al. (1998) was among the first to suggest synthetic fibers, originating from textile washing, might be
useful tracers of wastewater effluents and land‐applied biosolids. Due to differences in media sampled and
analytical methods, researchers do not yet agree on which microplastic types are most dominant in the envir-
onment. However, the International Union for the Conservation of Nature ranked releases from the laundry of
synthetic textiles first, contributing 35% of the world ocean's microplastic burden (Boucher & Friot, 2017).
Napper and Thompson (2016) estimated that over 700,000 fibers could be released from a 6 kg domestic wash
load of acrylic fabric. Browne et al. (2011) sampled wastewater from washing machines and observed that a
single garment could produce >1,900 fibers per wash load. Microplastics can then enter septic systems or be
transferred to wastewater treatment facilities for additional treatment. However, in developing countries, tex-
tile wastewater may directly enter streams. Zambrano et al. (2019) observed lower biodegradation of synthetic
fibers such as polyester in a simulated aquatic environment than naturally derived fibers, that is, cotton,
polyester/cotton, or rayon. Biodegradation after 243 days of exposure was approximately 76% for cotton,
62% rayon, 40% polyester/cotton, but only 4% for polyester. Bajpai et al. (2011) indicated that microbial adher-
ence to polyester fibers was low compared to cotton and polyester/cotton blend fibers.

Textiles can also trap airborne particulate pollutants. For example, Stapleton et al. (2005), detected flame
retardant additives and triethyl phosphate (a polymer resin modifier used in unsaturated polyesters) in
clothes dryer lint. Schreder and La Guardia (2014) detected several polymer additives not used in clothing
(e.g., Penta‐PBDE formulation used primarily in polyurethane foam) in laundry wastewater. They suggested
that airborne microplastics adhering on clothing were transferred to laundry wash water. They also reported
that hydrophilic polymer additives (e.g., chlorinated phosphate esters) in laundry wastewater exhibited
<16% removal rates following wastewater treatment. In contrast, hydrophobic additives (e.g., PBDEs) had
a >86% removal rate. The hydrophobic additives could eventually be introduced to soils via land‐applied bio-
solids, while more water‐soluble additives would enter receiving waters via effluent discharge. With respect
to the latter, O'Brien et al. (2015) estimated that 2.1 mg person−1 day−1 of organophosphate esters are trans-
ferred to treatment plants.

3.1.6. Wastewater Treatment
Industrial and domestic wastewaters contain microplastics and polymer additives derived from consumer
products (Schreder & La Guardia, 2014). In affluent countries, wastewaters and storm water runoff from
urban areas are typically routed to centralized treatment facilities. The treated effluents are eventually dis-
charged to receiving waters. Some effluents, however, particularly in arid areas, are redirected for irrigation.
Microplastics therein are then introduced to soils. Indeed, some wastewater treatment plants have instituted
additional cleanup steps and have rebranded themselves “water reclamation facilities.”

Microplastic fate during wastewater treatment is primarily influenced by particle densities. Most treatment
schemes employ an initial screening of influent to eliminate macrodebris and settling to remove dense sand
and grit. These byproducts are normally sent to a landfill. The next step (termed “primary”) typically includes
surface skimming and solids settling. Secondary treatment followswith aerobic digestion of labile organicmat-
ter and additional solids settling. A polymeric or inorganic flocculant is often added to improve particle sedi-
mentation. Microplastics are sequestered into the settled solids to varying extents by these steps, with overall
treatment removal rates of 90–99% in well‐designed systems (Carr et al., 2016; Raju et al., 2018). Murphy et al.
(2016) noted that most of the buoyant microplastics, including the majority of microbeads from personal care
products, were entrained in the floating grease fraction. They observed that 78.3% of microplastics were
removed during primary treatment, while secondary removed 20.1%. Exclusion of oil and grease and primary
sludge from land‐applied materials would thus reduce the amount of microplastics transferred to soils.
Treatment may be less effective for microplastics <100 μm.While facilities rarely implement steps aimed spe-
cifically at microplastics removal, interest is increasing. For example, Talvitie et al. (2017) evaluated several
advanced options: discfilter, rapid sand filtration, dissolved air flotation, and membrane bioreactor.

Most microplastics that enter wastewater treatment works are sequestered in sewage sludge, which may be
land applied to soils as a fertilizer. Land application economizes on landfill space and disposal costs. In the
U.S., approximately 60% of wastewater sludge (also known as biosolids) is applied on agricultural fields,
reclamation sites, or sold directly to consumers for use on gardens and landscaping. Mahon et al. (2017)
reported microplastic burdens of 4,196 to 15,385 microparticles kg−1 in Irish sludges destined for land
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application. Repeated applications on the same plot (common for fertilizers) increased proportionately the
abundance of microplastics in receiving soils (Corradini et al., 2019). Nizzetto et al. (2016) estimated that
the amount of microplastics added to European and North American soils via such applications exceeds
the global burden now present in oceanic surface waters. Weithmann et al. (2018) observed that composts
derived from household and commercial sources contained up to 895 microplastics kg−1. The smallest
microplastics examined by these authors were 1,000 μm, so the actual abundances were likely much higher.
Microplastics in soil may persist for decades or longer. Indeed, Zubris and Richards (2005) proposed their
presence as a marker of past sludge applications. Plastic sheeting is widely used in agriculture to retain soil
moisture and heat and block weed growth. Its breakdown is a source of microplastics to soils and later sur-
face waters (Steinmetz et al., 2016).

Even when treatment facilities use techniques with high removal efficiencies or do not land‐apply sludge,
the massive water volumes of effluent discharged introduces substantial amounts of microplastics to receiv-
ing waters (Kay et al., 2018). Mason, Garneau, et al. (2016) surveyed 17 U.S. wastewater facilities (all practi-
cing secondary treatment) and estimated that these were releasing on average >4 million microparticles per
facility per day. They observed that tertiary filtration treatments (granular or biological aerated filter) were
ineffective at further reducing microplastic discharges. Murphy et al. (2016) estimated that a secondary
Scottish treatment plant (serving a population of 650,000) with a removal rate of >98% still released 65 mil-
lion microplastics to receiving waters each day. Wastewater treatment plant discharges are often located on
rivers, estuaries, and oceanic coastlines to take advantage of subsequent dilution and removal processes and
thus are important sources of microplastics to these water bodies (Conley et al., 2019). McCormick et al.
(2014) reported that microplastic concentrations (mean: 18 particles m−3) downstream of an urban waste-
water treatment plant were comparable to maximum coastal concentrations after storm events.

Some treatment facilities employ biological aerated filters containing plastic “bio‐beads” as high surface area
substrates. The biofilm formed on these surfaces facilitate digestion of wastewater organic matter. These bio‐
beads may be similar in size to preproduction pellets (nurdles) used to manufacture plastic products. Turner
et al. (2019) suggested that the release of bio‐beads contributed to the plastic litter observed on western
European beaches. They further hypothesized, based on elemental analyses (e.g., Br, Sb, and Pb), that some
of the bio‐beads might be derived from recycled e‐waste plastics containing toxic additives such as flame
retardants. Wastewater treatment facilities may also contribute to the growth of novel bacterial biofilm
assemblages on microplastics discharged. For example, McCormick et al. (2014) observed significant
colonization of microplastics by wastewater‐associated organisms, including some plastic decomposing
(e.g., Pseudomonas) and potentially pathogenic taxa such as Campylobacteraceae. Microplastics colonized
with such microbes may introduce them to receiving waters if they escape wastewater treatment facilities.

It is important to note that most published studies focus onmicroplastic fate in advanced treatment facilities.
Worldwide, many locales have no treatment or primary only. In addition, large rainfall events may result in
wastewaters bypassing treatment altogether, especially at facilities with combined sewer overflows (see dis-
cussion on storms). Even in affluent countries such as the U.S., waivers allowing primary‐only treatment
have been issued to facilities discharging into open or fast‐moving marine waters, for example, in
California, Hawaii, Guam, Virgin Islands, Alaska, and Puerto Rico. Cities in several Canadian provinces also
discharge to the ocean following only crude treatment (e.g., Johannessen et al., 2015). As another example,
Antarctica is largely pristine. Yet prior to 2003, domestic wastewater was simply macerated and then dis-
charged directly to adjacent McMurdo Sound, under the premise that constituents therein were biodegrad-
able and subsequently well diluted. Even after implementation of advanced wastewater treatment in 2003,
polymer additives in indoor dust and treated effluents from this facility, as well as their presence in sedi-
ments and biota of the neighboring environment, were detectable (Hale et al., 2008). Microplastics likely
served as a carrier for at least some of these.

3.2. Direct Releases to Surface Waters

Plastics may enter surface waters directly via fishing and aquaculture, intentional disposal from vessels, and
storm‐related debris. Nets, lines, floats, and traps may contain plastics and synthetic fibers. Although these
are designed to resist weathering, over time they will degrade. Lost fishing gear retains its capacity to ensnare
(“ghost fish”) biota for years. Wilcox et al. (2015) postulated that >6 million tons are lost annually. Lebreton
et al. (2018) estimated 45,000 to 129,000 tons of plastic were floating within the Great Pacific Garbage Patch.
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About 46% of that consisted of lost fishing nets and 8% of microplastics. Fragments of derelict nets and lines
can also catch on obstructions such as reefs, further damaging marine life. These continuously degrade,
forming secondary microplastics. While many wild‐caught fisheries are in decline, aquaculture has
expanded at an annual rate of 5.8% over the last 30 years (Oyinlola et al., 2018). Aquaculture is typically done
near shore and is generally better monitored than wild‐caught fisheries (Schoof & DeNike, 2017), yet some
associated gear will be lost and deteriorate.

Plastics also enter waters via cargo lost overboard and materials discarded or otherwise lost on or adjacent to
shorelines. The International Convention for the Prevention of Pollution from Ships (MARPOL) Annex V
entered into force in 1988 to reduce the discharge of garbage (including plastics) to the ocean (http://
www.imo.org/en/OurWork/environment/pollutionprevention/garbage/Pages/Default.aspx). However, it
is voluntary and only applies to larger vessels on international voyages. The 2005 MARPOL Annex IV
restricts the discharge of sewage from ships. As noted previously, wastewaters contain microplastics. The
International Maritime Organization states: “It is generally considered that on the high seas, the oceans
are capable of assimilating and dealing with raw sewage through natural bacterial action.”Dumping of sew-
age is allowed when the ship is in operation and has an approved sewage treatment plant or when the ship is
discharging comminuted and disinfected sewage using an approved system more than three nautical miles
from the nearest land. It allows untreated sewage to be discharged if the ship is more than 12 nautical miles
from the nearest land.

In some cases, plastics and construction debris have intentionally been deployed in water bodies, for exam-
ple, for the creation of artificial reefs to attract finfish and shellfish (Collins et al., 1995). From 1970 to 1990,
about 1 million waste automobile tires were sunk in coastal zones (Faverney et al., 2010). In some cases, tires
were chipped to increase surface areas, placed in mesh bags, and then anchored down. Unfortunately, some
of thesematerials broke free, damaged nearby reefs, and accumulated on beaches (Sherman& Spieler, 2006).
Some were later removed at substantial cost; in other cases the materials were abandoned. After loss, micro-
plastics were surely created as the materials were abraded and weathered.

Preproduction pellets (i.e., nurdles) and other microplastics have been observed on shorelines near plastics
manufacturing facilities or due to riverine, lacustrine, estuarine, and marine circulation patterns (Antunes
et al., 2013; Browne et al., 2010; Klein et al., 2015; Zbyszewski & Corcoran, 2011). In the northeast Atlantic pre-
production pellets have been suggested as the fourth largest direct source of microplastics to surface waters,
behind tire wear, land‐based litter, and deteriorating paints (OSPAR, 2017). Pellets and resins may be lost from
manufacturing facilities and during shipping activities. Loss rate estimates vary from about 0.01 to 0.1% of pro-
duction and shipping (OSPAR, 2017). A program known as Operation Clean Sweep® has been implemented in
North America and the UK by the plastics supply chain to reduce losses of such materials (http://www.
opcleansweep.eu/wp‐content/uploads/2019/03/OCS_A4_Report_2018_ONLINE.pdf).

Episodic events such as storms scour shorelines and periodically inundate urbanized areas. Floodwaters
carry deposited debris into receiving waters. Storm waters also can inundate treatment plants resulting in
untreated wastewater entering receiving waters (Kiaghadi & Rifai, 2019). Nonetheless, few studies have
examined the role of extreme weather on the fate of plastics. J. Wang, Lu, et al. (2019) reported that micro-
plastic abundances increased 40% in Sanggou Bay, China, following a typhoon. Hurley, Woodward, et al.
(2018) detailed the existence of several riverine sediment microplastic hotspots, with concentrations as high
as 517,000 particles m−2. After a series of floods, they concluded that about 70% of the existing in‐place
microplastics (equivalent to about 0.85 ± 0.27 tons or 43 ± 14 billion particles) were exported downstream
towards the Irish Sea.

Devastating tsunamis can travel kilometers inland, and receding waters introduce massive amounts of deb-
ris into oceans. For example, the 2011 Great Japan Tsunami injected an estimated 5 million tons of debris
into the Pacific (Murray et al., 2018), approximating the estimated amount of plastics entering the oceans
each year worldwide. Lebreton and Borrero (2013) calculated that this single event was >3,000 times the
average yearly amount of land‐based litter contributed by all of Japan and exceeded by thirteenfold the
amount of plastic currently in Atlantic surface waters. Once in the ocean, debris was fractionated by physical
processes. Dense debris sunk near shore. Based on modeling and observations, most of the smaller floating
debris eventually entered the Pacific “garbage patch” (Maximenko et al., 2018). Substantial debris reached
North America and Pacific island shores. During peak deposition periods, Murray et al. (2018) estimated that
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debris strandings increased tenfold along the North American west coast. Some large windage debris was
steered farther north. Much will never be recovered and will fragment in situ, increasing microplastic loads.

3.3. Atmospheric Transport

Little research has examined atmospheric transport of microplastics to date. As the oceans cover over 70% of
the globe, atmospheric deposition of microplastics to marine environments is likely substantial. Recently,
Dris et al. (2016) calculated atmospheric deposition of synthetic fibers, amounting to 3 to 10 metric tons each
year, on a 2,500 km2 area encompassing the footprint of greater Paris, France. Deposition reached 355 par-
ticles m−2 day−1. Small fibers, 7 to 15 μm in diameter, were the most abundant. While rain events increased
deposition, there was not a direct correlation with rainfall amount. Microplastic deposition was greater at
urban than suburban sites. K. Liu, Wang, et al. (2019) reported slightly higher airborne microplastics levels
for Shanghai. They observed that fibers constituted 67% of microplastics observed and estimated that
Shanghai residents inhaled about 21 microplastic particles day−1. Allen et al. (2019) examined atmospheric
deposition in a remote Pyrenees (France) alpine catchment and found rates (as high as 365 microplastics
m−2 day−1) comparable to the above urban areas. They suggested that some microplastics may be trans-
ported thousands of kilometers and across oceans and that rain and snowfall events facilitated deposition.
Most fragment particles were <50 μm, but fibers were predominantly 100 to 300 μm in length. Unlike other
studies, they reported that polystyrene was a dominant polymer type in deposition samples.

4. Microplastics in Freshwaters

After release to the terrestrial environment, plastics may be transferred to wetlands, lakes, and rivers. Human
population densities are higher near water bodies, as they provide valuable transportation routes and suitable
water for irrigation, industrial application, and consumption. The world's rivers are especially vulnerable to
pollution, altered hydrology, and introduction of invasive species (Best, 2019). The occurrence of microplastics
in freshwaters has been reviewed (Eerkes‐Medrano et al., 2015; Horton et al., 2017; Li et al., 2018; Wagner
et al., 2014). Surface runoff and atmospheric deposition transfer plastic debris and microplastics within the
drainage area into freshwater receiving systems. Plastic burdens in these aquatic systems, along with direct
dumping and littering, eventually move downstream and enter estuaries and coastal seas. The importance
of rivers as conduits of plastic waste was suggested by Lebreton and Andrady (2019). They estimated that
91% of mismanaged plastic wastes is transported via watersheds larger than 100 km2. They further suggested
that >25% of global wastes have been discarded into 14 large (>1,000,000 km2) riverine watersheds in North
America (Mississippi, Nelson, and Saint Lawrence), South America (Amazon and Paraná), Africa (Congo,
Niger, Nile, and Zambezi), Europe (Volga and Lena), and Asia (Amur, Yangtze, and Ganges).

4.1. Microplastics in Lakes and Rivers

Globally, no obvious regional patterns in microplastic concentrations among lakes have yet been estab-
lished, likely because burdens are impacted from local sources and sampling coverage is sparse. For exam-
ple, no published data on microplastics in the largest freshwater lake in the world, Lake Baikal (Russia), was
found. However, Battulga et al. (2019) presented results on plastic debris along the shore of the Selenga
River, a Baikal tributary, in Mongolia. Polystyrene foam, believed to be from local sources, was observed
to be the major type of debris. The Laurentian Great Lakes contain 21% of the world's surface fresh water
(slightly less than Baikal) and serve as a major drinking water source for U.S. and Canadian residents.
Eriksen et al. (2013) estimated that average abundance of microplastics in Lake Superior, Huron, and Erie
was 43,000 particles km−2 (equivalent to 0.27 particles m−3). However, Baldwin et al. (2016) observed an
order of magnitude higher level (466,000 particles km−2, equivalent to 2.9 particles m−3) near several large
cities. Eriksen et al. (2013) also reported that Lake Erie, which has a greater number of major cities with
populations exceeding 100,000 in its immediate watershed than the other Great Lakes, was more polluted
than Lake Superior or Huron. They also noted that microplastics <1 mm accounted for 81% of total particles
in the Great Lakes. Mason, Kammin, et al. (2016) reported that surface waters of LakeMichigan had an aver-
age abundance of 17,000 particles km−2. Ballent et al. (2016) evaluated microplastics in sediments of Lake
Ontario. They found an average of 760 particles kg−1. Higher levels were apparent in sediments near urban
centers such as Toronto, Canada. Etobicoke Creek (a tributary of Lake Ontario and home to several plastics
manufacturers and distributors) contained the highest concentration: 28,000 particles kg−1. In Lake
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Winnipeg surface waters, higher abundances of microplastics occurred in nearshore waters than offshore
waters, demonstrating the influence of land‐based sources (Anderson et al., 2017). This lake is located in a
relatively undeveloped area of Manitoba, Canada, and is the eleventh largest freshwater lake in the world.

Microplastics have also been reported in European lakes, wherein concentrations were 2.68 to 3.36 and 0.82
to 4.42 particles m−3 in surface waters of Lake Chiusi and Lake Bolsena (Italy), respectively (Fischer et al.,
2016). The authors noted that high winds affected the surface water distribution of microplastic fragments,
but not fibers, demonstrating another variable that should be considered when sampling. An average micro-
plastic concentration of 0.5 particles m−3 was reported in Swiss lakes, with individual concentrations ran-
ging from 0.06 particles m−3 in Lake Zurich to 1.2 particles m−3 in Lake Maggiore and Grand Lac Geneva
(Faure et al., 2012). In Asia, microplastics were detected in remote Lake Hovsgol, in Mongolia (Free et al.,
2014). In Lake Taihu (China) the concentrations of microplastics varied by location, with lower concentra-
tions in the central part (0.3 particles m−3) and higher levels in the northwestern (1.1 particles m−3) and
southeastern (2.5 particles m−3) sections (Su et al., 2016).

Lakes generally have large surface area to shoreline ratios, resulting in dilution. For example, microplastic
abundances decreased with increasing lake surface area for the Great Lakes mentioned above, with indivi-
dual mean concentrations of 0.66, 0.034, and 0.02 particles m−3 for Lake Erie (surface area: 26,000 km2),
Huron (60,000 km2), and Superior (82,000 km2), respectively (Eriksen et al., 2013). This pattern also follows
the population densities and degree of industrialization in the associated watersheds. As further evidence of
the dilution capacity occurring in lakes, Baldwin et al. (2016) determined that microplastic concentrations
in the surface waters of tributaries exceeded those of the Great Lakes; that is, the mean concentration was
4.2 particles m−3 in 29 tributaries, while only 0.27 particles m−3 in the Great Lakes. This underlines the role
of the tributaries as sources or conveyors of microplastics. About 72% of the plastic particles in the tributaries
were <1 mm, comparable to 81% in the Great Lakes. Microplastic concentrations were positively correlated
with the levels of urbanization and runoff in the watersheds (Baldwin et al., 2016), supporting the influence
of both anthropogenic activities and hydrological conditions on the occurrence of microplastics in both the
tributaries and lakes themselves.

As land‐based sources of plastic debris dominate, rivers act as major receptors and conduits of debris to lacus-
trine systems (Schmidt et al., 2017). Disparities betweenmicroplastic concentrations at different sampling sites
may be due to point sources or the sampling methods employed. Dris et al. (2015) observed high microplastic
concentrations in rivers (3–106 particles m−3), attributed to urban inputs such as treatment plant discharges.
Kapp and Yeatman (2018) reportedmicroplastic concentrations in surface waters from the 1735 km Snake and
523 km lower Columbia Rivers (U.S.). They reported higher levels in areas adjacent to agricultural areas, pos-
sibly due to the use of biosolid fertilizers or plastic mulches. Recreational areas also exhibited elevated
levels. Somewhat surprisingly, a correlation of microplastic levels with human population densities was not
observed. Microplastic concentrations were negatively correlated with water velocity. The authors hypothe-
sized that dams might contribute to accumulations of less dense microplastics, as did K. Zhang et al. (2017)
investigating distributions of microplastics in the Yangtze River near the Three Gorges Dam in China.
McCormick et al. (2014) observed microplastic concentrations increased from upstream (1.94 ± 0.81 particles
m−3) to downstream (18 ± 11 particles/m3) sites in the Illinois River, a tributary of the Mississippi.
Microplastic concentrations here varied as the river flowed through multiple cities (McCormick et al., 2014).
Another example is the Rhone River (Switzerland), where a higher mean concentration was found near
Geneva (0.29 particles m−3) than Chancy (0.13 particles m−3; Faure et al., 2012). Plastic waste in river waters
may also strand on shorelines, embed in sediment, be ingested by organisms, or be carried downstream.
However, floods may later resuspend microplastics in sediments and recapture shoreline debris.

4.2. Riverine Input of Microplastics to Coastal Zones, Estuaries, and Oceans

Although the transition between the sources of plastic pollution (inland streams and rivers) and their sinks
in coastal zones and the oceans is critically important, less research has investigated this transition area than
the remote ocean gyres. Several models have been developed to estimate the export of debris from rivers to
coastal zones and the oceans. Lebreton et al. (2017) estimated that 1.15 to 2.41 million tons of plastics are
released to the oceans through river‐fed estuaries each year. These authors also considered the impact of
dams and related water retaining structures on transport of microplastics. Schmidt et al. (2017) reported a
similar range of annual plastic inputs: 0.47 to 2.75 million tons. The concept of mismanaged plastic waste
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(Jambeck et al., 2015) has been used to estimate riverine plastic inputs (Lebreton et al., 2017), although addi-
tional, updated metrics are needed to improve models.

It is likely that coastal water bodies (e.g., bays and estuaries) are evenmore polluted than rivers due to multi-
ple input sources and circulation patterns in these semienclosed basins. For example, the Beijiang River of
South China was reported to contain a mean concentration of 0.56 ± 0.45 particles m−3 compared to 0.11–68
particles m−3 in Xiangxi Bay (Tan et al., 2019). Zhao et al. (2014) observed surface water microplastic levels
as high as 4,137 particle m−3 in the Yangtze Estuary (China). Dominant forms observed were fibers, but
unfortunately, the authors did not report polymer composition. Cheung et al. (2016) observed much higher
microplastic concentrations during the wet than the dry season in Hong Kong waters near the Pearl River
Estuary. These authors suggested that if microplastic concentrations exhibit seasonal variability, seasonality
must be considered to reduce bias in estimating overall riverine inputs of microplastics. Yonkos et al. (2014)
reported positive correlations between the plastic concentrations in four estuarine rivers of the Chesapeake
Bay and both population density and extent of urbanization within the watersheds. A 1‐year survey of the
Nakdong River (the longest river in South Korea) with four sampling time points found riverine inputs of
microplastics of 53 to 118 tons year−1, with highest microplastic concentrations in the wet season
(Eo et al., 2019). Unfortunately, there are few studies to compare results with, as most sampling campaigns
have been conducted over only a fewmonths with fewer than four consecutive field measurements. As such,
current modeling exercises have largely relied on fragmented data to estimate riverine plastic inputs and
incorporate insufficient validation (Schmidt et al., 2017).

While the presence of microplastics in estuaries has been documented (Gray et al., 2018; Pazos et al., 2018;
Yonkos et al., 2014; Zhao et al., 2015), our understanding of their distributions and processes remains lim-
ited. However, it is likely that principles gleaned from studies of naturally occurring particulates of compar-
able densities are applicable, especially as microplastics weather and accumulate biofilms. In terms of
behavior after release, Hoellein et al. (2019) observed that microplastics mimicked natural particles in terms
of deposition in an experimental stream. They argued that existing studies on particulate organic matter
could provide insights on microplastic behavior and fate. They observed that high‐density microplastics
and those with “sticky” biofilms settled the quickest, while fibers remained suspended longer and exhibited
less biofilm formation. The most prevalent types of polymer types reported in estuaries have been polyethy-
lene, polypropylene, and polystyrene (Sadri & Thompson, 2014). In part, this is because most studies have
focused on shorelines and surface sampling, which preferentially collect these low‐density polymers. In a
South American study, Acha et al. (2003) suggested that a benthic estuarine salinity front acted as a seaward
barrier to and concentrated riverine‐derived macroplastic debris. They also reported that this zone was a
focal point for finfish and shellfish, as well as zooplankton. Cohen et al. (2019) sampled and modeled the
surface distributions of buoyant microplastics in the Delaware Bay (USA) estuary and observed substantial
spatiotemporal variability. They noted highest concentrations near the estuarine turbidity maximum.
Browne et al. (2010) evaluated the roles of wind, waves, and tides on the fate and deposition of shoreline
plastic debris in a UK estuary. They observed greater amounts of plastics at downwind sites and higher
amounts of denser microplastics in sediments.

Both physical and chemical interactions may affect microplastic fate in waterbodies (including bays and
estuaries) where flora and fauna, as well as salinity and pH gradients, exist. In the coastal zone, Li et al.
(2018) observed that polystyrene microplastics, associated with local mollusk aquaculture, were dominant
pollutants in Quinzhou Bay (China) and that the dense vegetation in the system trapped plastic debris.
Shellfish are also efficient at removing suspended particulates and are common inhabitants of such environ-
ments. Therefore, filtration and subsequent deposition to sediments via feces or pseudofeces may be impor-
tant microplastic removal mechanisms (Zhao et al., 2018). Microplastics may exhibit surface charge
alterations, especially after weathering and biofouling (Paul‐Pont et al., 2018). Such outcomes may result
in enhanced aggregation and flocculation, with resultant sinking and ultimately deposition in sediment.
Interactions between charged plastic surfaces may also occur with metals and organic chemical species
(Holmes et al., 2014). Chemical constituents of microplastics may also be transported from terrestrial runoff
to oceanic systems via estuaries. For example, Amamiya et al. (2019) reported styrene oligomers, derived
from polystyrene, entered Tokyo Bay from land‐based sources as a function of monthly precipitation.

Overall, the transport of plastic debris from land to oceans is a complex process and affected by a variety of
factors, including human population density, urbanization, per capita income, hydrological conditions,
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waste management infrastructure, and living standards. More integrated models are desirable, to better
constrain global riverine inputs and reflect the state of plastic pollution. This should be supported by
long‐term monitoring programs, better sampling strategies to encompass variability (e.g., tidal
oscillations), and improved model calibration and validation.

5. Fate of Microplastics in the Ocean

Media reports of the “Great Pacific Garbage Patch,” notorious as an area of floating trash “twice the size of
Texas” in the Pacific Ocean sparked global interest in plastic pollution. Trawling the water's surface with
333 µmmesh nets, Moore et al. (2001) reported themass of microplastic in samples from the North Pacific gyre
was six times that of coincident plankton. Although this galvanized global discussion of marine debris, reports
existed as early as 1965 (Ostle et al., 2019). Due to their size, bathymetry, and position in the hydrological cycle,
oceans serve as a sink for plastic debris and other persistent pollutants. Basic physical oceanographic consid-
erations (Ekman transport, geostrophy, etc.) explainwhy plastic debris accumulates within themore quiescent
zones of oceanic gyres, while more complex processes determine the distribution of marine plastics in less
obvious locales, including deep sea sediments and ice sheets (Figure 5). Research combining modeling and
observational data has been employed to better understand the distribution and trends of microplastics in
oceans, bays, and estuaries. As an example of this approach and to illustrate the potential gravity of the situa-
tion, Isobe et al. (2019) predicted that the weight of pelagic microplastics around the Pacific Ocean subtropical
convergence zone would double by 2030 and quadrupole by 2060. They postulated that the latter might pose
health risks to resident marine organisms based on available, albeit limited, toxicological studies. The authors
incorporated major assumptions concerningmicroplastic particle size, behavior, and their environmental per-
sistence into their model. Clearly, research to refine such assumptions is crucial.

5.1. Theoretical and Empirical Models of Microplastics in Surface Oceanic Waters

Due to the vastness of the world's oceans, theoretical and empirical models have been developed to predict
where microplastics will accumulate. Early models used to predict marine debris distribution were designed
to track ocean currents. However, these were modified byMaximenko and Niiler to explain hot spots of plas-
tic accumulation (“Ocean Debris”, 2008). Their model identified the five ocean gyres (North Pacific, South
Pacific, North Atlantic, South Atlantic, and Indian) as major destinations of marine debris.

Figure 5. Global ocean distribution of microplastics (portrayed simplistically as multicolor hexagons). Inputs of micro-
plastics are shown in red, while processes that control their distribution and export from the surface are in green.
Photodegradation (themost rapid weathering process) of microplastics will be exacerbated in exposed terrestrial situations
and the surface ocean. Ultimately, microplastics will accumulate in deep ocean sediments.
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Since then, more elaborate models of surface microplastic distribution have been developed. Lebreton
et al. (2012) used predictions of plastic input into the oceans, combined with Lagrangian particle tracking
and surface ocean circulation models to estimate microplastic distribution. They forecasted that debris will
accumulate in the five gyres, with higher concentrations in the Northern Hemisphere (e.g., North Pacific
Subtropical Convergence Zone). They also highlighted the importance of marine debris source and
showed that debris may accumulate closer to shore (instead of only in the gyre patches), depending on
the point of origin. The conclusions drawn by these authors corroborate another theoretical model,
focused on North Pacific Ocean circulation patterns, and suggested that convergence patterns could result
in amplified marine debris accumulations in certain areas (Howell et al., 2012). Another Lagrangian drift
model was used to understand the movement of plastic debris in the North Sea. Using wind and current
data, Neumann et al. (2014) projected the fate of microplastics from a hypothetical release of plastic pellets
after nine years. The authors noted that seasonal differences factored into the model accurately predicted
the different concentrations of pellets along the coastline over time. It further suggested that the coastal
ocean patterns may be influenced in the short term (seasonally), while the open ocean debris would be
affected over longer time scales. Unfortunately, the authors found that hindcasting the model did not
accurately predict plastic source(s).

An important aspect of theoretical models for forecasting marine debris circulation pertains to the connec-
tivity of surface oceans, or the balance between debris attraction to or dispersion from a central area, such as
a gyre. Van Sebille et al. (2012) were among the first to use observational data to model the spread of plastic
debris in the ocean. These authors combined data from the Global Drifter Program and applied a particle‐
trajectory tracker approach to predict where the particle would travel over seasonal, yearly, or multiyearly
time frames. They confirmed the existence of five major ocean garbage patches but also predicted another
in the Barents Sea. In addition, they used the model to track the “leakiness” of the garbage patches. They
found that the patches are likely to be more dispersive than would have been projected from linear ocean
circulation/Ekman theory, highlighting the importance of combining observational data with models.
Froyland et al. (2014) used a Markov chain model to observe where in space surface water (and microplas-
tics) may be sequestered over time. The authors highlighted the importance of understanding surface ocean
circulation as a three‐dimensional system instead of a two‐dimensional plane and included ground truthed
upwelling and downwelling observations in their model. They found that some small, uniquely shaped areas
are likely to attract and keep ocean pollution “forever.” Contrary to intuition, these attracting regions are in
the general area of ocean gyres but do not directly overlap with them, extending westward in the Southern
Hemisphere and southward in the North Atlantic. Other regions that theoretically only lose debris over
extended periods are found in the remainder of the five primary ocean gyre regions and in some coastal
zones. The authors point out that this model may be valuable in understanding the long‐term fate of marine
debris, which cannot readily be accomplished on an observational time scale.

A number of researchers have used field‐collected microplastics data to create empirical models. Goldstein
et al. (2013) surveyedmicroplastics in the North Pacific Subtropical Gyre. They indicated the plastic densities
correlated with the physical parameters of the water body. Empirical modelers have also utilized satellite
observations. Sherman and Van Sebille (2016) combined empirical data on floatingmarine debris from satel-
lite observations and sea surface trawls to estimate current plastic locations and project plastic densities in
those locations until 2025. A goal of this study was to predict optimal removal locations for sea surfacemicro-
plastics. Contrary to data highlighting plastic concentrations in the North Pacific Subtropical Gyre, the mod-
eled optimal removal location was closer to the east coast of China, in part due to the high debris output from
this region.

Another study tracked the movement of droged and undroged drifters as a proxy for marine debris
(Beron‐Vera et al., 2016). The authors found that undroged drifters naturally moved toward areas where
marine debris accumulates but point out that this could not be explained by Ekman surface transport alone.
Rather, the drifter location was motivated by inertial properties of the drifter (controlled by finite size and
buoyancy). They elucidated this through known properties of drifters but proposed that this could be applic-
able to all marine flotsam. In fact, recent work highlights that debris models often depend too much upon
Ekman transport and geostrophic current patterns and fail to include processes such as wave‐induced
Stokes drift in their estimations (Biastoch et al., 2019; Onink et al., 2019). By comparing models that include
or omit wave‐induced Stokes drift, Onink et al. (2019) found that existing models depending upon Ekman
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and geostrophy are appropriate for most ocean basins, except for the Arctic. These authors also traced the
transfer of microplastics between ocean basins, showing that those that originate in the North Pacific likely
will remain there, while plastics originating in other basins are more likely to disperse to other basins. The
exchange reported between the North Atlantic and Arctic oceans, models that include wave‐induced Stokes,
and thermohaline circulation patterns support the Arctic as a destination for surface microplastic pollution
(Cózar et al., 2017), discussed later as a sink for ocean microplastics.

The majority of microplastic distribution models have focused on open ocean and gyre dynamics rather than
the coastal zone. Zhang et al. (2017) combined the physical characteristics of microplastics and factors affect-
ing coastal ocean dynamics (e.g., wind, waves, and tides) to develop a model for microplastics near coast-
lines. Models of debris distribution were also completed for the Mediterranean Sea, using Lagrangian drift
models (Mansui et al., 2015). These data identified three zones that may be short‐term hot spots for debris
accumulation and additional areas that were unlikely to see debris accumulation on most time scales. In
the long‐term, however, the dynamical processes of a semienclosed ocean basin made it so that there was
no area(s) projected to maintain debris on the oceanic time scales identified in Froyland et al. (2014). This
could be attributable to assumptions of the model, however, including the unrealistically dense and homo-
geneous starting distribution of microplastics, as detailed by the authors.

Due to the complexity of modeling coastal ocean and enclosed basin dynamics, microplastic tracking in the
coastal zone has been largely dependent upon observational studies. In a study of the northwestern
Mediterranean Sea, Collignon et al. (2012) observed that 90% of the stations surveyed contained microplas-
tics. The concentration of microplastics was lower following strong wind events, suggesting that wind plays a
role in vertical mixing of microplastics out of surface waters. In a surface water study of microplastics in the
North Yellow Sea, China, microplastics were observed at all 19 study sites, with an average concentration of
545 items m−3, which is about average for other surface water studies in the region (Zhu et al., 2018). These
authors attributed the higher abundance of these microplastics in the northern than the southern portion of
the bay to prevailing wind patterns and proximity of developed land. Overall, these and other studies suggest
that microplastics in coastal surface waters are at least as ubiquitous as in open ocean waters, yet modeling
their distribution is complicated by local source hot spots, wind and precipitation patterns, morphology, and
complex water circulation.

In a recent meta‐analysis of microplastic polymer distribution, Erni‐Cassola et al. (2019) confirmed that
most polymers observed in surface waters were polyethylene and polypropylene, low‐density polymers
common in single‐use products. This is true of coastal zones as well; for example, polyethylene dominated
surface water in the aforementioned study of the North Yellow Sea (Zhu et al., 2018). Deeper in the water
column, denser particles (e.g., polyester, polyamide, and acrylics) may dominate (Erni‐Cassola et al.,
2019). Recently, sampling protocols have begun to use smaller sampling mesh sizes, whole water samples,
or more sensitive detection schemes, allowing determination of smaller microplastics. These changes have
revealed that fibers are often more abundant than fragments in some aquatic systems (Barrows et al.,
2018; Carr, 2017). Such fibers generally derive from textiles, rope, or netting and can include polyethylene,
polyamide (nylon), and polyester. Polymer categorization is useful as it provides insight into the potential
source of the plastic and explains distribution based on density. Yet other complexities, such as additive
composition or biofilm presence, may have substantial impacts on microplastic fate, and effects are
often unexplored.

5.2. Export of Microplastics From the Surface Ocean to Deep Waters and Benthos

Some models had predicted that there should be up to 100 times more plastic in the surface ocean than has
been commonly reported (Cózar et al., 2014; Geyer et al., 2017; Jambeck et al., 2015). Early hypotheses for
the location of this “missing plastic” included degradation into minute fragments below size detection limits,
biofouling (which may lead to sinking), stranding of debris, ingestion by marine species, and incomplete
observations (Cózar et al., 2014). Now, this “missing plastic” is primarily thought to be in the nanoplastic
or microplastic size range and has motivated research on their fate beyond surface waters.

The Arctic Ocean (specifically, the seas east of Greenland), a site of deep water formation in thermohaline
circulation models, and has been proposed as a “dead‐end” for microplastics. Based on ocean circulation
and Lagrangian drift models, Cózar et al. (2017) speculated that the Greenland and Barents Seas (sites of
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North Atlantic Deep Water formation) likely accumulate debris. Field sampling by these authors confirmed
that microplastics were abundant in these two seas compared to other portions of the Arctic Ocean. The type,
size, and morphology of the plastics suggested that they were highly weathered and had traveled long dis-
tances on the surface ocean prior to reaching the Arctic. Researchers have hypothesized that once reaching
the Arctic, microplastics may be vertically exported to the benthos. Kanhai et al. (2019) collected and
evaluated sediment cores from the Arctic Central Basin for the presence of microplastics. They observed that
7 of the 11 samples contained microplastics (all <100 μm), with a concentration of 0–200 particles kg−1.
These results may not be impressive at first glance, but considering the experimental limitations (including
sample size and volume and extraction protocol), this study showed that microplastics are likely widely
abundant in Arctic sediments. Bergmann and Klages (2012) previously observed a more than doubling of
plastic and other anthropogenically derived macrodebris on the Arctic seafloor between 2002 and 2011 at
the HAUSGARTEN observatory (79°N). They postulated that the increase might be related to receding
sea ice.

Microplastics have been observed in deep‐sea sediments from a variety of other locations, including the
North and South Atlantic, Southern Ocean, Mediterranean Sea, and Indian Ocean. Although they did not
determine polymer type, Van Cauwenberghe et al. (2013) found microplastics in 5 of 11 sediment samples,
originating from 1,176 to 4,843 m in depth and between 44 and 161 μm in size. In another study, Woodall
et al. (2014) recovered microplastics from all 12 sediment samples collected in deep sea locations. All were
fibers and mostly polyester or acrylic polymers, as would be expected based on their densities
(Erni‐Cassola et al., 2019). Fibers of cellulose‐derived rayon were also detected. Concentrations ranged from
1.4 to 40 pieces per 50 ml of sediment. These authors also tested four deep‐sea corals and found microfibers
in all samples using a binocular microscope and entomological pin. It is not surprising that organic matter is
reaching these deep‐sea plains and trenches, as it has been found at surprising concentrations in other abys-
sal locations, such as the Atacama trench (Danovaro et al., 2003). These results contradict preconceived
notions of the buoyancy of plastics and their propensity to sink to great depths.

Mechanisms have been proposed to explain the export of microplastics from surface waters to sediments,
including increased density from biofouling. In a controlled study, Fazey and Ryan (2016) allowed biofilms
to form on plastics of different sizes (5–50 mm) and observed sinking rates. They found that the smaller plas-
tics sank faster than larger particles, yet all sank within the 12‐week study period. Biofilm formation, how-
ever, is a highly variable process. As such, these results may not apply to all systems, particularly oligotrophic
ocean gyres. Kooi et al. (2017) developed a model of microplastic vertical transport based on biofouling and
water conditions. Their model suggested that smaller biofilmed microplastics (<1 μm) will settle faster than
larger ones and are less likely to resurface. Contrarily, particles from 1 to 5 μm may oscillate in the middle
water column, suggesting that some microplastics may be “lost” to the middepths, and neither retained in
the surface water or sinking to greater depths. This correlates with previously discussed observational evi-
dence that microplastics found in the deep sea were smaller than 200 μm (Van Cauwenberghe et al.,
2013; Woodall et al., 2014). Yet, the model also specified that particles <10 μm were likely to exit surface
waters and remain suspended in the water column because of their extremely slow sinking rates (Kooi
et al., 2017). This is a theoretical prediction yet useful for understanding the dynamics of microplastic sink-
ing following biofilm growth. Choy et al. (2019) sampled microplastics between 100 and 5,000 μm in water
along vertical transects off Monterey Bay, California, using remotely operated vehicles. They observed max-
imum concentrations between 200 and 600 m. The microplastics observed were dominated by weathered
polyethylene terephthalate and polyamide fibers. They hypothesized that these were not locally derived.
The California Current carries waters south along the coast from British Columbia. Hence, a possible source
might bemicrofibers released fromwastewater treatment plants practicing primary‐only treatment (see was-
tewater section) located north of Monterey.

In addition to biofouling, aggregation and incorporation into marine snow or fecal pellets can alter the buoy-
ancy of the microplastic complex sufficiently to cause vertical export. Cole et al. (2016) tested the sinking
rates of microplastic‐containing copepod fecal pellets. Pellets with buoyant microplastics sank at a slower
velocity than those without, making them more likely to fragment in the water column or be consumed
by other organisms. In a laboratory test, Porter et al. (2018) found that microplastics were incorporated into
marine snow, which increased their sinking rate. For polyamide fragments, this sinking rate increased by
916 m day−1. These authors also reported that mussels were more likely to ingest microplastics
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incorporated into marine snow than bare microplastics. This demonstrated that marine snow is not only a
route of vertical export but may also increase microplastic uptake by benthic organisms.

Microplastics are also abundant in coastal sediments, as evidenced by numerous surveys in coastal zones.
Many studies have enumerated microplastics across sediments including beaches (Lots et al., 2017), shore-
lines (Browne et al., 2010), and coastal lagoons (Vianello et al., 2013). Van Cauwenberghe et al. (2015)
reviewed studies of microplastics in coastal sediments, highlighting that most studies focused on beaches
(80%). However, the sampling locations within beaches were highly variable between studies, reducing com-
parability. Furthermore, factors including wind and currents, transient conditions, and microplastic type
complicate predicting locations of microplastic accumulation zones. Some studies, however, highlight that
sediment suspension zones (associated with fine sediment particles) also have higher microplastic concen-
trations (Van Cauwenberghe et al., 2015; Vianello et al., 2013) than nonsuspension zones. As in coastal zone
surface waters, microplastics in sediments appear to positively correlate with nearby population density
(Browne et al., 2011; Van Cauwenberghe et al., 2015). Human population density also has a large influence
on the type of microplastic found. Browne et al. (2011) reported high concentrations of microfibers near was-
tewater treatment effluent discharge sites, likely derived from textiles. Otherwise, microplastic fragments in
coastal sediments are generally elevated in polyethylene and polypropylene, low‐density polymers common
in single‐use plastics. However, denser polymers that are often in fiber form (e.g., polyester, polyamide, and
acrylic) are regularly reported in high concentrations in intertidal and subtidal sediments, as well as sites
with episodic polystyrene inputs (Erni‐Cassola et al., 2019). Overall, these studies reveal that microplastics
are abundant in coastal sediments, yet the trends are variable, limiting the efficacy of models based on
coastal processes such as wind and currents alone. In total, although floating microplastics are the most
commonly reported, multiple mechanisms exist that may remove even these buoyant particles from the sur-
face ocean (Figure 5), thus transferring risks to other habitats, such as benthic ecosystems.
5.2.1. Biofouling
In aquatic environments plastics become covered by organic and inorganic materials, microorganisms,
algae, and invertebrates. Zettler et al. (2013) coined the term “plastisphere” to describe this novel habitat.
Biofilms on surfaces also increase drag on vessels. Development and manufacture of antifoulants to reduce
growth on boat hulls, buoys, and other submerged surfaces is a major industry. The medical field is also con-
cerned about the health consequences of microbial biofilm growth on teeth and surgical implants, such as
heart valves and catheters. Biofilms serve as major avenues for human infections and potential mediators
of antibiotic resistance (Socransky & Haffajee, 2002).

The biofilms that form on submerged surfaces in fresh and marine environments provide diverse niches,
including aerobic and anaerobic zones, as well as pH, redox, and other gradients (Hall‐Stoodley et al.,
2004). Surface adhesion presents organisms with advantages, for example, greater nutritional access, physi-
cal protection, and environmental stability. Biofilm inhabitants also excrete chemical cues that affect inver-
tebrate recruitment and forms of metabolic cooperation (e.g., quorum sensing; Socransky & Haffajee, 2002;
Zhang et al., 2019). Further supporting the important ecological role of biofilms, Zhang et al. (2019) recently
identified 7,300 new species from metagenomics data from biofilm‐forming microorganisms. Most previous
work to identify marine species focused on free‐living forms. The additions of Zhang et al. (2019) increased
the known microbial diversity of the oceans by more than 20%. Clearly, factors that influence or alter the
formation and evolution of biofilm communities may have profound impacts on ecological communities
in aquatic systems, in general.

Biofilms may also support habitats for microorganisms that excrete extracellular enzymes capable of degrad-
ing polymers (Dang & Lovell, 2016). Scanning electron microscopic examination of surfaces by Zettler et al.
(2013) of weathered polyethylene and polypropylene debris from the North Atlantic revealed depressions,
whose shapes conformed to those of the observed bacteria. They hypothesized that these depressions were
caused by hydrocarbon degraders. Not surprisingly, they observed that communities on the plastic surfaces
differed from those in the surrounding water. The authors also noted an abundance of Vibrio spp. on sam-
ples. This genus includes several pathogenic species (e.g., V. cholera, V. vulnificus, and V. parahaemolyticus)
responsible for cholera, necrotizing wound infections, sepsis, and gastroenteritis in humans (Bartlett &
Azam, 2005). In a substrate recruitment experiment in the North Sea, Oberbeckmann et al. (2016) used
16S rRNA gene sequence comparisons and reported that bacterial/archaeal communities associated with
polyethylene terephthalate debris differed significantly from free‐living ones, but not from those on
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natural suspended particles (>3 μm) or glass. They did, however, observe
differences at the operational taxonomic unit (OTU) level, with polyethy-
lene terephthalate‐associated communities exhibiting the presence of
some hydrocarbon degraders. They also noted that biofilm communities
differed by location and season.

The presence of biofilms may influence the likelihood of microplastic
ingestion due to chemical cues exuded by the colonizing organisms. For
example, in lab exposures Vroom et al. (2017) observed that polystyrene
microplastics, primed by immersion in seawater, were ingested by two
of three marine zooplankton species tested at a greater rate than
unprimed plastics. Savoca et al. (2016) hypothesized that the odor of
dimethyl sulfide‐related chemicals that accumulated on plastics increased
their consumption by sea birds. Savoca et al. (2017) later observed that
aqueous leachates generated from weathered/biofouled polypropylene
beads resulted in foraging behavior in the northern anchovy (Engraulis
mordax) mimicking that observed when extracts of food were provided.
Exposure to unfouled beads did not elicit such a response. Nasser and
Lynch (2016) reported that proteins released from Daphnia magna
(a common freshwater toxicity assay organism) associated with polystyr-
ene nanobeads increased their agglomeration. Particles with these
“eco‐coronas” were ingested and retained at greater rates than untreated
nanoparticles, and exposed organisms exhibited depressed feeding rates
and lower survival.

Selective feeding on biofilmed, weathered plastics does not always occur,
however. In a series of lab experiments, Allen et al. (2017) observed that a
scleractinian coral ingested virtually all microplastic fragments (seven dif-
ferent polymer types of 500 to 1,000 μm) offered but rejected similarly
sized sand particles. In subsequent feeding experiments the corals
ingested threefold to fivefold greater numbers of unweathered than fouled

plastics. The authors speculated that the biofilmmasked chemical cues on the plastic that stimulated feeding
(e.g., plastic additives), the physical weathering removed these cues or altered the surface properties, or the
biofilm itself contained feeding deterrents. Nakashima et al. (2016) also hypothesized that biofilms forming
on plastic debris might reduce the leaching of metal and organic additives, which may serve as sensory cues
encouraging or discouraging ingestion. Holmes et al. (2012) observed that weathered polyethylene pellets
adsorbed greater amounts of trace metals than virgin pellets. They hypothesized that this was due to an
increase in surface reactivity derived from weathering, precipitates, or biofilms on the pellets. Clearly, the
implications of biofilm formation vary across plastic composition and location and are likely perceived
differently depending upon the species studied. Future research should investigate if plastic‐degrading
communities identified on microplastics in the field can facilitate identification of species or conditions
capable of degrading polymers or aid in our design of new plastics that are readily degradable under real
world conditions.

6. Microplastic Uptake and Consequences in Biota

As plastic debris is ubiquitous, essentially all aquatic and terrestrial species encounter it, regardless of
trophic level. Biological effects may arise due to physical interactions with the microplastics, chemical expo-
sure to plastic constituents (e.g. additives), sorbed toxins (synthetic or natural), or surface‐associated organ-
isms (e.g. pathogens). Interactions can lead to entanglement, ingestion, death, and a variety of other health
or ecosystem effects. In the case of microplastic debris, the nature of the interactions is easily visualized
(Hammer et al., 2012). Small aquatic biota, such as plankton, and larger filter feeders, from shellfish to whale
sharks, may ingest or otherwise contact microplastic particles. Microplastic size, shape, and texture will be
important in determining if there are negative consequences, yet this is not easily observed due to the small
size and complex nature and behavior of microplastics. However, even minute zooplankton may ingest

Figure 6. Image of polyurethane microplastics (<53 μm) ingested by brine
shrimp nauplii (Artemia sp., length ~500 μm). Microplastics were present
at a concentration of 100 mg L−1. Fluorescent microplastics (pink) are evi-
dent at a high density within the shrimp's digestive tract. These were egested
within 48 hr after cessation of exposure. Some of the additives within the
microplastics likely leached out of the plastic during its residence in the
digestive tract and exposure water (see Figure 8). Imaged on an Olympus
FV1200 laser scanning confocal microscope. Credit: Hamish Small (VIMS)
and Virginia Worrell (Virginia Governor's School).
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microplastics (Cole et al., 2013). The physical impacts of microplastics on marine biota were reviewed by
Wright et al. (2013). Figure 6 shows microplastics (<53 μm; produced from commercial polyurethane foam)
ingested by brine shrimp nauplii (Artemia sp; 400–500 μm in length) in the lab. These microplastics were
fluorescent due to the chemical additives present.

6.1. Microplastic Ingestion and Tissue Translocation

Exposure is a prerequisite to manifestation of toxic effects. Ingestion of microplastics by aquatic biota has
been widely surveyed (Possatto et al., 2011; Lusher et al., 2013; Van Cauwenberghe & Janssen, 2014;
Desforges et al., 2015; Güven et al., 2017; Lusher, Hollman, et al., 2017; Provencher et al., 2018; Nelms
et al., 2019; Windsor et al., 2019). Marine species have been a focus of the bulk of such research. For example,
Lusher et al. (2013) reported that 36% of pelagic and demersal fish collected from the English Channel had
microplastics in their digestive systems. Nelms et al. (2019) observed that every specimen sampled of
stranded marine mammals along the British coast exhibited microplastics in its digestive tract. In both stu-
dies, most were fibers, not fragments. Interactions with microplastic particles or fibers extend to lower
trophic levels. For example, Van Cauwenberghe and Janssen (2014) reported that up to 50% of commercially
grown bivalves contained microplastics in their tissues, and Desforges et al. (2015) observed microplastics
(mostly fibers) in two zooplankton species collected from the Northeast Pacific. Choy et al. (2019) detected
microplastics in giant larvaceans (Bathochordaeus stygius) and pelagic red crabs (Pleuroncodes planipes) at
intermediate depths off the California coast. The larvaceans ingest particles using large mucous mesh filters,
which are discarded when clogged, and then sink to the seafloor. While they did not focus on microplastics,
Lamb et al. (2018) estimated that coral reefs from the Asia Pacific region were entangled with 11.1 billion
plastic items. Rotjan et al. (2019) observed on average >100 microplastics (predominantly polyamide, polye-
ster, and synthetic cellulose‐based fibers) per polyp of northern star coral (Astrangia poculatain) collected off
of Rhode Island (U.S). In this same report corals coexposed in the lab to polyethylene microbeads and brine
shrimp eggs of similar proportions preferentially ingested the microplastics. When fed microbeads initially,
corals later failed to consume brine shrimp eggs. Seabirds have also been widely studied. Avery‐Gomm et al.
(2018) observed that 79% of sea bird (northern fulmar, Fulmarus glacialis) samples collected from the south-
eastern Canadian waters of the Labrador Sea contained microplastics in their digestive tracts. Remarkably,
Jamieson et al. (2019) recovered mainly microfibers from 72% of the Lysianassoidea amphipods sampled at
7,000 to 10,890 m in six of the deepest ocean trenches in the Pacific Rim. In freshwater environments, a
recent study found that 50% of riverine macroinvertebrates (including detritivores and filter feeders) con-
tained microplastics (Windsor et al., 2019). These and other studies provide proof that ingestion of micro-
plastics by aquatic biota is widespread. Indeed, as the discard of plastics increases and our detection
capabilities improve, percentages of occurrence will increase.

The motivation to ingest microplastics may be a combination of accidental ingestion and reaction to sensory
cues but will vary by species, environment, and life stage. Cues may be visual, such as color or shape
(Schuyler et al., 2014) or tactile. As discussed above, plastic additives or cues emitted from associated bio-
films may influence ingestion. Terrestrial wildlife, for example, bears and wolves, have also been observed
to ingest plastic marine debris on Alaskan shores. Microplastics were apparent in their feces and tooth
and claw marks observed on larger debris (Figure 7). This demonstrates another fragmentation process, as
well as the transfer of plastics from marine to terrestrial ecosystems. In a freshwater to terrestrial transfer
context, Windsor et al. (2019) observed microplastics in half of the freshwater feeding invertebrates sampled,
including mayflies and caddisflies. In the lab, Al‐Jaibachi et al. (2018) showed that microplastics could be
transferred between aquatic (larvae) and terrestrial (adult) stages of mosquitos (Culex pipiens). Small parti-
cles (2 μm) were more efficiently transferred than larger (15 μm) polystyrene beads.

There is compelling evidence that microplastics <20 μm may enter the tissues of diverse biota through the
digestive system, hemolymph, or blood. Studies have shown that microplastics translocate in the tissues of
invertebrates such as fiddler crabs and mussels (Brennecke et al., 2015; Browne et al., 2008). Dawson et al.
(2018) fed ~30 μm fluorescent polyethylene microbeads to Antarctic krill (Euphausia superba), the major
phytoplankton grazer in the Southern Ocean. They observed that fragments isolated from the krill and their
feces were on average 6 to 7 μm, while fragments <1 μm entered the digestive gland itself. The authors sug-
gested that in nature, particles will weather and become embrittled, increasing vulnerability to physical
breakdown during digestion. Such fragmentation to microplastics and nanoplastics may facilitate their
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translocation into tissues. Investigation of several finfishes showed that microplastics accumulate in the
gills, alimentary tract, liver, and muscle (Avio et al., 2015; Choi et al., 2018; Greven et al., 2016; Su et al.,
2019), with distributions among organs differing depending on particle size (Lu et al., 2016). Ding et al.
(2018) exposed red tilapia fish over 14 days to 0.1 μm polystyrene particles at 1, 10, and 100 μg L−1. Tissue
concentrations increased over time in the order: alimentary tract > gills > liver/brain). Transport across
the highly selective blood brain barrier and accumulation of nanoplastics in the brain of fishes indicated
that small microplastics may enter the vascular system and be transported to diverse internal tissues,
including blood filtering (e.g., liver) and immune organs (e.g., spleen and head kidney). Entry of
microplastics and nanoplastics into tissues may also facilitate food chain transfer. Mattsson et al. (2017)
found that nanoplastic particles (52–330 nm) were transferred up through a marine food chain, from
zooplankton to finfish.

Ingestion or tissue translocation of microplastics can cause digestive system blockage, tissue damage, beha-
vioral changes, immune response, and death. Yet, some encounters may result in no observed effects
(Jovanović, 2017). Outcomes are dependent on the type of debris and organism and can be highly variable.
Mortality is generally not a dominant observation. More commonly, microplastic ingestion is reported to
reduce consumption of nutritious prey, leading to altered metabolism and behavior (as summarized in
Galloway et al., 2017). Contrarily, an experiment where brine shrimp larvae were exposed to 10 μm

Figure 7. Fragmentation and ingestion of marine plastic debris by Alaskan terrestrial wildlife. (a) Plastics washed up on
Alaskan beach, including tsunami debris; (b) polystyrene fragmented by wildlife; (c) PVC float chewed on by wildlife;
(d) polystyrene floats chewed on by wildlife; (e) bear scat, showing ingested plastic debris; (f) coyote scat containing
ingested plastic debris. Photos courtesy of Chris Pallister, Gulf of Alaska Keepers (goak.org).

10.1029/2018JC014719Journal of Geophysical Research: Oceans

HALE ET AL. 24 of 40



polystyrene particles found no effect on development, growth, or survival but reported that epithelial tissues
of the intestinal tract were changed, possibly affecting digestive efficiency (Y. Wang, Zhang, et al., 2019).
Similarly, Pedà et al. (2016) observed damage to the intestine of European sea bass following polyvinyl chlor-
ide pellet (3 mm) exposure and Jin et al. (2018) found that the intestinal epithelial tissues and mucous of
mice were altered following ingestion of 5 μm polystyrene particles during a 6‐week exposure. These obser-
vations suggest that a major consequence of ingestion of microplastics may be filling or physical alteration of
the digestive tract, compromising ingestion or assimilation of nutritious food.

6.2. Toxic Effects of Microplastics

Behavioral, metabolic, and developmental changes have been observed following microplastic exposure.
Mattsson et al. (2017) found that nanoplastic particles (52–330 nm) reduced survival of zooplankton and
altered behavior in finfish (measured as activity, feeding time, and distance swam in search of prey).
Although few studies have investigated effects across multiple life stages, Luan et al. (2019) observed that poly-
styrene microplastics were most toxic to developing clams during the egg hatching stage (compared to larval
stages), decreasing developmental rates. Research has also shown that microplastics may disrupt development
leading to physical abnormalities, such as Nobre et al. (2015) reported in sea urchin embryos. Oxidative stress
has also been observed following exposure in a variety of species, including the aforementioned reports on
juvenile zebra fish (Lu et al., 2016) and red tilapia (Ding et al., 2018). Overall, a variety of studies have
addressed these effects (reviewed in Prokić et al., 2019). However, the diversity of microplastic materials
andmetrics of effects usedmake it problematic to directly compare results, just as the diversity of microplastics
in the natural environment makes it difficult to predict toxicological outcomes with confidence.

The innate and adaptive immune systems are designed to respond to foreign antigens, so research has queried
if microplastics may be perceived as antigens or possibly inhibit immune response. Espinosa et al. (2018) stu-
died immune responses of head kidney leucocytes in seabream (Sparus aurata) and sea bass (Dicentrarchus
labrax) using 40–150 μm polyethylene and polyvinyl chloride particles. They found that there was a minimal
immune response, with the exception of potential oxidative stress. However, this study used microplastics 4 to
15 times larger than the average immune cell. As such, direct effects on function of immune cells (including
phagocytosis) would be limited. Veneman et al. (2017) tested developmental effects of polystyrene (0.7 μm)
in early stage zebra fish. The authors noted interactions with phagocytic cells (including neutrophils) and acti-
vation of the complement system and neutrophils. Greven et al. (2016) observed changes in fathead minnow
neutrophil response after exposure to polystyrene and polycarbonate nanoplastics. These and other studies
suggest that microplastics can induce immune responses in aquatic species, notably fishes (whose immune
system is a proxy for human immunity), which may alter infectious disease resistance.

Recent work has investigated the influence of microplastics on organismal microbiomes. The importance of
microbiomes to nutrition and disease protection is well recognized in fishes (Adamovsky et al., 2018;
Llewellyn et al., 2014) and humans (Shreiner et al., 2015). As previously discussed, microplastic surfaces
may develop novel biofilm microbiomes, potentially leading to specific microbial‐mediated consequences
(Zettler et al., 2013). Jin et al. (2018) found that in addition to digestive tissue alterations, the gut microbiome
of mice was substantially altered following polystyrene microplastic ingestion, modifying metabolic path-
ways including amino acid and bile metabolism. These authors suggested that such alterations could trigger
metabolic disorders. Wan et al. (2019) monitored the microbiome of larval zebrafish after 1 week of exposure
to 5 and 50 μm polystyrene particles (at 100 and 1,000 μg L−1). During this time, microbial diversity and
metabolic functions (i.e., lipid metabolism and glycolysis) were significantly altered. In wild‐caught flesh‐
footed shearwaters (Ardenna carneipes), an endangered seabird in Australia, Lavers et al. (2019) observed
a correlation between blood chemistry parameters (lowered blood calcium, heightened uric acid, choles-
terol, and amylase) and reduced morphometrics (reduced body mass, wing length, culmen, and head + bill
length) with the incidence of ingested plastic.

Research has also demonstrated that reproduction may be affected by microplastic exposure. A study inves-
tigating the effects of polystyrene microbeads (2 and 6 μm at 32 μg L−1) found that mussels exhibited
decreased reproductive capacity following a 2‐month exposure (Sussarellu et al., 2016). This was evidenced
in the abundance and development of larvae, as well as the number and diameter of oocytes and spermmoti-
lity. The authors suggested that this resulted from an energy shift away from reproduction and toward struc-
tural growth, due to feeding changes triggered by microplastic exposure. In a similar study with Daphnia
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magna, individuals fed 1–5 μm microplastic particles over a 21‐day incubation exhibited decreased repro-
ductive success (Pacheco et al., 2018). Effects included delayed brood release, decreased number of brood,
and immobility in juveniles.

Most of the available toxicological studies have been conducted under laboratory conditions, which may
limit their real‐world applicability. Many used fluorescently labeled plastics to track their distribution
through tissues (e.g., Browne et al., 2008; Choi et al., 2018; Ding et al., 2018; Dawson et al., 2018; Greven
et al., 2016; Jin et al., 2018; Lu et al., 2016; Veneman et al., 2017; Wan et al., 2019; Y Wang, Zhang, et al.,
2019). Toxicologists must ensure that the dyes do not leach or possess toxic properties. Schür et al. (2019)
observed that the fluorescence signal does not always indicate particle location itself but may be an artifact
of fluorescent chemical translocation. A reason that few studies have addressed toxicity in field‐collected sce-
narios is that unlabeled (e.g., nonfluorescing) microplastics in such samples are difficult to detect within
organisms. Although research has specifically addressed methodologies used to separate microplastics from
tissues (Lusher, Welden, et al., 2017), microplastics <20 μm are difficult to isolate and identify. In addition,
microplastics in the environment are extremely diverse, that is, exist as complex mixtures, in a sea of addi-
tional potential stressors. Thus, tying effects to a single, particular plastic can be extremely difficult outside a
controlled, laboratory situation. Clearly, further research on the dissemination of microplastics into and
between tissues is necessary to elucidate toxicological consequences. A major challenge to this research is
increasing our ability to reliably trace small microplastics.

6.3. Mechanisms of Microplastic Toxicity

Pathologies due to microplastic exposure can be driven by a variety of factors, including sorbed
pathogens/pollutants and polymer/additive composition. As previously discussed, it has been demonstrated
that microplastics can harbor pathogens (Kirstein et al., 2016; Viršek et al., 2017). Plastic/biofilm associa-
tions have been proposed as a vector of disease in wildlife and humans (Keswani et al., 2016). Biofilms on
plastics used in human joint replacements have been reported to be a source of infection (Gbejuade et al.,
2015). Lamb et al. (2018) observed disease incidence increased from 4% to 89% when coral reef species were
in contact with plastics. Rotjan et al. (2019) fed corals in the lab polyethylene microplastics with an
Escherichia coli‐containing biofilm. Two weeks postingestion E. coli was detected in all such fed corals, as
well as in some adjacent polyps. These corals died within 4 weeks after microplastic ingestion.

Microplastics sorb persistent organic and inorganic (e.g. toxic metals) pollutants in natural environments.
Indeed, this phenomenon has been exploited in designing polymer‐based passive sampling devices for dis-
solved organic pollutants (MacKenzie et al., 2004; Rochman et al., 2013; Telfer et al., 2014). However, sorp-
tion of a pollutant to a microplastic surface may be influenced by competitive interactions with other
chemicals present, as demonstrated by Bakir et al. (2012). The exaggerated surface areas of microplastics
compared to parent debris enhance contaminant sorption potential. For example, J. Wang, Liu, et al.
(2019) examined the sorption of phenanthrene and nitrobenzene onto polystyrene microplastics.
Particle/water partitioning of these chemicals tracked decreasing particle size, except for the smallest nano-
plastics where aggregation may have reduced their cumulative surface areas. Both laboratory (Beckingham
& Ghosh, 2017; Tanaka et al., 2015) and field‐based studies (Gassel et al., 2013; Rochman et al., 2014;
Scopetani et al., 2018) investigated whether such sorbed pollutants accumulate in organisms after ingestion.
Batel et al. (2016) fed Artemia sp. nauplii small microplastics with absorbed benzo(a)pyrene. They then fed
these nauplii to zebrafish (Danio rerio) and observed trophic transfer of both the microplastics and benzo(a)
pyrene. Most such studies examined organic pollutants, but Barboza et al. (2018) evaluated interactions
between mercury and microplastics, and resulting toxicological implications in fish.

Some authors (e.g., Besseling et al., 2018; Koelmans et al., 2016) have suggested that the importance of con-
taminant accumulation potential may be overestimated). They hypothesized that the outcome varies
depending on the conditions within the gut of the organism studied, that is, the type of gut fluid (Tanaka
et al., 2015). Contaminant sorption onto plastics could also reduce the opportunity for contact with the
organism, for example, if the microplastic/contaminant is sequestered in sediments.

Plastic products also may contain toxic organic and inorganic additives at several percent of the total plastic
weight (Hermabessiere et al., 2017). Plastics are widely used as containers for food and beverages, as well as
in medical devices, and researchers have examined additive migration in those contexts (Hahladakis et al.,
2018), but few have considered the toxicological potential of microplastic‐related additives on aquatic life.
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Lead, an additive in some polyvinyl chloride fishing floats, was shown to
leach in lab experiments (Nakashima et al., 2016). Migration decreased
over time as the lead near the float's surface was depleted. However,
release was reinvigorated after the polymer surface was abraded, as might
occur as the plastic fragments in the field. Thus, organisms contacting vir-
gin microplastics may experience greater exposure to additives than those
encountering weathered materials (Nobre et al., 2015).

The characteristics of the polymer, additive, and the leaching fluid play a
role in the extent of the additive release. For example, Hale and Chen
(2016) examined the leaching of flame retardants from virgin polyur-
ethane microplastics in the laboratory under various salinity, tempera-
ture, DOC, and digestive fluid conditions. Increasing water
temperatures enhanced the release of hydrophobic brominated flame
retardants, but not the more soluble phosphate‐based additives, which
was already substantial. Increasing humic acid concentrations showed a
similar pattern (see Figure 8), as did surrogate digestive fluids (not
shown). As there typically are multiple sources of additives (e.g., waste-
water treatment plant effluents, industrial releases, and contaminated
sediments), the contribution of leaching directly from in situ plastic debris
is difficult to assess. However, Martins et al. (2015, 2016) reported phtha-
late uptake and plastic debris‐derived immunogenic effects in salmonid
fishes in a remote Alaskan estuary. The site was pristine except for input
of ocean‐derived plastic debris.

In some cases, the presence of specific additives in plastics is unantici-
pated. For example, polystyrene fishing floats, aquaculture buoys have
been observed to contain the flame retardant hexabromocyclododecane
(HBCD; Rani et al., 2014; Jang et al., 2016) and in shellfish growing
thereon (Jang et al., 2016). While HBCD has been widely used as an addi-
tive in extruded polystyrene insulation boards, there is no functional rea-
son for it being in floats. The authors observed some of the highest HBCD
concentrations in polystyrene insulation board debris from the Pacific
coastlines of Alaska and California (Jang et al., 2017), theorized to be from
the 2011 Japanese tsunami disaster.

In a terrestrial context, Gaylor et al. (2012) observed that house crickets
(A. domesticus) ingested polyurethane microplastics and accumulated a
portion of the polymer additives therein. Previous work had shown that
such additives could undergo trophic transfer to frogs via consumption

of polyurethane‐exposed crickets (Hale et al., 2002). These same polymer additives had also been detected
at high levels in fish collected from a river downstream of a treatment plant (Hale et al., 2001) that received
wastewater from a plastics manufacturing facility. However, the precise role played by microplastics in
transferring the additives to the fish has yet to be delineated. Nonetheless, polymer additive detection in fish
fillets confirmed their presence outside of the digestive tract and in tissue consumed by humans.

Toxicity identification evaluation approaches may advance our understanding of the extent and conse-
quences of polymer additive and sorbed contaminant release. In this context, Coffin et al. (2019) examined
the ability of pepsin, a digestive enzyme, to leach additives from common plastic items. Using an in‐vitro cell
line, they reported that simulated gut conditions increased the estrogenicity of leachates from polystyrene,
polyethylene, and polypropylene. Bisphenol A and two phthalate plasticizers were identified, but levels
detected were deemed insufficient to explain the estrogenicity observed. The authors hypothesized that addi-
tional, undetermined additives in the leachates likely contributed. Jonker et al. (2016) combined chemical
analysis (liquid chromatography/high‐resolution time‐of‐flight mass spectrometry) of plastic leachates with
estrogenicity detection. They employed a reporter gene assay incorporating human VM7Luc4E2 cells. The
plastics were extracted with organic solvents (tetrahydrofuran:methanol; 50:50, v/v), which revealed

Figure 8. Leaching of additives from polyurethane microplastics under dif-
ferent environmental conditions. (a) Microplastics were added to a sand
column, leachate collected, and then analyzed by liquid chromatography/
mass spectrometry (LC/MS). Increasing (b) dissolved organic carbon (DOC)
concentration and (c) temperature greatly enhanced release of the hydro-
phobic BDE‐47 and TBB, but not the more hydrophilic TDCPP. [BDE‐47:
2,2′,4,4′‐tetra‐bromodiphenyl ether; TBB: 2‐ethyl‐hexyl tetrabromobenzo-
ate; TDCPP: tris(1,3‐dichloro‐2‐propyl)phosphate. Default leaching condi-
tions: 400 mg of 53–300 μmpolyurethane, water column flow 1ml/min, 40 °
C, 0 PSU, no added DOC.]
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several brominated and phosphate‐based additives. Estrogenic compounds identified included bisphenol A
and 2,4‐di‐tert‐butylphenol. The authors hypothesized that the lack of associated estrogenicity may have
been due to the additives' low known potencies and water solubilities.

Plastic polymers themselves are generally viewed as inert, nontoxic, stable materials; however, exceptions
exist. For example, the polystyrene monomer styrene has carcinogenic properties (Gibbs & Mulligan,
1997). Saido et al. (2014) found styrene to be widely distributed along coastlines of the northwest Pacific
Ocean. Comparison of and extrapolation from lab studies using the same nominal polymer type can be mis-
leading as materials obtained from different sources may differ in regards to actual polymer composition,
morphology, and additive content. Composition of “neat” plastics obtained from commercial sources may
differ from those commonly in consumer goods and thus in environmental debris. Furthermore, important
compositional information may be deemed confidential business information and thus unavailable to
the researcher.

Microplasticmorphological characteristics (shape, texture, and size) may influence toxicological outcomes, for
example, controlling if it is translocated in the tissues, blocks the digestive tract, or irritates or lacerates tissues,
resulting in abnormalities or increasing susceptibility to infectious diseases. Growing research suggests that
microfibers are a prevalent form of plastic pollution in the environment (Güven et al., 2017; Panno et al.,
2019; Michielssen et al., 2016). Their dimensions may present novel risks, as they are more likely to penetrate
or otherwise irritate tissues. The toxicity of asbestos, for example, is driven by its fibrous morphology (Siegrist
& Wylie, 1980). Further, weathering changes the surface morphology and properties of microplastics
(Balakrishnan et al., 2019) andmay have profound effects on toxicological outcomes. For simplicity and repro-
ducibility, most toxicological studies have utilized virgin plastics, although exceptions exist (see biofilm sec-
tion). Standardized methods to realistically weather plastics prior to experimentation are needed. A more
complete understanding of toxic outcomes and ecological risks from exposure to microplastics would justify
increased expenditures to delineate their fate and reduce environmental releases, relative to the threats posed
by other stressors such as disease, climate change and toxic chemicals (Koelmans et al., 2017).

7. Conclusions

Recently, concern over microplastics in the environment has been criticized as a distraction from other
issues threatening global environmental health, including climate change (Stafford & Jones, 2019).

Figure 9. Challenges for the study and reduction of microplastic pollution are illustrated here. Note that microplastics and
nanoplastics have been simplistically illustrated here as hexagonal, colored particles. In actuality, their sizes and shapes
are extremely variable and include fibers. Challenges 1–4 stem from the nature of the plastics and their weathering with
time. Challenges 5–7 involve determining their distribution throughout the environment results and delineation of their
effects. Finally, Challenges 8–10 involve mitigating the global health risks that microplastics pose.
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Ironically, plastics also play a role in climate change. Their manufacture represents 6% of current global oil
consumption (Ellen MacArthur Foundation, McKinsey and Company, 2016). Zheng and Suh (2019) calcu-
lated that fossil fuel‐based plastics produced in 2015 emitted 3.8% of the total global CO2 over the course of
their life cycles. The growth in plastic production is outpacing carbon emissions (Figure 1) and if unchecked
is projected to contribute 15% of global greenhouse gases by 2050 (Ellen MacArthur Foundation, McKinsey
and Company, 2016). Over 90% arose during plastic production versus end of life (landfilling, recycling, and
incineration). Recycling would constitute a net CO2 loss if used to supplant virgin plastic manufacturing
(Ellen MacArthur Foundation, McKinsey and Company, 2016). Furthermore, weathering of plastics in
the surface ocean has been shown to release the potent greenhouse gases methane and ethylene; thus, plastic
is not a permanent CO2 sink (Royer et al., 2018). Zheng and Suh (2019) suggested that increased use of
renewable bio‐based plastic feedstocks, greater recycling, and management of increasing demand are criti-
cal. However, Reddy et al. (2013) noted that a shift to generate 250 million tons of plastics from bio‐based
sources would divert 5% of available arable land from food production. In addition, the increased supply
of natural gas from hydrofracturing of North American shale deposits has fueled an expansion in U.S. plas-
tics manufacturing capacity (American Chemical Council, 2015). This poses an economic hurdle to
increased recycling. Clearly, the environmental role of plastics is complex, and solutions will require
creative strategies.

Due to the useful properties of plastics and our growing dependence on them, we cannot simply ban or
quickly replace them. Indeed, global usage is escalating, as is their mismanagement and entry into the nat-
ural environment. These plastics will over time degrade into microplastics and nanoplastics. At present, we
do not adequately understand the toxicological or ecosystem consequences of these. However, if serious
impacts are not already occurring, they certainly will arise as environmental levels increase. Examining
“hot spots” and the most exposed species are two valuable strategies for evaluating toxicological severity
of pollution. Ironically, humans living indoors, not marine organisms, may be the most exposed to micro-
plastics and associated additives.

This review is based on two underlying principles: (1) Microplastics are a transitory state existing between
plastic products/macrodebris and nanoplastics. To understand and solve the “microplastics” issue, we can-
not consider microplastics in isolation; we must consider all size groups. (2) The “microplastics” problem
extends well beyond the oceans. While the ultimate sink of microplastics is likely deep ocean sediments,
plastics are produced, used, and discarded initially on land and then are dispersed through the
other compartments.

Grand challenges related to these are detailed below and summarized in Figure 9.

1. Understand the complex composition of plastic products. The perception that all plastics are inert and
compositionally identical is incorrect. To resolve critical questions andmitigate possible impacts, plastic
manufacturers, aquatic and terrestrial and atmospheric scientists, health care specialists, waste and che-
mical engineers, economists, regulators, and others must collaborate and better understand the compo-
sition and nature of plastic products, including additives. The complexity of microplastics becomes far
more convoluted once they enter, intermingle, and weather in the environment.

2. Advance available sampling and analytical methods to detect small (<20 um) and diverse microplastics
and reveal their characteristics. We must improve sampling and analysis capabilities across all matrices,
including nanoplastics and weathered materials. Failure to sample appropriate locales in a representa-
tive manner or to encompass critical analytes leads to invalid conclusions. An overemphasis on the
abundance of microplastic particles in samples, in lieu of mass balances, currently exists. In part, this
is driven by analytical procedures that are weak in terms of mass quantitation.

3. Understand the sources and sinks of plastics, compartments, and transport processes involved. With ade-
quate analytical tools in hand, we can better elucidate the sources, pathways, and sinks of macroplastics,
microplastics, and nanoplastics in terrestrial, aquatic, and atmospheric compartments. Estimates based
on selected strata (e.g., surface waters or sediments), size ranges (e.g., sampling >300 μm), polymer types
(e.g., confined to buoyant olefinics), or forms (pellets, fragments, or fibers) should be qualified to avoid
confusion. In addition, an oft‐mentioned criticism of the sparse published toxicity studies available is that
some are conducted at “unrealistically high microplastic concentrations.” Our current analytical capabil-
ities are inadequate to determine true environmental concentrations and levels are increasing.
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4. Elucidate the influence of particle size on weathering and biodegradability. Do particles/fibers continue to
fragment into nanomaterials? Does the fate of these minute materials differ from expectations? That is,
do plastics last indefinitely in the environment or do they become increasingly vulnerable to physical
and biologically mediated degradation as they fragment and their surface areas increase (Figure 2)?
This has been inadequately explored to date.

5. Quantify human exposure via air, water, and food. We are exposed to microplastics and nanoplastics via
contaminated food and water. Ironically, much of this (and indoor air) is in intimate contact with plastic
containers, filters, and other devices. We are likely most exposed to microplastics and associated addi-
tives from our indoor environment, yet little research to date has investigated this, let alone evaluated
associated risks. It is instructive that ingestion and inhalation of indoor dust is now accepted as the
major pathway for our exposure to flame retardant polymer additives. What about exposure to micro-
plastics themselves, which are carriers of these additives?

6. Discover the complexities of microplastic interactions with the environment. We must better understand
the complexities of microplastic interactions with the environment, especially transition zones such
as estuaries. These must include holistic studies on individual organism, populations, and ecosystem
health and processes. Although many studies have begun to elucidate microplastic fate, more are
needed to prioritize prevention and remediation strategies. In addition, plastic surfaces submerged in
aquatic systems rapidly acquire biofilms (“eco‐coronas”) andmay be chemically altered by, for example,
oxidation. These affect biological ingestion/palatability, degradability, specific gravity, sorption of con-
taminants, and desorption of additives. Therefore, these environmental interactions should be carefully
evaluated.

7. Utilize laboratory studies to evaluate the toxicity of the wide variety of plastics that exist in the environment.
Controlled laboratory studies are critical in elucidating the effects of different plastic products on species
and communities of interest. Such studies must be designed to address true, environmental threats. For
example, many utilize plastic beads purchased from laboratory suppliers. Although these provide
insights into important processes, they differ in form and composition from plastic debris in the envir-
onment, limiting the unrestrained applicability of results.

8. Recognize that microplastic pollution is a global (international) issue that does not respect political
boundaries. Like the trajectories of climate change, fossil fuel consumption, and species management,
developed and emerging nations must cooperate to find equitable solutions to plastics pollution.

9. Understand the capabilities and pitfalls of green chemistry and bioremediation as potential solutions. The
most successful solutions to microplastic pollution will take place at the beginning of the lifecycle of
plastic products themselves, not remediating microplastics once in the open ocean. This is similar to
controlling or cleaning up an oil spill. Prevention is best, followed by containment and lastly cleanup.
The development of “green materials” is promising. However, facile breakdown of the polymer matrix
may facilitate release and enhance exposure to potentially toxic additives, so additives must also be
thoughtfully engineered—we must avoid the so‐called “regrettable substitution.” Additionally, plastic
waste management and recycling must be improved. Developing countries have recently been identi-
fied as an increasing source of marine plastic pollution. Wealthy nations should pioneer strategies for
redesign, reuse, and recycling, not seek to offload their wastes to developing nations.

10. Implement policy to help mitigate plastic pollution. Most plastics are inexpensive to manufacture. Hence,
there is little financial incentive to reuse them. To support a circular lifecycle, the upfront price of plas-
tics must incorporate end of life costs. Currently, low volume plastic users and associated ecosystems
bear a disproportionate burden (e.g., remote islands are now being littered with plastic debris). This
environmental injustice echoes that of climate change and sea level rise. Landfills may be mined by
future generations as resources become scarce and technologies improve. Optimization of such
“dumps” into “repositories” is worthy of consideration. Political initiatives across borders should seek
to accomplish these goals.
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