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A SPC Strategy for Decision Making
in Manufacturing Processes
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Abstract. Tapping is an extensively employed manufacturing process by which a multi-teeth
tool, known as a tap, cuts a mating thread when driven into a hole. When taps are new or
slightly worn, the process is under control and the geometry of the resulting threads on the
workpiece is correct. But as the tap wear increases, the thread geometry deviates progressively
from the correct one and eventually the screw threads become unacceptable. The aim of
this paper is to outline the development of a statistical process control strategy for decision
making based on data coming from the current signal of the tap spindle for assessing thread
quality. It could operate on line, and indicates when the tap wear is so critical that, if the
process were continued, it would result in unacceptable screw threads. The system would be
very cost-effective since the tapping process could be run without any operator intervention.
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1. INTRODUCTION

Tapping by cutting is one of the most common operations in manufacturing. It consists
of cutting internal threads on the wall of a previously drilled hole by means of a tool
called a tap that has cutting edges on its chamfered periphery. Tapping is a difficult
operation due to the large number of cutting edges involved and the complicated
synchronization necessary between the rotational and the feed movements of the
tap, a task particularly difficult at high speeds (Gil Del Val et al., 2013; Gil Del Val
et al., 2015).
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In this paper, we detail the experimental development of Statistical Process Control
(SPC) strategy for decision making aimed at predicting the point in time when the
tapped threads become unacceptable as a result of tap wear.

Chen et al. (1990) worked on tap modeling, and has focused on fault detection
and classification for diagnosis purposes. Liu et al. (1991) continued this work using
a neural network to classify the faults. Both papers relied on intrusive sensors. Further
work along these lines was conducted by Li et al. (2002), whose system detects the
same three types of faults of the previous papers but used less intrusive sensors.
Even so, the sensors utilized involve an additional cost, and for training purposes the
system requires production of unacceptable threads for each of the types of faults
the system is to detect. The main problem of these last two papers is that they use
intrusive sensors to diagnose the faults in tapping operations. However, manufacturers
prefer tapping operations without intrusive sensors.

Although Li et al. (2002) used non-intrusive sensors and this reduces costs, we
present a more cost effective solution in which the electrical current signal is acquired
directly from the I/O module of the CNC machine itself, and hence no sensors are
required. In contrast with earlier research on tap modeling, our emphasis is on process
monitoring of the tap tool and on the decision-making of the corresponding thread
quality, rather than on fault detection and classification of the tapping process with
respect to a specific set of process conditions. This approach is close to the necessity
of manufacturers’ requirements, but this strategy is complex to operate in real time in
a manufacturing cell.

A sophisticated monitoring and diagnosis approach for tapping was presented
by Liu et al. (2013) based on features of torque and forces (thrust and lateral) from
a Kistler dynamometer chosen by sequential forward search. An adaptive neuro-
-fuzzy interface system was used to classify the same five abnormal tapping processes
described in the previously cited papers. In contrast to this complex manipulation
of the data, which might not be intuitive for an operator, our approach uses well-
-established techniques for determining linear combinations of parameters to monitor
(i.e. PCA) together with a powerful detection method from the statistical process
control literature that provides an easy to understand chart. In addition, our approach
has the advantage of interpretability, as the two principal components monitored are
averages of certain areas under the torque profile.

Zhou et al. (2016) have studied two modifications to the conventional PCA-based
monitoring methods to cope with the non-normal distribution and time-varying nature
of the process data. Two algorithms are tested on the real process data to verify their
effectiveness in the early abnormality detection of iron-making process.

Currently, Oezkaya and Biermann (2018) have proposed the development of
a geometrical torque prediction method to determine relative torque values for tapping
processes with various tapping tools and diameters. The results have been validated
with experimental tests. This research focuses on torque as a main signal to control
and make decisions in tapping processes. Therefore, this paper selects torque as the
main signal to provide decision making when the process is out of the tolerance range.
Besides, Lorentz (1989) was the first to use the principal component analysis in tapping
processes. The results were good at improving the cutting and operational conditions.
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On the other hand, Statistical Control Process (SPC) has been used to improve the
quality of the product and avoid faults, which cause industrial costs to soar. Shu
and Wu (2011) propose allocate control charts in a multistage process in order to
detect industrial faults. These two studies validate the control charts with different
examples: automotive assembly and a hood assembly, respectively. In addition to
this, the optimization of inspection requires the methodologies to raise customer
satisfaction. M. Oppermann et al. (2001) developed a quality cost model based on
SPC in electronics production of big companies.

Finally, the diagnosis systems provided by data mining and machine learning
are being implemented in the industry to control the quality of the product and to
avoid faults. A fault is a high industrial cost owing to the time, material and energy.
Kiluk (2017) proposed a diagnostic information algorithm based on machine learning
strategies to identify the dynamic faults in a heating process. Kiluk (2014) developed
an algorithm-based diagnostic knowledge has dynamic properties that can work as
a predictor to evaluate the faults in a thermal process.

The aim of this paper is to develop a SPC strategy for decision making when the
thread quality is close to being beyond tolerance range. The paper has the following
structure: firstly, set up, signal and measurement results will be shown. Secondly,
Principal Component Analysis will be conducted to reduce the number of parameters
from the monitor signal. Thirdly, a decision making methodology will be developed to
guarantee the quality in the mechanical operation. Finally, Generalized Variance (GV)
control charts will illustrate the decision making to stop the tapping process before
a lack of thread quality ensues.

2. SET UP, SIGNAL & EXPERIMENTAL RESULTS

Figure 1 illustrates a CNC machining centre where the tapping operations are per-
formed. Taps are coated with Titanium Nitride (TiN) and their metrics are
M10 × 1.5 mm, respectively.

Fig. 1. CNC machining centre where the tapping operations
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Workpiece material is nodular cast iron (GGG50) in plates, whose dimensions are 250
by 450 mm and 20 mm thick. The cutting speed is 65 m/min in dry conditions to
avoid coolant. To assess thread quality, all tapped threads are inspected by a “go /
non-go” gauge.

The electrical current from the I/O module of the CNC machine was selected to
make a decision about the thread quality. Therefore, Figure 2a illustrates the torque
sensitivity as acceptable and unacceptable thread profiles are superposed. The effect of
wear on the tapped threads quality can be appreciated in Figure 2b. As a consequence,
the go gauge cannot fit in the threaded hole.

a) b)

Fig. 2. The torque sensitivity as acceptable and unacceptable thread profiles: a) spindle
motor torque signals from acceptable and unacceptable threads; b) lack of quality:

non-defective and defective thread profiles

Six taps of the same characteristics have been tested and results are shown in
Table 1. The second column indicates the number of tapped holes that passed the “go /
non-go” gauge test. The process continued until an experienced operator declared that
the tap end of life by catastrophic failure was close, and hence the tap was changed.
Therefore, the third column indicates the total number of manufactured threads. The
difference between two columns indicates the number of unacceptable threads.

Table 1. Number of tapped holes corresponding to the 6 HSSE M10 × 1.5 taps tested

Tap Acceptable threads Total threads

1 175 205

2 108 120

3 37 40

4 60 80

5 81 100

6 109 120
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Parameters A1, A3, A5 and A7 represent the torque evolution area of the main
spindle motor in the acceleration or deceleration periods in cutting and reverse stages
as can be shown in Figure 3. Parameter A2 is the torque evolution area of the main
spindle motor when the tap cuts threads. Parameter A4 is to keep synchronism between
rotation and the feeding movements. Parameter A6 is the tap torque evolution area
during tap reverse.

Fig. 3. The area parameters from current signal for decision making
to assess the thread quality

With all these parameters, decision-making is complicated and consequently, the
parameter number is reduced. For this task, the Principal Component Analysis (PCA)
will be applied.

3. PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis (PCA) is a well-established statistical technique that
expresses multivariate data as a set of linear functions of “latent” variables (the
principal components, PCs).

Jackson (1991) was the first to propose the use of principal components for the
quality monitoring of multivariate processes.

Let X be a n × p matrix containing the n observations of the p responses or
signals of interest (in the tapping process, these are the Ai torque area values, so
p = 7). It is good practice to standardize each column of X such that it has a mean of
zero and a variance of 1 (hence, the values in the Z matrix can be negative or positive,
contrary to the actual area measured which are obviously nonnegative):

Z = X −XS, where = diag{1/Sxi}

sS = diag{1/Sxi} (1)
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and where Sxi is the standard deviation of the i th column of X. The principal
components Y are linear combinations of the (standardized) data:

Y = Z · V (2)

where matrix V is found in such a way that the variance-covariance matrix of Y is
diagonal (and hence, the PCs are orthogonal). We have that:

cov(Y ) = V ′ · (Z) · V (3)

and therefore V is the matrix that diagonalizes cov(Z). This is well-known by Jack-
son (1991) to be achieved by the p×p matrix of eigenvectors of cov(Z) (the eigenvectors
are orthonormalized, i.e., V ′V = I). Thus, the PCs Y point in p orthogonal directions
in p-dimensional space where the data varies the most. The dimensionality of the
problem is reduced by selecting only a subset of k(k < p) PCs that explain most of
the variance in Z. The proportion of variability explained by the ith PC is given by
λi/
∑p
j=1 λj where (λ1, λ2, . . . , λp) are the eigenvalues of matrix cov(Z).

The PCA of the six taps tested, it can be concluded that the first two PCs, after
simplification, are common to all taps, explain between 80% and 90% of the variability
and are approximately equal to:

Y1 = 0.25 · (Z1 + Z3 + Z5 + Z7) (4)
Y2 = 0.5 · (Z2 + Z6) (5)

4. STATISTICAL PROCESS CONTROL

SPC is an anticipatory technique which suggests stopping a process before the produc-
tion of a defective part. Therefore, in the tapping process, the SPC scheme may suggest
a decision to stop the process and replace the tap when the tap would have produced
an additional number of acceptable threads until the end of tool life threshold. In de-
cision making methods, this would constitute false positives (FPs). If the process were
deemed in control past the end of life threshold of the tap this may not only result in
defective threads but the tap may break inside the workpiece, which could result
in considerable expense. In decision making analysis terms, these would correspond
to false negatives (FNs), and would be therefore of more economic importance than
false positives (FPs). As shown next, the proposed monitoring scheme provides a good
trade-off between these costs, not giving false negatives and giving a reasonably low
false positive rate.

Let m be the number of observations (threads) in the training period. There are
some studies that indicate how to choose m in multivariate SPC, but they usually
recommend a relatively large number of observations, at least 50 suggested by Mont-
gomery (1996). If a too small training period is used, it is well-known by Montgomery
(1996) that the statistical power of the control chart will be low. Based on our desire
to obtain a monitoring scheme that works effectively for all tap behaviors observed in
our experiments, the following empirical rule was used to determine the end of the
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learning period in each tap: the end of the training period should occur when the
observed A2 parameter value equals 1.5 times the average A2 value observed during
the five first tapped holes.

The GV chart requires the estimation of the instantaneous variance of the PCs,
estimated following a suggestion in who use the moving ranges:

Vi = Yi + 1− Yi, i = 1, 2, . . . ,m− 1 (6)

and suggested as an estimator of the covariance matrix:

S∗ =
1

2 · (m− 1)

m−1∑
i=1

Vi · V
′

i (7)

The statistic plotted at time (tapped hole) j on the Generalized Variance (GV) chart
is the standard deviation of

Zij =
Yij − Yim√

Si∗
, i = 1, 2, . . . , p, j = 1, 2, . . . , p− 1 (8)

where Yim is the average vector of PCs for each tap over the training period and Ai.
That is, the statistic plotted at time (or tapped hole number) j on the GV chart is
then

GVj =

p∑
i=1

(
Zij − Zim

)
2

, j = 1, 2, . . . , p− 1 (9)

The Upper Control Limit (UCL) of the GV chart is then calculated as

UCL = B4 ·GV̄ (10)

where GV̄ is average value of the GV statistic for each tap during the learning
period, i.e.,

GV̄ =
1
m
·
m∑
i=1

GVi (11)

and B4 is a constant that depends on m and corrects for bias Montgomery (1996).
The process is deemed “out of control” when GVj > UCL.

5. DECISION MAKING METHODOLOGY

Figure 4 illustrates the decision making methodology used to know the level of quality
in the threads and the moment when the tapping process is out of control.

SPC 
GVi
UCL 

GVi UCL > 

No 

Yes 

Decision-making 

ith thread ith thread i th thread 

ith+1 thread 

DAQ 
Torquei
Ai

PCA 
Y1,i & Y2,i

Stop the process 

Fig. 4. Decision making methodology
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The data acquisition system registers the current signals. Then, several strategies
were developed in MatlabTM to calculate the area parameters (Ai) from the torque
signal, the principal components (Y1 and Y2) and generalized variance values. For
both statistical techniques, the learning period is when the observed A2 parameter
value equals 1.5 times the average A2 value observed during the five first tapped
holes. Once stablished the learning period, the following i th thread is sculpted and
the method calculates the Ai, principal components and GV value of i th thread. The
last step of the methodology is decision making when the GV value of i th thread is
compared with UCL value. If the GV value of i th is lower than the UCL value, the
process continues with the following i th + 1 thread. However, if the GV value of i th is
greater than the UCL value, the operator or machine can make a decision. On the
one hand, the decision may be to stop the tapping process as it is out of control.
The result is a high level of false positives (FP, threads that being in tolerances are
considered unacceptable). On the other hand, the decision may be to continue until
the real end tool life testing by the “go / non-go” gauge. In this case, false negatives
(threads without being in tolerances are considered acceptable) might appear. This
is a defective thread and this industrial cost is unsatisfactory. Therefore, this paper
continues the tapping process in spite of the fact that the decision making is done as
the tapping manufacturers want to know the rates of FPs and FNs, respectively.

6. GV CONTROL CHARTS

Taps 1, 3 and 6 represent reasonably well the behaviour of the whole set. For brevity’s
sake only these GV control charts (Figs. 5–7) are shown. In all figures, the blue line is
the GV value, the horizontal red line is the UCL value, the vertical black line is end
thread quality (ETQ, the real end of tool life) calculated by the “go / non-go” gauge
and the red points are the FPs. There are no FNs in these charts.

Figure 5 illustrates the moment when the operator might make a decision to stop
the process before mechanizing an unacceptable thread. This moment is in the 175th

thread. The GV control chart of tap 1 indicates that, from tapped hole number
175th onwards, all threads are out of control (nonacceptable).

Fig. 5. SPC control chart for tap 1. First FP is the 175th thread
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However, the tapping operation continued to know the tool life and the percentage
of FPs as it has been described in the previous section. Experimental results have
shown that the first non-acceptable one was actually number 192nd as shown by the
black vertical line. Therefore, the GV control chart for tap 1 provides an 8% FP. No
FNs occured.

Figure 6 shows the tap 3 in spite of the fact that the GV behaviour is similar to
tap 3. However, the great difference between two taps is the tool life as tap 3 is the
shortest tool life. The decision making to stop could be on the 33rd thread. It presents
a 6% of FP and a 0% FN.

Fig. 6. SPC control chart for tap 3. First FP is the 33rd thread

Tap number 6 GV control chart indicates that, again no FNs have occurred. The
decision making to stop might be on 76th thread which gives a 30% of FPs as it can
be shown in Figure 7. This is a great tool cost, but there are no unacceptable threads,
which are the greatest industrial costs.

Fig. 7. SPC control chart for tap 6. First FP is the 78th thread

The SPC strategy for decision making to stop the process before the lack of
thread quality developed in this paper achieves the average FP rate across all the six
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taps in our experiments was close to 10% but no FNs were observed. In other words,
the tapping process misses 10% of thread pieces but there are no defective pieces.
A defective piece (i.e. a brake wheel) in which one thread is out of tolerances, has
a high benefit and industrial cost in a manufacturing cell. Therefore, and considering
that the cost of the tool varies between 10 and 30% of the total manufacturing cost, the
cost penalty due to the early process stoppages represents only between 1.4 and 3.2%.
The managers considered these values acceptable for a manufacturing firm as a defect
is an inadmissible industrial cost for them when the mechanized piece (e.g. a brake
wheel) has all the added value. Besides, the comparison with the savings of having
a monitoring system that allows working without an operator or with only partial
operator service.

7. CONCLUSIONS

A SPS strategy for decision making to stop the process for assuring good quality of
M10 × 1.5 mm threads machined with TiN Coated HSS taps and using torque signals
of the spindle motor has been developed and validated for cast iron GGG50. It does
not give any false negatives (a defective piece, which is an industrial cost) but it gives
an average of 10% false positives, which increases tool costs. However, the cost penalty
in most cases can be assumed.

The strategy detects when a particular tap goes out of control as a result of tool
wear and it has enough generality to be applied to different types of work and tap
materials with different cutting speeds, tap diameters and geometries.

The decision making methodology can work on line and can replace the operator
vigilance task, while maintaining the thread quality at the same time.
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