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ABSTRACT

This research centers on the study of generalized inverse limits. We show that all

members of an infinite family of inverse limit spaces are homeomorphics to one particularly

complicated inverse limit space known as "The Monster". Further, properties of factor

spaces and graphs of bonding functions which are preserved in generalized inverse limit

spaces with upper semi-continuous bonding functions with appropriate restrictions are

investigated. Some of the properties are locally connectedness, hereditary decomposability,

hereditary indecomposability, hereditary unicoherence, arc-likeness, and tree-likeness. The

theorems are illustrated by several examples.
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SECTION

1. INTRODUCTION

The study of inverse limits date back to the 1920’s. In 1954, C. E. Capel. published

a paper about investigating inverse limits [6]. He showed that the inverse limit space

of arcs with monotone bonding maps is an arc. In 1959 R. D. Anderson and Gustave

Choquet showed that inverse limits can be used in describing complicated examples [2].

They created, using inverse limits, an example of a planer tree-like continuum no two of

whose nondegenerate subcontinua are homeomorphic. G. W. Henderson showed that the

pseudo-arc can be constructed as an inverse limit on the interval with a single bonding map

[15]. Because of example like these, inverse limits became a powerful tool for constructing

complicated continua in the study of continua. Today people know a lot about inverse limits

when bonding functions are single valued mapping. In 2004, W. S. Mahavier introduced

generalized inverse limits which is the inverse limit with set valued upper semi-continuous

functions as bonding functions [39]. The publication of the book by W. T. Ingram and W.

S. Mahavier in 2010 [21], helped create a great deal of interest in the study of generalized

inverse limits. One such area of research is to understand what properties of the factor

spaces or graphs of the bonding functions are preserved in inverse limit spaces having upper

semi-continuous bonding functions.

We start with the definition of a continuum and some subtypes. Most of these

definitions can be found in [33] and [21]. A continuum X is non-empty, compact, connected,

metric space X . Some researchers do not require a continuum bemetric only Hausdorff. We

will not use this more general meaning for continuum in this dissertation. A sub-continuum

of a continuum X is a continuum subset of X . A continuum is said to be decomposable

if it is the union of two proper sub-continua otherwise, it is indecomposable. An arc is a
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continuum that is homeomorphic to a closed interval. A simple closed curve is a continuum

that is homeomorphic to a circle. A continuum M is a triod if M contains a subcontinuum

K such that M − K has at least three components. The subcontinuum K is called a core of

the triod. An atriodic continuum is one which does not contain a triod. A continuum X is

said to be irreducible if there are two points p and q in X such that no proper subcontinuum

of X contains both p and q. A continuum X is said to be irreducible between closed

subsets A and B if X intersects each of A and B but no proper subcontinuum of X does. A

continuum X is unicoherent if any two subcontinua of X whose union is X have a connected

intersection. A continuum is called hereditarily unicoherent if each of its subcontinua

is unicoherent. A continuum X is said to be a dendrite if it is locally connected and

contains no simple closed curve, it is a dendroid if it is arcwise connected and hereditarily

unicoherent. A hereditarily decomposable and hereditarily unicoherent continuum is said

to be a λ-dendroid. A subcontinua K of a compact metric space X is called a terminal

continuum if every subcontinua of X which intersects K and its complement contains K .

Note this definition of a terminal continuum agrees with T. Maćkowiak’s usage [31]. W. T.

Ingram allows K to be a subset, not necessarily a subcontinua, of X and calls such sets

C-sets. For him terminal continua have a different meaning he says that: A subcontinua K

of a compact metric space X is called a terminal continuum in the notion of Ingram if A

and B are subcontinua of X each intersecting K then A ⊆ A∪K or B ⊆ A∪K see [17].

We start with the necessary definiton of mapping and its type. A continuous function

from a topological space X to a topological spaceY is called amap ormapping. A mapping

f from X onto Y is said to be monotone (atomic) if the inverse image of any point of Y

is a subcontinuum (terminal subcontinuum) of X . Given continua X and Y and ε > 0, a

mapping f : X → Y is called an ε-map if for each y ∈ Y , diam( f −1(y)) < ε . A continuum

X is said to be arc-like (chainable) if for every ε > 0, there exists an ε-map fε : X → [0,1].
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Let X be a topological space, we define the following hyperspaces of X: 2X =

{A ⊆ X : A , ∅, closed and compact} and C(X) = {A ∈ 2X : A connected}. If X is a

continuum with a metric d, ε > 0, and A ∈ 2X then we define the ε-neighborhood of A by

Nd(ε, A) = {x ∈ X, d(x,a) < ε for some a ∈ A}. If A,B ∈ 2X , then define the Hausdorff

distance Hd by the formula, Hd(A,B) = inf{ε > 0, A ⊂ Nd(ε,B) and B ⊂ Nd(ε, A)}.

Let X and Y be continua and x ∈ X , a function f : X → 2Y is an upper semi-continuous

at x provided that for all open sets V in Y which contain f (x), there exist an open set U

in X with x ∈ U such that if t ∈ U, then f (t) ⊆ V . If a function f : X → 2Y is upper

semi-continuous at x for each x ∈ X , we say that f is upper semi-continuous (usc). In the

case where both X and Y are compact metric spaces then f is an upper semi-continuous

(usc) if and only if the graph of f , Graph( f ) = {(x, y) : y ∈ f (x)}, is closed in X × Y [16,

p. 3].

Given a sequence of continua Xn and upper semi-continuous functions Fn : Xn+1 →

2Xn , the inverse limit of Fn is defined by lim
←−−
{Xn,Fn} = {(x1, x2, ...) : xn ∈ Fn(xn+1)} where

the topology is the subspace topology of the product topology on ΠXn. Similarly, when Xn

and Fn are known, and i ≤ j, we denote by Gi,j = {(xi, xi+1, ..., x j) : xk ∈ Fk(xk+1) for k ∈

{i, i + 1, ..., j − 1}}. If i = j, we identify Gi,i with Xi and G1,∞ denotes lim
←−−
{Xn,Fn}.

For a natural number n let αn : Graph(Fn) → Xn and βn : Graph(Fn) → Xn+1 be the

projections. For m, i, j,n such that m ≤ i ≤ j ≤ n ≤ ∞ we denote by ρm,n
i,j the projection

ρm,n
i,j : Gm,n → Gi,j . If i = j we write ρm,n

i in place of ρm,n
i,i . Note that for each natural

number i, the set Gi,i+1 is equal to the Graph(F−1
i ). We also denote by πk the projection

from lim
←−−
{Xn,Fn} to Xk .

In this dissertation, we studied generalized inverse limits in three papers. In the first

paper, We are interested in the family of upper semi-continuous functions fa : [0,1] → [0,1]

and the corresponding inverse limit spaces Xa = lim
←−−
{[0,1], fa}, where the graph, Graph( fa)

is the union of the line segments from (0,0) to (a,1) to (1,a) to (1,0) for a ∈ [0,1] . For

a ∈ (0,1), fa is a generalized upper semi-continuous (usc) Markov function and it follows



4

from results of Banić and Lunder [4] that if a, b ∈ (0,1) then Xa homeomorphism to Xb. But

for a ∈ (0,1), Xa and X1 are not homeomorphic since the first contains the topologists sine

curve as a subcontinuum and the second is the harmonic fan. The functions fa, a , 0 and

f0 do not satisfy the hypothesis of Banić and Lunder’s theorem so we may ask, are X1/2 and

X0 homeomorphic? In his Master’s thesis Jacobsen [23] studied X1/2 where he showed that

it contained 2ℵ0 arc components and each arc component is dense. The space X0 is often

referred to as ‘the Monster’, a name reportedly coined by Banić. There are several other

authors who have results showing when families of functions have homeomorphic inverse

limit spaces. For example, Ingram and Mahavier, [21] have shown that if f and g are (usc)

functions which are topological conjugate then the corresponding inverse limit spaces are

homeomorphic. Smith and Varagona [36] have shown that N-type (usc) functions which

follow the same pattern have homeomorphic inverse limits. Again fa, a ∈ (0,1) and f0

do not satisfy hypothesis of their theorem. Kelly and Meddaugh [26] examine when is it

the case that a sequence of (usc) functions fi converging to an (usc) function f implies

that lim
←−−
{[0,1], fi} converges to lim

←−−
{[0,1], f } in the Housdorff metric. If we let ai ∈ (0,1)

with ai → 0 then Xai are all homeomorphic by Banić and Lunder’s theorem but again

the functions fai and f0 does not satisfy Kelly and Meddaugh’s hypothesis. Thus it seems

somewhat surprising that it is the case that X1/2 (and hence Xa for a ∈ (0,1)) and X0 are

homeomorphic as we show in the main theorem of the first paper [32].

Some topological properties are known to be preserved by (single valued) inverse

limits. For example arc-likeness, tree-likeness, dimension, trivial shape etc. are such.

Also some properties are preserved if the bonding mappings are members of some classes,

for example a theorem by Capel says that local connectedness is preserved by inverse

limits if bonding functions are monotone (see [6, Theorem 4.3, p. 241]). Similarly, the

property of Kelley is preserved if the bonding mappings are confluent (see [8, Theorem 2,

p. 190]). Much less is known about which properties are preserved under inverse limits

with multivalued bonding functions. We have some theorems about connectedness of these
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inverse limits, (see e.g. [21, Theorem 125, p. 89 and Theorem 151, p. 112], [35, Theorem

3.1, p. 170]) and [14]. Also trivial shape is preserved if the bonding functions have trivial

shape images (see [12]). J. P. Kelly showed that the inverse limit of intervals is locally

connected if the bonding functions have connected images and preimage of points. In the

second paper [10], a generalization ofKelly’s theorem showing that the inverse limit space of

locally connected continua with bonding functions whose graphs are locally connected and

preimage of points are connected is locally connected is obtained. We give several examples

of applications of the above theorem, in particular we use topological characterizations of

some dendrites to show that particular inverse limits are homeomorphic.

Finally, generalized inverse limits of continua with bonding functions Fn such that

the projection βn (αn) of Graph(Fn) onto the second (first) factor space are atomic and

images (pre-image) of points are zero-dimensional are studied [11]. For some properties

it is shown that if the first (all) factor space(s) has a certain property then the inverse limit

space must have this property. Properties considered include; hereditary decomposability,

hereditary indecomposability, hereditary unicoherence, arc-likeness, and tree-likeness. In

[17] W. T. Ingram showed that if F is a linearized version of the sin(1/x) function is used as

the single bonding function in an inverse limit system on [0,1], so Graph(F) is chainable,

then the resulting inverse limit space was chainable. He followed this up, answering a

question from one of us, by showing [19] that the inverse system consisting of a sequence

of sinusoids as bonding functions has a chainable inverse limit. In a related result [25] J. P.

Kelly considered inverse systems with a single irreducible function as it’s bonding function.

Kelly’s work generalized Ingram’s earlier result on the linearized sin(1/x). Sinusoids do not

necessarily satisfy the conditions to be an irreducible function. In this paper we consider a

sequence of upper semi-continuous bonding functions, Fn, with the property that for each

n the projection αn (βn) is an atomic map and for every x ∈ Xn+1 the image Fn(x) (every

x ∈ Xn the preimage F−1(x)) is zero-dimensional. All of the examples in [17] as well as the
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sinusoids in [19] satisfy these conditions however Kelly’s irreducible functions may not. A

number of examples are given to illustrate how the theorems may be used to understand

some of the properties of the generalized inverse limit spaces.
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ABSTRACT

We show that two generalized inverse limit spaces that one might suspect are not

homeomorphic are in fact homeomorphic. Keywords: inverse limits, generalized inverse

limit, set valued functions, upper semi-continuous

1. INTRODUCTION AND DEFINITIONS

We are interested in the family of upper semi-continuous functions fa : [0,1] →

[0,1] and the corresponding inverse limits Xa = lim
←−−
{[0,1], fa}, where the graph, γ( fa), of

fa is the union of the line segments from (0,0) to (a,1) to (1,a) to (1,0) for a ∈ [0,1] . For

a ∈ (0,1), fa is a generalized upper semi-continuous (usc) Markov function and it follows

from results of Banić and Lunder [1] that if a, b ∈ (0,1) then Xa homeomorphism to Xb.

But for a ∈ (0,1), Xa and X1 are not homeomorphic since the first contains the topologists

sine curve as a subcontinuum and the second is the harmonic fan. The functions fa, a , 0
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and f0 do not satisfy the hypothesis of Banić and Lunder’s theorem so we may ask, are X1/2

and X0 homeomorphic? In his Master’s thesis Jacobsen [3] studied X1/2 where he showed

that it contained 2ℵ0 arc components and each arc component is dense. The space X0 is

often referred to as ‘the monster’, a name reportedly coined by Banić. There are several

other authors who have results showing when families of functions have homeomorphic

inverse limits. For example Ingram and Mahavier, [2] have shown that if f and g are

usc functions which are topological conjugate then the corresponding inverse limit spaces

are homeomorphic. Smith and Varagona [5] have shown that N-type usc functions which

follow the same pattern have homeomorphic inverse limits. Again fa, a ∈ (0,1) and f0

do not satisfy hypothesis of their theorem. Kelly and Meddaugh [4] examine when is it

the case that a sequence of usc functions fi converging to an usc function f implies that

lim
←−−
{[0,1], fi} converges to lim

←−−
{[0,1], f }. If we let ai ∈ (0,1) with ai → 0 then Xai are

all homeomorphic by Banić and Lunder’s theorem but again the functions fai and f0 does

not satisfy their hypothesis. Thus it seems somewhat surprising that it is the case that

X1/2 (and hence Xa for a ∈ (0,1)) and X0 are homeomorphic as we show in our theorem.

A topological space X is a continuum if it is a non-empty, compact, connected, metric

space. A continuum subset of the space X is called a subcontinuum of X . Let X and Y

be topological spaces, a function f : X → 2Y is upper semi-continuous at x provided that

for all open sets V in Y which contain f (x), there exist an open set U in X with x ∈ U

such that if t ∈ U, then f (t) ⊆ V . If a function f : X → 2Y is upper semi-continuous

at x for each x ∈ X , we say that f is upper semi-continuous (usc). Let X and Y be

compact metric spaces and f : X → 2Y a function. It is well known that f is usc if and

only if the graph of f , γ( f ) = {(x, y) : x ∈ X and y ∈ f (x)} is closed in X × Y . Let

(Xi)i∈N be a sequence of continua and for each i ∈ N, let fi : Xi+1 → 2Xi be an upper

semi-continuous function. The inverse limit of {Xi, fi} is denoted as lim
←−−
{Xi, fi} and defined

by lim
←−−
{Xi, fi} = {(xi)

∞
i=1 : xi ∈ fi(xi+1), xi ∈ Xi for all i ∈ N}.
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2. MAIN THEOREM

Theorem 2.1. X0 is homeomorphic to X1/2.

Proof. Let f : [0,1] −→ 2[0,1] be given by f (x) = 2x for x ∈ [0,1/2], f (x) = 3/2 − x for

x ∈ [1/2,1], f (1) = [0,1/2].

f (x) =


2x if x ∈ [0, 1

2 ]

3
2 − x if x ∈ [12,1)

[0,12 ] if x = 1

Let g : [0,1] −→ 2[0,1] be given by

g(x) =

[0,1] if x = 0

1 − x if x ∈ (0,1]

Let A = {(a1, ...,ai, ...) : ai ∈ {0,1} and ai = 1 ⇒ ai+1 = 0}. Let B = {(b1, ..., bi, ...) :

bi ∈ {0, (1/2)n} and bi = 0 ⇒ bi+1 ∈ {0,1} and bi = (1/2)n ⇒ bi+1 ∈ {(1/2)n+1,1}}.

It is clear that A and B are subsets of lim
←−−
{[0,1],g} and lim

←−−
{[0,1], f } respectively. Two

points x and y in A are said to be adjacent if there is a positive integer n such that

πi(x) = πi(y) for i ≥ n + 1, πn+1(x) = 0 = πn+1(y), and πi(x) = 1 − πi(y) for i ≤ n. Define

r A
xy : [0,1] → lim

←−−
{[0,1],g} by rxy(t) = (t,1 − t, t, ...,1 − t, t,0, xn+2, ...). We say r A

xy is a

straight line in lim
←−−
{[0,1],g} connecting x and y. Notice that any two distinct straight lines

can only intersect at endpoints. Two points z and w in B are said to be adjacent if there

exist a positive integer n such that πi(z) = πi(w) for i ≥ n + 1, πn+1(z) = 1 = πn+1(w), and

there is a positive integer m such that πn(z) = 1/2m−1, πn(w) = 1/2m, πi(w) = 2πi+1(w) for

n−m ≤ i < n and πi(w) =
3
2−πi+1(w) for 1 ≤ i < n−m, πi(z) = 2πi(w) for n−m ≤ i < n+1

and πi(z) = 3
2 − πi+1(w) for 1 ≤ i < n − m. Define rB

zw : [1/2m,1/2m−1] → lim
←−−
{[0,1], f }

where rB
zw(t) = (

3
2 − x2, ...,

3
2 − xn−m, xn−m, ...,4t,2t, t,1, xn+2, ...) where xn−m = 2n−mt and

1
2 ≤ 2n−mt ≤ 1. As before, we say rB

zw is a straight line in lim
←−−
{[0,1], f } connecting z and w.
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Again, any two distinct straight lines can only intersect at endpoints. Define H : B −→ A,

such that H(b1, b2, ...) = (h1(b1), h2(b2), , ..) and hi(bi) = 1 for bi = 1/2 and hi(bi) = 0

otherwise. Define S : A −→ B, such that S(a1,a2, ...) = (s1(a1), s2(a2), , ..) where

s1(a1) =


1
2 if a1 = 1

1 if a1 = 0 and a2 = 1

0 if a1 = a2 = 0

and if sk(ak) has been defined for 1 ≤ k < i let

si(ai) =


1
2 if ai = 1

1 if ai = 0 and ai+1 = 1
1
2 si−1(ai−1) otherwise

From the definitions of S it can be seen that S is one-to-one and onto. Since all component

functions, si, are continuous, S is continuous, hence S is a homeomorphism between A

and B. Further one can see H = S−1. Let a and c be adjacent points in A and r A
ac be

a straight line in lim
←−−
{[0,1],g} so there is n such that πi(a) = πi(c) for all i ≥ n + 1 and

πn+1(a) = πn+1(c) = 0 and one of πn(a) and πn(c) is zero and the other is 1. Suppose

without loss of generality πn(a) = 0 and πn(c) = 1. We wish to show that there is a unique

corresponding straight line rB
S(a)S(c) in lim

←−−
{[0,1], f } connecting S(a) and S(c). By definition

of S, sn(an) = 1/4, sn−1(an−1) = sn(cn) = 1/2 and s j−1(a j−1) =
3
2 − s j(a j) for all j < n

and s j−1(c j−1) =
3
2 − s j(c j) for all j ≤ n. Let l = min{k : k > n + 1 and ak = 1}. So

there is a positive integer m such that l = n + m. Since al−1 = cl−1 = 0 and al = cl = 1

so sl−1(al−1) = sl−1(cl−1) = 1 and sl(al) = sl(cl) = 1/2. sl−2(al−2) = sn+m−2(an+m−2) =
1

2m

and sl−2(cl−2) = sn+m−2(cn+m−2) =
1

2m−1 . Hence S(a) and S(c) are adjacent in B. So r A
ac

is homeomorphic to the corresponding straight line rB
S(a)S(c) in lim

←−−
{[0,1], f }. Let p and q

be adjacent points in B and rB
pq be a straight line in lim

←−−
{[0,1], f } so there is n such that

πn+1(p) = πn+1(q) = 1 and πi(p) = πi(q) for all i ≥ n+1 and one of πn(p) and πn(q) is 1
2m and
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the other is 1
2m+1 m ≥ 1. Suppose without lost of generality πn(p) = 1

2m and πn(q) = 1
2m+1 .

So πn−m+2(p) = 1
4 , πn−m+2(q) = 1

8 by definition of H, h(πi(p)) and h(πi(q)) equal to zero

for n − m + 2 < i ≤ n + 1, so n − m + 2 is the least positive integer such that the image

of h(πn−m+2(p)) and h(πn−m+2(q)) are zero and h(πn−m+1(p)) = 1 and h(πn−m+1(q)) = 0,

This means that H(p) and H(q) are adjacent points in A. Thus the set of straight lines in

lim
←−−
{[0,1],g} is mapped one-to-one and onto the set of straight lines in lim

←−−
{[0,1], f } Hence

S (or H) can be piecewise linearly extended to a homeomorphism between lim
←−−
{[0,1],g}

and lim
←−−
{[0,1], f } completing the proof of the theorem. �
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ABSTRACT

We prove a theorem that under some conditions local connectedness is preserved

under set-valued inverse limits. The theoremgeneralizes Capel’s theorem that local connect-

edness is preserved under (single-valued) inverse limits with monotone bonding functions

and its set-valued analogue by James Kelly see([12]). As a consequence we can characterize

some set-valued inverse limits on intervals. Keywords: generalized inverse limit, local

connectedness

1. INTRODUCTION AND DEFINITIONS

Some topological properties are known to be preserved by (single valued) inverse

limits. For example arc-likeness, tree-likeness, dimension, trivial shap etc. are such.

Also some properties are preserved if the bonding mappings are members of some classes,

for example a theorem by Capel says that local connectedness is preserved by inverse

limits if bonding functions are monotone (see [3, Theorem 4.3, p. 241]). Similarly, the

property of Kelley is preserved if the bonding mappings are confluent (see [5, Theorem 2,

p. 190]). Much less is known about which properties are preserved under inverse limits

with multivalued bonding functions. We have some theorems about connectedness of these
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inverse limits, (see e.g. [11, Theorem 125, p. 89 and Theorem 151, p. 112], [15, Theorem

3.1, p. 170]) and [8]. Also trivial shape is preserved if the bonding functions have trivial

shape images (see [7]). James P. Kelley showed that the inverse limit of intervals is locally

connected if the bonding functions have connected images and preimages of points. Here

we generalize his theorem showing that the inverse limits of locally connected continua with

bonding functionswhose graphs are locally connected and preimages of points are connected

is locally connected. We give several examples of applications of the above theorem, in

particular we use topological characterizations of some dendrites to show that particular

inverse limits are homeomorphic. A set X is continuum if it is a non-empty, compact,

connected, metric space. A continuum subset of the space X is called a subcontinuum of X .

Let X and Y be continua. A function f : X → 2Y us upper semi-continuous at x provided

that for all open setsV inY which contain f (x), there exist an open setU in X with x ∈ U such

that in t ∈ U, then f (t) ⊆ V . If A function f : X → 2Y us upper semi-continuous at x for

each x ∈ X , we say that f is upper semi-continuous (USC). Let X and Y be compact metric

spaces and f : X → 2Y a function. Then f is an upper semi-continuous (USC) if and only

if its graph G( f ) is closed in X ×Y [9, p. 3]. Let X andY be compact Hausdorff spaces, and

let f : X → Y be a continuous function we say that f is monotone if f −1(y) is a continuum

for al y ∈ Y . Let (Xi)i∈N be a sequence of continua and for each i ∈ N, let fi : Xi+1 → 2Xi be

an upper semi-continuous function. The inverse limit of {Xi, fi} is denoted by lim
←−−
{Xi, fi}

and defined by lim
←−−
{Xi, fi} =

{
(xi)
∞
i=1 , xi ∈ fi (xi+1) for all i ∈ N

}
. For 1 ≤ i ≤ j we denote

by G( fi, fi+1, ..., f j) the set {(xi, xi+1, ...x j, x j+1) : xn ∈ fn(xn+1) for n ∈ {i, i + 1, ..., j}}. More

information about inverse limits of continua with multivalued, USC bonding functions can

be found in [11] and [9].
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2. MAIN THEOREM

Let us recall that a dendrite is a locally connected continuum that contains no simple

closed curve. It is known that a subcontinuum of a dendrite is a dendrite and that dendrites

are hereditarily unicoherent, i.e. the intersection of any two subcontinua of a dendrite is

a continuum. The main theorem of the article is Theorem 2.1 below. It generalizes a

theorem by C. E. Capel, see [3, Theorem 4.3, p. 241], stating that the inverse limit of locally

connected continua with monotone (single-valued) bonding mappings is locally connected.

Theorem 2.1. If, for i ∈ {1,2, . . . }, fi : Xi+1 → 2Xi is an upper semi-continuous function,

Xi is a dendrite, G ( fi) is a locally connected continuum, and, for each t ∈ Xi, the preimage

f −1
i (t) is connected, then lim

←−−
{Xi, fi} is a locally connected continuum.

Proof. First, note that by [11, Theorem 126, p. 90] the inverse limit is a continuum. We

will prove by induction that G ( f1, ..., fn) is locally connected. To start, observe that G ( f1)

is a locally connected continuum by our assumption. Thus assume that G ( f1, ..., fn−1)

is a locally connected continuum and we will show that G ( f1, ..., fn) is a locally con-

nected continuum. Take a point (a1, ...,an+1) ∈ G ( f1, ..., fn), and let U be an open

neighborhood of (a1, ..,an+1) in G ( f1, ..., fn). We may assume U = (U1 × ... ×Un+1) ∩

G ( f1, ..., fn), where U1, ...,Un+1 are open subsets of X1, ...,Xn+1 respectively. By the in-

duction hypothesis of local connectedness of G ( f1, ..., fn−1), there is a continuum K such

that (a1, ...,an) ∈ int (K) ⊆ (U1 × ... ×Un) ∩ G ( f1, ..., fn−1). Define rn : G ( f1, ..., fn) −→

G ( f1, ..., fn−1) by rn (x1, ..., xn, xn+1) = (x1, ..., xn) and observe that rn is a monotone map,

because r−1
n (x1, ..., xn) is homeomorphic to f −1

n (xn), which is connected by assump-

tion. Let V be a continuum in Xn+1 satisfying an+1 ∈ int (V) ⊆ V ⊆ Un+1. Then

f −1
n (an) ∩ V is a continuum, because of hereditary unicohrence of Xn+1. Define E ={
(x1, ..., xn+1) ∈ G ( f1, ..., fn) : (x1, ..., xn) ∈ K and xn+1 ∈ f −1

n (xn) ∩ V
}
. Wewill show that

E is the needed connected neighborhood of (a1, ...,an+1). The condition (a1, ...,an+1) ∈

int (E) ⊆ E ⊆ U follows from the definitions, so we only need to show the connectedness
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of E . To do this aim suppose on the contrary that E = P ∪ Q. where P and Q are two

disjoint closed nonempty subsets of E . Since K = rn (E) = rn (P) ∪ rn (Q), the connect-

edness of K yields that rn (P) ∩ rn (Q) , ∅. Taking (x1, ..., xn) ∈ rn (P) ∩ rn (Q). We have

that r−1
n (x1, ..., xn) is a subset of P or subset of Q, which is contradiction. This finishes

the inductive proof of connectedness of G ( f1, ..., fn) for every n. Note that lim
←−−
{Xn, fn}

is homeomorphic to lim
←−−
{G ( f1, ..., fn) ,rn}. The later is an inverse limit of locally con-

nected continua G ( f1, ..., fn) with the monotone bonding (single-valued) mappings rn, so

the inverse limit is locally connected by a theorem by C. E. Capel, see [3, Theorem 4.3, p.

241]. �

Now we want to show a theorem about trivial shape of some inverse limits. Let us

recall the necessary definitions. The theory of shape is well developed, see for example

Borsuk [2]. In this paper we are only concerned with continua having trivial shape. The

following are equivalent for a continuum X (see [13, Proposition 1.6, p. 82]):

1. X has trivial shape,

2. X can be written as X =
⋂

Xn where Xn’s are contractible continua,

3. X can be written as an inverse limit of contractible continua,

4. For all ε > 0 there exists a contractible continuum Yε and an ε-map fε from X onto

Yε.

Recall that a mapping f : X → Y is cell-like if for each y ∈ Y , f −1(y) has trivial shape.

We will also need basic properties of continua with trivial shape: as a consequence of (2)

we know that a decreasing intersection of continua with trivial shape has trivial shape; and

as consequence of (3) any inverse limit of continua with trivial shape has trivial shape. To

prove properties of our examples we will need the following theorem about trivial shape of

inverse limits. It is closely related to [7, Theorem 2]. The authors thank Dr. Robert P. Roe

for suggesting the proof of it; it is analogous to the proof of the main theorem of [7], i.e. [7,
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Theorem 2]. We repeat the idea of that proof with the necessary changes. First of all we

need to recall a theorem by R.B. Sher, see [2, Theorem 9.3 p. 325]. We do not need it in

full generality, we use it only for continua of trivial shape.

Theorem 2.2. If X and Y are finite-dimensional compact metric spaces, f : X → Y is a

cell-like map, then the shape of X equals the shape of Y .

Theorem 2.3. Let X1,X2, ... be a sequence of finite dimensional continua with trivial shape

and let fn : Xn+1 → 2Xn be upper semi-continuous functions such that f −1
n (xn) is a

continuum with trivial shape for each xn ∈ Xn, then lim
←−−
{Xi, fi} has trivial shape.

Proof. Following the notation of Ingram and Mahavier, we define Gn = G ( f1, ..., fn) ×∏
i>n+1 Xi then Gn+1 ⊆ Gn and lim

←−−
{Xi, fi} =

⋂
n≥1 Gn, thus to show lim

←−−
{Xi, fi} has

trivial shape, it is enough to prove that each Gn has trivial shape. To do this we

will show that G ( f1, ..., fn) has trivial shape and therefore Gn is the product of con-

tinua with trivial shape. Define, for arbitrary i and j and k with i ≤ j ≤ k + 1, the

projection πi,k
j : G ( fi, ..., fk) → X j by πi,k

j

(
xi, xi+1, ..., x j, xk+1

)
= x j . To show that

G ( f1, ..., fn) has trivial shape we will use mathematical induction. We start by observ-

ing that G ( fn) has trivial shape by assumption, and that πn,n
n is topologically equiva-

lent to fn, so it is cell-like by the assumption. So assume G ( fk, fk+1, ..., fn) has triv-

ial shape and we will prove that G ( fk−1, fk, ..., fn) has trivial shape. We use Theorem

2.2. Let ρ : G ( fk−1, fk, ..., fn) → G ( fk, fk+1, ..., fn) be the natural projection. Note that

ρ−1 (xk, xk+1, ..., xn, xn+1) =

{(a, xk, xk+1, ..., xn, xn+1) : fk (xk) = a} is homeomorphic to f −1
k (xk) so it has trivial shape

by assumption. Since G ( fk, fk+1, ..., fn) has trivial shape by the inductive hypothesis, the set

G ( fk−1, fk, ..., fn) has trivial shape by Theorem 2.2. This show that G ( fk, fk+1, ..., fn) has

trivial shape for all k ≤ n. Finally, if we denote gn : G ( f1, f2, ..., fn) → G ( f1, f2, ..., fn−1)we

note that lim
←−−
{Xn, fn} is homeomorphic to
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lim
←−−
{G ( f1, f2, ..., fn) ,gn} and the later is the inverse limit of trivial shape continua with

single valued cell-like bonding functions, so the limit has trivial shape. This finishes the

proof. �

3. EXAMPLES

In this section we will show several examples of applications of the theorems shows

in sections 2. Before starting over examples, we need to recall some notions and terminology.

A dendrite is a locally connected continuum that contains no simple closed curve. It is

known that each subcontinuum of a dendrite is a dendrite. Dendrites can be characterized

as locally connected one-dimensional continuum with trivial shape. We will use the notion

of an order of a point in a dendrite X. A point p ∈ X has order (in the classical sense) at

least n, in symbols ordX (p) ≥ n if there are n arcs A1, A2, ..., An such that Ai ∩ A j = {p} for

i , j, i, j ∈ {1,2, ...,n}. Then ordX (p) = n if ordX (p) ≥ n and ordX (p) ≥ n + 1 is not true.

If ordX (p) ≥ n is true for all n ∈ N, then we write ordX (p) = ω. Points of order one are

called end-points and are denoted by E(X), points of order two are called ordinary points,

and points of order three or more are called ramification points and denoted by R (X).

3.1. THE DENDRITE P

For the next characterization we need to define a special dendrite called W . Its the

one pictured in Figure 1; its formal description can be found in [1, p. 3]. To start, let us

recall a characterization of a certain dendrite that is shown in [1, Theorem 4.5, p. 9]. This

dendrite is pictured in Figure 2, it can be also found in [9, Figure 2.18, p. 34].

Theorem 3.1. There is only one (up to homeomorphisms) dendrite P with the following

properties:

1. P does not contain a copy of W .
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-

-

Figure 1. The dendrite W

2. E (P) ⊆ cl (R (P)).

3. each ramification point is of order ω.

Figure 2. The dendrite P

The following example appears in [9, Example 2.16, p. 34]

Example 3.2. Let f1 : [0,1] → 2[0,1] be the multivalued function whose graph is pictured

in Figure 3. Its graph is the union of two segments joining 〈0,0〉 to 〈1,0〉 and joining

〈1,0〉 to 〈0,1〉. Then the inverse limit lim
←−−
{[0,1], f1} is homeomorphic to the dendrite P

of Theorem 3.1. Figure 4 presents the inverse limit with some coordinates of points. The

bold digits mean that the pattern is repeated. Denote X = lim
←−−
{[0,1], f1} and observe

that by Theorem 2.1 X is locally connected, by Theorem 2.3 it has trivial shape. Since

the graph of f1 has no vertical segments, X is one dimensional by Van Nall’s Theorem

[14, Theorem 5.3, p. 1330], see also [9, Theorem 5.3, p. 69]. One dimensional trivial
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Figure 3. The graph of f1
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Figure 4. The inverse limit of f1

shape continua are tree-like, and locally connected tree-like continua are dendrites, so X is a

dendrite. Next, observe that if a point x = (x1, x2, ...) in the inverse limit X = lim
←−−
{[0,1], f1}

contains a coordinate not in {0,1}, then ord (X, x) = 2 Really, such point has to be of

the form (a1,a2, ...,an, t,1 − t, t,1 − t, ...) where an = 0, t < {0,1} and ai ∈ {0,1}. Then

the neighborhood of such point consists of points (a1,a2, ...,an, t′,1 − t′, t′,1 − t′, ...) for

t′ ∈ (t − ε, t + ε) for some ε > 0. Points whose all coordinates are in {0,1} are either end-

points or points of order ω. Points of order ω have the form (a1,a2, ...,an,1,0,1,0, ...) that is

ones and zeros are repeated interchangeably starting from some index. In this case we have

arcs Ak of the form (a1,a2, ...,an,1,0,1,0, ..., t,1 − t, t,1 − t, ....) where the k-th coordinate is

t and all coordinates ai for i ≤ k are in {0,1}. Then Ak ∩ Ak ′ = {(a1,a2, ...,an,1,0,1,0, ...)},
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where an = 0. End points have the form (a1,a2, ...), where ai ∈ {0,1} and are not of the

form of points of order ω described above. Therefore conditions (2) and (3) of Theorem

3.1 are satisfied. Since E (X) ∪ R (X) is closed, Condition (1) is also satisfied. Thus X is

homeomorphic to dendrite P of Theorem 3.1.

Example 3.3. Let f2 : [0,1] → 2[0,1] be the multivalued function whose graph is pictured

in Figure 6. Its graph is the union of two segments joining 〈1,0〉 to 〈0,1〉 and joining 〈0,1〉

to 〈1,1〉. As before by interchanging roles of 0 and 1, the inverse limit lim
←−−
{[0,1], f2} is also

homeomorphic to the dendrite P of Theorem 3.1. Thus lim
←−−
{[0,1], f2} is homeomorphic to

lim
←−−
{[0,1], f2}.

Figure 5. The graph of f2
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Figure 6. The inverse limits of f2
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Example 3.4. Let f3 : [0,1] → 2[0,1] be the multivalued function whose graph is pictured

in Figure 2. Its graph is the union of three segments joining 〈0,0〉 to 〈1,0〉; 〈1,0〉 to 〈0,1〉

and 〈0,1〉 to 〈1,1〉. Again points that contain coordinate not in {0,1} are ordinary points;

points whose all coordinates are zeros and ones are either end-points or points of order ω.

This time every sequence of zeros and ones is in the inverse limit. As before inverse limit

lim
←−−
{[0,1], f3} is dendrite and it is homeomorphic to lim

←−−
{[0,1], f1} and lim

←−−
{[0,1], f2} by

Theorem 3.1. The inverse limit is pictured in Figure 8.

Figure 7. The graph of f3
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Figure 8. The inverse limit of f3

Example 3.5. Let f4 : [0,1] → 2[0,1] be the multivalued function whose graph is pictured

in Figure 9. Its graph is the union of three segments joining 〈1,0〉 to 〈0,0〉; 〈0,0〉 to 〈1,1〉

and 〈1,1〉 to 〈0,1〉. As before, the inverse limits lim
←−−
{[0,1], f4} is a dendrite homeomorphic

to lim
←−−
{[0,1], f3}, lim

←−−
{[0,1], f2} and lim

←−−
{[0,1], f1}. Again points that contain coordinate
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not in {0,1} are ordinary points. Points whose all coordinates are zeros and ones are either

end-points or points of orderω. This time every sequence of zeros and ones is in the inverse

limit. The inverse limit is pictured in Figure 10.

Figure 9. The graph of f4
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Figure 10. The iverse limit of f4

3.2. UNIVERSAL DENDRITES

Let us start by recalling a characterization of dendrites DA, for A ⊆ {3,4, . . . ,ω}

due to W. J. Charatonik and A. Dilks (see [6, Theorem 6.2, p. 229] ).

Theorem 3.6. For every A ⊆ {3,4, . . . ,ω} there is one (up to homeomorphism) dendrite

DA with the following properties:
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1. for every n ∈ A and every arc B ⊆ DA there is a ramification point in B of order n;

2. each ramification point has order in A.

If A has only one element n, the we will use the symbol Dn for D{n}. The dendrites

Dn were introduced and investigated in [4]. The picture of D3 is provided in Figure 11.

Figure 11. D3 – the inverse limit of f5

Example 3.7. Let f5 : [0,1] → 2[0,1] be the multivalued function whose graph is pictured

in Figure 12. To construct the graph let us start with a dense countable subset D of (0,1)

such that if p ∈ D, then p/2n < D for all n ∈ {2,3, ...}. The graph of f5 contains two

arcs {(x,2x) : x ∈ [0,1/2]} and {(x,1) : x ∈ [1/2,1]}. For any p ∈ D we add an interval

{(x,2p) : x ∈ [p,q (p)]} where q (p) satisfy the following conditions:

1. p < q (p) < 2p;

2. for every integer k we have 2k q (p) < D;

3. for every sequence pn of different elements of D we have

limn→∞ q (pn) − pn = 0.

We will show that lim
←−−
{[0,1], f5} is homeomorphic to the dendrite D3 of Theorem 3.6

pictured at Figure 11. As in previous examples one can see that the inverse limit is a

dendrite. We show that all points x = (x1, x2, ...) that have finitely many, but not zero

coordinates in D and such that if xm ∈ D and xn < D for n > m and xm+1 , q (xm) are
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ramification points of order 3. Let k be a coordinate of x such that xk ∈ D and xn < D for

n > k, and xk+1 , q (xn). If xk is the only coordinate in D, we let m = 0, otherwise let m

be a coordinate of x sush that xm ∈ D but xn < D and xn+1 =
1
2 xn for m < n < k. The arc

l =
(
x1, x2, ..., xm, t, t

2, ...,
t

2k−m ,
t

2k−m ,
xk
2 , ...

)
where t ∈ [ xm2 ,q (xm)] containing x as its interior

because xn ∈

{
t

2k−m , t ∈ [
xm
2 ,q (xm)]

}
. The arc M =

(
x2, x2, ..., xm,

xm
2 , ...,

xm
2k−m−1 , t,

t
2,

t
4, ...

)
where t ∈ [ xk2 ,q (xk)] contains x as one of its end point. Since x is the intersection of the

line containing x as its interior and another line as its end point and it doesn’t have any other

adjacent lines, so x is of order 3. The density of D implies that the set of ramification points

is dense in the inverse limit. Points that have infinitely many of coordinates in D or finitely

many of coordinate of D but there is a maximum positive integer k such that xk ∈ D and

xk+1 ∈ q (xk) are end points.

 
 
 D- a dense subset of [0,1]  

  If p , then  . 

Figure 12. The graphs of f5

Example 3.8. Let f6 : [0,1] → 2[0,1] be the multivalued function whose graph is pic-

tured in Figure 13. To construct the graph let us start with a dense countable set D ={
n
2k ∈ (0,1) : n, k ∈ N

}
. The graph of f6 contains, as before, two arcs {(x,2x) : x ∈ [0,1/2]}

and {(x,1) : x ∈ [1/2,1]}. For any p ∈ D we add an interval {(x,2p) : x ∈ [p,q (p)]} where

q (p) satisfy the following conditions:

1. p < q (p) < 2p;

2. for every integer k we have 2k q (p) < D;
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3. for every sequence pn of different elements of D we have

limn→∞ q (pn) − pn = 0.

We will show that lim
←−−
{[0,1], f6} is homeomorphic to the dendrite Dω of Theorem 3.6

pictured at Figure 14. As in previous examples one can see that the inverse limit is a

dendrite. We will classify all points of lim
←−−
{[0,1], f6}. First observe that each point of

lim
←−−
{[0,1], f6} has one of the following three forms:

1.
(
d1, d2, ..., dn, x, x

2 ,
x
4 , ...

)
, where n ∈ {1,2, ...}, d1, d2, ..., dn are inD, and x ∈

(
dn
2 ,q (dn)

)
\

D;

2.
(
x, x

2 ,
x
4 , ...

)
, where x ∈ [0,1];

3. (d1, d2, ...) where d1, d2, ..., dn ∈ D and n ∈ {1,2, ...}.

Point of the forms (1) and (2) are ordinary points. To see this observe that
(
d1, d2, ..., dn, x, x

2 ,
x
4 , ...

)
∈{(

d1, d2, ..., dn, t, t
2,

t
4, ...

)
: t ∈ (x − ε, x + ε)

}
⊂

(
dn
2 ,q (dn)

)
for some ε > 0. If x = q (dn),

the point
(
d1, d2, ..., dn, x, x

2 ,
x
4 , ...

)
is an end-point. Now, we examine points of the form (3).

If there is an index n0 such that (d1, d2, ...) =
(
d1, d2, ...dn0,

dn0
2 ,

dn0
4 , ...

)
then (d1, d2, ..., ) is a

ramification point of order ω. To see that fix an index i ≥ n0. Then

(d1, d2, ..., ) ∈

{(
d1, d2, ...dn0,

dn0

2
, ..., di−1, t,

t
2
,

t
4
, ...

)
: t ∈

(
di−1

2
,q (di−1)

)}
.

The later set is an open interval containing (d1, d2, ..., ). Since we have infinitely many such

intervals (for infinitely many indices i), the order of (d1, d2, ..., ) is ω. If there is no index

n0 such that (d1, d2, ..., ) =
(
d1, d2, ...dn0,

dn0
2 ,

dn0
4 , ...

)
, we have that di+1 ∈

(
di
2 ,q (di)

)
for all

i ∈ {1,2, ...}. Then (d1, d2, ...) is an end-point. In fact it is an end-point of the interval which

goes through points
(
d1,

d1
2 ,

d1
4 , . . .

)
,
(
d1, d2,

d2
2 ,

d2
4 , ...

)
,
(
d1, d2, d3,

d3
2 ,

d3
4 , ...

)
, . . .

Example 3.9. Let f7 : [0,1] → 2[0,1] be the multivalued function whose graph is pictured

in Figure 15. Its graph consists of four segments joining 〈0,0〉 to 〈1,0〉; 〈0,1/3〉 to 〈1,1/3〉;

〈0,1〉 to 〈1,1〉; 〈1/2,0〉 to 〈1/2,1〉. By the previous theorems lim
←−−
{[0,1], f7} is a locally
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 D- a dense subset of [0,1]  

 Such that . 

Figure 13. The graphs f6

Figure 14. Inverse limit of f6

connected continuum having trivial shape. Since images of points are not necessarily zero-

dimensional, we can not use Nall’s theorem. To show 1-dimensionality of lim
←−−
{[0,1], f7}

instead, we use Ingram’s theorem that says that if graphs of compositions of functions are

1-dimensional, then the inverse limit is one-dimensional (see [10, Theorem 4.3, p. 249]).

In our case f7 ◦ f7 = f7, so all compositions have the same one dimensional graph f7. The

inverse limit has a closed set of end-points. In fact the end-points are exactly point will

all coordinates in {0,1}, so it is the Cantor set. Ramification points can be charecterized

as points whose coordinates are of the form
(
x1, x2, ..., xn,

1
2,

1
2, ...

)
where xi ∈

{
0, 1

3,1
}
for

i ∈ {1,2, ...,n}. lim
←−−
{[0,1], f7} pictured in Figure 16.

Example 3.10. Let f8 : [0,1] → 2[0,1] be the multivalued function whose graph is pictured

in Figure 17. Its graph consists of three segments joining 〈0,1/3〉 to 〈1,1/3〉; 〈0,2/3〉 to

〈1,2/3〉 and 〈1/2,0〉 to 〈1/2,1〉. As before the inverse limit lim
←−−
{[0,1], f8} is a dendrite. This
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Figure 15. The graph of f7

Figure 16. Inverse limit of f7

time all ramification points are of order 4, but we have isolated end-points. those are points

of the form
(
x1, x2, ..., xn,0, 1

2,
1
2, ...

)
or

(
x1, x2, ..., xn,1, 1

2,
1
2, ...

)
, where x1, x2, ..., xn ∈

{ 1
3,

2
3
}
.

They form a dense subset of the set of end-points. The inverse limit is pictured in Figure 18.

Example 3.11. Let f9 : [0,1] → 2[0,1] be the multivalued function whose graph is on

the left side of Figure 19.Its graph consists of four segments joining 〈0,0〉 to 〈1,0〉; 〈1,0〉

to 〈1/2,1/2〉; 〈1/2,1/2〉 to 〈1/2,1〉; 〈1/2,1〉 to 〈0,1〉. To show that lim
←−−
{[0,1], f9} is a

dendrite, we use an argument similar to that in Example 3.9. First observe that f 2
9 = f9 ◦ f9
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Figure 17. The graph of a f8
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Figure 18. Inverse limit of f8

is a multivalued function whose graph is on the right side of Figure 19. Next observe that

f n
9 = f 2

9 , so all compositions f n
9 have 1-dimensional graphs, therefore lim

←−−
{[0,1], f9} is one

dimensional. The inverse limit lim
←−−
{[0,1], f9} is homeomorphic to the dendrite G3 since

all ramification points are of order 3 and the set of end-points is closed with no isolated

end-points. Note that lim
←−−

{
[0,1], f 2

9
}
is homeomorphic to the dendrite G3 as observed by

Ingram (see [9, Example 2.22, p. 39]). Let us recall that in general lim
←−−
{[0,1], f9} and

lim
←−−

{
[0,1], f 2

9
}
do not have to be homeomorphic (see [11, Example 133, p. 107]).
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Figure 19. The graph of a f9 and f 2
9
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Figure 20. Inverse limit of f9
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ABSTRACT

We consider generalized inverse limits of continua with bonding functions Fn that

have the projection of Graph(Fn) onto the second (first) factor atomic and images (pre-

image) of points are zero-dimensional. For such bonding functions we show that under

some easily verified conditions that if the first (all) factor space(s) has a certain property

then the inverse limit space must have this property. The properties considered include;

hereditary decomposability, hereditary indecomposability, hereditary unicoherence, arc-

likeness, and tree-likeness. We illustrate the theorems by several examples. Keywords:

atomic map, arc-like, generalized inverse limit, hereditarily decomposable, hereditarily

unicoherent, tree-like

1. INTRODUCTION AND DEFINITIONS

We began the investigation herein thinking about chainability of inverse limit spaces

having set valued bonding functions. In [2] W. T. Ingram showed that if a linearized version

of the sin(1/x) functions is used as the single bonding function in an inverse limit system

on [0,1] the resulting inverse limit space was chainable. He followed this up, answering a

question from one of us, by showing [3] that the inverse system consisting of a sequence
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of sinusoids as bonding functions has a chainable inverse limit. In a related result [6]

James P. Kelly considered inverse systems with a single irreducible function as it’s bonding

function. Kelly’s work generalized Ingram’s earlier result on the linearized sin(1/x).

Sinusoids do not necessarily satisfy the conditions to be an irreducible function. We

need to introduce some notations concerning inverse limits. Given a sequence of continua

Xn and upper semi-continuous functions Fn : Xn+1 → 2Xn , we denote by lim
←−−
{Xn,Fn} =

{(x1, x2, ...) : xn ∈ Fn(xn+1)}. Similarly, when Xn and Fn are known, and i ≤ j, we denote by

Gi,j = {(xi, xi+1, ..., x j) : xk ∈ Fk(xk+1) for k ∈ {i, i + 1, ..., j − 1}}. If i = j, we identify Gi,i

with Xi. For a natural number n let αn : Graph(Fn) → Xn and βn : Graph(Fn) → Xn+1 be

the projections. For m, i, j,n such that m ≤ i ≤ j ≤ n ≤ ∞ we denote by ρm,n
i,j the projection

ρm,n
i,j : Gm,n → Gi,j , where G1,∞ denotes lim

←−−
{Xn,Fn}. If i = j we write ρm,n

i in place of ρm,n
i,i .

Note that for each natural number i, the set Gi,i+1 is equal to the Graph(F−1
i ). We also denote

by πk the projection from lim
←−−
{Xn,Fn} to the k th coordinate. In this paper we consider a

sequence of upper semi-continuous bonding functions, Fn, with the property that for each

n the projection αn (βn) is an atomic map and for every x ∈ Xn+1 the image Fn(x) (every

x ∈ Xn the preimage F−1(x)) is zero-dimensional. All of the examples in [2] as well as the

sinusoids in [3] satisfy these conditions however Kelly’s irreducible functions may not. The

key step in our work is showing that these properties of the bonding functions Fn imply that

the single valued projectionmappings ρ1,n+1
1,n must be atomicmappings, see Theorem 3.3 and

Corollary 3.4. Combining this with the work of T. Maćkowiak ([11]) on atomic mappings

we are able to see when the inverse limit space lim
←−−
{G1,n, ρ

1,n+1
1,n } = lim

←−−
{Xn,Fn} is chainable

as well as having other atomic pre-invariant properties. Moreover, factor spaces need not

be limited to being an arc.

2. ATOMIC PRE-INVARIANTS

Definition 2.1. A subcontinuaK of a compact metric space X is called a terminal continuum

if every subcontinua of X which intersects K and its complement contains K .
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Note this definition of a terminal continuum agrees with T. Maćkowiak’s usage [11].

W. T. Ingram allows K to be a subset, not necessarily a subcontinua, of X and calls such

sets C-sets. For him terminal continua have a different meaning, see [2].

Definition 2.2. A mapping f : X → Y from a continuum X onto a continuum Y is said to

be atomic if for each subcontinuum K of X such that the set f (K) is not degenerate we have

K = f −1( f (K)).

A basic fact connecting terminal continua and atomic mappings is the following.

Theorem 2.3. Let f : X → Y be a mapping. Then f is atomic if and only if for each y ∈ Y ,

f −1(y) is a terminal continuum.

Definition 2.4. A topological property P of continua is called an atomic pre-invariant if

for any atomic map f : X → Y between continua X and Y , if Y ∈ P and for every y ∈ Y

the preimage f −1(y) ∈ P, then X ∈ P.

The following was shown by T. Maćkowiak ([11], Proposition 11 (ii-iii), p. 537).

Theorem 2.5. The following properties are atomic pre-invariants:

1. atriodicity;

2. hereditary indecomposability;

3. hereditary decomposability;

4. hereditary unicoherence;

5. hereditary decomposability and arc-likeness;

6. hereditary decomposability and tree-likeness;

7. hereditary decomposability and acyclicity.
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Definition 2.6. A topological property P of continua is called a strong atomic pre-invariant

if for any atomic map f : X → Y between continua X and Y , if Y ∈ P, then X ∈ P.

The following was shown by T. Maćkowiak ([11], Proposition 11 (i), p. 537).

Theorem 2.7. The following properties are strong atomic pre-invariants:

1. decomposability;

2. indecomposability;

3. unicoherence;

4. discoherence;

5. irreducibility;

3. MAIN THEOREMS

Before we formulate and prove the main theorems we need to show the following

Observation, Lemma and Theorem. The observation is probably well-known, see [4], but

we include it for completeness.

Observation 3.1. The inverse limit lim
←−−
{Xn,Fn} is homeomorphic to lim

←−−

{
G1,n, ρ

1,n+1
1,n

}
. Note

that the bonding functions ρ1,n+1
1,n : G1,n+1 → G1,n are single-valued.

Proof. The function h : lim
←−−
{Xn,Fn} → lim

←−−

{
G1,n, ρ

1,n+1
1,n

}
defined by h(x1, x2, x3, . . . ) =

((x1), (x1, x2), (x1, x2, x3), . . . ) is the required homeomorphism. �

Lemma 3.2. Let {Xn,Fn} be an inverse system of continua such that for every index n and

for every x ∈ Xn+1, the image Fn(x) is zero-dimensional. If C is a subcontinuum of G1,n for

some n such that ρ1,n
i (C) is degenerate for some i ≤ n, then ρ1,n

j (C) is degenerate for j < i.
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Proof. Note that ρ1,n
i−1(C) ⊆ Fi−1(ρ

1,n
i (C)) is a zero-dimensional continuum hence degener-

ate. The result follows by induction. �

Theorem 3.3. Let {Xn,Fn} be an inverse system of continua with upper semi-continuous

bonding functions such that for each n the projection αn : Graph(Fn) → Xn, is atomic and

for every index n and for every x ∈ Xn+1, the image Fn(x) is zero-dimensional. Then the

projections ρ1,n+1
1,n : G1,n+1 → G1,n are also atomic.

Proof. Let αn : Graph(Fn) → Xn be the projection. Note that Graph(Fn) ⊆ Xn+1 × Xn.

We also need the projection α′n : Gn,n+1 → Xn. Note that αn and α′n are essentially the

same function, the only difference is the order of coordinates: α′n(xn, xn+1) = αn(xn+1, xn) =

xn. In particular, α′n is an atomic function. By Theorem 2.3 we need to show that

(ρ1,n+1
1,n )

−1(a1,a2, ...,an) is terminal subcontinuumofG1,n+1. Note that (ρ1,n+1
1,n )

−1(a1,a2, ...,an) =

{(a1,a2, ...,an)} × F−1
n (an) and denote this set by A. Suppose that A is not terminal. Thus

there exists a continuum C in G1,n+1 that intersects A and its complement, and does not con-

tain A. Choose points a = (a1,a2, ...,an,an+1) ∈ A∩C and b = (a1,a2, ...,an, bn+1) ∈ A \C.

LetA be an order arc in the hyperspaces of subcontinua ofG1,n+1 from {a} toC. Let B be the

maximal point of the order arcA such that B ⊆ A. Let B′ be a point ofA a little bigger than

B. Precisely let B′ be a point ofA such that B  B′ and bn+1 < ρ
1,n+1
1,n+1(B

′). Then ρ1,n+1
n,n+1(A)

is an order arc in Gn,n+1 starting from {(an,an+1)}. Denote P = ρ1,n+1
n,n+1(A ∪ B′) ⊆ Gn,n+1.

Note that (an,an+1) ∈ P, while P does not contain a point with the second coordinate bn+1.

We claim that α′n(P), which is equal to ρ1,n+1
n (A ∪ B′), is nondegenerate. Otherwise, by

Lemma 3.2 all projection ρ1,n+1
i (A∪ B′) for i ≤ n would be degenerate, contrary to the fact

that B′ is not a subset of A. Then (an, bn+1) ∈ (α
′)−1

n (α
′
n(P)) and (an, bn+1) < P, contrary to

α′n being atomic. �

Note that one can reverse the order and obtain the following corollary which we will

need later.
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Corollary 3.4. Let {Xn,Fn} be an inverse system of continua with upper semi-continuous

bonding functions such that for each n the projection βn : Graph(Fn) → Xn+1, is atomic and

for every index n and for every x ∈ Xn, the preimage F−1
n (x) is zero-dimensional. Then, for

1 ≤ i ≤ n, the projections ρi,n+1
i+1,n+1 : Gi,n+1 → Gi+1,n+1 are atomic.

Theorem 3.5. Let {Xn,Fn} be an inverse system of continua andP be a topological property

such that:

1. for each n the projection αn : Graph(Fn) → Xn is atomic;

2. the space X1 has the property P;

3. for every n, for every x ∈ Xn the preimage F−1
n (x) has property P;

4. property P is an atomic pre-invariant;

5. property P is preserved under (single valued) inverse limits with atomic bonding

mappings;

6. for every index n and for every x ∈ Xn+1, the image Fn(x) is zero-dimensional;

Then the inverse limit lim
←−−
{Xn,Fn} has the property P.

Proof. By Theorem 3.3 all the projections ρ1,n+1
1,n are atomic. Since X1 = G1,1 has property

P, all preimages (ρ1,2
1,1)
−1(x), which are homeomorphic to F−1

1 (x), have property P. Since

P is an atomic preinvariant, we conclude that G1,2 has properly P. Similarly, since ρ1,3
1,2 is

atomic, the preimages (ρ1,3
1,2)
−1(x1, x2) which are homeomorphic to F−1

2 (x2) have property

P. Continuing inductively, all continua G1,3,G1,4, . . . ,G1,n, . . . have property P. Finally,

the inverse limit lim
←−−
{Xn,Fn} is homeomorphic to the inverse limit lim

←−−

{
Gn, ρ

1,n+1
1,n

}
by

Observation 3.1. Thus the conclusion follows from (5). �

The proof of our next Theorem is analogous to one of Theorem 3.5 and it is left to

the reader.
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Theorem 3.6. Let {Xn,Fn} be an inverse system of continua andP be a topological property

such that:

1. for each n the projection αn : Graph(Fn) → Xn is atomic;

2. the space X1 has the property P;

3. property P is a strong atomic pre-invariant;

4. property P is preserved under (single valued) inverse limits with atomic bonding

mappings;

5. for every index n and for every x ∈ Xn+1, the image Fn(x) is zero-dimensional;

Then the inverse limit lim
←−−
{Xn,Fn} has the property P.

Theorem 3.7. Let {Xn,Fn} be an inverse system of continua andP be a topological property

such that:

1. for each n the projection βn : Graph(Fn) → Xn+1 is atomic;

2. all spaces Xn have the property P;

3. for every n, for every x ∈ Xn+1 the image Fn(x) has property P;

4. property P is an atomic pre-invariant;

5. property P is preserved under (single valued) inverse limits;

6. for every index n and for every x ∈ Xn, the preimage F−1
n (x) is zero-dimensional;

Then the inverse limit lim
←−−
{Xn,Fn} has the property P.

Proof. Since Xn+1 = Gn+1,n+1 has property P, all preimages (ρn,n+1
n+1 )

−1(x) which are home-

omorphic to Fn(x) have property P, and, by Corollary 3.4, ρn,n+1
n+1 is atomic. Since P is an

atomic preinvariant, we conclude that Gn,n+1 has properly P. Again, ρn−1,n+1
n,n+1 : Gn−1,n+1 →
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Gn,n+1 is atomic by Corollary 3.4, so Gn1,n+1 has property P. Continuing inductively, we

conclude that Gi,n+1has property P for all i ≤ n + 1, so in particular G1,n has property P.

Finally, the inverse limit lim
←−−
{Xn,Fn} is homeomorphic to the inverse limit lim

←−−

{
Gn, ρ

1,n+1
1,n

}
by Observation 3.1. Thus the conclusion follows from (5). �

4. APPLICATIONS

Recall αn and βn denoted projections from Graph Fn to Xn and Xn+1 respectively.

4.1. EXAMPLES WHEN αN ARE ATOMIC

Example 4.1. W. T. Ingram considered in [2, Example 5.5, p. 339] the inverse limits

X1 = lim
←−−
{[0,1], f1} with the bonding function f1 whose graph is pictured in Figure 1 (see

also [7, First part of Example 5.3, p. 74]). Here the graph of f1 is the union of a segment

joining 〈0,0〉 with 〈1,0〉, and sequence of segments joining 〈0,an〉 with 〈1, bn〉 and segments

joining 〈1, bn〉 with 〈0,an+1〉 for n ∈ N such that:

1. b1 = 1;

2. lim
n→∞

an = lim
n→∞

bn = 0;

3. bn > an > bn+1 > 0 for all n ∈ N.

He proved that the inverse limit is chainable and decomposable. It follows fromTheorem 3.5

that X1 is a hereditarily decomposable arc-like continuum. We will show that each nonde-

generate subcontinuum of X1 contains a copy of the whole continuum X1, in particular, X1

contain no arcs. To this aim, let L be a nondegenerate proper subcontinuum of X1. Then

there is an index n0 such that πn0(L) is nondegenerate. Since slopes of the segments in

the graph of f1 are strictly between −1 and 1, there is an index n such that πn(L) contains

0. Then L contains a point of the form 〈c1, c2, ..., cn, cn+1, ...〉, where cn = 0, and thus L

contains ({〈c1, c2, ..., cn〉} × [0,1] × [0,1] × ...) ∩ X1 which is homeomorphic to X1. The
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condition that each subcontinuum of X1 contains a copy of X1 implies that the continuum

is pointwise self-homeomorphic as defined in [1, Definition 2.1]. The set of end-points of

X1 is {〈1,1,1 . . .〉} ∪ {0,1} × {0,1} × . . . , so it is homeomorphic a point unioned with the

Cantor set.

Example 4.2. Now consider the bonding function f2 shown in Figure 1 which is the

reflection of the image of f1 about the line x = 1/2. Again, from Theorem 3.5 we see

that X2 = lim
←−−
{[0,1], f2} is a hereditarily decomposable arc-like continuum. Similarly, X2

is pointwise self-homeomorphic, the set of end-points is the Cantor set and X2 contains

no arcs. But X1 and X2 are not homeomorphic. To see this, we take a small detour. The

following theorem summarizes Kuratowski’s theory of irreducible continua in the case of

hereditarily decomposable continua, see [8], [9], and [10, Chap 48, Sec VIII, p 219]. Note

that in the quoted articles Kuratowski used the language of decompositions, rather than

functions.

Theorem 4.3. If X is a hereditarily decomposable continuum, then there is a monotone

function m : X → [0,1] such that:

1. X is irreducible between any pair of points from m−1(0) and m−1(1);

2. the function m is the finest possible, i.e. for any monotone function f : X → [0,1]

there is a monotone function g : [0,1] → [0,1] such that f = g ◦ m.

As a consequence, for hereditarily decomposable continua X , the set I(X) = {x ∈

X : there exists y ∈ X such that X is irreducible between x and y} is the union of

two disjoint continua: m−1(0) and m−1(1). Here I(X1) is the union of {〈1,1, . . .〉} and

{0} × [0,1] × [0,1] × . . . ∩ X1 which is homeomorphic to X1 while I(X2) is the union of the

two subcontinua {0} × [0,1] × [0,1] × . . . ∩ X2 and {1} × {0} × [0,1] × [0,1] × . . . ∩ X2,

each of which is homeomorphic to X2.
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Figure 1. Graphs of f1, f2, f3 respectively

Theorem 4.4. If hi[0,1] → 2[0,1] is a sequence of surjective usc functions and there is a

point c ∈ [0,1] such that h1(c) is not zero dimensional then H = lim
←−−
{[0,1], hi} contains an

arc.

Proof. Let [a, b] ⊆ h1(c). Since 〈c, x2, x3, . . .〉 is a point in H, {〈t, c, x2, x3, . . .〉 : t ∈ [a, b]}

is an arc in H. �

Example 4.5. Let f3 : [0,1] → 2[0,1] be the multivalued function whose graph is pictured

in Figure 1. Here the graph of f3 is the union of a segment joining 〈0,0〉 with 〈1,0〉, and a

segment joining 〈0,1〉 with 〈1,1〉, and a sequence of segments joining 〈0,an〉 with 〈1, bn〉

and segments joining 〈1, bn〉 with 〈0,an+1〉 for n ∈ Z such that:

1. lim
n→∞

an = lim
n→∞

bn = 1;

2. lim
n→−∞

an = lim
n→−∞

bn = 0;

3. 0 < an < bn < an+1 < bn+1 < 1 for all n ∈ Z.

Again, the inverse limit X3 = lim
←−−
{[0,1], f3} is a hereditarily decomposable arc-like

pointwise self-homeomorphic continuum and the set of end-points is the Cantor set.

Note that I(X3) is the union of the two subcontinua {0} × [0,1] × [0,1] × . . . ∩ X3 and

{1} × [0,1] × [0,1] × . . . ∩ X3. Therefore, we may ask the following.
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Problem 4.6. Are the continua X2 and X3 homeomorphic?

Question 4.7. Are any or all of X1, X2 and X3 Kelley continua?

Example 4.8. Let f4 : [0,1] → 2[0,1] be the multivalued function whose graph is pictured

in Figure 2. Here the graph of f4 is the union of a segment joining 〈0,0〉 with 〈1,0〉, and

a segment joining 〈0,1〉 with 〈1,1〉 and sequence of segments joining 〈an, bn〉 with 〈cn, dn〉

and segments joining 〈cn, dn〉 with 〈an+1, bn+1〉 for n ∈ Z such that:

1. for all n ∈ Z, bn < dn < bn+1 < dn+1;

2. lim
n→∞

bn = lim
n→∞

dn = 1 and lim
n→−∞

bn = lim
n→−∞

dn = 0;

3. for all n ≥ 0, 1/2 > an > an+1 > 0 and 1/2 < cn < cn+1 < 1;

4. lim
n→∞

an = 0 and lim
n→∞

cn = 1;

5. for all n < 0, 1/2 > an+1 > an > 0 and 1/2 < cn+1 < cn < 1;

6. lim
n→−∞

an = 0 and lim
n→−∞

cn = 1;

Then the inverse limit X4 = lim
←−−
{[0,1], f4} is hereditarily decomposable arc-like

continuum by Theorem 3.7. Since f −1
4 is one-to-one on (0,1), ((0,1) × (0,1) × . . .) ∩ X4 is

a ray limiting on two disjoint copies of X4, namely on ({0} × [0,1] × [0,1] × . . .) ∩ X4 and

({1} × [0,1] × [0,1] × . . .) ∩ X4.

Example 4.9. Let f5 : [0,1] → 2[0,1] be the multivalued function whose graph is pictured

in Figure 3. Here the graph of f5 consists of [0,1] × C, where C is a Cantor set, together

with rays in each rectangle [0,1] × D, where D is an open interval in the complement of C,

which converges to the horizontal boundaries of the rectangle. As before, the inverse limit

X5 = lim
←−−
{[0,1], f5} is a hereditarily decomposable arc-like continuum. Note that for each

c ∈ C, ({c} × [0,1] × [0,1] × . . .) ∩ X5 is a copy of X5 contained in X5. If the rays are like

the ray in the graph of f3 then X5 contains no arcs while if the rays are like the ray in the

graph of f4 then we have a ray in X5 converging to the copies of X5.
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Figure 2. Graph of f4
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Figure 3. Graph of f5

Figure 4. Graph of f6



43

Figure 5. G1,3 for f6

Example 4.10. In this example we want to show an inverse limit of spaces different than an

arc. Let T denote the simple triod, and let f6 : T → 2T be the multivalued function whose

graph is pictured in Figure 4. The image under f6 of a point in T is a single point of T or

the whole T . Let a, b, c be end points of T . Then f6 restricted to T \ {a, b, c} is a single

valued one-to-one and continuous, while f6(a) = f6(b) = f6(c) = T . The map αn shrinks all

three limiting triods to points. Then the inverse limit X6 = lim
←−−
{[0,1], f6} is a hereditarily

decomposable tree-like continuum by Theorem 3.7. It contains three rays approximating

(in different ways) copies of X6. The picture shown in Figure 5 is G1,3 for Xn = T and

Fn = f6. The inverse limit X6 is not a Kelley continuum because ρ1,∞
1,2 : X6 → Graph( f6) is

a monotone mapping onto Graph( f6) which is not a Kelley continuum, contrary to theorem

[13] saying that a confluent image of a Kelley continuum is Kelley.

4.2. EXAMPLES WHEN βN ARE ATOMIC

Observation 4.11. For i = 1, ...,6, let gi = f −1
i and Yi = lim

←−−
{[0,1],gi}. Then by Theorem

3.7, Yi is arc-like if i < 6 and tree-like if i = 6. Moreover, by [12, Theorem 3.2, p.

1024] the continua Y1,Y2,Y3,andY5 are indecomposable. Continua Y4 and Y6 are also
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• • 

• • 

• • 

Figure 6. Graph of g3

indecomposable, but they do not satisfy the assumptions of [12, Theorem 3.2, p. 1024].

To show their indecomposability one may use [5, Theorem 212, p. 147]. In fact the later

Theorem can be used to show indecomposability of all continua Y1...Y6.

Since all of these inverse limit spaces are indecomposable one might wonder if any

are hereditarily indecomposable. The following observation shows that they cannot be.

Observation 4.12. If X = lim
←−−
{Xn, hn} with hn : Xn+1 → Xn surjective and there exists p ∈

X2 such that h1(p) contains a nondegenerate arc, then lim
←−−
{Xn, hn} contains a nondegenerate

arc. To see this, let A be a nondegenerate arc contained in h1(p). Let p2 = p and

pn+1 ∈ hn(pn), then A × {〈p2, p3, . . .〉} is the required arc.

Proposition 4.13. If C is an nondegenerate subcontinuum of any the inverse limit spaces

Y1, . . . ,Y6 then C contains a nondegenerate arc.

Proof. For Y1, . . . ,Y5 let C be a nondegenerate subcontinuum of Yi. Note that π1(C) is a

nondegenerate subcontinuum of [0,1]. We define, by induction, a sequence of possibly

degenerate arcs An such that:

1. An ⊆ πn(C);

2. A1 is nondegenerate;
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3. gi |An+1 : An+1 → An is a homeomorphism if An+1 is nondegenerate.

Then (A1× A2× . . . )∩X is an arc contained inC. ForY6 note that for any nondegenerate arc

A in T that does not contain an end point of T and for any point p ∈ T such that g6(p) ∈ A

there exists an arc B in T that contains p such that g6 |B is a homeomorphism. Hence we

can obtain an arc contained in C as previously. �

Proposition 4.14. For Yi, i ∈ {3, . . . ,6} contains a subset homeomorphic to Graph(gi) ×

Cantor set.

Proof. Note that for an arbitrary sequence 〈c1, c2, . . . 〉 with ci being end points of [0,1] orT ,

the set (X × X × {〈c1, c2, . . . 〉}) ∩Yi, where X is [0,1] or T as appropriate, is homeomorphic

to Graph(gi). �

Corollary 4.15. The inverse limit spaces Yi, i ∈ {3, . . . ,6} are non-Suslinean.

•• • 
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• 
• 

•
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•
••• 

• 
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•
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•
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•
• 

•
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Figure 7. Graph of g5 or f −1
5

Question 4.16. Are Y1, ...,Y5 Kelley continua?
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SECTION

2. SUMMARY AND CONCLUSION

After submitting the third paper we learned, by private correspondence, that Ingram

and Marsh have submitted a paper [22] that is very similar to ours. In their work they

have a condition which is equivalent to our condition that the projection maps βn or αn are

atomic and a second condition that is weaker than our condition that value of fn or f −1
n be

0-dimensional. Their result are weaker than ours in that they show only the chainability of

the inverse limit space and is limited to having factor spaces being intervals. One possibility

for future work would be to see if we could obtain our results using Ingram and Marsh’s

weaker hypothesis.

Also, a rercent paper by L. Alvin and J. P. Kelly [1] expands the definition ofMarkov

set-valued functions of Črepnjak, M. and Lunder, T. [13] and proves that for similar Markov

functions the associated inverse limit spaces are homeomorphic. It may be possible to

use their results to make our theorems on atomic projection map apply to a larger class of

functions.
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