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ABSTRACT 

 

 Sleep and sleep cycles have been studied for over a century, and scientists have 

worked on modeling sleep for nearly as long as computers have existed. Despite this 

extensive study, sleep still holds many mysteries. Larger and more extensive sleep-wake 

models have been developed, and the circadian drive has been depicted in numerous 

fashions, as well as incorporated into scores of studies. With the ever-growing knowledge 

of sleep comes the need to find more ways to examine, quantify, and define it in the context 

of the most complex part of the human anatomy – the brain. Presented here is the 

development of a computational model that explores the activity of individual neurons, 

modeled with coupled nonlinear ordinary differential equations, in key sleep-related brain 

regions. The activity patterns of the individual neurons are studied, as well as their 

synchronization with other neurons within the same region. The model is expanded into 

two separate interacting hemispheres, whose activity and synchronization reveal chimera-

like activity. Multiple different perspectives on jetlag are presented, exploring the impact 

of circadian rhythm changes. Unihemispheric sleep, the unusual form of sleep exhibited by 

some ocean creatures and species of birds, is observed, as well as asymmetric sleep, which 

occurs in human subjects suffering from sleep apnea. These investigations provide a new 

perspective on the intricate balance between the neural activity in different brain regions 

that drives the essential phenomenon that is sleep.  
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1. INTRODUCTION TO SLEEP 

 

 Everyone sleeps. At least, scientists are well on their way to proving that even 

creatures we didn’t believe had the capacity for it, do indeed sleep. For example, the 

jellyfish Cassiopea was recently discovered by Nath et al. (2017) to exhibit a sleep-like 

state, despite lack of a centralized nervous system. Yet, despite the necessity of sleep and 

its prevalence in the animal kingdom, many questions remain unanswered as to precisely 

why sleep is so essential, where in the brain sleep originates, which areas of the brain 

contribute what to the sleep process, and how sleep (or the lack thereof) affects processes 

such as memory consolidation. Research continues to seek answers these questions, with 

numerous new papers on sleep being published each year. Some basic background and a 

summary of recent sleep research will be touched upon briefly in this introduction. 

 

1.1. SLEEP IN GENERAL 

 Sleep has been studied in one form or another for centuries, with published articles 

about the phenomenon going back at least as far as the 1840s (Ashenheim 1841). There are 

two distinct sleep states: rapid eye-movement sleep, also known as paradoxical sleep and 

associated with dreaming; and non-rapid eye-movement sleep. 

 1.1.1. NREM Sleep.  Non-rapid eye-movement (non-REM or NREM) sleep is also 

known as slow wave sleep, named for the electroencephalogram (EEG) pattern of activity 

during this state: high amplitude, synchronized, with a frequency in the delta band, between 

0.5 and 4 Hz (Krueger et al. 2008, de Andres et al. 2011). This state of sleep is vital to 

sleeping creatures – so much so that sleep will always reemerge, even after (survivable) 
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acute damage to regions of the brain that moderate sleep (Krueger et al. 2008). Humans 

spend about 80% of their total sleep time in NREM (Krueger et al. 2008), with the rest 

devoted to REM, to be discussed in the next section.  

 NREM sleep is broken down into two distinct stages: stage 2 and stage 3-4, the 

latter of which is now slightly less confusingly called N3 (de Andres et al. 2011). Slow 

wave activity predominates during up to 20% of the duration of stage 2. During the 

remainder of this sleep state, the EEG exhibits patterns called K-complexes and sleep 

spindles. K-complexes are brief high amplitude spikes, while sleep spindles are short bursts 

of higher frequency activity. This stage corresponds to light sleep, where the sleeper is 

relatively easier to wake. Unlike stage 2, stage N3 consists more heavily of slow wave 

activity (20% or more) and is considered deep sleep (de Andres et al. 2011).  

 The amount and depth of NREM slow wave activity depends upon the activity of 

the brain during waking. Brain regions that experience increased activity or stimulation 

during waking hours experience increased levels of slow wave activity during the 

following NREM episode, while decreased activity during wake leads to decreased slow 

wave activity during NREM (Krueger et al. 2008, de Andres et al. 2011). There is also a 

distinct decrease in connectivity and signal propagation during NREM. While a signal 

transmitted in the brain via direct cortical stimulation during waking will propagate to other 

connected areas of the cortex, when the stimulation occurs during NREM sleep, the signal 

fades away quickly without much propagation. This appears to be the mechanism 

underlaying the slow fading of consciousness before and during early stages of sleep 

(Massimini et al. 2005).  
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 1.1.2. REM Sleep.  Arguably the more interesting of the two sleep states, rapid 

eye-movement (REM) sleep was discovered in the 1950s. While eye movement during 

sleep in humans had been noted previously, Aserinsky and Kleitman were the first to 

connect this movement to dreaming, publishing their findings in 1953 (Aserinsky & 

Kleitman 2003, reprint of original 1953 article). Other creatures have subsequently been 

found to exhibit REM sleep, including cats (Jouvet & Michel 1959), other mammals 

(Siegel 2001), lizards (Shein-Idelson et al. 2016)., and birds (Rattenborg et al. 2019).  

 REM sleep is also called paradoxical sleep; a fitting name, as activity in the brain 

during this sleep state is similar to that of waking. In fact, not only are multiple areas of the 

brain, previously quiescent during the descent into NREM, reactivated (Braun et al. 1997, 

Hobson & Pace-Schott 2002), but the brain’s energy metabolism during REM is as large 

as, or even larger than, during wakefulness (Hobson & Pace-Schott 2002). The EEG 

activity of the brain during REM is reminiscent of waking-state low-amplitude, high-

frequency firing. Waking and REM EEG are desynchronized compared to NREM (Peever 

& Fuller 2017), as inferred from the periodicity and amplitude of EEG recording, though 

REM has also been found to be the state with the greatest global field synchronization, 

when compared to NREM and wake (Achermann et al. 2016). When the brain shifts from 

wake to sleep, it always starts in NREM before changing to REM sleep. Over the course 

of a long sleep, the brain will switch between NREM and REM multiple times (Peever & 

Fuller 2017).  

 The wake-like activity of REM sleep still differs from true wakefulness in a few 

vital ways. When awake, the brain is mainly flooded with aminergic neuromodulators 

(Hobson & Pace-Schott 2002). After sleep onset, many brain regions, such as the pons and 
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the thalamus, become quiescent (Braun et al. 1997, Hobson & Pace-Schott 2002). Once 

REM sleep begins, however, these regions become active once again, though this time they 

are cholinergically modulated (Braun et al. 1997, Hobson & Pace-Schott 2002).  

 Furthermore, after REM onset, the input from the world is blocked, as is any motor 

output, leading to muscle atonia (Hobson & Pace-Schott 2002), though occasional muscle 

twitches do occur (Peever & Fuller 2017). This signal blockage is related to REM’s most 

interesting and well-known characteristic – dreaming (Note that while dreaming is 

associated with REM, it does also sometimes occur during NREM (Peever & Fuller 2017)). 

In spite of the “sleep paralysis” resulting from muscle atonia, the cerebellum continues to 

fine-tune the fictive motions performed in dreams (Hobson & Pace-Schott 2002). This 

production of fictional motions (along with fictional environments and sensory inputs) may 

be why REM sleep has the highest energy metabolism demands of all sleep states (Hobson 

& Pace-Schott 2002). Along with dreaming, REM sleep may also have a significant role 

in memory processing, to be discussed later (Section 1.2.4.1.).  

 Computational models have been developed to study and simulate REM sleep, both 

in the context of a larger sleep model (Kumar et al. 2012) and as part of a fast-slow process 

in which fast neuronal firing determines the sleep/wake state, and a slow homeostatic drive 

regulates the whole system (Booth & Diniz Behn 2012). Various hypotheses have been 

proposed for the evolutionary benefits of REM sleep (Siegel 2011, 2012, Rial et al. 2012).  

 

1.2. SLEEP IN THE BRAIN 

 Sleep and its relation to neurons, the circadian rhythm, and memory consolidation 

will be explored in this section. How neurons function and the discovery of the electrical 
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signal that propagates through them will also be discussed here, followed by a discussion 

of the circadian rhythm and the benefits of sleep, including memory, emotions, energy, and 

recovery.  

 1.2.1. Neuron Review.  A neuron’s membrane potential (the difference in voltage 

between inside the membrane and outside) is dependent upon ions that flow in and out of 

the cell. In its resting state, the interior of the neuron is at a negative potential compared to 

the extracellular space due to multiple different ions’ concentrations.  

 Signals travel along neurons via action potentials, which consist of three stages: 

depolarization, repolarization, and hyperpolarization. An action potential begins when an 

incoming signal pushes the membrane potential above a threshold value. This triggers Na+ 

channels to open, allowing sodium ions to flow into the cell due to the electric potential 

difference and the lower concentration of sodium within the neuron. As more Na+ flows 

in, more channels open, allowing sodium to enter the cell in larger quantities. This causes 

the neuron to “depolarize”, corresponding to a sharp rise in the membrane potential. As the 

increases, K+ channels begin to open, allowing potassium to flow from the higher 

concentration inside the cell to the lower concentration outside. Sodium stops flowing into 

the neuron due to the closing of an inactivation gate on the intracellular side of the Na+ 

channels. These events cause the neuron to repolarize, which is seen as the downstroke of 

the action potential. A brief overshoot of the resting membrane potential results in transient 

hyperpolarization (Barnett & Larkman 2007).  

 While the neuron is hyperpolarized, it is in a refractory period, during which it is 

unable to fire again, regardless of the strength of an applied electric signal. This is called 

the absolute refractory period. For another short time after that, during the relative 
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refractory period, an action potential can be triggered, but it takes a stronger than normal 

electrical signal. This is due to the recovery of the Na+ channels preventing passage while 

the K+ channels slowly close. The combination of these two refractory periods is what 

prevents an action potential from propagating back towards the direction of its source 

(Barnett & Larkman 2007). 

 1.2.2. Discovery of the Action Potential.  Before the mid-18th century, it was 

believed that muscles and nerves functioned via the four elements (earth, water, air and 

fire) and via ether. This perspective changed due to the efforts of more than a few important 

scientists. The history of the action potential’s discovery started when Italian physician 

Luigi Galvani (1737-1798) began studying the effect of electricity on severed frog legs. He 

found that contact between the leg and some metals, along with an electric spark, cause the 

contraction of the leg. This action of nerves and muscles he called “animal electricity”. 

Galvani’s eventual conclusion that there existed a quantity of positive and negative charge 

in the muscle and nerves is, in retrospect, eerily accurate (Cajavilca et al. 2009, Kazamel 

& Warren 2017). 

 Alessandro Volta (1755-1832) at first applauded Galvani’s research. As he 

performed the experiments for himself, however, he came to doubt and publicly contradict 

all of Galvani’s conclusions. Volta believed that Galvani was incorrect about an intrinsic 

animal energy and that the electricity that caused muscle contraction was a byproduct of 

using metals to manipulate the frog leg; in essence, heterogeneous contact caused the 

charge (Piccolino 1997, Kazamel & Warren 2017). Galvani set out to disprove Volta’s 

refutation, and the argument went back and forth for years. In 1797, Galvani undermined 

all of Volta’s contradictions by touching the sciatic nerve of one frog leg to the sciatic 
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nerve of a second, a homogenous contact, that produced the expected muscle contraction. 

This definitive experiment went almost completely unnoticed, however, while Volta 

proceeded to invent the electrical battery in 1800. As a result, the development of 

electrophysiology and the study of “animal energy” fell by the wayside for nearly three 

decades (Cajavilca et al. 2009). 

 Carlo Matteucci picked up the thread of Galvani’s research in 1838, followed by 

Emil du Bois-Reymond (1818-1896). In 1843, the latter improved the sensitivity of a 

galvanometer to the extent that he was able to measure the tiny currents in frog muscles. 

From this confirmation of Galvani’s theory, the field of electrophysiology was born 

(Finkelstein 2015). The shape of the action potential of a frog’s sciatic nerve was captured 

on an oscilloscope by Joseph Erlanger (1874-1965) and Herbert Gasser (1888-1963) in 

1922 (Kazamel & Warren 2017). 

 Even after the discovery of action potentials, however, many questions had yet to 

answered about their propagation and signal transmission. In 1937, Alan Lloyd Hodgkin 

(1914-1998) showed that an active area can excite nearby neurons. He did this by blocking 

one section of a nerve and measuring the electrical signals that passed beyond the block 

(Hodgkin 1937). Hodgkin and Andrew Fielding Huxley studied the giant axon of a squid, 

using their insights to develop a detailed computational model of an action potential, 

incorporating both conduction and excitation (Hodgkin & Huxley 1952). This model, of 

course, was the precursor to the model developed by Martin Tobias Huber and Hans Albert 

Braun (Braun et al. 1998) and used in the research presented here, to be discussed in 

Section 2.1.2.  



8 
 

1.2.3. Circadian Rhythm.  Everyone is familiar with the 24-hour cycle of daily 

life, largely due to one earth day being about equivalent to 24 hours. The reason why 

humans and other creatures follow the same pattern each day is as much the result of an 

internal circadian rhythm of the body as it is due to the entrainment with the solar light 

cycle. Circadian rhythms in plants were observed for the first time by Jean-Jacques Dortous 

de Mairan in 1729, who noticed the movement of a plant’s leaves, which changed 

depending upon the amount of light, and thus depended upon the time of day. However, 

this pattern of activity still occurred when the plant was isolated in a dark room, as if it 

were following its own internal clock. In biological systems, such as the plant, these daily 

oscillations became known as the circadian rhythm (Pikovsky et al. 2001).  

 The circadian rhythm is generated, and its synchronization maintained, by neurons 

in the suprachiasmatic nucleus (SCN). This connection was discovered in 1972, when 

scientists compared the brains of rats kept on the same circadian stimulus with and without 

lesions in the SCN, each of which was euthanized at different times of day (Moore & 

Eichler 1972). The neural pathway between the retina and the SCN was demonstrated by 

the injection of dye into a rat’s eye (Moore & Lenn 1972), indicating that external light 

stimulus does have some effect on the internal circadian rhythm. In the 1990s, the specific 

role of the SCN was explored, with transplanted SCNs in rats (Ralph et al. 1990) and 

hamsters (Aguilar-Roblero et al. 1994) changing their circadian rhythms, SCN lesions in 

squirrel monkeys changing their daily rhythms of sleep and wake (Edgar et al. 1993), and 

individual neurons removed from the SCN exhibiting daily firing rhythms in vitro (Welsh 

et al. 1995).  
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 The first studies of the circadian rhythm in humans was conducted in the late 1930s 

by Kleitman, now considered the father of sleep research, who removed external light 

entrainment by performing studies deep inside of caves, where sunlight was not able to 

influence the circadian rhythm of subjects (Czeisler & Gooley 2007). Many later studies 

investigated similar aspects of the human circadian rhythm, including unusual circadian 

cycle lengths of people living in one of the northernmost inhabitable areas, where the sun 

does not set over an entire season (Lewis & Lobban 1957).  

 The SCN moderates a mammal’s daily and seasonal rhythms and behaviors, a 

combination which has been modeled in varying ways and complexities. A robust standard 

model of SCN neurons, with a 24-hour period, is depicted schematically in Aton & Herzog 

(2005), with proper anatomical organization. Other models, which focus more on the 

generated circadian rhythm than the SCN itself, include Daan et al. (1984), whose skewed 

sine wave Process C is used as the circadian drive in many sleep-wake models; a two-

oscillator model developed by Strogatz (1987); a square array of SCN oscillators (Kunz & 

Achermann 2003); and a light-based model with an additional non-photic input (St. Hilaire 

et al. 2007).  

 A detailed review of the SCN’s role in timekeeping and circadian rhythm 

generation is presented in Anton & Herzog (2005), and a more general review of the 

circadian rhythm, its history, and its various light-sensitive aspects is given in Czeisler & 

Gooley (2007). 

1.2.4. Benefits of Sleep.  Sleep is dangerous. It leaves animals open to predation, 

takes time away from searching for food, and requires a safe place. Despite that, sleep is a 

vital component of daily life. If a creature goes without sleep for long enough, it will die. 
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This has led to animals developing ways of sleeping that improves their chances of survival 

(Lima et al. 2005). An example would be unihemispheric sleep, which will be discussed 

below (Sections 1.3.2. – 1.3.4.). The benefit of sleep must outweigh the danger and 

inefficiency of sleep for it to have remained such an important process in living creatures. 

While sleep deprivation has negative impacts on the body (Schmidt 2014) and on memory 

(Abel et al. 2013), the benefits of sleep are still debated. Some of the more prevalent 

theories are discussed below. 

1.2.4.1. Memory and emotions.  Sleep, learning, and memories are connected in 

the brain (Stickgold et al. 2001). Sleep is crucial in the management and storing of 

memories. Studies have shown that even brief naps can aid memory formation, though the 

longer the sleep period, the better the memory consolidation (Diekelmann & Born 2010).  

Two of the most widespread theories of memory consolidation are the “dual process 

hypothesis” and the “sequential hypothesis” (Hobson & Pace-Schott 2002). The “dual 

process hypothesis” states that each stage of sleep performs a different memory process. 

Specifically, procedural memories are processed during REM episodes, while declarative 

memories (such as word association) are processed during NREM sleep. In contrast, the 

“sequential hypothesis” states that memories are simply processed in the order that they 

happened and are not dependent upon the sleep state (Hobson & Pace-Schott 2002).  

Evidence suggests that memories are encoded temporarily in the hippocampus 

while a subject is awake, and once the subject falls asleep, some of the memories are moved 

to regions such as the neocortex for longer-term “storage” (Vorster & Born 2015). A 

detailed moment-by-moment breakdown of the memory consolidation process is covered 

by Dudai et al. (2015).  
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Emotions are connected to memories, and experiments with human patients have 

shown that emotions are present during REM sleep (Fosse et al. 2001). Emotions during 

REM seem to be tied to REM’s role in processing memories. Besides procedural memory 

processing, REM also plays a role in emotional memory processing (Diekelmann & Born 

2010). This connection between REM and emotional memories has led to the development 

of therapeutic uses of REM in the treatment of post-traumatic stress disorder (Stickgold 

2007).  

1.2.4.2. Energy and recovery.  Memory encoding relies heavily upon synaptic 

plasticity as well as sleep (Timofeev & Chauvette 2017). The plasticity of neurons 

decreases with use, and recovery, or renormalization of synaptic strength, is required to 

restore this plasticity. This recovery occurs during sleep, according to the synaptic 

homeostasis hypothesis (Tononi & Cirelli 2014). That sleep is an essential for recovery in 

the brain is not a new concept (Siegel 2003), and there are prevailing theories that plasticity 

in the human brain develops in infancy, during REM sleep (Hobson & Pace-Schott 2002).  

Beyond plasticity recovery, a part of brain recuperation during sleep includes the 

clearance of harmful byproducts produced over the course of the day (Xie et al. 2013). 

Energy conservation and distribution for different brain states is also a key aspect of sleep 

(Schmidt 2014); different stages of sleep provide low-energy consumption states, which 

helps regulate the amount of energy consumed by the brain.  

 

1.3. SLEEP IN LIVING CREATURES 

 Animals exhibit a range of unique sleep behaviors. This section will briefly discuss 

human sleep, as well as sleep in other creatures, specifically cetaceans, seals, and jellyfish.  
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1.3.1. Humans. Humans have one standard form of sleep: bihemispheric sleep. 

However, unusual circumstances or illnesses can cause another form of sleep in humans, 

called asymmetric sleep. Both will be discussed in this section.   

 1.3.1.1. Bihemispheric sleep (BHS).  Humans, like many creatures that sleep, have 

their entire brain in the same state at any one time: either all awake, or all asleep. This is 

called bihemispheric sleep (BHS). Those who do not utilize both hemispheres for sleep at 

the same time undergo what is called unihemispheric sleep (UHS), to be discussed below 

(Sections 1.3.2 – 1.3.4.).  

 Scientists initially hypothesized that the corpus callosum, the major pathway for 

communication between hemispheres, was essential to symmetric sleep between 

hemispheres, since some other creatures that use UHS, such as birds, do not have a corpus 

callosum, but instead possess multiple smaller comparable structures (García-Moreno & 

Molnár 2015). The corpus callosum consists of the bundle of fibers that connect the left 

and right hemispheres of the human brain (Sperry 1961, Corsi-Cabrera et al. 2006). It 

appears that the corpus callosum is not completely necessary for communication between 

hemispheres; people with callosal dysgenesis (born without the corpus callosum) still have 

interhemispheric communication (Tovar-Moll et al. 2014), though interhemispheric 

asymmetries during sleep have been found in acallosal mice (Vyazovskiy et al. 2004) and 

humans (Nielsen et al. 1992). People who were born with a corpus callosum and had it 

surgically severed (partially or completely, to halt the propagation of seizures between 

hemispheres (Bayne 2008)) have demonstrable difficulty with information transfer (Tovar-

Moll et al. 2014), as well as interhemispheric asymmetry during sleep, though the latter 

may recover with time (Corsi-Cabrera et al. 2006).  
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 1.3.1.2. Asymmetric sleep.  Despite corpus callosum separation and callosal 

dysgenesis, human sleep is always bihemispheric (Rattenborg et al. 2000, Corsi-Cabrera 

et al. 2006), if not necessarily symmetric (interhemispheric coherence was decreased at 

some frequencies after the corpus callosum was partially or completely severed (Corsi-

Cabrera et al. 2006)). Although not a very common occurrence, interhemispheric 

asymmetry has appeared in human sleep (Braun et al. 1997). Asymmetry can arise from 

separation of the hemispheres through surgery, as in Corsi-Cabrera et al. (2006), but also 

appears in humans due to other circumstances. Differences between hemispheres during 

sleep have been observed in humans with sleep apnea (Abeyratne et al. 2010, Rial et al. 

2013). Sleep apnea was found to be directly related to the magnitude of hemispheric 

asymmetry; the more severe the apnea, the more distinct the asymmetry (Abeyratne et al. 

2010). During normal breathing in sleep, apneic patients exhibit this asymmetry. When the 

patient enters an apneic episode (paused breathing), the hemispheres resynchronize (Rial 

et al. 2013).  

 Asymmetry between hemispheres during sleep can also occur in healthy humans, 

as discovered by Tamaki and associates (2016). When humans fall asleep in a new, 

unfamiliar location, portions of one hemisphere do not sleep as deeply as the other 

hemisphere, maintaining a heightened awareness of the environment. During this time, 

unfamiliar sounds will arouse a person more frequently and with faster response time when 

detected by the more lightly sleeping hemisphere than when detected by the more deeply 

sleeping hemisphere. This response can be viewed as deriving from a survival mechanism, 

protecting oneself while resting in an environment that may have unknown dangers. It is 
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only present during the first night in a novel environment and absent during subsequent 

nights and is thus called the First Night Effect.  

 1.3.2. Cetaceans.  Unlike humans, Cetaceans (whales, dolphins and porpoises) 

allow one hemisphere at a time to sleep while the other maintains vigilance, switching 

multiple times over a period of rest. This form of sleep is called unihemispheric sleep 

(UHS), characterized by one hemisphere exhibiting an EEG pattern synonymous with 

NREM sleep (high amplitude and low frequency, or synchronized) while the other 

hemisphere shows an EEG pattern that indicates wakefulness (low amplitude and high 

frequency, or desynchronized). The wakeful hemisphere can have intermediate activity, 

lying in the realm between NREM and wakefulness, without dipping so far into sleep that 

both hemispheres are considered in the same state (Rattenborg et al. 2000).  

 Other characteristics of UHS include some form of constant movement, such as 

swimming for cetaceans, and unilateral eye closure, in which the eye associated with the 

wakeful hemisphere (contralateral (Lyamin et al. 2004)) remains open while the other eye 

is closed (sleeping). It is also important to note that UHS is limited to NREM, or slow wave 

sleep (SWS). REM is not present during UHS, though experimental studies suggest that 

REM may still be possible in creatures that exhibit UHS (Rattenborg et al. 2000). Later 

studies, however, suggest that REM has been lost in aquatic mammals due to natural 

selection as a result of environmental pressures, such as predators, the need to remain at or 

regularly return to the surface for air, and/or temperature maintenance (Madan & Jha 2012).  

 This unusual form of sleep was modeled by Kedziora and associates (2012), who 

adapted a preexisting model to create two hemispheres, which alternately switched 

between sleep and wake states. Their work formed the inspiration to create a more detailed 
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model, developed below in this dissertation, with groups of individual neurons in place of 

single equations that govern entire regions of the brain. UHS is examined in the model 

presented here, with results discussed in Section 4.2.  

 1.3.3. Birds.  Even before the discovery of UHS, some birds’ ability to fly 

continuously for days at a time was a scientific puzzle. When did the birds sleep? Due to 

the size mismatch between tiny avian subjects and large experimental recording apparatus, 

studies have been limited (Rattenborg et al. 2000, Rattenborg 2017). Many scientists 

concluded, through visual observations and indirect studies, that birds may fly using only 

one hemisphere (UHS) or lock their wings and glide (BHS), supported by the evidence that 

birds are still capable of flight, even after the connections between the brain and the spinal 

cord had been severed (Rattenborg et al. 2000). Indeed, due to newer tracking capabilities, 

it has been found that great frigatebirds (Fregata minor) do utilize both UHS and BHS 

while they fly. However, the amount of time they spend sleeping during flight was 

shockingly small, less than an hour per day (mostly UHS or asymmetric sleep), in contrast 

to nearly 13 hours of sleep per day while nesting (Rattenborg 2017).  

 In contrast to studies of birds in flight, birds exhibit UHS conditionally while 

resting on land. Rattenborg and associates (1999) studied Mallard ducks (Anas 

platyrhynchos) and showed that when sleeping in groups, the ducks show a predilection 

for sleeping unihemispherically when on the outer edge of the group, with the eye facing 

away from the group open to watch for predators. Ducks in the center showed no preference 

for which eye they held open during UHS, while also exhibiting less UHS than those on 

the outer edge (Rattenborg et al. 1999). 
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1.3.4. Pinnipeds.  Seals, members of the suborder Pinnipedia, exhibit UHS like 

whales and dolphins. However, this is only true of some seals – eared seals have UHS 

while in the water and BHS on land, while true seals always exhibit BHS, whether in the 

water or on land. Eared seals use their “awake” side to paddle and keep their face above 

water to breathe, occasionally switching sides (Rattenborg et al. 2000). True seals simply 

float at the surface or hold their breath and sleep beneath the water (Rattenborg et al. 2000, 

Mascetti 2016). Walruses, also of the suborder Pinnipedia, are like seals in that they exhibit 

(mostly) BHS on land, and more like true seals in that they hold their breath to sleep 

underwater, with decreased asymmetries between hemispheres (Mascetti 2016).  

1.3.5. Jellyfish.  Far less complex than humans, whales, and dolphins, jellyfish lack 

a central nervous system, instead utilizing a net of neurons, like other members of the 

phylum Cnidaria (Bosch et al. 2017). Despite their distributed nervous system, a species 

of jellyfish (Cassiopea spp.) has been recently observed to exhibit a sleep-like state (Nath 

et al. 2017). Nath and associates determined that Cassiopea exhibit a state that satisfies all 

three accepted behavioral hallmarks of sleep: reduced activity, reduced 

responsiveness/response time, and homeostatic regulation, or the need to recover (return to 

that state) if deprived of it (Allada & Siegel 2008). This leads to the question of whether a 

central nervous system is necessary or sufficient for sleep (Lesku & Ly 2017). 

 

1.4. EFFECTS OF SLEEP DISTURBANCE/DEPRIVATION   

 The impact of missed sleep has been an area of study since at least the 1920s 

(Robinson & Herrmann 1922). Lack of sleep can cause many negative effects on the human 

body, whether the sleep deprivation is caused by shift work, insomnia, disturbances during 
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sleep, illnesses, disorders, difficult environments, circadian rhythm misalignments, or any 

number of other things that demand wakefulness or prevent sleep. People who suffer from 

sleep disorders, including insomnia and narcolepsy, regularly report poor health and low 

quality of life, especially when compared to people who do not suffer from sleep ailments 

(Reimer & Flemons 2003). They also spend more time in bed and miss or limit activities 

more often due to illnesses (Simon & Vonkorff 1997). 

 The effects of sleep loss are broad and partly dependent upon the amount lost, the 

frequency, and the how long regular sleep loss occurs. Negative effects associated with 

regular sleep loss due to disorders, even after treatment, may or may not improve (Reimer 

& Flemons 2003). Going a full day without sleep, or regular nights with insufficient sleep, 

causes mental deficiencies and physiological problems. These include difficulty in 

maintaining attention, slower recollection, difficulty with short-term memory, lower 

cognitive processing, slower thoughts, and depression. Physiological issues caused by 

persistent lack of sleep include cardiovascular morbidity, obesity, traffic accidents, 

accidents at work, and mortality (Banks & Dinges 2007).  

 Issues are also caused by other inevitable sleep disturbances, such as parents with 

a newborn, or people working in extreme environments, like astronauts on long or short 

space missions. Reports indicate that sleep issues such as “circadian misalignment can 

increase health risks and result in a decreased ability to effectively and efficiently perform 

tasks” (Guo et al. 2014). This can be especially crippling when every task is essential and 

resources are scarce, as is the case with astronauts in space. While coffee, amongst other 

caffeinated beverages, is commonly used to attempt to negate some of the negative effects 

of sleep deprivation, it is not a replacement for sleep. Caffeine’s effect on the brain and its 
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ability to help improve a sleep-deprived individual’s performance varies from person to 

person. An optimal administration of caffeinated substances and how sleep and wake states 

are impacted by different dosages taken at different times of day are discussed and modeled 

in an interesting paper by Puckeridge et al. (2011). 

 

1.5. SLEEP DISORDERS   

 As with any system in a living creature, sleep can be hindered by illnesses and 

disorders. Along with studying sleep in its natural form, scientists study many different 

sleep disorders, both to understand the illness and how it impacts sleep, as well as 

discovering effective ways to treat these disorders.  

 1.5.1. Narcolepsy and Cataplexy.  Narcolepsy, a sleep disorder associated with 

excessive sleepiness and broken sleep, is somewhat common, affecting around 0.02% – 

0.05% of the population (Mahlios et al. 2013, Scammell 2015). There are two clinically 

differentiated types of narcolepsy; loss of orexin/hypocretin-producing neurons in the 

hypothalamus causes Type 1, while Type 2 is nearly identical to Type 1 but lacks a known 

cause (Scammell 2015).  

 Onset of narcolepsy can be sudden or gradual and, unlike other causes of sleepiness, 

narcoleptic people are not always sleepy. While their sleepiness will emerge every day 

despite having sufficient sleep, they tend to awaken feeling rested (Scammell 2015). 

Another characteristic of narcolepsy is the intrusion of REM sleep into waking hours. 

Narcolepsy’s partner condition, cataplexy, is a state where the characteristic loss of muscle 

tone (atonia) seen in REM occurs while a patient is awake, triggered by intense (usually 

positive but also occasionally negative) emotions. Cataplexy can cause immobility for up 
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to two minutes and is most commonly associated with Type 1 narcolepsy (Mahlios et al. 

2013, Scammell 2015). Hallucinations while transitioning between wake and sleep in either 

direction are also common in narcolepsy (Scammell 2015).  

 While it is accepted that damage to, or lack of, orexin/hypocretin producing neurons 

or receptors causes Type 1 narcolepsy (Mahler et al. 2014, Scammell 2015, Branch et al. 

2016), it has been suggested that narcolepsy may specifically be caused by a subject’s own 

immune system attacking orexin-producing neurons (Mahlios et al. 2013).  

 1.5.2. Insomnia.  A common ailment affecting 35% – 50% of the adult population, 

insomnia is a sleep disorder in which patients have difficulty falling asleep, difficulty 

staying asleep past a certain time, waking multiple times during the night, not feeling rested 

after sleeping, or some combination of these symptoms (Buysse 2013). This differs from 

sleep deprivation in that time and circumstances for sleep are sufficient and not the direct 

cause of the lack of sleep. Studies on insomnia pathology seem to show signs of 

hyperarousal, such as high-frequency activity in EEG recordings during NREM (Buysse 

2013), a variety of brain regions showing wake-like and sleep-like activity at the same time 

(Krueger et al. 2008), and alpha frequencies during short arousal intervals similar to those 

observed in restful waking, meaning that the short periods of waking that occur normally 

during sleep are, in insomniacs, far closer to true wakefulness than in healthy patients 

(Schwabedal et al. 2016). 

 Whether insomnia is, in any given patient, a primary disorder or a symptom of some 

other issue, treatments break down into two types: cognitive-behavioral and medicinal. 

Cognitive-behavioral treatments focus on establishing a schedule to help entrain the 

circadian rhythm, keeping the bed an area only for sleep, learning techniques for relaxing, 
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and reducing anxiety (Buysse 2013). These last two approaches reinforce the notion that 

emotions can play a part in insomnia (Nofzinger et al. 2006). Medicinal treatments vary 

greatly, with many of the drugs prescribed for insomnia primarily used for treatment of 

other disorders, such as anti-depressants (Buysse 2013). 

 1.5.3. Fatal Insomnia.  Patients with fatal insomnia do not merely find it difficult 

to fall asleep; they lose the ability to sleep completely. EEG characteristics that define sleep 

begin to disappear, often starting with sleep spindles. Eventually, the afflicted patient’s 

sleep-wake cycle is altered to the point that true sleep is no longer possible; instead, patients 

may slide into short infrequent REM episodes directly from wake (Lugaresi et al. 1998). 

Patients become unable to maintain focused attention and will, if lacking stimulation, fall 

into a vegetative state that becomes more difficult to be roused from as the disease 

progresses. Cognitive impairments and memory problems commonly manifest as well, 

growing progressively worse over time (Wu et al. 2018). This will, by some complication 

or other, inevitably end in the death of the patient, often abruptly while they are fully awake 

and aware, or due to an infection contracted while in a “vegetative state” or coma 

(Montagna et al. 2003). Patients diagnosed with fatal insomnia may have a long or short 

disease course, with death occurring anywhere between 8 months or 6 years after onset of 

symptoms (Montagna et al. 2003), with an average survival time of 18 months (Khan & 

Bollu 2018). 

 Initially studied in an older gentleman by Lugaresi et al. (1986), further cases were 

discovered and documented, with both types of fatal insomnia (familial and sporadic) 

eventually classified as human prion diseases of different phenotypes (Cortelli et al. 1999, 
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Montagna et al. 2003). Both familial and sporadic fatal insomnia will be briefly discussed 

below.  

 1.5.3.1. Fatal familial insomnia (FFI).  As the name implies, fatal familial 

insomnia (FFI) is inherited. As of 1999, only 25 different families had been recorded as 

carrying the gene for FFI (Gambetti & Lugaresi 1998, Cortelli et al. 1999). More recently, 

up to 50 families have been documented (Wu et al. 2018). FFI is dominant and is caused 

by a mutation in the prion gene in the 20th chromosome (Wu et al. 2018). Some other prion 

diseases can manifest in similar ways to FFI, including Creutzfeldt-Jakob disease (more 

aggressive than FFI, with more widespread neuronal degeneration) and Gerstmann-

Straussler-Scheinker syndrome (some cognitive impairment but little sleep disturbance) 

(Khan & Bollu 2018). 

 1.5.3.2. Sporadic fatal insomnia (SFI).  This phenotype of fatal insomnia is 

different from FFI in that it spontaneously appears, rather than being inherited (Montagna 

et al. 2003). Sporadic fatal insomnia (SFI) presents symptoms that may be impossible to 

distinguish from FFI; to differentiate in cases where there is familial history of insomnia, 

a specific mutation of the prion gene (D178N mutation in PRNP) must be confirmed, as 

only FFI has this particular mutation (Luo et al. 2012). 

 1.5.4. Circadian Rhythm Sleep Disorders (CRSD).  There are two different types 

of circadian rhythm sleep disorders (CRSD): those with an extrinsic source and those with 

an intrinsic cause. Disorders primarily caused by outside factors (such as shift work 

disorder and jet lag disorder) are extrinsic, wherein the circadian drive performs normally 

under normal circumstances while outside influences cause severe enough disturbances to 

the circadian rhythm to be considered a disorder (Sack et al. 2007A). Then there are those 
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disorders caused by some intrinsic factors (such as advanced sleep phase disorder, delayed 

sleep phase disorder, free-running disorder, and irregular sleep-wake rhythm), where the 

issue lies with the circadian drive (Sack et al. 2007B). Also note that there may be cross-

over between factors and that any one of these diagnoses may not be purely extrinsic or 

intrinsic (Sack et al. 2007A, B). 

 1.5.4.1. Shift work disorder (SWD).  Due to non-standard work shifts, such as 

overnight, on-call, early awakenings and changing schedules, a person’s circadian rhythm 

can be perturbed, leading inevitably into sleep deprivation. Shift work disorder (SWD) and 

its diagnosis are not often utilized in research studies, since the borderline between a 

normal response to circadian disturbance and an abnormal response is not precise. It can 

be treated with timed light exposure, prescribed sleep/wake scheduling, timed melatonin 

administration, hypnotic medication or stimulant medication (Sack et al. 2007A). 

 1.5.4.2. Jet lag disorder (JLD).  Much like SWD, jet lag disorder (JLD) is due to 

an extrinsic cause; in this case, the circadian rhythm is not perturbed so much as misaligned 

due to a rapid change in time zone. Though usually self-remedying over time, it can also 

be treated with the same techniques used for SWD (Sack et al. 2007A). Disturbances due 

to changes in the circadian drive, such as jet lag, are explored later, in Section 4.1. 

 1.5.4.3. Advanced sleep phase disorder (ASPD).  An intrinsic CRSD, advanced 

sleep phase disorder (ASPD) occurs when a patient has difficulty conforming to a certain 

sleep schedule; specifically, they have a stable, consistent sleep schedule that is several 

hours earlier than what is desired by the patient. The level of displacement between actual 

and desired sleep schedules necessary to be diagnosed is not precisely defined, meaning 

that a diagnosis typically relies more upon the severity of an individual’s struggle to shift 
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their sleep schedules to external requirements. This disorder is usually treated with timed 

light exposure but may also be treated with phase-advance chronotherapy or timed 

melatonin administration (Sack et al. 2007B). 

 1.5.4.4. Delayed sleep phase disorder (DSPD).  Like ASPD, delayed sleep phase 

disorder (DSPD) is an intrinsic disorder where a patient’s stable sleep schedule is later than 

what they want or need. Patients have difficulty falling asleep and/or waking up early and 

tend to sleep longer than those not diagnosed with DSPD. This disorder does not have a 

defined cause but may be due to an elongated circadian period or a reduced ability to 

recover from missed sleep. Treatments for DSPD include chronotherapy, where sleep is 

delayed a little each day until the desired schedule is achieved, timed light exposure, 

melatonin, and hypnotic or stimulant medication (Sack et al. 2007B). 

 1.5.4.5. Free-running disorder (FRD).  This disorder, also known as non-24-hour 

sleep-wake syndrome, occurs when patients function on a non-24-hour circadian rhythm. 

Humans have been found to have a natural (outside of any external entrainment) circadian 

period of slightly longer or shorter than 24 hours, but function on a 24-hour period due to 

the normal light-dark schedule of the Earth. People with free-running disorder (FRD) 

appear to either have difficult or failed entrainment to this light-dark schedule, and while 

more common in completely blind patients, it does occur in sighted patients as well (Sack 

et al. 2007B). For sighted patients, the only effective treatment supported by studies is 

timed melatonin administration. Blind patients may be treated with timed melatonin 

administration as well, and some studies have shown prescribed sleep/wake scheduling to 

be effective (Sack et al. 2007B).  
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 1.5.4.6. Irregular sleep-wake rhythm (ISWR).  Patients afflicted with irregular 

sleep-wake rhythm have inconsistent, short periods of sleep distributed throughout the day 

and night rather than one long sleep bout. Though the cause is unknown, damage to the 

SCN likely plays a role. Typically afflicting those with mental impairment or older persons 

with dementia, treatment may consist of timed applications of melatonin or light exposure, 

or mixed treatments that include increasing time spent in daylight and increasing the 

amount of daily physical activity (Sack et al. 2007B).  

 

1.6. SYNCHRONIZATION 

 Synchronization is frequently utilized in analysis of neural activity, as it is here. It 

is also a vital component of brain activity during sleep, as mentioned briefly above. A brief 

review of synchronization and oscillators is provided here for reference. A comprehensive 

text on synchronization written by Pikovsky, Rosenblum, and Kurths (2001) covers the 

scientific history, synchronization in general, and more specific forms of synchronization 

in specialized systems.  

 1.6.1. Synchronization in General.  Synchronization as a phenomenon was 

discovered by Christiaan Huygens in the mid-1600s. While improving his invention, the 

pendulum clock, Huygens observed that two clocks hanging from the same support began 

swinging in anti-phase synchronization. Each pendulum had 180° difference in phase with 

the other; in other words, both would hit the lowest point of their swing at the same time, 

and while one pendulum hit the highest point of its swing on one side (e.g., left), the other 

hit its highest point on the opposite side (right). Huygens found that the beam that 

supported the two clocks provided the necessary coupling for them to synchronize.  
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 After this discovery, other forms of synchronization were found. In the mid-1800s, 

Lord Rayleigh observed a phenomenon called oscillation death between two pipe organs. 

When placed beside one another and the same note played on both, the sounds would 

quench each other. Sometimes the quenching was so effective that the organs would 

smother each other into near silence (Pikovsky et al. 2001). In 1920, it was discovered that 

triode generators could synchronize, a fact expanded upon by Edward Appleton and 

Balthasar van der Pol, who entrained an oscillator using a weaker external signal with a 

slightly different period. This demonstrated that an oscillator that is weak can be used to 

keep a powerful oscillator, such as a power generator, stable and at a specific frequency 

(Pikovsky et al. 2001).  

 Synchronization, in essence, is an interaction between oscillators that causes them 

to alter their frequencies and maintain an approximately constant time difference between 

their phases. The degree of frequency entrainment that can be achieved between two 

oscillators depends upon the strength of their interactions and the magnitude of the 

difference between their frequencies (Pikovsky et al. 2001). In the case of mutual 

synchronization, two oscillators experience equal coupling, and both change their 

frequencies in response (Pikovsky et al. 2001).  

 There are various methods for quantifying the degree of synchronization between 

two (or more) oscillators. For analysis of neural systems, the most widely used is stochastic 

phase synchronization, which quantifies the constancy of the phase difference between the 

oscillators. This is a statistical measure which can be applied to noisy, fluctuating 

oscillators, including experimental data; importantly, it allows for a definition of 
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synchronization that includes oscillators which may be out of phase. The mathematical 

details of this measure will be discussed below Section 2.2.4.1. 

 1.6.2. Oscillators.  Two types of oscillators will be briefly discussed: self-sustained 

oscillators and relaxation oscillators.  

 Self-sustained oscillators maintain their periodic motions at frequencies defined by 

their internal parameters and exhibit three main characteristics: dissipation, stability, and 

non-linearity. Dissipation occurs when energy is lost (for example, to heat). While purely 

dissipative systems are unstable, nonlinear dissipative systems may exhibit stable, self-

sustained oscillations if they also have some form of internal drive. This stability comes 

from the feedback between the dissipation and the energy source. If the amplitude of the 

oscillator increases beyond a threshold, the energy dissipation outstrips the internal power 

source, causing the amplitude to decrease. If instead the amplitude falls below a certain 

level, the drive becomes larger than the dissipation, providing the energy necessary for the 

amplitude to increase again.  

 Self-sustained oscillators can exhibit chaotic behavior under certain values of 

internal parameters, as is expected for non-linear systems. When coupled, they maintain 

their own amplitudes while shifting their frequencies to synchronize. They may also 

maintain a constant phase difference while synchronized.  

 Some neurons, under some conditions, can exhibit self-sustained oscillations. The 

two neural models utilized in this research both produce neurons capable of maintaining 

oscillations without coupling to other neurons. From this perspective, neural activity can 

thus be considered a dynamical systems problem.   
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 A subset of self-sustained oscillators are relaxation oscillators. They exhibit the 

same characteristics described above but with periods of slow and fast change. This pulse 

occurs when a slowly increasing parameter reaches a threshold and a rapid change, such as 

a discharge, occurs. An excellent example of this is the neural action potential, where the 

voltage surpasses a threshold and causes a discharge, as discussed in detail above in Section 

1.2.1.  

 

1.7. PURPOSE OF RESEARCH   

 The author’s previous work (Glaze et al. 2016) led to the work presented in this 

dissertation. This progression and the overarching goal of this research are discussed 

below.  

 1.7.1. Previous Research.  In previously completed research, our group found 

chimera states in a network of Huber-Braun neurons (Glaze et al. 2016). A chimera state 

is a state in which a group of identical, interacting oscillators divide into two distinct groups 

– one group of synchronized oscillators and one group of desynchronized oscillators. This 

has been found in systems of different types of oscillators, including mechanical (Martens 

et al. 2013), optical (Hagerstrom et al. 2012), chemical (Tinsley et al. 2012), and of course 

neural (Omelchenko et al. 2013, Hizanidis et al. 2014, Glaze et al. 2016). More information 

on chimera states will be presented in Section 3.2.  

 While exploring chimera states in neural groups, we came across the sleep 

phenomenon known as unihemispheric sleep (discussed in Sections 1.3.2. – 1.3.4. and 

4.2.). Comparing chimera states to UHS, we saw that both consisted of two groups 

(hemispheres) where one was synchronized (asleep) and the other desynchronized (awake), 
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and that inhibitory connections between the groups produced chimera states (Tinsley et al. 

2012 and Glaze et al. 2016), while inhibitory connections between hemispheres produces 

UHS in sleep models (Kedziora et al. 2012). This led us to ask whether UHS can be 

modeled as a chimera state, a question which has led to the research presented in this 

dissertation.  

 1.7.2. Goal.  The purpose of this project is to design a simple, schematic model of 

sleep dynamics based on the interaction between groups of individual simulated neurons. 

This approach stands in contrast to other models which describe the activity of brain 

regions as a whole, rather than arising from the interaction of individual neural oscillators. 

Using this approach, the interactions between individual neurons both within and between 

groups can be examined in detail, through the lens of synchronization (Sections 2.2.4. and 

2.3.2. – 2.3.4.). The model will also be split into two distinct and interacting hemispheres, 

providing the opportunity to scrutinize the synchronization of regions within and between 

halves of a simplified “brain”. The existence of chimera states (Section 3.3.) can then be 

investigated as a model for asymmetric or unihemispheric sleep (Section 4.2.). Lastly, 

manipulation of a circadian drive can simulate the effects of jet lag (Section 4.1.).  
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2. FUNDAMENTAL SLEEP-WAKE MODEL 

 

2.1. BUILDING A BASIC MODEL 

 The building blocks of a fundamental sleep-wake model, including organization of 

model elements and utilized neural models, is presented in this section.  

 2.1.1. Basic Model Organization.  The simplest form of a sleep-wake model is 

comparable to a “flip-flop” switch – a group of neurons for sleep, a group for wake, and, 

since each state is stable on its own, a driving force that causes the states to switch. This 

type of model has been explored by other researchers in many flavors; the most common 

types of model are discussed below.  

 2.1.1.1. Flip-flop switch.  A flip-flop switch is a simple, stable circuit. Essentially, 

two components mutually inhibit one another, which produces a feedback loop with two 

stable states. The interactions between sleep-promoting neurons (such as those in the 

ventrolateral preoptic area (VLPO)) and wake-promoting neurons (such as neurons in the 

locus coeruleus (LC)) are mutually inhibitive (Saper et al. 2001), making the flip-flop 

switch a good choice to model the switching between non-rapid eye-movement (NREM) 

sleep and waking.  

 Many researchers have noted the reciprocal relationship between sleep-promoting 

and wake-promoting neurons (Gallopin et al. 2000, McGinty and Szymusiak 2000, Saper 

et al. 2001, Nakao et al. 2007). The flip-flop switch has, for example, been used to model 

this reciprocal relationship in the model developed by Rempe et al. (2010), which utilizes 

mutual inhibition between wake-promoting and sleep-promoting neurons (along with 

external inputs) to switch between the stable state of wakefulness and the stable state of 
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NREM sleep. This reciprocity can also be applied to the switch between NREM and rapid 

eye-movement (REM) sleep, as explored by Lu et al. (2006) and Rempe et al. (2010). 

 Another interesting take on the flip-flop switch was presented by Booth and Diniz 

Behn (2014), who compared the mutual inhibition between sleep and wake to a hysteresis 

loop. Essentially, each state – sleep and wake – is stable, and an outside driving force (in 

this case, the homeostatic drive, or sleep pressure) triggers the switch, by increasing or 

decreasing beyond a threshold. This increase and decrease, along with the transition 

between states, forms the hysteresis loop. As Booth and Diniz Behn mention, the activity 

of this hysteresis loop is comparable to the two-process model.  

 2.1.1.2. Two-process model.  The two-process model was developed in 1984 by 

Daan, Beersma and Borbély. This type of model consists of two separate, interacting 

processes – a Process C for the circadian drive or rhythm, and a Process S, which represents 

sleep propensity, or the homeostatic drive. As depicted in Daan et al. (1984), the S process 

increases exponentially during the daytime until it reaches an upper bound H, after which 

it decreases in the same way until it reaches a lower bound, defined by L. The upper and 

lower bounds have the periodic behavior of a skewed sine wave, and change according to 

the circadian process C. The combination of these two processes enables the system to 

transition between wake and sleep.  

 This model has been used to simulate sleep numerous times and remains one of the 

most favored (Nakao et al. 2007). Several new models have been developed based on the 

two-process model (Borbély and Achermann 1992, Phillips and Robinson 2007), and Daan 

et al.’s (1984) is often used as a measure for authors to compare with their own models 

(Rempe et al. 2010).  
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 2.1.1.3. Two-group/two-neuron models.  The initial form of the model developed 

in this dissertation consists of a small group of neurons (typically 8 neurons, unless 

otherwise specified) active during the wake state, another group of neurons active during 

the sleep state, and a circadian pacemaker C, which drives the state-switching. While C 

drives the system, the sleep and wake groups mutually inhibit each other, and the state of 

the system depends upon the active group.  

 Similar models have been developed and studied by other groups. Postnova, Voigt 

and Braun (2009) designed a two-neuron feedback model to simulate sleep-wake cycles, 

inspired by experimental data. A hypocretin/orexin (ORX) neuron was reciprocally 

coupled to a glutamate (GLU) neuron with excitatory connections, while also receiving 

input from the circadian drive, which originates in the suprachiasmatic nucleus (SCN) 

(Postnova et al. 2009). An extended version of this model, including a homeostatic process 

projecting to the GLU neuron, was used to investigate the impact of noise and diversity of 

sleep-wake cycling management (Patriarca et al. 2012). 

 A variant of the two-neuron model is the two-oscillator model (Nakao et al. 2007). 

Here, two oscillators mutually interact, but do not represent wake and sleep. Rather, one 

oscillator represents the activity of the SCN, controlling temperature and the circadian 

pacemaker, while the second mediates the switching between sleep and wake states. The 

two-neuron model can also be used as a simple way to model the human circadian rhythm 

(Kronauer et al. 1982, Strogatz 1987). 

 2.1.2. Huber-Braun Neural Model.  All neurons in the model presented here 

utilize either the Hindmarsh-Rose neural model, to be discussed in Section 2.3, or the 

Huber-Braun model for thermally sensitive neurons (Braun et al. 1998). This model was 
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selected due to the wide range of realistic bursting dynamics it exhibits. The model is 

described here for reference; for further details, see the original paper.  

 The Huber-Braun (HB) model is a Hodgkin-Huxley-based (Hodgkin and Huxley 

1952) neural model, initially designed to replicate the activity of the facial cold receptors 

of a cat. It incorporates five different currents – depolarizing, repolarizing, sub-threshold 

depolarizing, sub-threshold repolarizing, and a leak current. Each of these currents 

contribute to the change in voltage for each neuron at each timestep. The equation for the 

change of voltage for each neuron is given by  

   𝐶𝑀
𝑑𝑉

𝑑𝑡
= −𝐼𝑙 − 𝐼𝑑 − 𝐼𝑟 − 𝐼𝑠𝑑 − 𝐼𝑠𝑟 − 𝑔𝑤 + 𝐶𝑖,       (2.1) 

where each I represents one of the currents. For the depolarizing (𝑑), repolarizing (𝑟), and 

sub-threshold depolarizing (𝑠𝑑) currents, 𝐼𝑖 = 𝜌𝑔𝑖𝑎𝑖(𝑉 − 𝑉𝑖), where 𝑖 = 𝑑, 𝑟, 𝑠𝑑. In this 

equation, 𝑎 is the activation variable, whose change over time is given by 

𝑑𝑎𝑖

𝑑𝑡
=

𝜙(𝑎𝑖∞ − 𝑎𝑖)

𝜏𝑖
 

 where  

𝑎𝑖∞ = (1 + exp(−𝑠𝑖(𝑉 − 𝑉0𝑖)))
−1

. 

Here, 𝑠𝑖 is the steepness, and 𝑉0𝑖 is the half-activation potential. The model constants are 

given in Appendix A.  

 Returning to Equation 2.1, the sub-threshold repolarizing (𝑠𝑟) current is defined as  

𝐼𝑠𝑟 = 𝜌𝑔𝑠𝑟𝑎𝑠𝑟(𝑉 − 𝑉𝑠𝑟), 

with the activation variable given by  

𝑑𝑎𝑠𝑟

𝑑𝑡
=

𝜙(−𝜂𝐼𝑠𝑑 − 𝑘𝑎𝑠𝑟)

𝑡𝑠𝑟
. 
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Finally, the leak (𝑙) current is given by 𝐼𝑙 = 𝑔𝑙(𝑉 − 𝑉𝑙). As for the constants, 𝑔 is the 

maximum conductance, 𝑉𝑖 (where 𝑖 = 𝑑, 𝑟, 𝑠𝑑, 𝑠𝑟) is the reversal potential, 𝜏 is the time 

constant, 𝐶𝑀 is the membrane capacitance and 𝜂 and 𝑘 are scaling factors. There are also 

temperature-dependent scaling factors, 𝜌 and 𝜙, given by  

     𝜌 = 1.3
𝑇−𝑇0

10⁄   

and  

     𝜙 = 3.0
𝑇−𝑇0

10⁄ . 

 The final two terms in the original equation (Equation 2.1) are noise and coupling, 

respectively. Braun et al. (1998) used Gaussian white noise as defined in Fox et al. (1988),  

𝑔𝑤 = √−4 𝐷 𝑑𝑡 ln (𝑎) cos(2𝜋 𝑏). 

Here, 𝐷 is noise amplitude, 𝑑𝑡 is the numerical integration time step, and 𝑎 and 𝑏 are 

random numbers between 0 and 1, updated independently at each time step for each neuron. 

The coupling term 𝐶𝑖, not a part of the original model, allows for external input from other 

neurons, and will be discussed in Section 2.2.  

 

 

 

Figure 2.1 – Activity of a Single Uncoupled Huber-Braun Neuron 

The firing pattern of a single Huber-Braun neuron, when it is not coupled to anything 

else. Note the rapid activity during the first few milliseconds of the run. This is transitory 

behavior as the model settles into its normal behavior.  
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 The activity of a single HB neuron with no external input is shown in Figure 2.1. 

From 0 to about 75 𝑚𝑠, the voltage of the neuron oscillates rapidly as the model settles 

into its steady-state behavior. This transient behavior is typically discarded before data 

analysis. Note that all neurons begin with random, heterogeneous initial voltages, selected 

from a uniform distribution between 0 to -70 mV.  

 2.1.3. Circadian Drive.  In the model used here, the circadian pacemaker is a 

skewed sine wave (Figure 2.2), with its peak in the early day and the trough occurring in 

early night, as defined by Daan et al. (1984). The pacemaker function is given as  

𝐶 = 0.97 sin(𝜔𝑡) + 0.22 sin(2𝜔𝑡) +  0.07 sin(3𝜔𝑡) 

    +0.03 sin(4𝜔𝑡) +  0.01 sin(5𝜔𝑡).       (2.2) 

It has a range from −1 to 1, with 𝑡 as the time step 𝑑𝑡 and 𝜔 = 2𝜋/𝑇, where the period 𝑇 

is 24 hours.  

 2.1.4. Time Compression.  There is a large discrepancy between the time scale of 

the HB neurons and the circadian drive. One operates at the scale of milliseconds, while 

the other changes over the course of hours. To reconcile this difference in time scales we 

set, unless specified otherwise, one minute of simulation time as equivalent to a 24-hour 

period. This time compression simplifies the model such that parameter space is easier to 

explore in a reasonable amount of computational time. However, such a sharp compression 

may lead to difficulty isolating the transitions between states, as these state switches 

usually occur on a much smaller time scale than the daily cycles as a whole (Rempe et al. 

2010); the closer the two time scales are, the harder it will be to differentiate these 

transitions from the rest of the activity. The time compression is scaled back slightly for 

some later runs. In future work, this time scaling can be eased further.  
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Figure 2.2 – Circadian Drive 

Output of the Daan et al. (1984) skewed sine wave circadian drive model, for a three-day 

period.  

 

 

2.2. ONE-HEMISPHERE MODEL 

 The model presented here contains individual neurons, like the two-neuron models; 

however, unlike these models, multiple neurons are utilized to represent each group. This 

allows investigation of local dynamical changes within and between regions, such as 

synchronization. Here, the form of the model can be equated to a simple “one-hemisphere” 

model. A two-hemisphere version is presented in Section 3.1. 

 The model here, in all its iterations, was run in MATLAB with a custom program 

using Euler integration and integration time step 𝑑𝑡 = 0.01.  
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Figure 2.3 – Flow Chart for One-Hemisphere Model. 

A representation of the connections between components in the one-hemisphere version 

of the model. Both the sleep (black) and wake (red) regions consist of 8 neurons (teardrop 

shapes), which project to other neurons within their region (curved arrows). Each region 

projects to the other, and the circadian drive (blue box) projects to both regions. Solid 

lines represent excitatory projections, and dashed lines represent inhibitory projections.  

 

 

 2.2.1. Connections.  Each neuron receives input from all other neurons. The model 

structure is represented schematically in Figure 2.3, where the teardrop shapes are neurons, 

with black signifying the sleep group and red corresponding to wake, and the circadian 

drive (CD) is indicated by the light blue rectangle. The arrows represent the projections 

within and between groups, with solid arrows indicating excitatory connections, and 

dashed arrows inhibitory connections. 

 One wake neuron, for example, receives an excitatory stimulus via the mean field 

of all other neurons in its group, given by  

𝑉𝐺𝑟𝑝 =  [𝑉𝑗(𝑡 − 1) −
Σ𝑖≠𝑗𝑉𝑖(𝑡 − 𝜏)

𝑁𝑛𝑒𝑢𝑟 − 1
], 
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where 𝑉𝑗 is the voltage of the neuron of interest, 𝑡 is the current timestep, 𝑉𝑖 is the voltage 

of the other neurons in the region, 𝜏 is the time delay of the signal from one neuron to 

another in the same region, and 𝑁𝑛𝑒𝑢𝑟 is the number of neurons within a region. Note that 

the mean field is calculated as the average voltage of neurons in a group at a given time 

point; for input to a neuron from within its own group, this average is performed over all 

neurons except the neuron of interest. Each wake neuron is also coupled to the mean field 

of the sleep group, though this connection is inhibitory. Input from the neurons in a 

different region is given by  

𝑉𝑅𝑒𝑔 =  [𝑉𝑗(𝑡 − 1) −
Σ𝑘≠𝑗𝑉𝑘(𝑡 − 𝜏𝑅)

𝑁𝑛𝑒𝑢𝑟
]. 

This equation has the same format as the above, with 𝑉𝑘 being the voltage of the neurons 

in another region, and 𝜏𝑅 being the time delay of the signal from one neuron to another in 

a different region. Each neuron also receives input from the circadian drive.   

 Coupling strength within a group is represented by 𝑔, while projections from the 

wake group to the sleep group are mediated by the coupling strength 𝑔𝑊, and from sleep 

to wake by coupling strength 𝑔𝑆. The strength of the projections from the circadian drive 

to the wake neurons and sleep neurons are given by 𝑔𝐶𝑊 and 𝑔𝐶𝑆, respectively. To make 

the wake neurons active during the day, at the peak of the circadian drive, and inactive 

during the night, at the trough of CD, the projection from CD to wake is excitatory. Since 

the sleep neurons act oppositely to the wake neurons, the projection from CD to sleep is 

inhibitory. The coupling term 𝐶𝑖 from Equation 2.1 can be written as 

          𝐶𝑖 = 𝑔(𝑉𝐺𝑟𝑝) + 𝑔𝑆/𝑊(𝑉𝑅𝑒𝑔)  + 𝑔𝐶𝑆/𝐶𝑊(𝐼𝐶),           (2.3) 

where 𝐼𝐶 is the input from the CD.  
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Figure 2.4 – Example of Wake Neuron Voltages 

The voltages of two neurons from the wake region. Note how the activity dies out at 

“night” (the trough of the circadian cycle) and that the firing rate decreases before the 

onset of “night”. The circadian curve is included for reference (light blue dashed line). 

The parameters were set at 𝑔𝑊 = −0.025, 𝑔𝐶𝑊 = 2.75, 𝑔 = 0.030, 𝑔𝑆 = −0.005, and 

𝑔𝐶𝑆 = −2.75. 

 

 

 Besides the circadian drive, there is a time delay 𝜏 corresponding to the finite time 

needed for signal transmission. This time delay is shorter for the neurons within a group 

and is longer between groups. Unless otherwise stated, this delay, given in units of 𝑑𝑡,  is 

set at 𝜏 = 1040 (corresponding to 10.40 𝑚𝑠) for neurons within one group, and 𝜏𝑅 =

2100 (corresponding to 21.00 𝑚𝑠) between neurons in different groups.  

 2.2.2. Results.  The system’s behavior varies significantly as a function of the 

coupling constants (𝑔𝑊, 𝑔𝑆, 𝑔𝐶𝑊, and 𝑔𝐶𝑆), the number of neurons in each group, and the 

bursting state of the uncoupled neurons which is governed by the parameter 𝑇 in the scaling 

factors 𝜌 and 𝜙.   
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 2.2.2.1. Basic results.  The wake neurons in this model receive projections from 

the sleep neurons and the circadian drive, as well as the connections to the other neurons 

within their group. Note that a negative value for a coupling term corresponds to an 

inhibitory projection, while a positive term corresponds to an excitatory projection.  

 

 

 

Figure 2.5 – Example of Sleep Neuron Voltages 

The voltages of two neurons from the sleep region. Like wake, the activity of the sleep 

neurons dies out, but during the “day” (the peak of the circadian cycle). The circadian 

curve is included for reference (light blue dashed line). The parameters were set at 𝑔𝑊 =
−0.025, 𝑔𝐶𝑊 = 2.75, 𝑔 = 0.030, 𝑔𝑆 = −0.005, and 𝑔𝐶𝑆 = −2.75. 

 

 

 Displayed in Figure 2.4 are the voltages of two of the eight neurons in the wake 

group. Here, 𝑔 = 0.030, 𝑔𝐶𝑊 = 2.75, and 𝑔𝑆 = −0.005. Each neuron fires rapidly, with 

the highest range of voltages occurring with the peak of the circadian drive (the light blue 



40 
 

dashed line). The lower bound of the range of values decreases over the course of the day. 

As the trough of CD is approached, the firing rate of the neurons decreases, as can be seen 

from about 40 to 46 seconds on the figure. During the lowest portion of CD, both wake 

neurons cease firing. At around 55 seconds, the neurons begin firing again, their lower  

 

 

 

Figure 2.6 – Average Neuron Activity, Initial Results 

The average activity of all neurons in the sleep region and the wake region. The peak of 

activity of one region coincides with the period of inactivity of the other region. 

Parameters are the same as in Figures 2.4 and 2.5.  

 

 

bound sharply increasing with CD. The wake neurons’ downtime, after time compression, 

is equivalent to about 3.6 hours of sleep. This is not a sufficient downtime to represent 

human sleep. Adjustments to parameters to accommodate this fact will be discussed below.  
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 The neurons in the sleep group have projections from the wake neurons and the 

circadian drive, and connections with the other neurons in their own group. Like the wake 

group, the sleep group has 8 neurons and internal coupling strength 𝑔 = 0.030; the 

coupling from wake to sleep is 𝑔𝑊 = −0.025 and the coupling from the circadian drive is 

𝑔𝐶𝑆 = −2.75. With these parameters, the activity of two representative sleep neurons is 

shown in Figure 2.5.  

 As expected, the sleep neurons have the greatest activity during the trough of CD 

and become inactive during the peak. Like the wake neurons, the lower bound of the sleep 

neurons voltages increases as the day progresses into night and the neurons move to their 

peak activity; the lower bound then decreases as the night wears on into morning. Unlike 

the wake neurons, the sleep neurons shift rapidly between active and inactive states, with 

only a slight gap in the firing as a warning sign (around 6 to 7 seconds in the figure). After 

time compression, the downtime for the sleep neurons corresponds to ~4.6 hours of 

wakefulness. This is not sufficient for a system representing a human’s sleep-wake cycle, 

as humans generally are awake for about ⅔ of the day. Changes to parameters to adjust this 

downtime will be discussed in the next few sections.  

 The average activity of each group is shown in Figure 2.6. Wake neurons are 

represented by the red line, and sleep neurons are represented by the black. The circadian 

drive is included (light blue dashed line) for reference. Each curve has a period of inactivity 

at its trough, as was seen in Figure 2.4 and Figure 2.5. Each neuron group experiences a 

decrease in its firing rate before its period of inactivity. There is also an overlap in activity 

between the two groups (see Section 2.2.4. below for further discussion).  
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Figure 2.7 – Average Neuron Activity, |𝑔𝐶| = 2.5 

Average activity of the wake (red) and sleep (black) neurons when |𝑔𝐶| = 2.5. The 

circadian drive curve is included for reference. Parameters are 𝑔 = 0.030, 𝑔𝑊 = −0.025, 

and 𝑔𝑆 = −0.005.    

 

 

 2.2.2.2. Changing 𝑔𝐶.  The coupling between CD and both the sleep and wake 

groups has a significant effect on the system dynamics.  

 The average neural activity for 𝑔 = 0.030, 𝑔𝑊 = −0.025, 𝑔𝑆 = −0.005, 𝑔𝐶𝑆 =

−2.5, and 𝑔𝐶𝑊 = 2.5 is shown in Figure 2.7. Comparing this figure to the average activity 

figure from the previous section (2.2.2.1., Figure 2.6, |𝑔𝐶| = 2.75), it is easy to see that the 

activity each group is significantly affected by the change in the circadian coupling. In 

Figure 2.7, the wake neuron group does not cease firing during the entire run, unlike in 

Figure 2.6. Though the firing does not stop in Figure 2.7, it decreases during the expected 

period of “sleep”. As a result of decreasing CD input to the wake neurons, there is 
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insufficient inhibitory input to inactivate the wake region. In contrast, the sleep region 

displays more subtle changes. For the sleep and wake regions, both the length of the 

downtime and the amplitude of the hyperpolarization increase with 𝑔𝐶 (Figures 2.8 and 

2.9).  

 

 

 

Figure 2.8 – Average Neuron Activity, |𝑔𝐶| = 3.0 

Average activity of the wake (red) and sleep (black) neurons when |𝑔𝐶| = 3.0. The 

circadian drive curve is included for reference. The wake neuron activity stops during the 

trough of the circadian drive, and sleep has a longer period of inactivity than in Figure 

2.7. Parameters are 𝑔 = 0.030, 𝑔𝑊 = −0.025, and 𝑔𝑆 = −0.005.    

 

 

 2.2.2.3. Changing 𝑔𝑆/𝑔𝑊.  The connections between regions are as essential as the 

input from the circadian drive. With |𝑔𝐶| = 2.75, 𝑔 = 0.03, and 𝑔𝑆 = 𝑔𝑊 = −0.012, the 
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model produces results seen in Figure 2.10A. Similar to previous results, there is downtime 

for each region at the trough of its average activity curves, which correlates with the trough 

and peak of CD for wake and sleep, respectively. When 𝑔𝑆 (coupling strength from sleep 

to wake) and 𝑔𝑊 (coupling strength from wake to sleep) are doubled, the results change 

slightly, as can be seen in Figure 2.10B. The downtime for each region occurs at the same 

time, while the length has increased. The amplitude of the hyper polarization has also 

decreased.  

 

 

 

Figure 2.9 – Average Neuron Activity, |𝑔𝐶| = 3.5 

Average activity of the wake (red) and sleep (black) neurons when |𝑔𝐶| = 3.5. The 

circadian drive curve is included for reference. The wake activity stops during the trough 

of the circadian drive, becoming hyperpolarized. Sleep has a longer period of inactivity 

than in Figures 2.7 and 2.8. Parameters are 𝑔 = 0.030, 𝑔𝑊 = −0.025, and 𝑔𝑆 = −0.005. 
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Figure 2.10 – Average Neuron Activity, Changing 𝑔𝑆 and 𝑔𝑊 

Average activity of sleep and wake neural groups with different values of coupling 

between groups. Parameter values common to all parts of the figure are |𝑔𝐶| =  2.75 and 

𝑔 =  0.03.Circadian drive curve included for reference. (A) 𝑔𝑆 = 𝑔𝑊 = −0.012. Note 

the periods of inactivity at the peak (sleep) and trough (wake) of the circadian drive, 

which hyperpolarize each region. (B) 𝑔𝑆 = 𝑔𝑊 = −0.025. Periods of inactivity are 

longer, and the hyperpolarization is smaller in amplitude.  

 

 

 Much like increasing 𝑔𝐶, increasing 𝑔𝑆 and/or 𝑔𝑊 will increase the downtime of a 

region. In contrast to increasing 𝑔𝐶, however, increasing the coupling between the regions 

decreases the amplitude of the hyperpolarization.  

 2.2.2.4. Changing number of neurons.  Most nonlinear dynamical systems exhibit 

so-called size effects, where the number of oscillators affects the outcome of the dynamics 

(data not shown). In order to investigate the size effects in the present model, the number 

of neurons per region was increased from 8 to 10 and 12.   
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Figure 2.11 – Average Neuron Activity, Changing 𝑇𝑊 

Average activity of sleep and wake regions with changing 𝑇𝑊. For all panels, 𝑔 = 0.030, 

𝑔𝑊 = −0.025, 𝑔𝑆 = −0.015, 𝑔𝐶𝑊 =  2.75, 𝑔𝐶𝑆 = − 2.75, and 𝑇𝑆 = 30 °𝐶. The standard 

temperature at which all neurons were set was 30 °𝐶. In (B), both regions are set at this 

standard temperature.  (A) 𝑇𝑊 = 20 °𝐶. Note that the wake amplitude has increased from 

B, while the downtime has decreased. (C) 𝑇𝑊 = 40 °𝐶. Note that the wake amplitude has 

decreased slightly from B, and the downtime has significantly increased. 
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 Despite this increase of up to 50% of the original value, no discernible changes to 

activity were observed. This may be due to the simplicity of this form of the model. If so, 

then a more complex version may yield different results. A much larger increase in the 

number of neurons may also be needed in order to obtain discernable size effects. 

Variations of the system size will be revisited in Section 2.2.4.3.  

 2.2.2.5. Changing temperature.  The Huber-Braun neural model used here is 

based on temperature-sensitive neurons, as mentioned above (Section 2.1.2.). This means 

that the behavior of the model can change with the temperature parameter. Here, the 

temperature parameter will be used not to represent the temperature of the environment or 

the neurons, but rather to modulate the behavior of the neurons. For all previous runs, all 

neurons in both regions had the same temperature of 30° 𝐶, a value for which the 

uncoupled oscillators fire repetitive single spikes without bursting. To examine the effect 

of changing the temperature parameter, the temperature of the wake neurons was varied 

while the temperature of the sleep neurons was held constant. The average activity of each 

group at varying temperatures is shown in Figure 2.11. 

 In Figure 2.11, the parameters are 𝑔 = 0.030, 𝑔𝑊 = −0.025, 𝑔𝑆 = −0.015, 

𝑔𝐶𝑊 = 2.75, and 𝑔𝐶𝑆 = − 2.75. Both 𝑇𝑊 (wake neuron temperature) and 𝑇𝑆 (sleep neuron 

temperature) are set to the standard 30° 𝐶 in Figure 2.11B; the shape of the average activity 

curves and behavior of the neurons in this figure are akin to other previous figures, such as 

Figure 2.6. Decreasing 𝑇𝑊 to 20 °𝐶 (a value for which the uncoupled oscillators fire 

triplets, or triple spikes) while maintaining 𝑇𝑆 at 30 °𝐶 produces average activity curves 

such as those in Figure 2.11A. The amplitude of the wake curve increases with the decrease 

in temperature. In contrast, the sleep neuron group amplitude did not change appreciably. 
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When the temperature for the wake group was increased to 40° 𝐶 (a value for which the 

uncoupled neurons do not fire, but undergo rapid, subthreshold oscillations), the average 

activity for each region changed more significantly, as can be seen in Figure 2.11C.  

 These results suggest that the mean field amplitude is inversely proportional to 

temperature and positively correlated with the bursting activity. As the temperature is 

decreased (still above the homoclinic bifurcation threshold at 10.7° 𝐶, where the neuron 

ceases firing (Feudel et al. 2000, Finke et al. 2011)), the uncoupled neurons fire bursts with 

an increasing number of spikes. The duration of the downtime of each region has a positive 

correlation with the temperature and a negative correlation with the bursting activity. As 

the temperature is increased above 30° 𝐶, the uncoupled neurons begin to fire irregularly, 

skipping spikes (Braun et al. 1998). This less frequent firing decreases the excitatory 

impact from other wake neurons, giving the inhibitory sleep neurons the opportunity to 

drive the wake region into its downtime sooner, and for a longer duration.   

 2.2.3. Specifying Regions.  The sleep and wake groups of neurons can be 

associated with specific regions of the brain. For this model, the sleep region is specified 

as the ventrolateral preoptic area (VLPO). The wake region is specified as monoaminergic 

(AMIN) neurons from the locus coeruleus (LC).    

 2.2.3.1. Sleep and VLPO.  The VLPO is located in the hypothalamic preoptic area. 

Its role in sleep regulation was first recognized in 1946, when Walle Nauta experimentally 

demonstrated that insomnia occurred in rats whose hypothalamic preoptic area had been 

lesioned (Nauta 1946). That the VLPO specifically contains sleep-promoting neurons was 

not discovered, however, until 1996 (Sherin et al. 1996). Soon afterward, it was noted that 

VLPO activity is correlated with the fostering of sleep rather than the tiredness of the 
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subject (Szymusiak et al. 1998). Furthermore, the extended ventrolateral preoptic area 

(eVLPO) is strongly associated with the production of REM sleep, as will be discussed in 

Section 5.3.2. 

 A close correlation between the VLPO and the amount of NREM sleep has been 

observed, along with a strong reciprocal inhibitory relationship with the wake promoting 

regions of the hypothalamus, leading to use of the VLPO in flip-flop switch models 

(Gallopin et al. 2000, McGinty and Szymusiak 2000, Saper et al. 2001, Saper and Lowell 

2014). VLPO activity has also been simulated in more complex models of sleep-wake 

dynamics, including Phillips and Robinson’s model (2007), which has been utilized in 

many other models and papers since its introduction; a model developed to replicate mouse 

sleep-wake behavior (Diniz Behn et al. 2007); a complex model by Rempe et al. (2010) 

based on a flip-flop switch with a removable REM-NREM switch; a physiologically-based 

model including the circadian rhythm (Phillips et al. 2013); and a two-hemisphere sleep-

wake model developed specifically to simulate unihemispheric sleep (Kedziora et al. 

2012). 

 2.2.3.2. Wake and AMIN.  The neural group that promotes wake can be equated 

to the wake-promoting monoaminergic neurons in the locus coeruleus. Monoaminergic 

neurons promote waking and are located in several regions of the brain. There are 

serotoninergic neurons in the dorsal and median raphe nuclei, dopaminergic neurons near 

the dorsal raphe nuclei, and most notably, noradrenergic neurons in the LC (Saper et al. 

2010). 

 The LC and VLPO have reciprocal inhibitory connections (Saper et al. 2001, Saper 

et al. 2010), making AMIN neurons a prime choice to pair with the VLPO for flip-flop 
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switch models. AMIN neurons are also frequently used in other sleep models to represent 

a group or region that promotes waking. The models discussed previously (Section 2.2.3.1.) 

utilize an AMIN group to represent the wake-promoting region, with Phillips and Robinson 

(2007) and Diniz Behn et al. (2007) specifying their use of AMIN neurons from the LC.  

 

 

 

Figure 2.12 – Spike Times Plot for AMIN Neurons 

A raster plot of the spike times for all the neurons in the AMIN region. Parameters are 

𝑔𝐴 = −4.25𝑥10−5, 𝑔𝑉 = −3.75𝑥10−5, 𝑔 = 4.5𝑥10−5, |𝑔𝐶| = 0.95, 𝑇𝐴 = 5 °𝐶, and 

𝑇𝑉 = 15 °𝐶, with the threshold at −28 𝑚𝑉. 

 

 

 2.2.4. Synchronization Analysis.   Henceforth, parameters 𝑔𝑆, 𝑇𝑆, and 𝑔𝐶𝑆, are 

replaced by 𝑔𝑉, 𝑇𝑉, and 𝑔𝐶𝑉, respectively, in order to emphasize the association between 

the sleep neurons and the VLPO region. Likewise, we emphasize the association between 

the wake neurons and the AMIN region by replacing 𝑔𝑊, 𝑇𝑊, and 𝑔𝐶𝑊 with 𝑔𝐴, 𝑇𝐴, and 

𝑔𝐶𝐴.  
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Figure 2.13 – Spike Times Plot for VLPO Neurons 

A raster plot of the spike times for all the neurons in the VLPO region. Parameters are 

𝑔𝐴 = −4.25𝑥10−5, 𝑔𝑉 = −3.75𝑥10−5, 𝑔 = 4.5𝑥10−5, |𝑔𝐶| = 0.95, 𝑇𝐴 = 5 °𝐶, and 

𝑇𝑉 = 15 °𝐶, with the threshold at −28 𝑚𝑉. 

 

 

 2.2.4.1. Spike times and phase synchronization.  Two oscillators, such as 

neurons, are considered synchronized if their phase difference 𝜑 changes very little over 

time.  The phase difference between two neurons, 𝑖 and 𝑘, is defined as  

𝜑𝑖𝑘(𝑡𝑖) = 2𝜋 (𝑡𝑖 − 𝑡𝑘) (𝑡𝑘+1 − 𝑡𝑘)⁄ , 

where neuron 𝑖 spikes at time 𝑡𝑖, while 𝑡𝑘 and 𝑡𝑘+1 are two sequential spike times for 

neuron 𝑘. The condition 𝑡𝑘 < 𝑡𝑖 < 𝑡𝑘+1 must be satisfied for the calculation. The more 𝜑 

changes, the less synchronized the neurons are. Synchronization can be quantified using 

the synchronization index  

𝛾𝑖𝑘
2 = 〈cos(𝜑𝑖𝑘(𝑡𝑖))〉2 + 〈sin(𝜑𝑖𝑘(𝑡𝑖))〉2. 

If 𝛾 is equal to 1, a pair of oscillators is considered perfectly synchronized, while if it is 

equal to 0, they are completely desynchronized (Pikovsky et al. 2001).  
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Figure 2.14 – Average Activity, Huber-Braun 

With more exploration in parameter space and 8 neurons per region, the average activity 

of the HB version of the model experienced a change in behavior compared to the 

average activity plot shown earlier. Rather than periods of inactivity for the downtimes 

for each region, they exhibit clustered, low frequency activity, corresponding to bursting. 

Parameters are 𝑔𝐴 = −0.00004, 𝑔𝐶𝐴 = 0.95, 𝑔 = 0.000045, 𝑔𝑉 = −0.000035, 𝑔𝐶𝑉 =
−0.95, 𝑇𝐴 = 5 °𝐶, and 𝑇𝑉 = 15 °𝐶, with 8 neurons per region. 

 

 

 In order to investigate the synchronization of neurons during the transitions 

between sleeping and waking states, the timing of spikes for each neuron was found for 

every run. These spikes can be graphed in a raster plot, an example of which is given in 

Figure 2.12. Each dot on the plot is a spike, and each row of dots represents one neuron. A 

spike is counted each time the voltage of a neuron surpasses a threshold (as described in 

detail in Section 1.2.1.). For all runs here, the threshold is −28 𝑚𝑉. In Figure 2.12, it can 

be seen that the AMIN neurons fire rapidly for about the first half of the day, slowing down 

as the system transitions from wake to sleep (around 35 seconds). During the AMIN neuron  
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Figure 2.15 – Synchronization Indices with 2 Minutes = 1 Day 

Phase synchronization indices for each 10-second period in a two-minute day. The red 

line represents the AMIN neurons, while the black line represents the VLPO neurons. 

Each data point indicates the average of the synchronization index over each 10-second 

period, over all values of the varied parameter. The error bars denote the standard 

deviation. For all panels, parameters were set as 𝑔 = 4.5𝑥10−5, |𝑔𝐶| = 0.95, 𝑇𝐴 = 5 °𝐶, 

and 𝑇𝑉 = 15 °𝐶. 𝑔𝑉 or 𝑔𝐴 took values from −3.75𝑥10−6 to −4.25𝑥10−5 in increments 

of 2.5𝑥10−6. (A) 𝑔𝐴 = −4.25𝑥10−5, with 𝑔𝑉 varying. (B) 𝑔𝑉 = −4.25𝑥10−5, with 𝑔𝐴 

varying. The curve has minor differences from A. (C) 𝑔𝑉 = −4.0𝑥10−5, with 𝑔𝐴 

varying. This panel shows more differences from A and B, but remains overall the same, 

showing that the synchronization does not exhibit large changes with the change in 

coupling strength at this resolution.  

 

 

downtime (the sleep state), which lasts about 20 seconds, each neuron fires in bursts, from 

3 to 5 or more spikes in quick succession, with longer periods of inactivity between bursts. 
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The firing rate increases before a transition into another state. This pattern repeats every 

60 seconds, or 1 day, for a multiple day run (data not shown).  

 

 

 

Figure 2.16 – Synchronization Indices with Constant 𝑔𝐴 and 3 Minutes = 1 Day 

Phase synchronization indices for each 10-second period in a three-minute day. The red 

line represents the AMIN neurons, while the black line represents the VLPO neurons. 

Each data point indicates the average of the synchronization index over each 10-second 

period, over all values of 𝑔𝑉. The error bars denote the standard deviation. Note how the 

shape of each curve is reminiscent of the 2-minute day runs but with more detail. 

Parameters were set as 𝑔𝐴 = −4.25𝑥10−5, 𝑔 = 4.5𝑥10−5, |𝑔𝐶| = 0.95, 𝑇𝐴 = 5 °𝐶, and 

𝑇𝑉 = 15 °𝐶. 𝑔𝑉 took values from −3.75𝑥10−6 to −4.25𝑥10−5 in increments of 

2.5𝑥10−6. 

 

 

 The raster plot for the VLPO neurons, with the same parameters, is given in Figure 

2.13. In direct contrast to the AMIN neurons, the VLPO neurons fire more rapidly at night, 

between about 37 to 57 seconds. They have a similar pattern of behavior during their 

downtime (day or wake state), firing in bursts. Unlike AMIN, however, the VLPO neurons 
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fire in much tighter clusters of 3 to 5 spikes. The decrease in firing rate during the transition 

from sleep to wake and the increase in firing rate when shifting from wake to sleep are 

comparable to the behavior of the AMIN neurons.  

 

 

 

Figure 2.17 – Synchronization Indices with Constant 𝑔𝑉 and 3 Minutes = 1 Day 

Phase synchronization indices for each 10-second period in a three-minute day. The red 

line represents the AMIN neurons, while the black line represents the VLPO neurons. 

Each data point indicates the average of the synchronization index over each 10-second 

period, over all values of 𝑔𝐴. The error bars denote the standard deviation. Note the 

similarities between this figure and Figure 2.16. Parameters are 𝑔𝑉 = −4.25𝑥10−5, 𝑔 =
4.5𝑥10−5, |𝑔𝐶| = 0.95, 𝑇𝐴 = 5 °𝐶, and 𝑇𝑉 = 15 °𝐶. 𝑔𝐴 took values from −3.75𝑥10−6 to 

−4.25𝑥10−5 in increments of 2.5𝑥10−6.  

 

 

 An example of the average activity produced by neurons in this region of parameter 

space is given in Figure 2.14. As seen in the raster plots, each region fires continuously 

throughout the simulation. Synchronization analysis of the data shown in this figure will 

be discussed below in Section 2.3.4.  
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Figure 2.18 – Synchronization Indices for 10 Runs, 2 Neurons per Region 

Phase synchronization indices for each 10-second period in a three-minute day. The red 

line represents the AMIN neurons, while the black line represents the VLPO neurons. 

Each data point indicates the average of the synchronization index over each 10-second 

period, from 10 runs with identical parameters. The error bars denote the standard 

deviation. This figure is comparable to Figures 2.19 and 2.20, which have the same 

parameters but a different number of neurons per region. Parameters are 𝑔𝑉 = −3𝑥10−5, 

𝑔𝐴 = −3.75𝑥10−5, 𝑔 = 4.5𝑥10−5, |𝑔𝐶| = 0.95, 𝑇𝐴 = 5 °𝐶, and 𝑇𝑉 = 15 °𝐶, with two 

neurons per region.  

 

 

 2.2.4.2. Two- and three-minute runs.  In order to demonstrate the impact of the 

coupling constants 𝑔𝑉 and 𝑔𝐴 on the system dynamics, we systematically changed each 

one with the remaining parameters held constant at 𝑇𝑉 = 15 °𝐶, 𝑇𝐴 = 5 °𝐶, 𝑔 =

0.000045, 𝑔𝐶𝑉 = −0.95, and 𝑔𝐶𝐴 = 0.95. For one run, 𝑔𝐴 is held constant while 𝑔𝑉 is 

varied from −3.75𝑥10−5 to −4.25𝑥10−5 in increments of 2.5𝑥10−6. Afterward, 𝑔𝐴 is 

varied over the same range.  
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Figure 2.19 – Synchronization Indices for 10 Runs, 3 Neurons per Region 

Phase synchronization indices for each 10-second period in a three-minute day. The red 

line represents the AMIN neurons, while the black line represents the VLPO neurons. 

Each data point indicates the average of the synchronization index over each 10-second 

period, from 10 runs with identical parameters. The error bars denote the standard 

deviation. Note the smaller range of values for the synchronization index and the smaller 

error bars compared to Figure 2.18. Parameters were set as 𝑔𝑉 = −3𝑥10−5, 𝑔𝐴 =
−3.75𝑥10−5, 𝑔 = 4.5𝑥10−5, |𝑔𝐶| = 0.95, 𝑇𝐴 = 5 °𝐶, and 𝑇𝑉 = 15 °𝐶, with three 

neurons per region.  

 

 

 For a more detailed representation of a full day, one simulated “day” was 

decompressed from 1 minute to 2 and 3 minutes. With this decompression, the model was 

run with the parameters listed above. The phase synchronization index was determined for 

the range of values of 𝑔𝐴 and 𝑔𝑉. Since the phase synchronization of the neurons in each 

region changes over time, the 120 (180) second day was divided into twelve (eighteen) 10-

second periods, and the phase synchronization index was calculated for each of these 
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periods. Smaller intervals are not used, since they might contain too few spikes to obtain a 

reliable synchronization index value.  

 While one parameter (such as 𝑔𝐴) is held constant, the synchronization index for 

the first 10 seconds of the run is averaged over each value of 𝑔𝑉. These average values are 

plotted vs. time, with error bars that represent the standard deviation. Displaying the data 

in this fashion provides insight into the impact of changing one of the inter-region coupling 

strengths (𝑔𝐴 and 𝑔𝑉). With one coupling strength held constant and the other varied over 

a range of values, the error bars indicate the magnitude of variation possible for the graph 

in that range of parameter values.  

 Figure 2.15A shows the phase synchronization indices changing over a 2-minute 

day, with 𝑔𝐴 = −4.25𝑥10−5. VLPO activity is shown with the black line, and AMIN 

activity is indicated by the red line. Note that the synchronization increases whenever a 

region enters its active period and decreases when a region shifts into its downtime. The 

synchronization indices for both VLPO and AMIN exhibit complex and gradual changes.  

 In Figure 2.15B, 𝑔𝑉 was held at −4.25𝑥10−5 and 𝑔𝐴 was varied from 

−3.75𝑥10−6 to −4.25𝑥10−5 in increments of 2.5𝑥10−6. With consistently small error 

bars compared to Figure 2.15A, this figure shows that variation in 𝑔𝐴 has less impact on 

the system synchronization than variation in 𝑔𝑉 over a similar range. Similar results with 

a different value of 𝑔𝑉 are shown in Figure 2.15C.   

 The time compression was eased further, decompressing a “simulated” day to 3 

minutes. The parameters and ranges are the same as above. The results of holding 𝑔𝐴 

constant at −4.25𝑥10−5 while varying 𝑔𝑉 are shown in Figure 2.16. This expanded time 

compression reveals more detail of the change in synchronization index over time for both 
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AMIN and VLPO. However, both these time courses retain the same general shape as they 

had in the 2-minute day figures, suggesting that further expansion of the time compression 

would not reveal anything significant for the model in its current form. The companion 

figure to Figure 2.16 is Figure 2.17, where 𝑔𝑉 was held constant at −4.25𝑥10−5 and 𝑔𝐴 

was changed. This figure still holds the same general shape as previous figures.  

 Further study on 𝑔𝑉 and 𝑔𝐴 for this form of the model may include expanding the 

parameter ranges for the two-minute day and three-minute day runs, along with changing 

the magnitude of the noise in the neural model to determine its effect on the activity of this 

model.  

 2.2.4.3. 10-run averages.  In order to determine the reproducibility of the 

synchronization behavior, 10 simulations were performed with all parameters held constant 

at  𝑔𝐴 = −0.0000375, 𝑔𝐶𝐴 = 0.95, 𝑔 = 0.000045, 𝑔𝑉 = −0.00003, 𝑔𝐶𝑉 = −0.95, 𝑇𝐴 =

5 °𝐶, and 𝑇𝑉 = 15 °𝐶. Results are shown in Figures 2.18 to 2.20 for various system sizes.  

 For Figure 2.18, there were 2 neurons per region for all runs, marking the smallest 

number of neurons a region can have and still be analyzed via synchronization. The impact 

of the small number of neurons shows in the broad range of the synchronization index and 

the large error bars, which denote the standard deviation over the 10 runs. Figure 2.19 

shows another set of 10 runs with 3 neurons per region, and Figure 2.20 shows 10 runs 

with 4 neurons per region. One and two extra neurons per region provide a visible change 

in the behavior of the system, smoothing out the overall behavior and decreasing the 

variability between runs. The error bars are smaller and the range of values for the 

synchronization index has decreased. The reciprocal behavior of the synchronization 

indices for each region over the course of the day is maintained, as in prior figures. This 
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implies that an increase in the number of neurons, while not providing any perceptible 

difference in the average activity of the model (see Section 2.2.2.4.), does impact the 

synchronization of the neurons and the reliability of their activity patterns.  

 

 

 

Figure 2.20 – Synchronization Indices for 10 Runs, 4 Neurons per Region 

Phase synchronization indices for each 10-second period in a three-minute day. The red 

line represents the AMIN neurons, while the black line represents the VLPO neurons. 

Each data point indicates the average of the synchronization index over each 10-second 

period, from 10 runs with identical parameters. The error bars denote the standard 

deviation. Parameters are 𝑔𝑉 = −3𝑥10−5, 𝑔𝐴 = −3.75𝑥10−5, 𝑔 = 4.5𝑥10−5, |𝑔𝐶| =
0.95, 𝑇𝐴 = 5 °𝐶, and 𝑇𝑉 = 15 °𝐶, with 4 neurons per region. 

 

 

2.3. ALTERNATE NEURAL MODEL   

 An alternative neural model was implemented in place of Huber-Braun, as 

discussed below.  
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Figure 2.21 – Activity of a Single Uncoupled Hindmarsh-Rose Neuron 

The firing pattern of a single Hindmarsh-Rose neuron, when uncoupled. Note that the 

transient activity was removed. This neuron was set in the non-bursting regime.  

 

 

 2.3.1. Hindmarsh-Rose.  Similarly capable of complex behavior such as bursting 

but less biologically realistic than the Huber-Braun model, the Hindmarsh-Rose (HR) 

model was developed from to studies of a neuron in Lymnaea, a type of pond snail. What 

was interesting about this neuron was its behavior after a perturbation. The neuron did not 

fire until it received a depolarizing stimulus, after which it began bursting and maintained 

that bursting far longer than the input lasted. In an effort to understand this behavior, 

Hindmarsh and Rose developed a neural model that utilized two first-order differential 

equations (Hindmarsh & Rose 1982). Further study of Lymnaea revealed that the cell 

would eventually cease firing after the removal of the stimulus. To reproduce this, 

Hindmarsh and Rose added a third first-order differential equation to their previous model 

(Hindmarsh & Rose 1984). This three-dimensional version of the model is used below as 

an alternative to Huber-Braun neurons and is described here for reference.  

 Briefly, the three-dimensional version of the Hindmarsh-Rose neural model 

(Hindmarsh & Rose 1984) consists of three coupled nonlinear differential equations: 

�̇� = 𝑦 − 𝑎𝑥3 + 𝑏𝑥2 + 𝐼 − 𝑧 − 𝑔𝑤 + 𝐶𝑖 
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      �̇� = 𝑐 − ⅆ𝑥2 − 𝑦        (2.4) 

�̇� = 𝑟(𝑠(𝑥 − 𝑥1) − 𝑧). 

Here, 𝑥 is the membrane potential or voltage of the neuron, 𝑦 is the recovery variable, and 

𝑧 is the adaptation current. 𝐼 is the applied or external current and directly influences the  

 

 

 

Figure 2.22 – Average Neuron Activity, 2 Day Run, Hindmarsh-Rose 

VLPO (black) and AMIN (red) activity over a two-day period. Note the gaps between the 

active periods. Parameters are 𝑔𝐴 = −7.5𝑥10−6, 𝑔𝑉 = −4.25𝑥10−5, 𝐼 = 1.28, 𝑔𝐶𝐴 =
1.15𝑥10−3, and 𝑔𝐶𝑉 = −0.0019, with 4 neurons per region. 

 

 

behavior of the neuron. The final two terms in the �̇� equation are the same Gaussian white 

noise term and coupling term from the Huber-Braun version of the model, discussed in 

Sections 2.1.2. and 2.2.1., respectively. Constants are given in Appendix B.   
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Figure 2.23 – Average Activity in Bursting Regime, 𝐼 = 1.75, Hindmarsh-Rose 

Average activity in the bursting regime using Hindmarsh-Rose neurons and two 3-minute 

days. Parameters are 𝑔𝐴 = −7.5𝑥10−6, 𝑔𝑉 = −4.25𝑥10−5, 𝐼 = 1.75, 𝑔𝐶𝐴 = 1.15𝑥10−3, 

and 𝑔𝐶𝑉 = −0.0019, with 4 neurons per region. 

 

 

 An example of the firing pattern of a single, uncoupled Hindmarsh-Rose neuron is 

shown in Figure 2.21. Note that this single neuron is not in the bursting regime, hence the 

single spikes. It is also important to note is the range of values for the “voltage”. Unlike 

the more realistic range of values portrayed by Huber-Braun neurons, Hindmarsh-Rose 

neurons have a range from about -2 to +2. This is due to the variable x, which is a merely 

schematic representation of the membrane potential of the neuron. For consistency with 

the Huber-Braun figures, however, the vertical axis for figures with Hindmarsh-Rose 

neural activity will be labeled “Voltage (mV)”. The sleep model using Hindmarsh-Rose 

neurons is structured identically to that using Huber-Braun neurons, with the same 

connections, circadian drive, and mean field equations.  
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 2.3.2. Results.  Using the model schematic depicted in Figure 2.3, all neurons were 

replaced with Hindmarsh-Rose neurons. Results from this version of the model are 

discussed below. 

 

 

 

Figure 2.24 – Average Activity in Bursting Regime, HR, Day 1 

Close up of Figure 2.23 from 103 to 105 seconds. (A) Average activity. (B) Spike times, 

AMIN. Note each neuron is firing triplets. (C) Spike times, VLPO. Each neuron is firing 

triplets. Parameters are 𝑔𝐴 = −7.5𝑥10−6, 𝑔𝑉 = −4.25𝑥10−5, 𝐼 = 1.75, 𝑔𝐶𝐴 =
1.15𝑥10−3, and 𝑔𝐶𝑉 = −0.0019, with 4 neurons per region. 

 

 

 2.3.2.1. Spiking regime.  After replacing the Huber-Braun neurons with 

Hindmarsh-Rose, simulations were performed with 𝑔𝐴 = −7.5𝑥10−6, 𝑔𝑉 = −4.25𝑥10−5, 

𝐼 = 1.28, 𝑔𝐶𝐴 = 1.15𝑥10−3, 𝑔𝐶𝑉 = −0.0019, and 4 neurons per region. The average  
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Figure 2.25 – Average Activity in Bursting Regime, HR, Day 2 

Close up of Figure 2.23 from 218 to 220 seconds. (A) Average activity. (B) Spike times, 

AMIN. Note that each neuron is firing triplets, with neurons 1 and 3 slightly out of phase 

from neurons 2 and 4. (C) Spike times, VLPO. Each neuron is firing doublets with a 

small phase shift from one another. Parameters are 𝑔𝐴 = −7.5𝑥10−6, 𝑔𝑉 =
−4.25𝑥10−5, 𝐼 = 1.75, 𝑔𝐶𝐴 = 1.15𝑥10−3, and 𝑔𝐶𝑉 = −0.0019, with 4 neurons per 

region. 

 

 

activity of each region in the model is shown in Figure 2.22. Note that the value of 𝐼 for 

this run is in the non-bursting regime. Mean field activity of the AMIN region is shown in 

red, and mean field activity of the VLPO region is shown in black. Each region ceases 

firing during its downtime (night for AMIN and day for VLPO), and an overlap of these 

downtimes causes a small gap between periods of activity. The first period of high activity 

for VLPO is smooth and level compared to the AMIN activity. The increased variability 
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during the second activity period may be due to the noise built into the model, or due to 

neurons firing in or out of phase; the former results in high peaks in the average activity 

while the latter results in lower peaks and/or an evenness to the average activity.  

 

 

 

Figure 2.26 – Average Activity in Bursting Regime, 𝐼 = 2.00, Hindmarsh-Rose 

Average activity in the bursting regime using Hindmarsh-Rose neurons and two 3-minute 

days. As in Figure 2.23, the neurons continue firing over the entire day. Parameters are 

𝑔𝐴 = −7.5𝑥10−6, 𝑔𝑉 = −4.25𝑥10−5, 𝐼 = 2.00, 𝑔𝐶𝐴 = 1.15𝑥10−3, and 𝑔𝐶𝑉 =
−0.0019, with 4 neurons per region. 

 

 

 2.3.2.2. Bursting regime.  Changing the input current 𝐼 changes the bursting state 

of the Hindmarsh-Rose neurons. When 𝐼 is increased to 1.75, well into the bursting regime, 

the activity of each region in the model becomes continuous throughout the entire day, as 

can be seen in Figure 2.23. With parameters set at 𝑔𝐴 = −7.5𝑥10−6, 𝑔𝑉 = −4.25𝑥10−5, 
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𝐼 = 1.75, 𝑔𝐶𝐴 = 1.15𝑥10−3, 𝑔𝐶𝑉 = −0.0019, and 4 neurons per region, Figure 2.23 

shows the average activity of both AMIN and VLPO for two three-minute days. While the  

 

 

 

Figure 2.27 – Average Activity in Bursting Regime, HR, Day 1 

Close up of Figure 2.26 from 50 to 52 seconds. (A) Average activity. (B) Spike times, 

AMIN. Note each neuron is firing quadruplets. (C) Spike times, VLPO. Each neuron is 

firing triplets. Parameters are 𝑔𝐴 = −7.5𝑥10−6, 𝑔𝑉 = −4.25𝑥10−5, 𝐼 = 2.00, 𝑔𝐶𝐴 =
1.15𝑥10−3, and 𝑔𝐶𝑉 = −0.0019, with 4 neurons per region. 

 

 

constant activity of both regions makes it impossible to identify separate sleep and wake 

states, average activity of AMIN has a higher magnitude than VLPO at the peak of the 

circadian drive cycle.  
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Figure 2.28 – Average Activity in Bursting Regime, HR, Day 2 

Close up of Figure 2.26 from 320 to 322 seconds. (A) Average activity. Unlike the tight 

bundles of activity in Figure 2.27, the bursting activity of AMIN and, to a lesser extent, 

VLPO is spread out over time. (B) Spike times, AMIN. The neurons are firing triplets. 

(C) Spike times, VLPO. Each neuron is firing quadruplets. Parameters are 𝑔𝐴 =
−7.5𝑥10−6, 𝑔𝑉 = −4.25𝑥10−5, 𝐼 = 2.00, 𝑔𝐶𝐴 = 1.15𝑥10−3, and 𝑔𝐶𝑉 = −0.0019, with 

4 neurons per region. 

 

 

 Figure 2.24 shows a close-up view of an interval from Figure 2.23 (103 to 105 

seconds). This corresponds to a time period where VLPO has higher activity than AMIN. 

The activity of both regions, shown in Figure 2.24A, is initially almost synchronized before 

slowly drifting out of phase, with VLPO firing more frequently than AMIN. Each region’s 

neurons are firing with triple spikes, as can be seen in Figures 2.24B and 2.24C. Both 

regions exhibiting the same bursting behavior and CD’s moderate value during this time 

of day suggests that this time interval is a neutral time between switching states, where 
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each region is firing the same number of spikes per burst. The higher VLPO mean field 

amplitude indicates that the system is shifting toward sleep. 

 

 

 

Figure 2.29 – Synchronization Indices of Neurons 1 & 2, 𝐼 = 1.75, HR 

Synchronization index of neurons 1 and 2 from each region calculated with a sliding 

window. Calculated from data in Figure 2.23. VLPO appears to rapidly increase 

synchronization around the time AMIN’s synchronization drops. Consistency is low 

while looking at one neural pair’s synchronization index. Parameters are the same as 

Figure 2.23. 

 

 

 Figure 2.25 shows a different time interval from Figure 2.24 (218 to 220 seconds), 

when AMIN’s activity is higher than VLPO’s. This is reflected in AMIN’s higher 

amplitude in Figure 2.25A. Here, VLPO is firing with a slightly higher frequency than 

AMIN, though it displays similar clustering behavior. In Figure 2.25B, the spike times of 

the neurons in the AMIN region are shown to be firing triplets, as in Figure 2.24B. The 
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VLPO region, however, is firing doublets (Figure 2.25C). This change in bursting behavior 

seems to indicate a change in state for the model, where the more active region – AMIN in 

this case, as this time interval corresponds to daytime – bursts with more spikes than the 

less active region (VLPO).  

 

 

 

Figure 2.30 – Averaged Synchronization Indices, 𝐼 = 1.75, Hindmarsh-Rose 

Synchronization indices averaged over all unique pairs of neurons in each region using a 

sliding synchronization window. The range of indices for all unique pairs is smaller than 

the range of indices from a single pair of neurons seen in Figure 2.29. Parameters are the 

same as Figure 2.23.  

 

 

 Changing the value of 𝐼 from 1.75 to 2.00 puts the behavior of Hindmarsh-Rose 

neurons farther into the bursting regime. Figure 2.26, with 𝑔𝐴 = −7.5𝑥10−6, 𝑔𝑉 =
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−4.25𝑥10−5, 𝐼 = 2.00, 𝑔𝐶𝐴 = 1.15𝑥10−3, 𝑔𝐶𝑉 = −0.0019, and 4 neurons per region, 

shows the average activity of each region over two three-minute days.  

 

 

 

Figure 2.31 – Averaged Synchronization Indices, 𝐼 = 2.00, Hindmarsh-Rose 

Synchronization indices averaged over all unique pairs of neurons in each region using a 

10-spike sliding synchronization window. Note the distinct transitions between day and 

night. Parameters are the same as Figure 2.26.  

 

 Figure 2.27 displays a two-second time interval from Figure 2.26 (50 to 52 

seconds). The average activity during this time period is shown in Figure 2.27A. In Figure 

2.27B, the spike times of AMIN show that the wake-promoting neurons are firing 

quadruplets, while the VLPO neurons are firing triplets (Figure 2.27C).   

 A different two-second portion (320 to 322 seconds) of Figure 2.26 is presented in 

Figure 2.28, showing irregular mean field activity (Figure 2.28A), due to the cascades of 

burst firing in both regions (Figures 2.28B and 2.28C). These results support the conclusion 
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that the more active region fires more spikes per burst than the less active region. The effect 

of coupling strengths on the behavior of individual HB neurons has been previously shown 

to cause tonic-firing neurons to burst, and even induce firing in neurons that are normally 

quiescent at certain parameter values (Weihberger & Bahar 2007). A similar shift in 

behavior in coupled HR neurons is seen here.  

 2.3.3. Synchronization.  To analyze the activity of the model with Hindmarsh-

Rose neurons, the phase synchronization index is used once more. Some of the following  

analysis was calculated as described in Section 2.2.4., with the synchronization index 

calculated for 10-second intervals over the entire duration of each simulation. However, 

the synchronization index is also calculated using a sliding window.  

 2.3.3.1. Sliding synchronization window.  A sliding synchronization window 

allows a detailed look at the change in the synchronization index over time. The index is 

calculated over a small window (10 sequential spikes fired by a single neuron), and then 

the window is shifted forward by one spike and the index is calculated again. This process 

is repeated until there are not enough spikes left to form another window. The equation for 

the synchronization index is the same as described in Section 2.2.4.1. 

 An example of the sliding synchronization window can be seen in Figure 2.29. 

Here, the synchronization index for two neurons in each region is shown for parameter 

values corresponding to the average activity from Figure 2.23. The index ranges over all 

values from 0 to 1, with significant fluctuations over time. A few interesting notes can be 

taken from Figure 2.29, such as the dip in synchronization in AMIN around the time the 

circadian drive dips (about mid-late afternoon), accompanied by a near-simultaneous spike 

in VLPO synchronization.  
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Figure 2.34 – 10-Run Average Synchronization, 𝐼 = 1.75, HR, Sliding Window 

Synchronization indices averaged over 10 runs, calculated using a 10-spike sliding 

window. Parameters are 𝑔𝐴 = −7.5𝑥10−6, 𝑔𝑉 = −4.25𝑥10−5, 𝐼 = 1.75, 𝑔𝐶𝐴 =
1.15𝑥10−3, and 𝑔𝐶𝑉 = −0.0019, with 4 neurons per region. 

 

 

 Figure 2.30 shows the averaged synchronization indices for all unique pairs of 

neurons in each region, for the data shown in Figure 2.23. Note the varying levels of 

synchronization of each region and the time of day. AMIN has higher synchronization 

during the daytime before dipping during the nighttime. VLPO does the same, though it 

remains for a longer time with lower synchronization, and the transitions are more distinct. 

Also of note is the multiplicity of the VLPO lines around the 100-second mark. The number  

of lines reflects the number of spikes per burst (in this case, the neurons are firing triplets, 

as can be seen in Figure 2.24C). This is explored further in the next two figures.  

 Increasing the value of 𝐼 from 1.75 to 2.00, the synchronization of the activity in 

Figure 2.26 is plotted in Figure 2.31. The relationship between time of day and relative 
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synchronization is clear here; AMIN has higher synchronization during the night while 

VLPO has higher synchronization during the day. A reciprocal relationship between AMIN 

and VLPO synchronization was also seen in the Huber-Braun version of the model.  Note 

that the multiple lines indicating burst-firing are averaged out when the width of the sliding 

window is increased (Figure 2.32).  

 2.3.3.2. 10-run averages.  To investigate the consistency of the model’s behavior 

multiple simulations were performed at various parameter values. The synchronization 

index was calculated for each run and then averaged for a given set of parameter values. 

The synchronization index was calculated with both non-overlapping 10-second intervals 

and with a sliding window. 

 Using the same parameters as Figure 2.23, with 𝑔𝐴 = −7.5𝑥10−6, 𝑔𝑉 =

−4.25𝑥10−5, 𝐼 = 1.75, 𝑔𝐶𝐴 = 1.15𝑥10−3, 𝑔𝐶𝑉 = −0.0019, and 4 neurons per region, 10 

runs were completed. The 10-second non-overlapping interval method results are shown 

in Figure 2.33. Both the AMIN and VLPO regions show fluctuating synchronization 

indices, with frequent switches between which group is more highly synchronized.  

 The corresponding sliding-window results are shown in Figure 2.34. The VLPO 

and AMIN regions again show fluctuations and switch between which region is more 

highly synchronized. However, the results reveal the number of spikes per burst, and the 

synchronization changes are much more abrupt. Averaging over 10 runs did not cause the 

multiplicity of the lines to merge or become smeared, which speaks to the consistency of 

the bursting behavior over numerous runs.   

 Both Figures 2.33 and 2.34 indicate that VLPO has higher synchronization during 

the early day, with a lower, varying synchronization over the afternoon and night. AMIN,  
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on the other hand, has higher synchronization during the day with a more gradual decrease 

to nighttime minimums. The separation between the multiple lines for both AMIN and 

VLPO may indicate changes in the bursting behavior, with more space separating the lines 

during active times (day for AMIN, night for VLPO) and less separation during downtimes.  

 

 

 

Figure 2.36 – 10-Run Average Synchronization, 𝐼 = 2.00, HR, Sliding Window 

Synchronization indices averaged over 10 runs, calculated with a 10-spike sliding 

window. Parameters are 𝑔𝐴 = −7.5𝑥10−6, 𝑔𝑉 = −4.25𝑥10−5, 𝐼 = 2.00, 𝑔𝐶𝐴 =
1.15𝑥10−3,and 𝑔𝐶𝑉 = −0.0019, with 4 neurons per region. 

 

 

 Results for different parameter values, shown in Figure 2.35, exhibit a clearer 

reciprocal relationship between VLPO and AMIN’s synchronization values, similar to that 

previously observed in the Huber-Braun version of the model (see Figure 2.20). In the 

Hindmarsh-Rose version of the model, however, this relation has been reversed. AMIN 
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now consistently has higher synchronization than VLPO during the night, and VLPO is 

more synchronized than AMIN during the day. These results can be compared to what is 

known about actual synchronization in the human brain during sleep and wake states. As 

discussed in Section 1.3.2., EEG recordings suggest that human brain activity is more 

synchronized while sleeping than while it is awake (Krueger et al. 2008, de Andrés et al. 

2011, Schwartz & Kilduff 2015). This leads to the generalization that “sleep = 

synchronized activity” and “wake = desynchronized activity”. Keeping this in mind, the 

reciprocal relationship between AMIN and VLPO may be related to their state of activity 

during different times of the day. During the daytime, the sleep-promoting neurons in the 

VLPO may be considered as “resting”, which would correspond to a synchronized state, 

while the AMIN neurons would be in a “wake”, or desynchronized state; these states would 

switch during the nighttime, with the VLPO neurons more active (less synchronized). 

These states of rest and activity thus correspond roughly to the levels of synchronization 

seen in Figure 2.35. This interpretation of the results explains the reciprocal relation of 

VLPO and AMIN’s synchronization in the HR results, but does not suitably explain the 

HB version of the results.  

 Figure 2.36, which shows the sliding window synchronization, retains the 

relationships between VLPO and AMIN shown in Figure 2.35, though with a higher and 

wider range of indices, multiple lines indicative of burst firing, and sharper transitions. 

Small changes in the index over periods of relative stability are also visible, likely an effect 

of the noise in the system.  

 For comparison, the sliding window synchronization index approach was also 

applied to the Huber-Braun model. Figure 2.37 shows the synchronization index calculated 
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with a sliding window for the same data shown in Figure 2.20. The reciprocal relationship 

between synchronization indices for VLPO and AMIN is present, and like its 10-second 

non-overlapping interval counterpart, VLPO has some local maxima during the day and a 

dip before nighttime.  

 

 

 

Figure 2.37 – Average Synchronization, 10-Run, Huber-Braun 

The 10-spike sliding window analysis of the HB 10-run data shown in Figure 2.20. As 

before, parameters are 𝑔𝑉 = −3𝑥10−5, 𝑔𝐴 = −3.75𝑥10−5, 𝑔 = 4.5𝑥10−5, |𝑔𝐶| = 0.95, 

𝑇𝐴 = 5  °𝐶, and 𝑇𝑉 = 15  °𝐶, with 4 neurons per region. 

 

 

 As mentioned in Section 2.3.3.2., the reciprocal relationship between VLPO 

and AMIN synchronization in runs using HB neurons is the opposite of the relationship 

seen in runs with HR neurons. While the reciprocal relationship in the HR results can be 

explained using the argument presented above, the HB simulations are inconsistent with 
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this interpretation. More detailed comparisons between HR and HB dynamics can shed 

light on this inconsistency, as discussed in the following section.  

 

 

 

Figure 2.38 – Inter-Spike Interval Histograms, Huber-Braun 

Inter-spike interval histogram and corresponding firing patterns for HB neuron activity in 

Figure 2.14. (A) The single peak in the ISI histogram for AMIN indicates that the 

neurons are predominantly firing single spikes. In contrast, the histogram for the VLPO 

neurons shows three distinct peaks, indicating that the firing pattern is predominantly 

bursting. (B,C) Example firing from neuron 1 of each region. AMIN’s rapid single spikes 

correspond to the single peak in the AMIN ISI histogram (see leftmost arrow). VLPO’s 

highest ISI peaks correspond to intra-burst and inter-burst intervals, as indicated by the 

arrows.  
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Figure 2.39 – Burst Synchronization, Huber-Braun 

Synchronization indices corresponding to Figure 2.14. (A) Sliding window 

synchronization index based on spike times, showing the HB reciprocal relationship 

between VLPO and AMIN synchronization indices. (B) Sliding window synchronization 

index based on burst times. For VLPO, the minimum ISI threshold used to determine the 

first spike in a burst was 0.2 s for times before 38 s and after 57 s and 0.16 s for times in 

between. For AMIN, there was no threshold for times before 40 s and after 56 s and 0.52 

s for times in between. Note the increase in VLPO’s synchronization during the day and 

its dip at night, along with AMIN’s slight increase in synchronization at night. (C) ISI 

histogram with the burst synchronization thresholds applied. Compared to Figure 2.38A, 

VLPO’s smallest ISI value has been removed. The peak at 0.2s is the inter-burst interval 

during VLPO’s active time overnight.  

 

 

2.3.4. Huber-Braun Comparison.  Both HR and HB neurons exhibit bursting 

behavior, as seen in Figures 2.24-2.28 for HR and Figures 2.12 and 2.13 for HB. Despite 
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this, the sliding synchronization window provides different results for HB and HR; 

specifically, the reciprocal relationship between VLPO and AMIN’s synchronization 

indices, where one has higher synchronization during the day and the other during the 

night. This may be because HR neurons shift between various bursting patterns during the 

course of the day, while HB neurons shift between rapid, single spikes to bursting. This 

results in a broad range of inter-spike intervals (ISIs), as shown in Figure 2.38A.  

 The large single peak in the top panel of Figure 2.38A indicates that the neurons in 

the AMIN region are primarily firing single spikes, as can be seen in Figure 2.38B and C. 

In contrast, the ISI histogram for the VLPO neurons shows two peaks at short ISIs and one 

at a much longer interval, indicating bursting behavior. The shorter ISI values (the two 

larger peaks to the left) are the intra-burst intervals, or the time between spikes within a 

burst, and the longer ISI corresponds to the inter-burst interval. The relationship between 

the histogram peaks and the time-course of neural firing is shown by the arrows in Figure 

3.28.  

 The ISI histogram suggests that the apparent lack of daytime synchronization in the 

VLPO may be due to variation in the intra-burst intervals. The bursts themselves may be 

more synchronized than previously indicated by the synchronization index, which treated 

every spike independently. To test this hypothesis, synchronization is measured between 

bursts alone. Burst times were identified by selecting the first spike in each burst, i.e., 

selecting only those spikes preceded by a specified spike-free time interval. 

 Figure 2.39 shows the impact of quantifying burst synchronization alone. The 

sliding window burst synchronization corresponding to the data in Figure 2.14 is shown in 

panel B; compared to the sliding window spike synchronization shown in panel A, the burst  
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synchronization demonstrates that the levels of synchronization are indeed impacted by the 

bursting activity. VLPO shows higher synchronization during the day when assessed by 

burst synchronization rather that spike synchronization, in contrast to the low 

synchronization previously shown by the HB results. Varying thresholds were utilized to 

account for the drastic changes in the inter- and intra-burst intervals (values and times in 

caption).  

 

 

 

Figure 2.40 – Burst Synchronization, Huber-Braun, 10 Runs 

Burst synchronization indices for 10 Huber-Braun runs, using same data from Figure 

2.37. Comparing this figure to Figure 2.37, VLPO shows a marked increase in 

synchronization during the day, consistent with the change seen between Figures 2.39A 

and 2.39B. Parameters were the same as Figure 2.37, and the burst synchronization 

thresholds are the same as Figure 2.39.   
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 Burst synchronization (Figure 2.39B) reveals much greater daytime VLPO 

synchronization than when the synchronization index is calculated based on every neural 

spike (Figure 2.39A). Also, AMIN synchronization does not decrease as much during the 

nighttime as it did in the non-burst synchronization figure. Interestingly, there is still a large 

dip in synchronization for VLPO as it transitions into nighttime. This dip is remarkably 

consistent, showing up in some form in every HB synchronization figure.  

 The ISI histogram for the burst synchronization is shown in Figure 2.39C. AMIN 

has a single peak as it did for the non-burst synchronization; however, VLPO has one fewer 

peaks than before (Figure 2.38A, bottom panel). This shows that the shorter intra-burst 

interval has been removed, leaving the inter-burst and the larger intra-burst intervals. The 

second inter-burst interval peak (at about 0.2) is due to the lower threshold during the 

VLPO region’s active time overnight, when the ISIs are shorter.  

 The levels of synchronization and the time of day may be related to the average 

activity of each region. When the average activity is low, such as during the daytime for 

VLPO, it may be due to the change in the behavior of the neurons, which shift from 

continuous firing to bursting (Figure 2.13). This bursting occurs at the time when the 

neurons fall out of synchronization, leading to the lower synchronization index during the 

day. A similar occurrence happens to the AMIN region, where the lower synchronization 

values correspond with the time where AMIN shifts from continuous firing to bursting 

(Figure 2.12). In Figure 2.40, burst synchronization is calculated for 10 separate 

realizations of the HB model at the same parameter values.  The results above remain 

consistent with those shown in Figure 2.39.  
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 While there is evidence that the single spike synchronization index may not be 

revealing the whole picture, the burst synchronization analysis does not completely resolve 

the discrepancy between the HR and HB reciprocal relationships of the synchronization 

indices for VLPO and AMIN. This suggests that this discrepancy between the HR and HB 

results may simply be due to the inherent differences between the two neural models. There 

is no consistent, simple 1-to-1 mapping that connects these two models. They represent the 

same types of activity, but HB uses equations for each current while HR uses three coupled 

nonlinear differential equations to represent all of a neuron’s activity. There might be other 

regions of parameter space where HR and HB neurons exhibit behaviors that are directly 

comparable. Future work covering other regions of parameter space and more values of 

coupling strengths may yield an answer to this question, as well as a more precise 

dynamical explanation for the differences in synchronization between the two cases.  

 

2.4. CONCLUSIONS  

 Huber-Braun neurons provide a more realistic representation of the activity of a 

neuron and are used in a wide range of applications and programs. Hindmarsh-Rose is also 

utilized often, and though it is not as biologically realistic as HB, it also is less 

computationally expensive than HB. This means when the sleep-wake model presented 

here switched from HB to HR, options to add more neurons and expand the time 

compression further became available. Both versions of the model using HB or HR gave 

qualitatively similar results, except for the opposite relationship in the reciprocal 

synchronization switching between AMIN and VLPO. From this point forward, HR will 

be the neural model utilized. 
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 2.4.1. Huber-Braun.  While the activity of each region does not stop during their 

respective downtimes, the average activity decreases, suggesting a system state change 

between wakefulness and sleep. The synchronization of each region changes over the 

course of the day. AMIN has higher synchronization during the daytime (first two-thirds 

of the day) than it has at nighttime (last third of the day), while VLPO has higher 

synchronization during the nighttime than it does during the daytime. AMIN and VLPO 

also have a reciprocal relationship in synchronization. When AMIN has high 

synchronization, it is higher than VLPO (daytime), and when VLPO’s synchronization is 

high, it is higher than AMIN (nighttime). These switches occur approximately when 

daytime turns to nighttime, and when the day ends.  

 The daytime synchronization index for VLPO increases significantly when burst 

synchronization is applied. The system exhibits size effects in that the synchronization 

indices vary more smoothly for larger system sizes (Figures 2.18-2.20). 

 2.4.2. Hindmarsh-Rose.  As the external input current increases, the neurons go 

from no activity during downtime to continuously firing through the entire day. While 

firing continuously, the neurons of each region may change their firing patterns depending 

on the time of day, such as VLPO firing doublets (Figure 2.25) or triplets in the morning 

and triplets or quadruplets at night (Figure 2.28).  

 Synchronization analysis of the Hindmarsh-Rose version of the program revealed 

a relationship between AMIN and VLPO opposite to that observed in the HB model. With 

HR, AMIN has the highest synchronization at night, while VLPO has its highest 

synchronization during the day (Figures 2.35 and 2.36). While these results may be 



88 
 

interpreted in terms of greater synchronization in less active brain regions, the opposite 

results for the HB model remains to be explained. 

 2.4.3. Comparison.  The HB neural model has the benefit of being more 

biologically realistic, though computationally more expensive. On the other hand, the HR 

neural model is somewhat simplistic in comparison yet yields similarly complex results. 

While the HB neurons change behavior from single spikes to bursting and back during the 

course of a day (See Figure 2.38), HR neurons maintain bursting behavior (at larger values 

of 𝐼) with varying numbers of spikes. This behavioral shift in HB appears to influence the 

synchronization relationship, as discussed in Section 2.3.4. It does not fully explain the 

discrepancy, however. It may be that the HB neurons, whose bursting behavior is sensitive 

to temperature and coupling (Weihberger & Bahar 2007), may simply be in a different 

dynamical regime than the HR neurons for the parameter space explored in this 

dissertation. Due to the complexity differences between HR and HB, they are not directly 

comparable. The differences in the HR and HB reciprocal synchronization relationship 

may be explored in future research.  
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3. TWO-HEMISPHERE MODEL  

 

 The Hindmarsh-Rose version of the one-hemisphere model showed reciprocal 

activation of AMIN and VLPO regions during wake and sleep, accompanied by 

synchronization changes. This model, however, is incomplete. Here, a two-hemisphere 

model, which exhibits chimera-like behavior reminiscent of asymmetric sleep, will be 

presented.  

 

 

 

Figure 3.1 – Two-Hemisphere Model 

A schematic representation of the two-hemisphere version of the model. Note how each 

hemisphere consists of the same elements – a VLPO sleep-promoting region (blue with 

moon) and an AMIN wake-promoting region (pink with sun) – and shares a single 

circadian drive. The connection between hemispheres is represented by the excitatory 

connection (solid arrows) between the VLPO regions in each hemisphere.   
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3.1. MODEL ORGANIZATION  

 To expand the model into two separate interacting hemispheres, the regions from 

the one-hemisphere model were duplicated. Each hemisphere (left and right) has its own 

VLPO region and AMIN region, each consisting of individual neurons. The circadian drive 

from the original model is retained, projecting to each of the VLPO and AMIN regions in 

the same fashion as in Figure 2.3. This is displayed schematically in Figure 3.1. The 

hemispheres communicate via excitatory connections (solid arrows) between the VLPO 

regions. This form of the model was inspired by the two-hemisphere sleep-wake model 

designed by Kedziora et al. (2012).  

 The coupling strength between neurons in the same region is given by 𝑔, and is the 

same for each region. Each of the other connection strengths between regions and between 

the circadian drive and each region remain the same as in Section 2.2.1., summarized here 

for reference. Projections from AMIN to VLPO are mediated by the coupling strength 𝑔𝐴, 

and from VLPO to AMIN the coupling strength is 𝑔𝑉. The projections from the circadian 

drive to AMIN and VLPO are 𝑔𝐶𝐴 and 𝑔𝐶𝑉, respectively. For the new connection from 

VLPO in the left hemisphere to VLPO in the right hemisphere, the coupling strength is 

𝑔𝑉𝐿𝑡𝑅, and for the opposite direction it is 𝑔𝑉𝑅𝑡𝐿.  

 

3.2. CHIMERA REVIEW   

 As will be seen below, the two-hemisphere model exhibits so-called chimera states. 

Here, I will briefly review dynamical chimera states and prior observations of chimeras in 

neural systems. Further details are also provided in the author’s Master’s thesis (Glaze 

2015).   
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 3.2.1. Chimeras in General.  The term “chimera” originated in ancient Greece. It 

referred to a mythical fire-breathing beast – a lion with a goat’s head growing out of its 

back and a snake for a tail. From this, the word chimera became associated with 

incongruity, or connected parts that seem mismatched. Many different types of chimeras 

have been discovered and/or created by science since then, with a few notable examples 

briefly examined below.  

 3.2.1.1. Gene chimeras.  A gene chimera operates at the level of DNA, occurring 

naturally but also reproducible experimentally. A gene chimera occurs when a portion of a 

gene is cut, removed, and replaced with a portion of a different gene. This can occur 

naturally during DNA recombination or can be performed using gene editing tools in a 

laboratory. When this process occurs in genes, the product can result in an entirely new 

phenotype. While such procedures have been performed experimentally since the 1970s 

(Berg et al. 1974), there are still many unknown factors and possible side effects of such 

gene splicing. A genetically altered pet called GloFish was developed for sale, becoming 

available to the public in 2003. This caused unease and a mild uproar among biologists and 

watchdog groups, who worried that these transgenic fish might end up in the wild and lead 

the way for other, potentially harmful transgenic creatures (Knight 2003). There is a 

brighter side to the study of creating gene chimeras, however – developing gene therapies 

for those with genetic disorders. One such disorder is Angelman Syndrome, where a small 

microdeletion of several bands from one gene causes a slew of mental and physical 

disabilities. While still preliminary, gene therapies are being developed to lessen the 

negative impact of this (Meng et al. 2015) and other genetic disorders. 
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 3.2.1.2. Genetic chimeras.  Very similar to gene chimeras but on a larger scale are 

genetic chimeras. Rather than a spliced single gene, a genetic chimera is a combination of 

larger portions of different DNAs. A prominent example of an experimentally-created 

genetic chimera is the “geep”. By combining the embryonic cells of a goat and a sheep, a 

single creature with the genetics of both species was created (Fehilly et al. 1984). This has 

been repeated and studied in the lab (Polzin et al. 1987) and a natural occurrence has been 

observed, though the chimera did not survive to term (Lühken et al. 2009). Another natural 

genetic chimera occurs when two embryos of the same species merge and become one 

creature. A striking (and adorable) example of this are cat chimeras, such as “Venus the 

Chimera Cat”, who looks like a “black cat with green eye” on one side of her face and 

“orange tabby with blue eye” on the other side (Andreassi 2012). This is not uncommon, 

as the numerous pictures on Google can attest, though the blue eye is a trait typically only 

seen in white or mostly white cats.  

 Genetic chimeras can also occur with humans, both naturally and via experimental 

intervention. Sometimes twin embryos merge and become a single embryo naturally, which 

is called a fusion chimera, or sometimes the process of in vitro fertilization (IVF) can create 

a fusion chimera, as multiple embryos are usually implanted to improve the chances that 

one or more will survive to term. Specifically, in the case of IVF, multiple fetuses may be 

observed in early ultrasounds only to decrease in later ultrasounds, termed “vanished twin 

syndrome”. One or more of the fetuses “vanishes”, either through death and reabsorption, 

or through fusion with its twin. This occurs in ~18% of IVF pregnancies (Wenk 2018). 

Most human chimeras remain undetected.  
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 Besides human and animal chimeras, scientists have been investigating human-

animal chimeras to find an optimal model for studying human disease (Levine & Grabel 

2017, De Los Angeles et al. 2019) and for growing human organs inside of these chimeras 

for use in transplantation (Levine & Grabel 2017, Hagan-Brown et al. 2017). These 

chimeras, which would be created by inserting human stem cells into monkey or pig 

embryos, have raised ethical issues regarding both experimentation on animals and the 

creation of human-animal hybrids (Hagan-Brown et al. 2017, Levine & Grabel 2017, De 

Los Angeles et al. 2019). 

 3.2.2. Dynamical Chimeras.  A dynamical chimera state occurs when an array of 

identical oscillators divides into two groups with different activity – one group is 

synchronized, while the other is desynchronized. Variants of this state, such as phase-

cluster chimeras and partial phase-cluster chimeras, are discussed below (Section 3.2.2.1.). 

As mentioned previously in Section 1.7.1., dynamical chimeras can occur in many different 

types of systems, including mechanical (Martens et al. 2013), optical (Hagerstrom et al. 

2012), chemical (Tinsley et al. 2012), and neural (Omelchenko et al. 2013, Hizanidis et al. 

2014, Glaze et al. 2016). 

 3.2.2.1. Variants of the chimera state.  In a phase-cluster chimera, instead of one 

group of desynchronized and one group of synchronized oscillators, both groups are 

synchronized but with different behavior. For example, one group of oscillators (neurons, 

in this case) may be firing single spikes while the other group fires double spikes. Partial 

phase-cluster chimera states can also occur in cases where the groups of oscillators are 

predefined (see Tinsley et al. 2012 and Glaze et al. 2016). Like the phase-cluster state, 

each group is predominately synchronized with different activity, though a few neurons 



94 
 

may exhibit synchronization not with the group in which they reside, but instead with the 

other group.  

 These variants, along with the standard chimera state, have been found in systems 

using different media. A few notable cases, such as mechanical, optical, and chemical 

oscillators are described below; neural chimeras are discussed in Section 3.2.3. 

 3.2.2.2. Mechanical chimeras.  In a large-scale physical experiment, Martens et 

al. (2013) utilized groups of metronomes as oscillators to simulate a chimera state in a 

mechanical medium. Two swings, each containing N metronomes, were connected by a 

spring with tunable spring constant κ. The metronomes were all set to the same frequency. 

As they beat together on the swing, the motion of the swing provided the coupling between 

the metronomes, which became synchronized over time. This coupling scheme is known 

as Abrams-Strogatz coupling, which will be discussed in more detail below (Section 

3.2.4.1.). 

 Martens et al. (2013) observed synchronized in-phase motion of the metronomes 

from both swings when κ was large. When κ was small, however, all the metronomes 

exhibited anti-phase synchronization, meaning that there was a 180° phase difference 

between the metronomes on one swing and those on the other. Chimera states appeared 

when κ had an intermediate value. They also consistently appeared with a specific initial 

condition: one swing was allowed to synchronize before being coupled to the other swing. 

This showed that chimera states were not simply a side effect of heterogeneous initial 

conditions. These chimera states lasted for the duration of the experiments, leaving the 

question of the possibly transient nature of chimera states (Wolfrum & Omel’chenko 2011) 

unanswered in this instance. To further study their chimeric metronomes, Martens et al. 
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(2013) performed simulations of their experimental system. This allowed the exploration 

of different configurations and parameters not possible in the lab. Their computational 

results agreed with their experimental results.  

 The mechanical configuration reviewed here, essentially an expansion of Huygens’ 

famous clock experiment, demonstrated that chimera states can occur in simple systems of 

oscillators. That chimera states can appear in systems so elegantly uncomplicated speaks 

to the idea that chimera states are a naturally-occurring phenomenon.  

 3.2.2.3. Optical chimeras.  Dynamical chimera states were explored in optical 

systems by Hagerstrom et al. (2012). They employed a coupled map lattice which made 

use of a spatial light modulator (SLM). The SLM, which altered the polarization of an 

optical input, was divided into a matrix of square elements with periodic boundary 

conditions and coupling that decreased with distance. Light from an LED passed through 

a beam splitter before striking the SLM and a camera, and the camera’s input was routed 

through a computer, which applied the coupling before the signal was fed into the SLM. 

The variable of importance was the phase of each element, which depended upon the light 

striking it and was also affected by the input from the camera, which was in turn influenced 

by the light via the coupling term.  

 Optical chimeras in this system, which was also computationally modeled by 

Hagerstrom et al. (2012), are characterized by groups of elements exhibiting coherent, 

intense light, separated by thinner regions of incoherence. Like the mechanical chimera 

described above, optical chimeras were found at intermediate coupling strengths, with high 

values producing a completely synchronized system and low values producing a 

desynchronized system.  
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 3.2.2.4. Chemical chimeras.  Tinsley et al. (2012) investigated chimera states in 

chemical oscillators using two subgroups with strong coupling within each group and 

weaker coupling between groups. These coupling strengths were based upon the phase of 

an oscillator and the phase of every oscillator coupled to it, meaning that the overall 

strength of the coupling varied with time.  

 The oscillators, based on the photosensitive Belousov-Zhabotinsky reaction, began 

with heterogeneous initial conditions. N oscillators, divided into two equal subgroups A 

and B, communicated via light intensity. Subgroup A remained synchronized, while 

subgroup B exhibited a range of different behaviors, including complete synchronization 

with A, chimera states, phase-cluster chimera states, and semi-synchronization. Full 

synchronization between both subgroups always occurred with homogenous initial 

conditions, but also arose for some parameter values with heterogeneous initial conditions. 

Chimera states exhibited by this system consisted of full synchronization for subgroup A 

and complete desynchronization for subgroup B that typically lasted for the duration of the 

experiment. The phase-cluster chimera states, as described earlier (Section 3.2.2.1.), 

occurred when A and B were both synchronized, but with B exhibiting different 

synchronization patterns, such as double or triple spikes. As for the semi-synchronization 

states, each group has a different frequency, causing B to repeatedly fall into and out of 

synchronization with A. 

 The coupling within each group influenced the system’s dynamics. Keeping the 

within-group coupling the same for both groups, and with weaker, symmetrical between-

group coupling, Tinsley et al. (2012) found that the chimera states often occurred when 

coupling within a group was small, and almost always when the coupling between groups 
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was negative, or inhibitory. However, a small region of excitatory inter-group coupling 

values also produced chimera states. Other states, such as phase-cluster and fully 

synchronized states, occurred more frequently for stronger within-group coupling.  

 Simulations performed by Tinsley et al. (2012) were consistent with their 

experimental observations and allowed an expansion of the parameter space. With larger 

group sizes, chimera states appeared more frequently and lasted longer. While this does 

not definitely answer the question of whether chimera states are transient, it shows that the 

duration of the chimera state can increase with system size. Other experiments have been 

performed with chemical oscillators (Wickramasinghe & Kiss 2013, 2014), where different 

connectivity networks and coupling strengths were explored.  

 3.2.3. Neural Chimeras.  As non-linear dynamical oscillators, neurons provide an 

ideal substrate for the investigation of chimera states. The time delay between coupled 

oscillators has been shown to have an effect on the establishment of chimera states (Sethia 

et al. 2008, Tinsley et al. 2012, Hagerstrom et al. 2012, Bick et al. 2017). Time delays 

represent more realistic signal propagation, such as in systems of oscillators like neurons 

and chemical reactions (Sethia et al. 2008). Clusters of alternating synchronized and 

desynchronized groups have been found in optical and neural chimera states (Hagerstrom 

et al. 2012, Glaze et al. 2016). These results are reminiscent of some neural processes, such 

as UHS (discussed in Sections 1.3.2 – 1.3.4. and 4.2., Majhi et al. 2019) and multiple brain 

disorders, including epilepsy and brain tumors (Uhlhaas & Singer 2006). 

 Several different neural models have been shown to produce chimera states, 

including leaky integrate-and-fire, FitzHugh-Nagumo, Hindmarsh-Rose, and Huber-

Braun. The last of these was covered by the author’s previous research and will be reviewed 
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later in Section 3.2.4. FitzHugh-Nagumo and Hindmarsh-Rose chimera states will be 

discussed below.  

 3.2.3.1. FitzHugh-Nagumo.  FitzHugh-Nagumo (FHN) oscillators are used in 

neuroscience, among other disciplines. Chimera states in systems of FHN oscillators were 

explored by Omelchenko et al. (2013). Using a ring of 𝑁 locally coupled FHN oscillators 

with heterogeneous initial conditions and positive (excitatory) coupling, chimera states 

were observed for small coupling strength. For larger values of coupling strength, the 

behavior of the system reflected what Omelchenko et al. (2013) called multichimera states. 

Rather than a single desynchronized group, multiple desynchronized groups were 

separated by groups of synchronized oscillators. Similar results were observed by Sethia 

et al. (2008) and Hagerstrom et al. (2012).  

 3.2.3.2. Hindmarsh-Rose.  A different approach was taken by Hizanidis et al. 

(2014). Using 𝑁 Hindmarsh-Rose oscillators, a 2-dimensional array and a 3-dimensional 

array were created. For the 2-D array, the 2-D version of the Hindmarsh-Rose neural model 

was used; this version of HR is essentially the 3-D version described in Section 2.3.1., 

though without the final 𝑧 equation and the 𝑧 term in the 𝑥 equation. Starting with 

heterogeneous initial conditions, Hizanidis et al. (2014) observed chimera states and a 

configuration they called mixed oscillatory states. These mixed oscillatory states had 

desynchronized neurons like the chimera state, but the desynchronized neurons were not 

situated in bands or clusters. Rather, these neurons were distributed evenly among the 

synchronized neurons. They also found that the system’s state changed with the variation 

of the coupling strength.  
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 For the 3-D array, the 3-D version of the HR model was used (see Section 2.3.1.). 

Unlike the 2-D model, the 3-D HR model is capable of firing in bursts. Like the 2-D array, 

the 3-D array produced both chimera states and mixed oscillatory states, with the coupling 

strength being the driver of state changes in the system.  

 

 

 

Figure 3.2 – Kuramoto Coupling Scheme 

A schematic representation of Kuramoto coupling. A ring of inter-connected oscillators 

impact one another with a strength that decreases exponentially with distance. 

 

 

 3.2.4. Previous Research Results.  The author’s master’s thesis research and first 

peer-reviewed paper centered on chimera states in the Huber-Braun model of thermally 

sensitive neurons with two different coupling schemes (Glaze 2015, Glaze et al. 2016). In 

this system of HB neurons, chimera states were found, along with two other variants of the 

chimera state. Each of the used coupling schemes will be briefly described here, followed 
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by the key results. For details beyond those reviewed below, see Glaze 2015 and Glaze et 

al. 2016.  

 

 

 

Figure 3.3 – Abrams-Strogatz Coupling Scheme 

A schematic representation of Abrams-Strogatz coupling. A large group of oscillators is 

divided into two subgroups, with intra-group coupling and a weaker inter-group coupling. 

 

 

 3.2.4.1. Coupling schemes.  Common coupling schemes utilized in generating 

chimera states are the Kuramoto and Abrams-Strogatz coupling schemes.  

 Kuramoto and colleagues (2002) developed a dynamical coupling scheme, using it 

in their discovery of the coexistence of synchronized and unsynchronized activity in 

coupled nonlinear oscillators. In other words, they discovered the chimera state. The 

Kuramoto coupling scheme consists of 𝑁 oscillators, arranged in a ring, as shown in Figure 

3.2. This allows periodic boundary conditions, with the strength of coupling between  
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Figure 3.4 – Chimera State in Abrams-Strogatz Configuration 

A dynamical chimera state found in the Abrams-Strogatz coupling scheme using Huber-

Braun neurons, with weak inhibitory inter-group coupling and stronger, excitatory intra-

group coupling. The red arrow indicates when the intra-group coupling for B and inter-

group coupling was turned on. (A) A raster plot of all neurons in the configuration, with 

the bottom 18 neurons making up group A, and the top 18 neurons group B. The 

synchronized group A neurons simultaneously fire double spikes, in contrast to the 

desynchronized firing pattern of group B. (B) Mean field voltage, or average activity for 

groups A (black) and B (red). Reproduced from Glaze et al. 2016 with permission from 

AIP Publishing. 

 

 

neurons decreasing exponentially with distance. Though Kuramoto et al. (2002) utilized 

simple phase oscillators in their model, any oscillator can be substituted, such as neurons. 

As the oscillators fire and interact, they will begin to form groups of synchronized 

oscillators, separated by desynchronized oscillators.  
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 Abrams and Strogatz began exploring chimera states shortly after Kuramoto et al.’s 

2002 discovery. In their 2004 paper (Abrams & Strogatz 2004), they found both stable and 

unstable chimera states in the Kuramoto coupling scheme. Subsequently, they investigated 

chimera states using a different coupling scheme (Abrams et al. 2008). This coupling 

scheme, known as Abrams-Strogatz coupling, splits a group of identical oscillators into 

two equal subgroups (A and B), as shown in Figure 3.3; see the description of chemical 

chimeras in the work of Tinsley et al. (2012) above for an example of an experimental 

realization of Abrams-Strogatz coupling. There is coupling within and between groups, 

meaning a neuron in group A will feel the impact of all the neurons from group A, as well 

as the impact of all neurons in group B. The coupling strength within each group is stronger 

than the inter-group coupling, with the intra-group coupling for A and B being equal. The 

authors describe this system as “the simplest model that supports chimera states”.  

 3.2.4.2. Chimera state.  In Glaze (2015) and Glaze et al. (2016), chimera states 

were found for Huber-Braun neurons in both the Abrams-Strogatz and Kuramoto 

configurations. For the Abrams-Strogatz coupling scheme, an example chimera state is 

given in Figure 3.4. Figure 3.4A is a raster plot (or spike times plot) for all the neurons in 

the simulation. The bottom 18 neurons are group A, and the top 18 neurons are group B. 

The neurons in group A fire simultaneously (aside from a few occasional outliers, due to 

the noise in the model). Thus, group A is synchronized. The raster plot reveals that the 

neurons in group B fire at different times and in no discernable pattern, meaning that group 

B is desynchronized. These observations clearly meet the definition of a chimera state.  

 Figure 3.4B shows the mean field voltage, or the average activity, of each group, 

where the black line represents the activity of group A and the red line that of group B. The  
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Figure 3.6 – Phase-Cluster Chimera State in Abrams-Strogatz Configuration 

A phase-cluster chimera state found in the Abrams-Strogatz coupling scheme. The red 

arrow indicates when the intra-group coupling for B and inter-group coupling was turned 

on. (A) The raster plot for all neurons in the simulation reveals that group A (bottom 18 

neurons) is firing synchronized double spikes, while group B (top 18 neurons) is firing 

synchronized single spikes. (B) Mean field voltage for group B. (C) Mean field voltage 

for group A. The inter-group coupling strength was about 10 times the value from Figure 

3.4. Reproduced from Glaze et al. 2016 with permission from AIP Publishing. 

 

 

voltage for group A has a high amplitude and shows double spikes, which confirms that 

group A is synchronized (the two dots for the double spikes on the raster plot are too close 

to be easily discerned by eye at the level of resolution of the figure). As for group B, the 

low amplitude and disordered oscillation of the mean voltage confirms that group B is 
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desynchronized. This chimera state occurred with weak, inhibitory coupling between 

groups and stronger, excitatory coupling within each group. For Abrams-Strogatz 

coupling, Glaze et al. (2016) found that chimera states occurred most often with inhibitory 

coupling between groups, with a few instances of chimera states occurring with excitatory 

coupling between groups.  

 A chimera state for the Kuramoto coupling scheme is shown in Figure 3.5. Unlike 

the Abrams-Strogatz configuration, in the Kuramoto configuration, groups of synchronized 

and desynchronized oscillators emerge spontaneously along the ring. This is seen in Figure 

3.5A, where all the neurons are initially synchronized, and three regions of desynchronized 

activity emerge. The desynchronized regions spread around the ring until there are only 

narrow bands of synchronized neurons remaining. Some of these bands end before the 

simulation, while one stretches out until the end of the simulation. Note that this band of 

synchronized neurons travels around the ring; specifically, the middle band originally 

consisted of neurons around number 25, and by the end of the simulation consists of 

neurons around number 12. The coupling between neurons in this simulation was 

excitatory.  

 A chimera state for a slightly larger value of coupling strength is shown in Figure 

3.5B. A single desynchronization region is seen to spread from one neuron. Note that other 

bands of synchronization emerge from the larger region of desynchronization starting 

around 1.4 × 104 ms.  

 3.2.4.3. Phase-cluster chimera state.  A phase-cluster chimera state is similar to a 

typical chimera state in that there are two interacting groups, but different in that both 

groups are synchronized with different activity, such as those found by Tinsley et al. (2012)  
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Figure 3.7 – Temporal Variation of Chimera State in Abrams-Strogatz Configuration 

Chimera states in a system of 36 neurons in the Abrams-Strogatz configuration with 

varying coupling strength between groups. (A) The phase-cluster chimera state starts with 

group A synchronized firing double spikes and group B synchronized firing single spikes. 

Over time, group B becomes desynchronized, becoming a general chimera state. Further 

along, group A begins losing its synchronization, until all the neurons are desynchronized 

by the end of the simulation. There is weak, inhibitory coupling between groups. (B) 

Similar to part A, the neurons go from a phase-cluster chimera state to a more traditional 

chimera state before dissolving into complete desynchronization. This occurs more 

rapidly than it did in part A. The weak, inhibitory inter-group coupling was increased 

slightly from part A. (C) The phase-cluster state barely begins transitioning into a 

chimera state before all neurons become desynchronized, occurring faster than parts A 

and B. The inter-group coupling here is slightly increased from part B and is double the 

value from part A. Reproduced from Glaze et al. 2016 with permission from AIP 

Publishing. 

 

 

with their chemical chimeras (Section 3.2.2.4). An example of a phase-cluster state in the 

Huber-Braun model is shown in Figure 3.6. In Figure 3.6A, the bottom 16 neurons in the 

raster plot (group A) are synchronized and firing double spikes, while the neurons in group 
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B are synchronized and firing single spikes. This is also seen in the high amplitude of the 

mean field oscillations in Figures 3.6B and 3.6C. Note the single-spike mean field 

oscillations in 3.6B and the double spikes in 3.6C, consistent with the results from the raster 

plot.  

 

 

 

Figure 3.8 – Partial Phase-Cluster Chimera State in Abrams-Strogatz Configuration 

An example of a partial phase-cluster chimera state in the Abrams-Strogatz coupling 

configuration. (A) The firing pattern of three neurons from group A, showing doublets. 

(B) The firing pattern of three neurons from group B, showing singlets. (C) ISI histogram 

for group A. (D) ISI Histogram for group B. Reproduced from Glaze 2015.  
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 The chimera state, whether phase-cluster or typical chimera state, may be transient. 

Different parameters produce different lengths of chimera states, indicating that chimera 

states may have shifting stability. This is shown in Figure 3.7. There are three raster plots, 

all with 36 neurons and identical parameters, save for the inhibitory inter-group coupling. 

These panels all show transitions between phase-cluster states, chimera states, and  

desynchronization, consistent with the suggestion (Wolfrum & Omel’chenko 2011) that 

chimera states are transients.  

 3.2.4.4. Partial phase-cluster chimera state.  A partial phase-cluster chimera state 

is a specific form of the phase-cluster chimera state. Rather than each group being 

synchronized with different activity, a few neurons of one group are synchronized with the 

other group. An example of this is shown in Figure 3.8. The firing patterns of three neurons 

from group A are shown in Figure 3.8A. It is clear that the neurons are firing double spikes, 

as has been seen previously. This is confirmed by the histogram in Figure 3.8C, where the 

inter-spike intervals (ISI) for group A are displayed. Two high peaks here mean that the 

neurons are firing double spikes, with the smaller ISI values corresponding to the intra-

burst interval, or the time between spikes in a burst, and the larger ISI values corresponding 

to the time between bursts, or the inter-burst interval.  

 Figure 3.8B shows the firing patterns for three neurons from group B, which are 

firing single spikes. However, this is not representative of all neurons from group B, as 

Figure 3.8D can attest. The larger peak on the right corresponds to the single spike inter-

spike interval, while the other two peaks, at the same ISI values as those in Figure 3.8C 

show that some of the neurons from group B are firing double spikes like group A. This 
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mixture of activity patterns in group B differentiates this partial phase-cluster chimera from 

a typical phase-cluster chimera.  

 

 

 

Figure 3.9 – Two-Hemisphere Activity, HR 

The average activity of the left (top panel) and right (bottom panel) hemispheres of a 

Hindmarsh-Rose neuron run. Note how the hemispheres have different levels of activity, 

despite their coupling and identical connectivity. Parameters were set as 𝑔𝐴 =
−0.0000075, 𝑔𝐶𝐴 = 0.00115, 𝑔 = 0.000045, 𝑔𝑉 = −0.0000425, 𝑔𝐶𝑉 = −0.0019, 

𝑔𝑉𝐿t𝑅
= 0.00002, 𝑔𝑉𝑅𝑡𝐿

= 0.00002, and 𝐼 = 1.295, with 4 neurons per region.  

 

 

 These three versions of the chimera state found in Glaze 2015 and Glaze et al. 2016 

show some of the dynamic range of Huber-Braun neurons, as well as the multi-medium 

capabilities of the chimera state. The chimera state can be quantified using measures 

derived from the synchronization index and used to map the regions of parameter space for 

which chimera states occur (Glaze 2015, Glaze et al. 2016).  
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 Unihemispheric sleep has been likened to the chimera state, with its mixture of 

synchronized and desynchronized activity (see Sections 1.3.2.-1.3.4. and 4.2.). Searching 

for UHS in the present two-hemisphere sleep model resulted in the identification of 

chimera states, discussed below. More specific models of unihemispheric sleep itself are 

discussed in Section 4.2. 

 

3.3. RESULTS 

 The two-hemisphere version of the model can generate chimera states in which the 

two hemispheres exhibit radically different dynamical behaviors.  

 3.3.1. Two-Hemisphere Results.  The average activity for each hemisphere is 

shown in Figure 3.9, for parameters identical to those in Figure 2.22 except for the input 

current, which is set at 𝐼 = 1.295. Much like Figure 2.22, the wake-promoting region 

AMIN is only active during the daytime, while the sleep-promoting region VLPO is only 

active during the night. However, in Figure 3.9, each hemisphere has its own sleep-

promoting and wake-promoting regions, with the left hemisphere’s average activity shown 

in the top panel and the right hemisphere’s average activity shown in the bottom panel.  

 Despite all the neurons having identical parameters (and random uniform 

distribution of initial voltages), each hemisphere exhibits variations in its level of activity. 

This can be clearly seen in the direct comparison between the activity of VLPO in each 

hemisphere over the first night. While the left hemisphere’s VLPO region has relatively 

constant activity, remaining almost entirely beneath 0 mV, the right hemisphere’s VLPO 

region has multiple spikes in activity that reach above 0.5 mV. This interhemispheric 
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asymmetry can also be seen in the different timing of spikes of AMIN activity in each 

hemisphere over the first day.  

 

 

 

Figure 3.10 – Synchronization Indices for Non-Bursting Run, HR 

Synchronization indices for each region in each hemisphere for the data displayed in 

Figure 3.9. (A) Synchronization indices for the VLPO and AMIN regions of the left 

hemisphere. (B) Synchronization indices for the VLPO and AMIN regions of the right 

hemisphere. (C) Synchronization indices for AMIN region from the left (red) and right 

(pink) hemispheres. (D) Synchronization indices for the VLPO region from the left 

(black) and right (blue) hemispheres. Parameters are 𝑔𝐴 = −0.0000075, 𝑔𝐶𝐴 =
0.00115, 𝑔 = 0.000045, 𝑔𝑉 = −0.0000425, 𝑔𝐶𝑉 = −0.0019, 𝑔𝑉𝐿t𝑅

= 0.00002, 

𝑔𝑉𝑅𝑡𝐿
= 0.00002, and 𝐼 = 1.295, with 4 neurons per region.  

 

 

 The synchronization indices for Figure 3.9 are shown in Figure 3.10. 

Synchronization indices for the left and right hemispheres are shown in Figures 3.10A (left 

hemisphere) and 3.10B (right hemisphere). As is expected from the average activity, there  
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Figure 3.11 – Phase-Cluster Chimera State in Non-Bursting Regime, HR 

Average activity of the two-hemisphere version of the model with HR neurons in the 

non-bursting regime, showing a phase-cluster chimera state. (A) Average activity of left 

(top panel) and right (bottom panel) hemispheres over the entire simulation. (B) 

Magnification of A, 34-36s. The left hemisphere AMIN is bursting in tight clusters, and 

the right is firing synchronized doublets. (C) Magnification of A, 135-137s. The right 

hemisphere VLPO shows tight, clustered firing while the left has cascading doublets. 

This difference in behavior is a phase-cluster chimera state. Parameters are 𝑔𝐴 =
−0.0000075, 𝑔𝐶𝐴 = 0.00115, 𝑔 = 0.000045, 𝑔𝑉 = −0.0000425, 𝑔𝐶𝑉 = −0.0019, 

𝑔𝑉𝐿t𝑅
= 0.00002, 𝑔𝑉𝑅𝑡𝐿

= 0.00002, and 𝐼 = 1.30, with 3 neurons per region.  
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Figure 3.12 – Two-Hemisphere Non-Bursting Synchronization 

Synchronization indices for each hemisphere, from data shown in Figure 3.11. (A) Left 

hemisphere synchronization for AMIN (red line) and VLPO (black line). (B) Right 

hemisphere synchronization for AMIN and VLPO. (C) AMIN regions synchronization 

for left (red line) and right (magenta line) hemispheres. Note the large difference between 

the hemispheres. This suggests a chimera state; the AMIN regions do not directly interact 

with each other, and therefore does not fit the classical description of a chimera state. (D) 

VLPO regions synchronization for left (black line) and right (blue line) hemispheres. 

Though showing different activity (Figure 3.11C), the VLPO regions are highly 

synchronized both within and with each other. Parameters were set as 𝑔𝐴 =
−0.0000075, 𝑔𝐶𝐴 = 0.00115, 𝑔 = 0.000045, 𝑔𝑉 = −0.0000425, 𝑔𝐶𝑉 = −0.0019, 

𝑔𝑉𝐿t𝑅
= 0.00002, 𝑔𝑉𝑅𝑡𝐿

= 0.00002, and 𝐼 = 1.30, with 3 neurons per region.  

 

 

are only indices for AMIN during the daytime, and indices for VLPO during the nighttime. 

Direct comparisons between AMIN and VLPO from each hemisphere are displayed in 

Figures 3.10C and 3.10D, respectively. In Figure 3.10C, the right hemisphere is much more 

synchronized than the left during the first day, while during the second day, the left 

hemisphere becomes more synchronized. As for the VLPO direct comparison in Figure 

3.9D, the right hemisphere is more synchronized during the first night, while during the  
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Figure 3.13 – Average Activity in Bursting Regime, HR 

Average activity of the two-hemisphere version of the model with HR neurons in the 

bursting regime. (A) Average activity for the left (top panel) and right (bottom panel) 

hemispheres. (B) Magnification of A, 46-58s. VLPO and AMIN regions in each 

hemisphere move in and out of phase. (C) Magnification of B, 52-54s. Each region 

exhibits clustering behavior. Parameters are 𝑔𝐴 = −0.0000075, 𝑔𝐶𝐴 = 0.00115, 𝑔 =
0.000045, 𝑔𝑉 = −0.0000425, 𝑔𝐶𝑉 = −0.0019, 𝑔𝑉𝐿t𝑅

= 0.00002, 𝑔𝑉𝑅𝑡𝐿
= 0.00002, 

and 𝐼 = 2.00, with 3 neurons per region.  
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second night the left hemisphere becomes more highly synchronized. This suggests that 

this gap may indicate some specific behavior, as having different synchronization in two 

coupled groups may indicate a chimera state, or the possibility of unihemispheric sleep (to 

be discussed in Section 4.2.).  

 3.3.2. Non-Bursting.  The average activity of the VLPO and AMIN for 𝐼 = 1.30 

is shown in Figure 3.11A. Each hemisphere exhibits variances in behavior, creating some 

interhemispheric asymmetries; this is most clear for the VLPO region at night. The left 

hemisphere’s VLPO (top panel) displays constant, even firing over the entire time it is 

active, unlike the right hemisphere (bottom panel), whose VLPO firing has more 

variability, like the AMIN regions.  

 Magnification of the average activity for each region is shown in Figures 3.11B and 

3.11C. In Figure 3.11B, the left hemisphere AMIN exhibits tight clusters of multi-spike 

burst-firing, while the right hemisphere shows double spikes, indicating that all the neurons 

are firing at the same time, and all firing doublets. This difference in behavior between 

coupled identical groups is a phase-cluster chimera state. In Figure 3.11C, VLPO exhibits 

a similar phase-cluster chimera state, with tight, clustered firing in the right hemisphere, 

and nearly evenly-spaced cascades of spike pairs in the left hemisphere.  

 The identification of chimera states is further confirmed by examination of the 

corresponding synchronization indices, displayed in Figure 3.12. The left and right 

hemispheres’ synchronization indices are given in Figures 3.12A and 3.12B, respectively. 

The AMIN synchronization is clearly significantly different between the two hemispheres, 

as shown in Figure 3.12C. this suggests a chimera state; however, since the AMIN regions 

do not directly interact with each other, their interactions do not fit the canonical  
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Figure 3.14 – Phase-Cluster Chimera State in Bursting Regime, HR 

Average activity of the two-hemisphere version of the model with HR neurons in the 

bursting regime, showing a phase-cluster chimera state. Uses the same data as Figure 

3.13. (A) Average activity for the left (top panel) and right (bottom panel) hemispheres. 

(B) Magnification of A, 122-124s. Parameters are 𝑔𝐴 = −0.0000075, 𝑔𝐶𝐴 = 0.00115, 

𝑔 = 0.000045, 𝑔𝑉 = −0.0000425, 𝑔𝐶𝑉 = −0.0019, 𝑔𝑉𝐿t𝑅
= 0.00002, 𝑔𝑉𝑅𝑡𝐿

=

0.00002, and 𝐼 = 2.00, with 3 neurons per region.  
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description of Kuramoto or Abrams-Strogatz coupling. The VLPO regions, though 

exhibiting different dynamical behaviors in Figure 3.11C, reveal themselves to be similarly 

highly synchronized (Figure 3.12D).  

 

 

 

Figure 3.15 – Two-Hemisphere Bursting Synchronization 

Synchronization indices for each hemisphere, from data shown in Figure 3.13. (A) Left 

hemisphere synchronization for AMIN (red line) and VLPO (black line). (B) Right 

hemisphere synchronization for AMIN and VLPO. Parameters are 𝑔𝐴 = −0.0000075, 

𝑔𝐶𝐴 = 0.00115, 𝑔 = 0.000045, 𝑔𝑉 = −0.0000425, 𝑔𝐶𝑉 = −0.0019, 𝑔𝑉𝐿t𝑅
= 0.00002, 

𝑔𝑉𝑅𝑡𝐿
= 0.00002, and 𝐼 = 2.00, with 3 neurons per region. 
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 3.3.3. Bursting.  Moving into the bursting regime, with 𝐼 = 2.00, the neurons of 

all regions fire over the entire day, as seen in Figure 3.13A. Interhemispheric asymmetry 

is immediately apparent, in the morning (AMIN more active in the right hemisphere and 

VLPO in the left) and at night (VLPO more active in the right hemisphere and AMIN in 

the left). Zooming in on the daytime activity (46 to 58 s), it is clear that the regions within 

each hemisphere are moving in and out of phase (Figure 3.13B). Zooming in further (from 

52 to 54 s), each region exhibits the same clustering behavior, though the right hemisphere 

AMIN has a slightly higher amplitude than the left (Figure 3.13C).  

 Figure 3.14B shows the average activity from Figure 3.13A (shown again as Figure 

3.14A) at a different time of day (from 122 to 124 s). The behavior displayed here is 

significantly different, with tight, clustered firing for AMIN in the left and VLPO in the 

right hemisphere, and a cascading firing pattern for VLPO in the left and AMIN in the right  

hemisphere. This different behavior for both regions across hemispheres is evidence of a 

phase-cluster chimera state. The synchronization indices (Figure 3.15) confirm this, 

showing significantly different levels of synchronization in the left and right hemispheres. 

The VLPO synchronization indices for the left hemisphere change from three to four lines, 

indicating that neurons change from firing triple spikes during the day to quadruple spikes 

at night; the transition to quadruplets is less evident for the right hemisphere. The AMIN 

synchronization index values are higher and more stable for the right hemisphere. 

 Note that the VLPO regions have similar synchronization during the day, but the 

left hemisphere VLPO is significantly more synchronized at night. This implies that the 

VLPO regions, which can be classified as exhibiting a phase-cluster chimera state based 
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on the bursting state differences shown in Figure 3.14B, could also be described as 

exhibiting a classical dynamical chimera state at night.  

 

3.4. CONCLUSIONS 

 The two-hemisphere version of the sleep model presented here demonstrates clear 

evidence of chimera states. This can be seen in the gap in synchronization between the 

VLPO region in the left and right hemispheres, as seen in Figure 3.10D and Figure 3.15. 

This gap varies in magnitude, not only dependent upon the input current 𝐼, but also over 

the course of a single night in one simulation. It remains to be determined whether the 

observed chimera states are ever stable rather than transient. In other cases, such as those 

shown in Figures 3.11, 3.13 and 3.14, the interhemispheric differences in dynamical 

behavior indicate phase-cluster chimeras.  

 The observation of chimera states can serve as a schematic model for UHS, as 

mentioned earlier, due to their shared characteristic of mixed synchronized and 

desynchronized behavior. The difference in synchronization of VLPO for each hemisphere 

shows a definitive chimera state (Figures 3.10D and 3.15) but might also be interpreted as 

either UHS or asymmetric sleep. Asymmetric sleep, as discussed in Section 1.3.1.2., is a 

state where both hemispheres of the brain are asleep, but one more deeply than the other 

(and hence presumably more synchronized). This can occur in humans, unlike UHS, where 

one hemisphere is awake and desynchronized and the other is asleep and synchronized. 

While these two sleep states will both display a synchronization difference between 

hemispheres, asymmetric sleep requires both hemispheres to be in a sleep state, and UHS 

obviously requires one hemisphere to be in a wake state while the other is in a sleep state. 
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Since this model can generate chimera states, it is reasonable to ask whether it may also 

generate asymmetric sleep and UHS. 

 The “first night effect”, discussed in Section 1.3.1.2., is a form of asymmetric sleep 

in humans, and occurs when sleeping for the first time in a novel environment. Travel itself 

also has an impact on sleep, usually in the form of jet lag. In the next section, jet lag, 

asymmetric sleep, and UHS are simulated in the sleep model.  
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4. JETLAG AND UNIHEMISPHERIC SLEEP 

 

 Here, the effect of changes in the circadian drive, or jet lag, is discussed, along with 

simulations of unihemispheric sleep (UHS).  

 

4.1. JET LAG   

 Jet lag is a syndrome caused by desynchronization between the body’s circadian 

rhythm and the rhythm of light in a locale, typically due to long flights that cross multiple 

time zones (Herxheimer 2014). Also known as Jet Lag Disorder (JLD, Section 1.5.4.2.), 

its symptoms include difficulty sleeping and fatigue, among others, such as the side effects 

associated with both sleep deprivation (Section 1.4.) and travel fatigue. Jet lag qualifies as 

a form of partial sleep deprivation, or sleep restriction, where sleep duration is shortened 

(Banks & Dinges 2007). Another type of jet lag, or “social jet lag”, is caused by a 

combination of artificial lights disrupting natural circadian rhythms and social constraints 

that require early rising, such as work and school (Skeldon et al. 2017).  

 To simulate jet lag, the circadian drive is altered in four different ways, and its 

impact on the synchronization of each region investigated using Hindmarsh-Rose (HR) 

neurons. The one-hemisphere version of the model was used here. For all runs, the 

parameters were set at 𝑔𝐴 = −0.0000075, 𝑔𝐶𝐴 = 0.00115, 𝑔 = 0.000045, 𝑔𝑉 =

−0.0000425, 𝑔𝐶𝑉 = −0.0019, and 𝐼 = 2.00, with 3 neurons per region.  

 4.1.1. Period of Constant CD.  A period of constant circadian drive (CD) 

amplitude was inserted in the first day of two-day runs to interrupt the normal periodicity 

of the circadian drive. 
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Figure 4.1 – Circadian Drive with Perturbation 

An example of a circadian drive with (dashed light blue line) and without (yellow line) a 

3-hour perturbation. Note that after the perturbation ends, the circadian drive returns to 

the value it would have had without the perturbation.  

 

 

 4.1.1.1. Perturbation.  Here, a period of constant CD is used to cause a 

perturbation. At a set time of day, the circadian drive is held at its current value for a set 

duration. At the end of the perturbation, the value of CD jumps to the value it would be if 

it had not been perturbed. An example of such a perturbation is shown in Figure 4.1 and 

would be roughly equivalent to staying in a room with a constant light level for a set 

number of hours before exiting outside, where the light entrainment (the value of CD) had 

continued changing. In other words, like a grad student studying all evening in their room, 

emerging to find it is not night but early morning. Basically, the circadian drive is perturbed 

and afterward returns to its proper value for the time of day. Multiple simulations were 
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performed in the one-hemisphere version of the model for 1, 3, 6, and 9-hour perturbations 

occurring at 600, 1100, 1600, and 2100 hours (corresponding to 6 A.M., 11 A.M., 4 P.M., 

and 9 P.M.) on the first day of two-day runs. 

 

 

 

Figure 4.2 – Circadian Drive with Perturbations at 1600 Hours 

Synchronization indices of AMIN and VLPO after different lengths of circadian 

perturbation at 1600 hours. (A) 1-hour. The small perturbation had neither a large nor a 

lasting impact. (B) 3-hour. The perturbation heavily impacted the second day, obscuring 

the reciprocal relationship of synchronization in AMIN and VLPO. (C) 6-hour. The 

synchronization indices for each region are pushed together during the perturbation, but 

the reciprocal relationship is clear immediately after. (D) 9-hour. The AMIN and VLPO 

synchronization relationship during the perturbation is the usual for nighttime but departs 

from the typical behavior following the removal of the perturbation.  
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Figure 4.3 – Circadian Perturbation, 1 Hour at 600 Hours 

Synchronization indices for AMIN and VLPO after circadian perturbation of 1 hour at 

600 hours, 3 runs. (A) Run 1. A small perturbation causes minimal change in 

synchronization with respect to the control conditions shown in Figure 2.36. (B) Run 2. 

Like run 1, little to no change in synchronization. (C) Run 3. The reciprocal 

synchronization relationship between the AMIN and VLPO regions is preserved.  

 

 

 The synchronization indices for parameters used here (Section 4.1.) were 

previously shown, without any circadian drive perturbation, in Figure 2.36, with 4 neurons 

per region. In that figure, the activity of AMIN and VLPO neural groups display a 

reciprocal relationship, discussed in more detail in Section 2.3.3.2., that will be considered 

the control behavior against which to compare the jet lag results presented below. 

Specifically, in this control case, when AMIN exhibits high synchronization and VLPO 
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has low synchronization, the system is asleep, and when VLPO has high synchronization 

and AMIN low synchronization, the system is awake.  

 

 

 

Figure 4.4 – Circadian Perturbation, 6 Hours at 1100 Hours 

Synchronization indices for AMIN and VLPO after circadian perturbation of 6 hours at 

1100 hours, 3 runs. (A) Run 1. After the perturbation, the system remains awake almost 

all night before returning to the reciprocal relationship. (B) Run 2. The system settles into 

its reciprocal behavior immediately after the perturbation. (C) Run 3. This run exhibits 

similar behavior to run 1, but with more oscillations and irregularities.  

 

 

 The length of the perturbation differently impacts the synchronization of both 

regions, as seen in Figure 4.2. A small perturbation of 1 hour at 1600 hours has little effect, 
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as Figure 4.2A shows the reciprocal synchronization pattern seen previously for HR 

neurons when I = 2.00 (Figure 2.36). This relationship begins to break down with a larger  

perturbation, as seen in Figures 4.2B and 4.2D (3-hour and 9-hour perturbations, 

respectively). A perturbation of 6 hours had little effect. It could be hypothesized that this  

 

 

 

Figure 4.5 – Circadian Perturbation, 6 Hours at 2100 Hours 

Synchronization indices for AMIN and VLPO after circadian perturbation of 6 hours at 

2100 hours, 3 runs. (A) Run 1. In this run, the reciprocal behavior returns after the 

perturbation, but fails to properly switch states the second night. (B) Run 2. Here, during 

and after the perturbation, the system remains asleep, unable to change states the second 

day. (C) Run 3. Like run 2, the system is unable to switch from sleep to wake. Though 

the system attempts to shift to waking at the end of day two, it is foiled by the advancing 

of night.  
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perturbation length promotes the system, settling into AMIN and VLPO’s reciprocal 

relationship, which may be easier to do during a period of constant CD rather than during 

CD’s continuous change. This hypothesis is consistent with two of the three runs for a 6-

hour perturbation at 1600 hours (data not shown), though further experiments will needed 

to determine whether there is in fact such a causal connection.  

 To investigate the variability of the perturbation effect, simulations were performed 

in triplicate for each combination of perturbation conditions. In some cases, the 

perturbation does not greatly impact the simulation, as seen in Figure 4.3. A perturbation 

of one hour at 600 hours has minimal impact, as might be expected. Run 1 and run 2 

(Figures 4.3A and 4.3B, respectively) each exhibit HR’s distinct reciprocal relationship 

(for 𝐼 = 2.00), while run 3 (Figure 4.3C) demonstrates some irregularities, such as the dip 

in AMIN’s synchronization in the middle of the first night.  

 Variation between runs can be seen in Figure 4.4, which shows a 6-hour delay at 

1100 hours. This perturbation could be considered equivalent to a subject staying up past 

their usual bedtime; either they fall asleep easily and settle right back into their sleep/wake 

rhythm (run 2), or they have difficulty falling asleep, which is reflected in the jagged 

synchronization the next day (runs 1 and 3).  

 Perturbations of 6 hours occurring at 2100 hours have another significant effect on 

the synchronization of regions in the model, as seen in Figure 4.5. This may be likened to 

sleeping in a bit (run 1) or sleeping in very late, waking up for a few hours, then going back 

to bed (runs 2 and 3, which I have done after particularly exhausting days).  

 4.1.1.2. Delay.  In this section, a period of constant circadian drive amplitude was 

inserted in the first day of two-day runs to create a delay in the normal periodicity of the 
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circadian drive. At the specified time of day, the value of CD was held constant at its 

current value for the chosen duration. After the delay, CD continued its normal course from 

the delay value. An example of this delay is given in Figure 4.6. This case is roughly 

equivalent to a subject boarding a flight, traveling for a set number of hours (at a constant  

 

 

 

Figure 4.6 – Circadian Drive with Delay 

An example of a circadian drive with (dashed light blue line) and without (yellow line) a 

3-hour delay. This delay “pauses” the circadian drive. 

 

 

light value, or constant CD), and landing at a location that has the same light entrainment 

(or value of CD) as the place they had left, at the time they had left. Essentially, this acts 

like a pause in the circadian drive. Multiple simulations were performed in the one-
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hemisphere version of the model for a 1, 3, 6, and 9-hour delay occurring at 600, 1100, 

1600, and 2100 hours (corresponding to 6 A.M., 11 A.M., 4 P.M., and 9 P.M.) on the first 

day of two-day runs.  

 

 

 

Figure 4.7 – Circadian Drive with Delays at 1600 Hours 

Synchronization indices of AMIN and VLPO after different lengths of circadian delay at 

1600 hours. (A) 1-Hour. The reciprocal synchronization relationship between the two 

regions remains intact, with a brief overlapping during day two. (B) 3-Hour. Though 

there is increased overlap between the synchronization indices of the different regions, 

the increase and decease in synchronization for each region is still present, along with the 

reciprocal relationship. (C) 6-Hour. The system’s ability to shift states is disrupted, 

causing a sleep state for most of day two. (D) 9-Hour. During the delay, the system 

settles into the reciprocal synchronization relationship of VLPO and AMIN.   
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Figure 4.8 – Circadian Delay, 6 Hours at 1600 Hours 

Synchronization indices for AMIN and VLPO after circadian delay of 6 hours at 1600 

hours, 3 runs. Run 1 was displayed as Figure 4.7C. (A) Run 2. During the delay, the 

system switches to wakefulness when it would normally be asleep, which persists until 

the next night. (B) Run 3. After the delay, the system is unable to wake, remaining in the 

sleep state for the rest of the simulation.  

 

 

 Despite the fact that the circadian delay and the perturbation discussed above both 

have intervals of constant CD, the delay has a less disruptive impact on the synchronization 
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of the AMIN and VLPO regions than the perturbation shown in Figures 4.1 to 4.5. This 

can be seen in Figure 4.7, which shows delays of various lengths at 1600 hours. This 

situation could be considered roughly analogous for an increased amount of sleep, with a 

subsequent forward shift in bedtime and wake time. 

 

 

 

Figure 4.9 – Circadian Delay, 3 Hours at 1100 Hours 

Synchronization indices for AMIN and VLPO after circadian delay of 3 hours at 1100 

hours, 3 runs. (A) Run 1. Immediately after the delay, the system settled into the usual 

reciprocal behavior, with a brief wake period in night one. (B) Run 2. No detrimental 

impact from the delay is discernable. (C) Run 3. The delay does not impact the model 

immediately but may be the cause of the overlap in night two.  
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 Two more runs for the 6-hour delay at 1600 hours are displayed in Figure 4.8. Like 

the first run, run 2 (Figure 4.8A) is unable to properly switch states, particularly after the 

delay, where the system is awake when it should be asleep. This is particularly visible in 

Figure 4.8B, which shows a perpetual sleep state after the circadian delay. Disruptions in 

state switching only occurred in one run of the 3-hour delay at 1600 hours and was not 

present in any of the other delay runs at this time of day (data not shown).  

 A 3-hour circadian delay applied at 1100 hours has minimal effect, as seen in Figure 

4.9. Each run clearly shows the familiar reciprocal relationship, though with some 

irregularities. The delay appears to correlate with maintenance of the reciprocal behavior. 

This may be an indication that a longer simulation time with a less compressed time scale 

will stabilize the model, giving it more opportunity to settle in each state before switching. 

Future work quantifying the length of time needed to settle into a given state, and 

comparison of settling times between perturbed and unperturbed states will allow a 

rigorous determination of whether the perturbation has a significant effect on this process.  

 Interestingly, a delay of 9 hours at 2100 hours (Figure 4.10) does not have a 

substantial disturbing force on the model. A delay of this length at this late time of day may 

be construed as an extra-long night, or extra hours of sleep, which have little negative effect 

on the system.  

 4.1.2. Phase-Shifted CD.  Here, the circadian drive is phase-shifted forward or 

backward during the first day of two-day runs, shifting the entire skewed sine wave. This 

skips (forward shift) or repeats (backward shift) a segment of the circadian drive, then 

continues as normal. 
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Figure 4.10 – Circadian Delay, 9 Hours at 2100 Hours 

Synchronization indices for AMIN and VLPO after circadian delay of 9 hours at 2100 

hours, 3 runs. (A) Run 1. The delay did not affect the system immediately, but note the 

synchronization overlap in night two. (B) Run 2. No impact from the delay is discernable. 

(C) Run 3. Note the distinct but narrow gap between the regions’ synchronization indices.  

 

 

 4.1.2.1. Backward phase shift.  To phase shift the circadian drive, a time of day 

was chosen, and the value of CD shifted back a set number of hours, then allowed to 

continue as normal (Figure 4.11). A backward phase shift of one hour at 2 A.M. can be 

likened to the end of daylight-saving time (DST) in the autumn; the clock is shifted 

backward one hour. A longer shift, or a shift occurring at a different time of day, would be 

equivalent to instantly traveling from one time zone to another further West.  



134 
 

 

Figure 4.11 – Circadian Drive with Backward Phase Shift 

An example of a circadian drive with (dashed light blue line) and without (yellow line) a 

3-hour backward phase shift. This sets the clock backward three hours.  

 

 

 Multiple simulations were performed in the one-hemisphere version of the model 

for a 1, 3, 6, and 9-hour backward phase shift occurring at 200, 600, 1100, 1600, and 2100 

hours (corresponding to 2 A.M., 6 A.M., 11 A.M., 4 P.M., and 9 P.M.) on the first day of 

two-day runs. Phase shifts that would revert to a time before 12 A.M. of day one were not 

performed (for example, 3-hour backward phase shift at 2 A.M.).  

 A backwards phase shift of 1 hour at 200 hours simulates the “fall back”, or end of 

DST in the autumn, shown in Figure 4.12. These results can be likened to the various 

reactions to the end of DST, such as no effect (run 2), a rough time adjusting during the 
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day but easy nights (run 1), or a person’s sleep-wake schedule being absolutely shredded 

and unable to recover for a several days (run 3). This last case may happen to people who  

 

 

 

Figure 4.12 – Circadian Backward Phase Shift, DST End 

Synchronization indices for AMIN and VLPO after circadian backward phase shift of 1 

hour at 200 hours, 3 runs. This is equivalent to the end of DST in the autumn. (A) Run 1. 

There is an overlap in synchronization for both regions during the daytime both days, 

while the nights remain unchanged with respect to control. (B) Run 2. The system begins 

with AMIN more synchronized but settles into its proper reciprocal relationship by the 

start of night one. (C) Run 3. After the phase shift, there is a significant amount of 

overlap in synchronization, as well as state switching, leaving the state indeterminate 

until near the end of the simulation.  
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Figure 4.13 – Circadian Drive with Backward Phase Shifts at 1600 Hours 

Synchronization indices for AMIN and VLPO after different lengths of circadian 

backward phase shifts at 1100 hours. (A) 1-Hour. Overlap in synchronization indices is 

observed during night two. Runs 2 and 3 exhibit clear reciprocal behavior (not pictured). 

(B) 3-Hour. Synchronization indices behave similarly to the control case, with the 

exception of a few overlaps between indices. The remaining two runs show similar 

results (not pictured). (C) 6-Hour. Recovery from the shift occurs by night one. Run 2 

was similar with more overlap and run 3 remained asleep after the shift (not pictured). 

(D) 9-Hour. Normal behavior returns by night one; results are similar for runs 2 and 3 

(not pictured).  

 

 

have difficulty adjusting their circadian rhythms, such as those who have an intrinsic 

circadian rhythm sleep disorder (Sections 1.5.4.3. – 1.5.4.6.). These detrimental effects on 

synchronization and state switching are notable considering the observed negative side 

effects of the autumn DST shift. While some studies have found that there is no significant 
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increase or decrease in the number of heart attacks following the backward shift (Janszky 

et al. 2012), others have found that the risk of heart attacks does increase, though to a lesser 

extent than following the spring shift forward (Manfredini et al. 2019). An increased risk 

of stroke was found to be present for both shifts, however (Sipilä et al. 2016).  

 

 

 

Figure 4.14 – Circadian Backward Shift, 3 Hours at 1600 Hours 

Synchronization indices for AMIN and VLPO after circadian backward phase shift of 3 

hours at 1600 hours, 3 runs. (A) Run 1. The expected reciprocal relationship is 

unperturbed by the phase shift. (B) Run 2. Like run 1, the system remains unperturbed. 

(C) Run 3. The effect of the phase shift is delayed, causing an overlap in synchronization 

indices during night two.  

 

 



138 
 

 

Figure 4.15 – Circadian Backward Shift, 9 Hours at 2100 Hours 

Synchronization indices for AMIN and VLPO after circadian backward phase shift of 9 

hours at 2100 hours, 3 runs. (A) Run 1. The system remains asleep after the phase shift, 

with a synchronization overlap during day two. (B) Run 2. The system was unperturbed 

by the phase shift. (C) Run 3. After the phase shift, the system changes to wake for the 

repeated night, remaining awake for the remainder of the simulation.  

 

 

 The impact of backward phase shifts of varying lengths on the system at 1100 hours 

is shown in Figure 4.13. Though all of these results exhibited irregularities, they all 

maintained their reciprocal synchronization relationship, showing that backward phase 

shifts at this hour has little negative impact on the synchronization of the system. The 1 

and 3-hour delays can be considered equivalent to staying up a few extra hours, which 

would not be expected to have significant impact. However, the results for 6 and 9-hour 
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shifts are inconsistent with what would be expected in a biological system, since these 

results imply that staying awake for two days in a row would have no major negative impact 

(see Section 1.4.). More realistic versions of the present model are likely to be needed in 

order to accurately simulate the response to such phase shifts. Sleep studies conducted on 

people living in the Arctic Circle have found that their season-long days and nights cause 

seasonal changes in their circadian rhythms (Lewis & Lobban 1957, Friborg et al. 2014).  

 A more complex and realistic version of a sleep model would be expected to 

reproduce such results as well.  

 

 

 

Figure 4.16 – Circadian Drive with Forward Phase Shift 

An example of a circadian drive with (dashed light blue line) and without (yellow line) a 

3-hour forward phase shift. This sets the clock forward three hours.  
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 Consistently stable results are also exhibited by backwards circadian phase shifts, 

shown in Figure 4.14. When the circadian drive is shifted back 3 hours at 1600 hours, the 

reciprocal relationship observed in the control case remains intact, suggesting that this 

phase shift length at this time of day has little impact on the system.  

 

 

 

Figure 4.17 – Circadian Forward Phase Shift, DST Start 

Synchronization indices for AMIN and VLPO after circadian forward phase shift of 1 

hour at 200 hours, 3 runs. This is equivalent to the beginning of DST in the spring. (A) 

Run 1 shows synchronization overlap and numerous state switches after the first night. 

(B) Run 2. Despite the phase shift, the reciprocal relationship remains intact, with some 

synchronization overlap. (C) Run 3. After the phase shift, there is significant 

synchronization overlap, to the point that the sleep/wake state is difficult to determine.  
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Figure 4.18 – Circadian Forward Shift, 3 Hours at 200 Hours 

Synchronization indices for AMIN and VLPO after circadian forward phase shift of 3 

hours at 200 hours, 3 runs. (A) Run 1. The reciprocal relationship is unimpeded by the 

phase shift. (B) Run 2. Besides the briefest of synchronization overlaps during night two, 

the reciprocal relationship is intact. (C) Run 3. Though the synchronization indices bend 

close to each other, the relationship is still clear. The inward bends are also seen in the 

original figure with no circadian disturbances, Figure 2.36. 

 

 

 In contrast to Figure 4.14, the longer phase shift implemented in Figure 4.15 shows 

some of the wide variability caused by backwards phase shifts in the model. Here, the 

backward shift takes the CD from late night (low CD) back to the point of state change (C 

= 0). Sometimes the system can recover from the backward shift (4.15B), and other times 

it causes the system to become unstable (4.15C). Whether or not the system can recover 
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from this instability may be determined with simulations extended over multiple circadian 

cycles. 

 4.1.2.2. Forward phase shift.  Here, the circadian drive is phase-shifted forward 

during the first day of two-day runs, shifting the entire skewed sine wave. This removes a 

segment of the circadian drive, bringing a later point in the wave forward. Like the 

backwards phase shift, the forward phase shift occurs at a set time of day, changing the 

current value of C to its value a defined number of hours ahead. The drive then continues 

as normal. An example of a forward phase shift is shown in Figure 4.16. A forward phase 

shift of one hour at 2 A.M. is equivalent to DST beginning in the spring. Any shift of 

greater magnitude and/or different time of day would be equivalent to instantly traveling 

to a time zone further East.  

 Multiple simulations were performed in the one-hemisphere version of the model 

for a 1, 3, 6, and 9-hour forward phase shift occurring at 200, 600, 1100, 1600, and 2100 

hours (corresponding to 2 A.M., 6 A.M., 11 A.M., 4 P.M., and 9 P.M.) on the first day of 

two-day runs. 

 A forward phase shift of 1 hour at 200 hours was used to simulate the beginning of 

DST, as shown in Figure 4.17. Some runs display persistent synchronization overlap and 

state ambiguity (runs 1 and 3), with others had relatively few irregularities (run 2). This is 

particularly interesting, as the “spring forward” start of DST has been connected to a 

coinciding rise in heart attacks, traffic accidents, and ischemic strokes, among other 

negative effects (Janszky et al. 2012, Harrison 2013, Sipilä et al. 2016, Manfredini et al. 

2019). Changes this severe from a short phase shift may indicate that this model has the 

capability to simulate the negative impacts on synchronization caused by DST, though 
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more simulations, and development of a measure to quantify the degree of sleep disruption, 

are needed to confirm these results.   

 

 

 

Figure 4.19 – Circadian Drive with Forward Phase Shifts at 1600 Hours 

Synchronization indices of AMIN and VLPO after different lengths of circadian forward 

phase shifts at 1600 hours. (A) 1-Hour. The system recovers the reciprocal behavior after 

the start of day two. Similar irregularities plague the other two runs, though at different 

times (not pictured). (B) 3-Hour. A small dip in synchronization is experienced when the 

phase shift occurs, but the reciprocal behavior is not negatively impacted. This is 

consistent for all three runs (not pictured). (C) 6-Hour. The simulation begins roughly but 

recovers by the start of day two. This is not seen in the other two runs, which experience 

mainly synchronization overlapping after the phase shift. (D) 9-Hour. After the shift, the 

system experiences difficulty waking up, sleeping through all of day two. The remaining 

runs are shown in Figure 4.20.  
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Figure 4.20 – Circadian Forward Shift, 9 Hours at 1600 Hours 

Synchronization indices for AMIN and VLPO after circadian forward phase shift of 9 

hours at 1600 hours, 3 runs. Run 1 was displayed as Figure 4.19D. (A) Run 2. 

Immediately following the phase shift, the system returns to a wake state. Over the 

second night, however, the system remains in an indeterminate state. (B) Run 3. There 

are no perturbations in synchronization at the phase shift, though the system fails to wake 

up during day three.  

 

 

 In contrast to the 1-hour phase shift, a 3-hour phase shift at 200 hours did little to 

influence the synchronization, as shown in Figure 4.18. All the runs maintain the reciprocal 
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behavior of the synchronization indices previously observed for these parameter values 

(Figure 2.36). A 9-hour phase shift at this time (data not pictured) also had minimal effect 

on the system’s synchronization. Additional simulations, as well as quantification of the 

effect of the circadian disturbance, will be needed in order to determine whether these 

results are robust or simply a result of small sample size.  

 The effect of varied lengths of forward phase shifts at 1600 hours is presented in 

Figure 4.19. The sequence of panels shows an increasing amount of sleep loss, from an 

hour lost to a large portion of the night. While the shorter shifts (the first three panels) all 

exhibit some irregularities, they each seem to recover their reciprocal synchronization 

relationship. Following the severe sleep loss represented by the 9-hour shift, however, the 

system having difficulty returning to wake during the second day. Additional runs (Figure 

4.20) show what may be considered alternative biological reactions to the short night, with 

one having a restless sleep the following night (top panel) and the other sleeping for 

additional time the next night (bottom panel).  

 The variability in outcome for a 9-hour shift at 1600 hours contrasts strongly with 

the lack of variability among the simulations of a 9-hour shift at 200 hours. Anomalies like 

this may indicate the system’s sensitivity to the timing of a circadian shift. Further study 

and simulations may shed light on the role of perturbation timing in disrupting the sleep 

cycle.  

 

4.2. UNIHEMISPHERIC SLEEP  

 Unihemispheric sleep (UHS) is a form of sleep where one hemisphere remains 

awake to monitor for predators or other dangers, and to maintain breathing and/or motion, 
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while the other hemisphere sleeps. This was discussed earlier in Sections 1.3.2.-1.3.4. The 

mixture of various types of dynamical activity in UHS is reminiscent of the chimera state. 

UHS and chimera states are also linked by the prevalence of inhibitory connections, which 

are necessary for the production of UHS in a computational model (Kedziora et al. 2012) 

and are more likely than excitatory connections to produce chimera states (Tinsley et al. 

2012, Glaze et al. 2016). Preliminary results show that UHS can be generated in the present 

sleep model for both excitatory and inhibitory interhemispheric connections.  

 

 

 

Figure 4.21 – Excitatory Coupling, Bihemispheric Sleep 

Synchronization indices for left (black line) and right (blue line) hemisphere VLPO. Both 

VLPO regions exhibit similar synchronization indices throughout the simulation, 

suggesting high correlation between the hemispheres and consistent with BHS. 

Parameters are 𝑔𝐴 = −0.0000275, 𝑔𝐶𝐴 = 0.00115, 𝑔 = 0.000045, 𝑔𝑉 = −0.0000425, 

𝑔𝐶𝑉 = −0.0019, 𝑔𝑉𝐿t𝑅
= 0.000025, 𝑔𝑉𝑅𝑡𝐿

= 0.000025, and 𝐼 = 2.50, with 4 neurons 

per region.  
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 4.2.1. Excitatory Connection Between Hemispheres.  While they occur more 

frequently with inhibitory connections, chimera states can nonetheless be found with 

excitatory coupling between groups (Tinsley et al. 2012, Glaze et al. 2016). Indeed, the 

chimera states described above in Section 3.3. all occur for excitatory coupling between 

hemispheres. This implies that UHS may be found in this model with excitatory 

interhemispheric coupling. Here, I show results with symmetrical excitatory 

interhemispheric connections corresponding to both asymmetric and unihemispheric sleep.  

 

 

 

Figure 4.22 – Excitatory Coupling, Asymmetric Sleep 

Synchronization indices for left (black line) and right (blue line) hemisphere VLPO, 

showing asymmetric sleep. The second night shows a distinct gap between left and right 

hemisphere VLPO synchronization indices. The gap is small, and does not last the 

entirety of the night, consistent with asymmetric sleep. Parameters are 𝑔𝐴 =
−0.0000275, 𝑔𝐶𝐴 = 0.00115, 𝑔 = 0.000045, 𝑔𝑉 = −0.0000425, 𝑔𝐶𝑉 = −0.0019, 

𝑔𝑉𝐿t𝑅
= 0.00002, 𝑔𝑉𝑅𝑡𝐿

= 0.00002, and 𝐼 = 2.00, with 4 neurons per region.  
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Figure 4.23 – Excitatory Coupling, Asymmetric and UHS 

Synchronization indices for left (black line) and right (blue line) hemisphere VLPO, 

showing asymmetric sleep (night one) and UHS (night two). Parameters are 𝑔𝐴 =
−0.0000275, 𝑔𝐶𝐴 = 0.00115, 𝑔 = 0.000045, 𝑔𝑉 = −0.0000425, 𝑔𝐶𝑉 = −0.0019, 

𝑔𝑉𝐿t𝑅
= 0.000025, 𝑔𝑉𝑅𝑡𝐿

= 0.000025, and 𝐼 = 1.75, with 4 neurons per region.  

 

 

 Kedziora et al. (2012) found bihemispheric sleep (BHS) when utilizing excitatory 

interhemispheric coupling in their model. In a computational model of BHS, one would 

expect both hemispheres to be, as the name suggests, asleep at the same time and 

synchronized with each other. An example of nearly identical synchronization of VLPO 

regions from each hemisphere is shown in Figure 4.21. For this value of the input current 

(𝐼 = 2.50), HR neurons are deep in the bursting regime. Consequently, the synchronization 

of each region changes rapidly numerous times throughout the simulation. However, the 

significant overlap between the left and right VLPO through these abrupt shifts in 
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synchronization show that the regions are well synchronized to one another, inducing 

during sleep states.  

 

 

 

Figure 4.24 – Excitatory Coupling, Dominant Hemisphere Switching 

Synchronization indices for left (black line) and right (blue line) hemisphere VLPO, 

showing dominant hemisphere switching. Parameters are 𝑔𝐴 = −0.0000275, 𝑔𝐶𝐴 =
0.00115, 𝑔 = 0.000045, 𝑔𝑉 = −0.0000425, 𝑔𝐶𝑉 = −0.0019, 𝑔𝑉𝐿t𝑅

= 0.00004, 

𝑔𝑉𝑅𝑡𝐿
= 0.00004, and 𝐼 = 1.75, with 4 neurons per region.  

 

 

 Figure 4.22 shows the synchronization of two VLPO regions from the left and right 

hemispheres, for a different set of parameter values. While over the first night the regions 

have similar degrees of synchronization, there is a slight gap between synchronization 

indices of the left and right VLPO for most of the second night. This gap indicates that the 

left hemisphere is more synchronized than the right hemisphere. Slight asymmetry between 
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the hemispheres, like that shown in Figure 4.22, occurs in the human brain during the first 

night effect and as a result of sleep apnea (Section 1.3.1.2.).  

 

 

 

Figure 4.25 – UHS in Phase-Cluster Chimera Data 

Synchronization indices for left (black line) and right (blue line) hemisphere VLPO, 

showing UHS, from data in Figure 3.13 (phase-cluster chimera state). Parameters are 

𝑔𝐴 = −0.0000075, 𝑔𝐶𝐴 = 0.00115, 𝑔 = 0.000045, 𝑔𝑉 = −0.0000425, 𝑔𝐶𝑉 =
−0.0019, 𝑔𝑉𝐿t𝑅

= 0.00002, 𝑔𝑉𝑅𝑡𝐿
= 0.00002, and 𝐼 = 2.00, with 4 neurons per region.  

 

 

 Asymmetry is also present for the first night in Figure 4.23. In this case, there is a 

distinct gap between left and right VLPO throughout the entire night. At several times 

during the night, the gap in the synchronization index is as large as 0.2. A similar gap is 

seen in Figure 2.36, indicating the difference between an active (comparatively 

desynchronized) and a resting (comparatively synchronized) region. The first night in 

Figure 4.23 can be interpreted as either asymmetric sleep or UHS, depending on the 



151 
 

difference in synchronization indices selected as a cutoff between the two states. The 

second day in this figure, however, shows a larger gap, maintained through the better half 

of the night, and indicative of UHS.  

 

 

 

Figure 4.26 – Inhibitory Coupling, Asymmetric Sleep 

Synchronization indices for left (black line) and right (blue line) hemisphere VLPO, 

showing asymmetric sleep. Parameters are 𝑔𝐴 = −0.0000275, 𝑔𝐶𝐴 = 0.00115, 𝑔 =
0.000045, 𝑔𝑉 = −0.0000425, 𝑔𝐶𝑉 = −0.0019, 𝑔𝑉𝐿t𝑅

= −0.00002, 𝑔𝑉𝑅𝑡𝐿
=

−0.00002, and 𝐼 = 2.00, with 4 neurons per region.  

 

 

 Asymmetric sleep is present in Figure 4.24 over both nights. This figure illustrates 

another key feature of UHS – hemispheric switching. In biological UHS, once one 

hemisphere has slept for a time, it wakes so that the other hemisphere can sleep, and this 

alternating process repeats numerous times over the night (see Section 1.3.2.). This is 
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precisely what occurs in Figure 4.24, where the left and right hemisphere VLPO regions 

switch which is more synchronized. The presence of this aspect of UHS demonstrates that 

this model can exhibit additional key properties of UHS beyond simple hemispheric 

synchronization asymmetry.  

 

 

 

Figure 4.27 – Inhibitory Coupling, UHS and Asymmetric, Apneic Sleep 

Synchronization indices for left (black line) and right (blue line) hemisphere VLPO. 

Night one exhibits a large gap between left and right hemisphere VLPO synchronization, 

indicative of UHS. Night two shows asymmetric sleep with a brief collapse into 

symmetric BHS before a return to asymmetry, reminiscent of the shifts known to occur in 

patients with sleep apnea. Parameters are 𝑔𝐴 = −0.0000275, 𝑔𝐶𝐴 = 0.00115, 𝑔 =
0.000045, 𝑔𝑉 = −0.0000425, 𝑔𝐶𝑉 = −0.0019, 𝑔𝑉𝐿t𝑅

= −0.000035, 𝑔𝑉𝑅𝑡𝐿
=

−0.000035, and 𝐼 = 1.75, with 4 neurons per region.  

 

 

 Strong interhemispheric asymmetries were observed in the phase-cluster chimera 

state shown in Figure 3.13. Given the parallel between chimera states and UHS, the 
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synchronization indices of the VLPO regions from Figure 3.13 are shown in Figure 4.25. 

This data is consistent with UHS, showing a distinct gap between the synchronization 

indices of the left and right hemisphere.   

 

 

 

Figure 4.28 – Inhibitory Coupling, UHS and Dominant Hemisphere Switching 

Synchronization indices for left (black line) and right (blue line) hemisphere VLPO, 

showing UHS. Each night shows a different hemisphere exhibiting higher 

synchronization, though both have a large gap indicative of UHS. Parameters are 𝑔𝐴 =
−0.0000275, 𝑔𝐶𝐴 = 0.00115, 𝑔 = 0.000045, 𝑔𝑉 = −0.0000425, 𝑔𝐶𝑉 = −0.0019, 

𝑔𝑉𝐿t𝑅
= −0.000025, 𝑔𝑉𝑅𝑡𝐿

= −0.000025, and 𝐼 = 2.25, with 4 neurons per region.  

 

 

 4.2.2. Inhibitory Connection Between Hemispheres.  Asymmetric sleep can be 

observed with an inhibitory connection between the VLPO regions, as shown in Figure 

4.26. Here, each night shows asymmetric sleep, with the left (black line) hemisphere being 

the more synchronized during both nights. This figure has equivalent parameters to Figure 
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4.22, save that the interhemispheric connection strength is negative (inhibitory) rather than 

positive (excitatory). As may be expected from the inhibitory connection, which is more 

likely to produce chimera states, both nights exhibit asymmetric sleep, in contrast to the 

one night of asymmetric sleep shown in Figure 4.22.  

 Figure 4.27 reveals both UHS and asymmetric sleep in the non-bursting region of 

parameter space (𝐼 = 1.75). The first night exhibits a large gap between left and right 

VLPO synchronization indices, indicative of UHS. On the other hand, the second night 

shows a smaller gap which can be interpreted as asymmetric sleep, punctuated by a brief 

period of symmetric BHS. Switching between asymmetric and symmetric sleep is known 

to occur in apneic patients, (see Section 1.3.1.2.). During normal breathing in sleep, apneic 

patients exhibit asymmetry in their sleep, but return to symmetric sleep when they enter an 

apneic episode (paused breathing). This instance of apnea-like sleep demonstrates that the 

model is able to simulate not only UHS and asymmetric sleep, but also changes in sleep 

state associated with a sleep disorder.  

 UHS occurs deep in the bursting regime, as seen in Figure 4.28. Both nights exhibit 

UHS, through the right hemisphere is synchronized during the first night, while the left 

hemisphere dominates during the second. While not the same as switching hemispheres 

multiple times in one night so that each side gets a chance to rest, this interesting detail 

leads to the question of what determines which hemisphere sleeps which night, or at least 

which hemisphere gets to sleep first. This night-by-night switching was not present in any 

of the examined runs with excitatory interhemispheric coupling (Section 4.2.1.) but was 

present in two of the three figures analyzed in this section for inhibitory coupling (Figures 
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4.27 and 4.28). Whether this is a product of the inhibitory coupling, noise, or other factors 

remains to be explored in future work.  

 

 

 

Figure 4.29 – Percent of Night Spent in UHS 

Histogram of the percentage of each night spent in UHS. Colored bars (blue for night 1, 

orange for night 2) denote the percentage of the night the difference in synchronization 

between hemispheres was greater than a threshold (0.18). Night 1 is about 60 s to 190 s, 

and night 2 is about 235 s to 360 s. The error bars denote the standard deviation.  

 

 

 

 To explore the reproducibility of these UHS, four runs were conducted for each of 

the values 𝑔𝑉𝑡𝑉 = −0.00002, −0.000025, −0.00003, −0.000035, and −0.00004. The 
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sliding synchronization was found for each run using a window size of 70 spikes, and the 

synchronization indices of one hemisphere subtracted from the other. If the magnitude of 

the difference between the hemispheres was greater than 0.18 at any time during night 1 

(about 60s to 195s) or night 2 (about 235s to 360s), the system was considered in UHS. 

From this the percentage of time the system was in UHS each night was compiled, averaged 

over the four runs and shown in Figure 4.29. The highest colored bars and error bars appear 

for larger values of coupling strength between hemispheres (𝑔𝑉𝑡𝑉), with the exception of 

night 2 for the smallest coupling strength (−0.00002). This suggests that higher coupling 

strengths are more likely to produce UHS, while the error bars imply that UHS is not a 

guarantee. There is no distinct correlation between a specific night and the appearance of 

UHS. 

 

4.3. CONCLUSIONS 

 The results for both jet lag and unihemispheric sleep are reviewed below.  

 4.3.1. Jet Lag.  While the jet lag results described above are still preliminary, they 

nonetheless provide a good idea of the model’s reaction to circadian changes, even if these 

are not completely biologically accurate. It should be remembered that in the results above, 

the day and night portions of the circadian cycle have equal lengths. Future modifications 

of the model will include a more realistic 8-hour/16-hour night/day cycle.  

 Some of jet lag results show difficulty with state transitions after a change in the 

circadian drive, while others exhibit no discernable change from the reciprocal 

synchronization relationship seen in the control case for these parameters (Figure 2.36). 

The degree to which state transitions were affected varied as a function of the applied 
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circadian disturbance. The system was more stable in response to circadian delays than to 

circadian perturbation, and the system was more stable in response to backwards than to 

forward phase shifts.  

 As for the DST specific runs, the autumn end of DST, or the backward shift, had 

runs that were moderately less disturbed than the spring DST, or the forward shift. This is 

consistent with experimental results showing that the sleep disruptions from DST increases 

instances of heart attacks, strokes, and traffic accidents, as mentioned above (Sections 

4.1.2.1. and 4.1.2.2.).  

 The inclusion of a homeostatic drive may give a better indication of the impact of 

circadian rhythm disruptions due to jet lag. A combination of a delay or perturbation with 

a phase shift may provide results more consistent with other real-world scenarios, such as 

various lengths of flights that land at varying values of CD. Changing the constant value 

of CD during delays and perturbations will also provide a wider variety of results. 

Increasing the length of the simulation, particularly for the parameters where no clear 

recovery occurred, may reveal more of the impact of the circadian disturbance. Isolating 

the disturbance caused by changes in CD will be made simpler by using longer simulations, 

allowing the system to run through an entire daily cycle before the perturbation is 

introduced. The impact of noise on the results presented here, specifically with respect to 

the inconsistency between the multiple runs, should also be addressed. Lastly, future work 

will involve the development of a means of quantifying the effect of circadian disruptions; 

for example, by measuring the deviation of the AMIN and VLPO synchronization indices 

from their expected control values. 
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 4.3.2. Unihemispheric Sleep.  In the model, BHS, asymmetric sleep, and UHS 

were found using both excitatory and inhibitory interhemispheric coupling. The model also 

exhibited a couple of distinct characteristics. Interhemispheric switching, which occurs in 

UHS to allow the hemispheres to take turns resting, was displayed, both within a single 

night (Figure 4.24) and with night-by-night switching (Figure 4.28). Asymmetric sleep 

with brief forays into BHS was shown by the model as well (Figure 4.27), a result evocative 

of the changes in synchronization seen in patients with sleep apnea.  

 Perhaps most vitally, data that showed a phase-cluster chimera state in Section 

3.2.4.3. also displayed synchronization differences characteristic of UHS. The common 

attributes of UHS and the chimera state have been noted, and the possibility of a relation 

between these states discussed. Here, a possible link may have been found; further study 

may reveal more connections between UHS and the chimera state.  
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5. CONCLUSIONS 

 

5.1. SUMMARY   

 A computational model of sleep dynamics has been developed, using two different 

neural models (Huber-Braun and Hindmarsh-Rose). The model has been developed in both 

a single-hemisphere and a two-hemisphere form, with clusters of neurons representing the 

sleep-promoting (VLPO) and wake-promoting (AMIN) regions.  

 With the single hemisphere and Huber-Braun neurons, the synchronization of the 

simulated wake-promoting and sleep-promoting regions has a reciprocal relationship: 

AMIN has higher synchronization than VLPO during the daytime, and VLPO has higher 

synchronization than AMIN during the nighttime (Sections 2.2.4.2. and 2.2.4.3.). Burst 

synchronization analysis showed that VLPO may have higher synchronization during the 

day than shown by the spike-by-spike phase synchronization (Section 2.3.4.). Both VLPO 

and AMIN exhibit burst-firing during their downtimes and rapid, single spikes during their 

active times (Figures 2.12 and 2.13).  

 When Hindmarsh-Rose neurons are used instead, the synchronization relationship 

seen with HB neurons is reversed, with synchronization highs occurring during a region’s 

downtime (daytime for VLPO, nighttime for AMIN, Figure 2.36). Each region exhibits 

burst firing throughout the simulation, with the number of spikes per burst increasing 

during active times and decreasing during downtimes.   

 In the two-hemisphere version of the model, chimera states and phase-cluster 

chimera states were found (Sections 3.2.4.2.-3.2.4.4.). These were all found with excitatory 
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coupling between hemispheres, rather than the inhibitory connection which typically 

produces chimera states (Tinsley et al. 2012).  

 The two-hemisphere model also simulated asymmetric sleep and UHS using both 

excitatory interhemispheric coupling (Figure 4.23) and inhibitory coupling (Figures 4.26 

and 4.27). It also exhibited interhemispheric switching (Figure 4.24), which occurs during 

UHS, and asymmetric sleep with brief forays into BHS (Figure 4.27), similar to the changes 

in synchronization seen in patients with sleep apnea. Finally, and far from being the least, 

data that showed a phase-cluster chimera state in Section 3.2.4.3. also displayed an 

interhemispheric synchronization gap indicative of UHS (Figure 4.25). 

 The jet lag results, while preliminary, showed a variety of reactions to changes in 

the circadian drive, including difficulty in changing states. The system showed greater 

resistance to changes in synchronization with circadian delays and backwards phase shifts 

and experienced a greater effect from the circadian perturbations and forward phase shifts. 

Particularly, the daylight-saving time (DST) results (Figures 4.12 and 4.17) revealed 

synchronization disruptions that are reminiscent of the sleep disturbances caused by DST, 

reported to increase the risk of traffic accidents and medical issues such as heart attacks 

and strokes (Janszky et al. 2012, Harrison 2013, Sipilä et al. 2016, Manfredini et al. 2019).  

Future changes and additions to the model will help shed light on the results found here, as 

discussed below (Section 5.3).  

 

5.2. APPLICATIONS 

 The model presented here can be used to simulate various aspects of sleep 

dynamics, including changes in synchronization within and between regions or 
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hemispheres (Sections 2.2.4. and 2.3.2. – 2.3.4.), chimera states (Section 3.3.), and jet lag 

and unihemispheric or asymmetric sleep (Section 4.2.). While the jet lag results (Section 

4.1.) remain preliminary, the model has simulated a range of phenomena including 

unihemispheric sleep, bihemispheric sleep, asymmetric sleep (Section 4.2), changes in 

regional synchronization, response to unusual sleep environments (first night effect, 

Section 1.3.1.2.), and circadian disturbances (jet lag, daylight savings, Section 4.1.). It may 

also be applied to the investigation of other aspects of sleep, including the effects of lesions 

(which could be simulated by decreasing the coupling strengths between certain regions) 

and sleep deprivation. 

 Each of these aspects of sleep are important topics of future investigation, not least 

because of the health implications of sleep disturbances. Healthy human sleep occurs 

bihemispherically, yet hemispheres can become slightly desynchronized (Section 1.3.1.2.) 

as a reaction to environmental cues (first night effect), or as a result of a sleep disorder 

(sleep apnea). Jet lag (Sections 1.5.4.2. and 4.1.) and sleep deprivation (Section 1.4.) feel 

dreadful and repeated exposures can lead to negative health effects. The symptoms of each 

of these have been studied, though not yet at the level of individual neural synchronization. 

The model presented here provides insights into the possible behavior of neurons in sleep-

related regions of the brain during these sleep instances through the synchronization within 

and between each region and hemisphere. An expanded version of the model with more 

neurons per region could be used to develop predictive hypotheses as to local 

synchronization changes that accompany sleep disturbances. These hypotheses could 

conceivably be tested in vivo in animal models and might eventually form the basis for the 

design of possible clinical interventions.  
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5.3. FUTURE RESEARCH 

 There are still a wealth of studies that can be performed with this model, especially 

with further refinement. 

 5.3.1. Circadian Rhythm Changes.  The circadian rhythm provides ample 

possibilities for further study. In future, the model presented here can be modified to 

consider changes to the circadian drive. Projections from other regions of the brain back to 

the SCN can provide a more detailed interaction between the regions in the model and 

changes in the circadian drive. Allowing other inputs to impact the circadian rhythm, such 

as non-photic elements (St. Hilaire et al. 2007) or even the wavelength of the entraining 

light (Duffy & Czeisler 2009), will provide new aspects to explore in the model. Alongside 

this, creating an internal circadian rhythm for the “subject” in the model and a separate 

circadian drive (external entrainment) will make differentiating the study of external and 

internal circadian perturbations much clearer and allow study of circadian misalignment 

(Fischer et al. 2016).  

 Within the current model, the coupling strength from the circadian drive to each 

region is constant, while the value of CD changes over the day. Another aspect to study 

would be to change the value of 𝑔𝐶 during the course of the day, whether proportionally 

(as 𝑔𝐶𝐴 increases, 𝑔𝐶𝑉 decreases and vice versa), with the change in activity of certain 

regions, or some other variant. This may be equated to something changing the 

effectiveness of circadian entrainment, such as caffeine keeping a person awake, or 

melatonin supplements helping a person sleep.  

 The preliminary jet lag simulations described in Section 4.1. yielded various 

anomalous results. Perturbations late in the day had more impact than perturbations early 
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in the day, and longer perturbations often appeared to have little to no effect on the system’s 

synchronization, while small perturbations ended with the system failing to switch states, 

or even ending in an undeterminable state with overlapping synchronization. These results 

are not conclusive, due to the small sample size.  

 More simulations can be run, and further changes for the study of jet lag can be 

implemented. A larger region of parameter space should be explored with varying changes 

to the circadian drive, to see how different coupling values may change how the circadian 

perturbation impacts the synchronization. The value at which the circadian drive is held 

constant may also be changed, rather than simply holding at the current value. This would 

allow study of the impact of sudden darkness (dropping from a high value of CD to a low 

value) or bright light in late evening or night (increasing form low value of CD to a high 

value), along with the impact due to the timing and duration of these changes.  

 A combination of the preliminary jet lag simulations reviewed above (Section 4.1.) 

may also allow study of more detailed and varied versions of jet lag, such as a delay (CD 

held at a constant value) leading into a phase shift. This specifically would more accurately 

simulate traveling in a plane at a set light value (delay) for a period of time before landing 

in a new time zone (phase shift). Examining jet lag in the two-hemisphere model would 

also lend another layer of complexity and realism to the results. Light level shifts analogous 

to the darkening of the lights on a plane for a truncated night during an eastward trans-

Atlantic flight could also be modeled. Additional simulations will be needed in all cases in 

order to assess the repeatability of the responses to these perturbations. Size effects of 

larger neural ensembles also remain to be investigated. Development of a measure to 

quantify the effect of the time perturbation on the reciprocal synchronization between 
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AMIN and VLPO would be invaluable in assessing the intensity and repeatability of the 

simulated effects.  

 

 

 

Figure 5.1 – Two-Hemisphere Model with Orexin 

Schematic of the two-hemisphere model with the inclusion of neurons representing 

orexin (ORX). Solid arrows represent excitatory connections, and dashed arrows 

represent inhibitory connections. Pink regions with suns represent AMIN, blue with 

moons represent VLPO, and green with a sun represent ORX.  

 

 

 5.3.2. Additional Regions and Drives.  An additional wake-promoting region can 

shift the dynamics of the model; specifically, the addition of orexinergic (ORX) neurons 

from the lateral hypothalamic area (LHA). These neurons release the neurotransmitter 

orexin (also called hypocretin), a crucial element of sleep-wake regulation. Lack of orexin 
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can cause narcolepsy (see Section 1.5.1.; Sakurai 2007, Schwartz & Kilduff 2015). ORX 

is present in many models of sleep, including the UHS model developed by Kedziora et al. 

(2012) and the sleep/wake flip-flop model by Rempe et al. (2010). The ORX neurons of 

LHA interact with both VLPO and AMIN (Saper & Lowell 2014), the two key regions of 

the presented model. The addition of ORX neurons can strengthen and stabilize the wake 

state, especially in the two-hemisphere version of the model, where the VLPO regions 

stimulate each other. A schematic of how ORX would be incorporated into the two-

hemisphere model is shown in Figure 5.1. 

 Additional sleep-promoting regions can also change the dynamics of the model. 

The median preoptic nucleus (MnPO), also located in the hypothalamus, promotes the 

transition from wake to sleep while the VLPO consolidates the sleep state and regulates 

the depth of sleep (Gvilia et al. 2006). Firing ahead of the switch to sleep, MnPO may add 

to sleep pressure (Saper et al. 2010). It also inhibits the LHA, promoting the wake-to-sleep 

transition (Suntsova et al. 2007), balancing the addition of ORX.  

 Another key region in sleep regulation is the extended ventrolateral preoptic 

nucleus (eVLPO). This region inhibits the REM-off regions in the brain, allowing the 

transition from NREM to REM sleep (Lu et al. 2006, Rempe et al. 2010). The eVLPO 

exists in a flip-flop switch with both AMIN (which inhibits REM-on regions) and the 

VLPO (to regulate the switching between NREM and REM sleep) (Rempe et al. 2010). 

This region also projects to the LC (where the AMIN neurons from this model reside) and 

is inhibitory (Saper et al. 2010). The addition of the eVLPO to the model would allow for 

the transition into REM sleep, and the synchronization of all included regions during this 

state can be analyzed.  
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 Working in conjunction with the circadian drive, the homeostatic drive builds up 

sleep pressure as time spent awake accumulates and decreases sleep pressure with time 

spent asleep. This relationship between these two processes was put forward by Borbély 

(1982) and modeled by Daan et al. (1984), whose Process C, or circadian drive, was used 

in the present model. Besides the circadian rhythm, the homeostatic drive has been 

proposed to be regulated by neurons in the VLPO and MnPO (Gvilia et al. 2006), as well 

as by ORX (Postnova et al. 2009). The homeostatic drive interacts with many of the 

proposed elements of the model, adds a new input and robustness to the circadian drive, 

and its addition to the model would create another driving force. It would also allow the 

study of sleep debt (Borbély et al. 2016).  

 5.3.3. Miscellaneous.  Besides the above listed, other future changes can be made 

to improve the model and obtain more results. Additional neurons per region may add to 

the complexity of the model’s behavior. Using HB, results were inconclusive with no 

discernable change with an increase in neurons (Section 2.2.2.4.), and with HR, small 

improvements in the smoothness and consistency of the synchronization index curves were 

observed (Section 2.2.4.3.). More significant system size increases, including in expanded 

versions of the model, may have a greater impact. This may be explored with the HR 

versions of the model, and, once developed, the two-hemisphere HB version of the model. 

Simpler oscillator models such as integrate-and-fire neurons could be used as well, in order 

to reduce the computational time while increasing the number of oscillators per region.  

 Extension of the simulation time, along with further expansion of the time 

compression, may yield new information. This was seen to an extent in the HB results, in 

the difference between the one-minute day results (Figures 2.39 and 2.40) and the three-
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minute day results (Figures 2.20 and 2.37). The impact of noise on the model may also be 

explored for both HB and HR. While noise provides an aspect of biological realism and 

acts as a catalyst for some dynamical behavior (such as driving the voltage of a neuron 

above the firing threshold during sub-threshold oscillations), it may also create difficulties 

in being able to reliably replicate results without performing a very large number of 

simulations for each set of parameters.  

 To further investigate the range of dynamical behavior for both the HR and HB 

versions of the model, further exploration of parameter space should be conducted. The 

differences between in Figure 2.6 and Figure 2.14 for HB with different coupling strengths, 

and between Figures 2.22 and 2.23 for HR with different input current (𝐼) strengths, shows 

how the parameters impact the activity of the model. Parameter-space plots showing the 

regions in which certain phenomena (such as UHS and chimera states) can be generated. 

Particular parameters of interest would be the temperature and various coupling strengths 

in the HB model, and the input current and coupling strengths in the HR model. Choices 

of parameter regions of particular interest will also be informed by single-unit recordings 

from sleep-regulating brain regions in vivo and in vitro, such as the recent work by 

Takahashi et al. (2008) in orexin and non-orexin waking-active neurons, Takahashi et al. 

(2010) in the locus coeruleus, and Sakai (2014) in the SCN.    
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Table A. Constants of the Huber-Braun Model 

 

 

 

Conductances (
𝑚𝑠

𝑐𝑚2) 

 

𝑔𝑑 = 1.5 

𝑔𝑙 = 0.1 

𝑔𝑟 = 2.0 

𝑔𝑠𝑑 = 0.25 

𝑔𝑠𝑟 = 0.4 

 

 

 

Half Activation (𝑚𝑉) 

 

𝑉0𝑑 = −25 

𝑉0𝑟 = −25 

𝑉0𝑠𝑑 = −40 

 

 

Membrane Capacitance (
𝜇𝐹

𝑐𝑚2) 

 

𝐶𝑀 = 1 

 

 

 

 

Reversal Potentials (𝑚𝑉) 

 

𝑉𝑑 = 50 

𝑉𝑙 = −60 

𝑉𝑟 = −90 

𝑉𝑠𝑑 = 50 

𝑉𝑠𝑟 = −90 
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Table A. Constants of the Huber-Braun Model (Cont.) 

 

 

Steepness (𝑚𝑉−1) 

 

𝑆𝑑 = 0.25 

𝑆𝑟 = 0.25 

𝑆𝑠𝑑 = 0.09 

 

 

  

Time Constants (𝑚𝑠) 

 

𝜏𝑑 = 0.1 

𝜏𝑟 = 2 

𝜏𝑠𝑑 = 10 

𝜏𝑠𝑟 = 20 

 

 

 

Other Parameters 

 

𝑇0 = 25℃ 

𝜂 = 0.012 

𝑘 = 0.17 

𝐷 = 100 𝐴2 𝑠⁄  
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Table B. Constants of the Hindmarsh-Rose Model 

 

Noise Amplitude (𝐴2 𝑠⁄ ) 

 

 

𝐷 = 0.005 

 

Equilibrium Point 

 

 

𝑥1 =  −1.6  
 

 

 

 

 

 

Other Constants 

 

𝑎 = 1 
 

𝑏 = 3 
 

𝑐 = 1 
 

𝑑 = 5 
 

𝑟 = 0.003 
 

𝑠 = 4 
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