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ABSTRACT 

The principle objective of this research is to advance our understanding of the 

effects of humid conditions on the strength and susceptibility to fatigue of soda-lime 

silicate (SLS) glass.  The two-point bend method was used to evaluate the fatigue 

characteristics and the degradation of failure strain of fibers drawn from melts of 

commercial soda-lime silicate glass and exposed to various environmental conditions. 

Soda lime silicate glasses from two commercial products but with similar nominal 

compositions were examined. One glass had pristine failure strains about 10% greater 

than the other, but both had similar fatigue parameters. The fatigue parameter increased 

from 16 to 25 when SLS glass was exposed to 80% relative humidity (RH), 50°C 

conditions for 28 days, indicating a decrease in susceptibility to fatigue. However, failure 

strains decreased by 80%. These results were attributed to changes in the glass surface 

due to the preferential leaching of alkali ions during weathering. The dealkalized surface 

was less susceptible to fatigue effects, but the damage induced to these surfaces reduced 

failure strain. Weathering SLS fibers in 10%RH, 50°C conditions for over 30 days, 

however, did not change the fatigue parameter, nor did it significantly reduce failure 

strain. In fact, failure strain increased by about 10% over the first three days of 

weathering in these conditions. Similar results were also observed for fibers weathered in 

40%RH at 50°C and 25°C and were attributed to the dealkalization of the glass surface 

without the subsequent creation of damage sites that were created after exposure to 

50°C/80% RH air. 
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1. INTRODUCTION 

1.1. GLASS STRENGTH 

Glass is a material of choice for applications that depend on its transparency, 

aesthetic appeal, chemical stability, and manufacturability, but are not constrained by its 

inherent brittleness [1]. One common general glass composition is soda-lime-silicate 

(SLS), used in consumer packaging, lighting, architectural, and automotive glazing 

applications. Demands for lighter, stronger, and more reliable packaging and glazing 

materials has increased the interest in understanding what determines the theoretical and 

practical strengths of glass [2]–[4].  

1.1.1. Intrinsic Strength of Brittle Materials. The intrinsic strength of a flaw-

free material depends on its molecular-level structure [5]. To determine an intrinsic 

strength, one must first assume that the initiation of failure occurs at the weakest bonds in 

a structure, generally considered the weakest link in a flawless material [6]. The Condon-

Morse description of the bond energy between a cation and anion is a balance of the 

internuclear repulsion energy and the Coulombic attraction energy between those ions 

Figure 1.1 shows the Condon-Morse potential energy for two ions as a function of their 

separation distance, r [7]. The integral of this potential energy curve gives the force 

required to separate those ions (Equation 1.1): 

 

𝐸𝐸 = ∫𝐹𝐹𝐹𝐹𝐹𝐹 (1.1) 

  

 

 



2 

When the net attraction and repulsion forces is equal to zero, and the potential energy is 

greatest (most negative), the atom spacing is at equilibrium (ro)[7] (Figure 1.1).  

 

 

Figure 1.1. Condon-Morse potential energy curve (top) and resulting force required to 
separate two atoms derived from equation 1 (bottom). 

 

Increasing the separation distance between ions from their equilibrium distances 

requires an application of force. In a three-dimensional material, this separation will 
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eventually form two new surfaces. To estimate the maximum stress, σm, required to 

separate a bond,  Orowan used Hooke’s Law (Equation 1.2) and approximated the stress-

distance curve as a one-half sine wave (Equation 1.3) where 𝜆𝜆 is a constant [8].  

 

𝐹𝐹 = −𝑘𝑘𝐹𝐹         (1.2) 

 

𝜎𝜎𝑚𝑚 = 𝜎𝜎 sin( 2𝜋𝜋𝐹𝐹/𝜆𝜆)       (1.3) 

 

Orowan defined the area under this approximated force-distance curve to be the 

work required to separate the atoms and equated this work to that required to create two 

new surfaces. From this, Orowan developed an expression for the theoretical, intrinsic 

strength of brittle materials (Equation 1.4)[9]: 

 

𝜎𝜎𝑚𝑚 = (𝛾𝛾0𝐸𝐸/𝐹𝐹0)1/2        (1.4) 

 

where 𝛾𝛾𝑜𝑜 is the surface energy per unit area and E is the Young’s modulus. The long-

range, ordered spacing of atoms in a crystal provides a straight-forward way to apply the 

Orowan relationship. Glasses, on the other hand, have disordered structures with 

variations in bond distances and energies, that depend on both the glass composition and 

the processing conditions[1], and so identifying appropriate values for r0 becomes 

problematic.  

1.1.2. Extrinsic Factors on Strength of Brittle Materials. The use of Orowan’s 

equation to predict the theoretical strength of brittle materials like glass ultimately results 
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in values orders of magnitude higher than the observed strengths. The stark difference 

between the theoretical and observed strength is largely attributed to the presence of 

surface flaws that are created during processing, environmental exposure, and handling. 

Accurate predictions of glass strength rely heavily on the understanding of flaw and crack 

behavior in brittle materials. Inglis studied flaw geometry and determined that the local 

stresses were dependent on flaw shape and size[10]. He calculated that the maximum 

stress, σm (GPa), concentrated on the edge of an elliptical hole in an infinite plate with an 

applied stress (σ) to be: 

 

𝜎𝜎𝑚𝑚 = 2𝜎𝜎��𝑐𝑐/𝜌𝜌�            (1.5) 

 

where c is the half-crack length and ρ is the crack tip radius. There are shortcomings to 

the Inglis relationship. First, it is inadequate for estimating the strengths of pristine 

materials with atomically sharp defects. (σm goes to infinity as ρ approaches zero.) 

Secondly, it does not take into account the non-linear acceleration of cracks during 

failure[1]. 

  Griffith used the energy conservation laws of mechanics and thermodynamics to 

derive a more practical relationship between a critical flaw length (c*, m) and the failure 

strength of a brittle material (σf, GPa)( Equation 1.6)[11]: 

 

𝜎𝜎𝑓𝑓 = �2𝛾𝛾𝑜𝑜𝐸𝐸
𝜋𝜋𝑐𝑐∗

        (1.6) 
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where E is Young’s modulus (GPa) and 𝛾𝛾𝑜𝑜 is surface energy (J/m2). Griffith balanced the 

loss in strain energy during fracture with the increase in surface energy. The Griffith 

equation has been combined with the Orowan and Inglis relationships to predict the 

theoretical strength (σth) of brittle materials with atomically sharp flaws: 

 

𝜎𝜎𝑡𝑡ℎ = 𝜎𝜎𝑚𝑚 =  �𝐸𝐸𝛾𝛾𝑜𝑜𝑝𝑝
4𝑐𝑐𝑎𝑎0

=  �𝐸𝐸𝛾𝛾𝑜𝑜
8𝑐𝑐

                         (1.7) 

 

Similar to the Inglis equation, the Griffith equation did not account for the 

observed acceleration of crack growth with crack size [12]. By considering the increased 

stress intensity at the crack, Irwin showed that stress fields at the tip of a crack consist of 

three basic modes: tensile (Mode I), in-plane shearing (Mode II), and out of plane shear 

(Mode III) (Figure 1.2).  

 

 

Figure 1.2. Three modes of fracture [13]. 
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Brittle materials typically fail in Mode I, where the direction of tensile stress is normal to 

the plane of the crack [12]. Each mode has a scaling factor called the stress intensity 

factor (KI, KII, and KIII, respectively) that is derived from the stress fields. When the 

critical stress intensity factor (Kc) is reached, the crack propagates. In addition to this, 

Irwin also defined the relationship of the stress intensity factors to the change in strain 

energy as the crack propagates, known as the strain energy release rate. When the critical 

stress intensity factor is reached, the critical strain energy release rate is also reached, 

leading to unstable crack growth[12].  

The ability to absorb energy prior to the propagation of a crack is known as 

toughness, and the critical stress intensity factor is considered a measurement of the 

facture toughness in a brittle material. The critical stress intensity factor is typically only 

derived for crystalline materials. For non-crystalline materials, the disordered structure 

produces inhomogeneous stress fields, and the critical stress intensity factor is thus only 

an approximation[14]–[16]. 

1.1.3. Effect of Processing Conditions on Strength.  By definition, glass lacks a 

long-range, homogenous, and stoichiometric lattice structure. There are distributions in 

the atomic spacing, and the lack of stoichiometry allows for a vast range of practical 

compositions with tunable properties[1]. To date, it is estimated that over 200,000 

compositions have been produced, which is only the merest trifle of the 1052 estimated 

compositions capable of being produced from glass-friendly elements on the periodic 

table[17]. For each composition, structural variations can be controlled by melting 

conditions including temperature, time, and atmospheric conditions. As a result, 
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properties that are sensitive to the structure of the glass, including strength and 

susceptibility to damage, are sensitive to processing conditions.  

When a glass melt is cooled below the temperature at which crystals are 

thermodynamically stable, either the melting temperature of a stoichiometric composition 

or the liquidus temperature of a non-stoichiometric composition, it becomes a metastable 

supercooled liquid that continues to relax as a liquid on further cooling (Figure 1.3).  

Because the viscosity of this supercooled liquid increases on cooling, the time required 

for the supercooled liquid to relax to the conditions of the new temperature becomes 

longer.  In the glass transition range, this relaxation time becomes long compared with 

the experimental time, and the properties of the resulting glass diverge from those of the 

supercooled liquid as it gradually solidifies[18]. This transition is different from the 

freezing transition of a melt to a crystalline solid which occurs at a thermodynamically 

distinct temperature. The rate at which a glass-forming melt is cooled affects the structure 

of the resulting glass. Glass melts cooled through the glass transition range at a faster 

rate, for example, produce lower density glasses that departed from the supercooled 

liquid at a greater temperature. Likewise, slowly cooled glasses have enough time to 

relax to more compact structures at lower temperatures, resulting in a greater density 

(Figure 1.3). There is a thermodynamic driving force for glasses to continually relax 

towards the metastable equilibrium of the supercooled liquid, and then rearrange their 

structures to form a thermodynamically stable crystal, but at rates beyond observation, 

and so glasses can be considered to be kinetically solid materials[18]. 
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Figure 1.3. Volume-Temperature diagram showing the transition of a metastable 
supercooled liquid to a glass[19]. 

 

The temperature on cooling at which the properties of the material depart from 

those of the metastable supercooled liquid is called the fictive temperature. The fictive 

temperature is a useful way to represent the effects of thermal history on the properties of 

a glass.  Rapidly cooled melts that form lower density glasses depart from the 

supercooled liquid at greater fictive temperatures than those cooled more slowly, creating 

glasses with lower fictive temperatures (Figure 1.3).  

In addition to density, the thermal history (fictive temperature) of a glass affects 

other strength related properties such as resistance to fatigue and corrosion. Amma et. al. 

determined that the lower density of SLS glasses with higher fictive temperatures leads to 

a greater susceptibility to acidic corrosion[20]. However, SLS glasses with a higher 

fictive temperature have been shown to have slower crack growth rates compared to 

Temperature 
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m
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lower fictive temperature SLS glasses[21], resulting in greater mechanical strengths for 

higher fictive temperature glasses[22]. This is consistent with other research that has 

found that high fictive temperature glasses have a greater resistance to fatigue[23], which 

is a contributing factor to crack propagation in ambient conditions. 

 Melt homogeneity is another important aspect that dictates the properties of the 

resulting glass. The thermal history in the glass transition range differs from that of the 

melt when it is held above the liquidus point. Melt history effects on glass properties have 

been studied extensively for several glass compositions[24]–[28]. From studies of 

pristine fibers, it has been shown that when melts are held for longer times at various 

temperatures above the liquidus temperature, the failure distributions of those fibers 

become narrower [27], [29], [30],[31]. This has been explained by the presence of fewer 

heterogeneities in “well-conditioned” melts that might act as ‘critical flaws’ in the glass 

fibers[11]. The effect of atmosphere on the homogenization rate also plays a critical role. 

Depending on the composition, faster melt homogenization can be achieved with inert, 

high/low water content, oxidizing or reducing atmospheres[27], [32], [33]. 

One topic of interest is how the size, shape, and distribution of structural 

heterogeneities are affected by melt history and how this information can be used to 

improve the strength of glass[3]. In most cases, the critical flaws are estimated to have 

dimensions on the nanometer scale and so cannot be independently identified. Progress 

has been made in observing propagation of nanoscale critical flaws using atomic force 

microscopy. Notably, this research has provided insight into water penetration and 

coalescence of structural voids near the crack tip[34].  Because of the strong influence of 
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heterogeneities on measured strength of glass, it is important to properly homogenize a 

melt prior to glass formation. 

1.1.4. Effect of Environmental Factors on Glass Strength.  The theoretical 

strength limits of glass have never been observed in real-world applications and rarely 

observed in controlled research environments. The decrease in practical glass strength is 

partly due to previously discussed strength-limiting surface flaws that can form due to 

handling or processing. In addition to flaws, environmental factors can further degrade 

glass strength. Strength limiting flaws can be created from environmental reactions on 

glass surfaces in a process called weathering. Glass is also weaker in the presence of 

water (atmospheric and liquid) due to environmental fatigue. The prevention of flaw 

creation and environmental degradation focuses primarily around surface treatments of 

glass products[35], [36]; for example, the deposition of abrasion resistant tin-polymer 

coatings on container surfaces[37]. Kennedy and Brandt[38] showed that the fatigue 

sensitivity of a glass depends on its composition, and this revelation has promoted 

research to understand the compositional and environmental factors that affect the 

underlying strength of glass[39]–[48]. 

1.1.4.1. Effect of fatigue.  Fatigue is one of the factors that decrease glass 

strength. In the 1890s, Grenet observed variances in glass strength that depended on the 

load and environmental conditions[49]. Subsequently, Charles[38], [50]–[52] 

systematically studied fatigue effects, which he classified as either static or dynamic 

fatigue. Static fatigue is measured from the time to failure of a sample under a constant 

load[50], [53]. Dynamic fatigue is determined by recording the failure strength of a 

sample tested with different loading rates[51]. In both types of experiments, the failure 
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strength of glass is controlled by the stress corrosion reactions at the tip of a flaw. For 

environmental fatigue, reactions between water in the environment and strained bonds at 

crack tip cause slow crack growth until a critical flaw dimension is reached and failure 

occurs [54]. Fatigue is also observed in pristine samples, indicating that there is also a 

crack initiation component[55]. This effect is greatly dependent on glass composition as 

well as the structure of the glass. Soda-lime silicate glasses react and exchange sodium 

ions from the glass with protons from the environment (Equation 1.8) to extend the flaw 

length and cause the glass to fail at lower applied stress[56]. Additionally, the increased 

pH of the ion-exchange accelerates further fatigue reaction, including the hydrolysis of 

the siloxane bonds that constitute the glass network (Equation  
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Hydrolysis is the primary fatigue mechanism for silica and other cross-linked glasses 

[57]. Interestingly, silica is nearly resistant to attack by water under zero strain, and it is 

only under stress that it undergoes rapid hydrolysis[6].  

Eliminating environmental fatigue reactions in order to better understand the 

intrinsic strength of glass can be difficult. Fatigue reactions depend on humidity, stress 

rate, and temperature [50], [53]. Increasing humidity and temperature will typically result 

in faster fatigue reactions and lower failure strains. However, testing at a faster stress 

rates gives less time for these reactions to occur, resulting in greater failure 

strain[51].When describing the susceptibility to fatigue reactions of a particular glass 

composition, a value known as the fatigue parameter is used. This fatigue parameter is a 

way to quantify the effect of stressing rate at a constant H2O activity on the failure 

strength of the glass. The greater this parameter is, the less susceptible a glass is to 

fatigue.  

Slow crack growth studies can be used to determine the fatigue parameter. In a 

slow crack study, a crack with a predetermined length is introduced to the sample. While 

applying a constant force to the ends of the crack, the dependence of the crack velocity 

on the applied stress and environment of the test is measured. The typical results of a 

slow crack growth study are shown in Figure 1.4, where the initial growth of the crack is 

due to fatigue reactions previously discussed and is dependent on glass composition [54]. 

The plateau in crack velocity at greater applied loads is due to limited migration of water 

to the crack tip, before the initiation of spontaneous crack growth at the critical applied 

load[54].  
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From the initial increase in crack velocity, the stress intensity factor, K, is derived 

as a scaling factor for the amplification of applied stress at a crack tip[12]. The 

relationship between crack growth velocity (V) and the stress intensity factor is most 

commonly described by a model based on an empirical power law[58]: 

 

 𝑉𝑉 = 𝐴𝐴 �𝐾𝐾
𝐾𝐾𝑐𝑐
�
𝑛𝑛

 (1.10) 

 

where A is an environmental parameter with an Arrhenius temperature 

dependence and n is the fatigue parameter. This power law model was determined to fit 

slow-crack growth data the best [59], but there are other models based on exponential 

laws[60]–[62]. For dynamic fatigue studies, the fatigue parameter can be derived 

analytically from the relationship between failure strength (𝜎𝜎𝑓𝑓) and stressing rate (�̇�𝜎): 

 

 𝜎𝜎𝑓𝑓 = 𝐷𝐷�̇�𝜎(1/(𝑛𝑛+1) (1.11) 

 

where D is a constant. 

 To minimize the effects of environmental fatigue, glass strengths have been tested 

using samples with hermetically sealed coatings and in vacuum environments to 

eliminate the influence of water[63]–[65]. Another option is to rapidly stress the glass to 

minimize the time for fatigue reactions to occur, although this is not realistic in ambient 

laboratory conditions[66]. Water activity can be reduced at low temperatures to arrest 

fatigue reactions and allow strength measurements to be made at reasonable testing 

rates[5]. It should be noted that low-temperature tests, often done in liquid nitrogen, are 



14 

not ever entirely fatigue-free albeit it is accepted that the observed fatigue is near zero 

and are representative of an inert environment[5]. 

 

 

Figure 1.4. Typical results of a slow crack growth study for soda lime silicate glass tested 
under various humidities at 25ᵒC.[54] 

 

Eliminating environmental fatigue does not result in an absence of fatigue 

altogether. The concept of inert fatigue is controversial, but there is strong evidence of 

slow crack growth in inert conditions[5]. Inert fatigue is largely attributed to thermal 

energy, kT, and the probability that it contributes to the rupture of a bond. Theoretically, 
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intrinsic strength could be measured if testing were done close to the vibration time (τvib) 

of the material in order to avoid inert fatigue effects. Gupta and Kurkjian proposed the 

following relationship between testing time (t) and measured strength (σ): 

 

 𝜏𝜏 = 𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣 𝑒𝑒𝑒𝑒𝑒𝑒 �𝐸𝐸(𝑋𝑋,𝐶𝐶)
𝑘𝑘𝑘𝑘

�1 − � 𝜎𝜎
𝜎𝜎𝑜𝑜(𝑘𝑘,𝐶𝐶)

��� (1.12) 

 

where E(X,C) is the zero-stress environment-dependent activation energy for a glass 

composition (C), Boltzmann constant (k), test temperature (T), strength (σ) measured at 

the test time (τ) and 𝜎𝜎𝑜𝑜(𝑇𝑇,𝐶𝐶) is the fatigue-free strength [5].  

1.1.4.2. Development of weathering damage.  Flaws can be introduced to the 

surfaces of glass in many ways, often through handling and impact during the 

manufacture and use. However, flaws can also develop over time from exposure to the 

environment in a process called weathering. The decrease in failure strain with 

weathering time for silicate glasses has been attributed to reactions with water that 

lengthen critical flaws, reducing strength[27], [67]. Bunker describes three classes of 

potential reactions that can occur on the surface of a soda-lime-silicate glass with water in 

the ambient: (1) hydration, (2) hydrolysis, and (3) ion exchange [67]. It is possible in 

more complex glasses for all three of these reactions to occur simultaneously. Hydration 

of a glass occurs when a water molecule, H2O, diffuses into a glass. This requires a 

certain amount of void space in the glass. Hydrolysis reactions involve the metal-oxygen 

bonds: 

 

𝐻𝐻2𝑂𝑂  +   𝑀𝑀 −𝑂𝑂 −𝑀𝑀→𝑀𝑀− 𝑂𝑂𝐻𝐻 +   𝐻𝐻𝑂𝑂 −𝑀𝑀 →𝑀𝑀 −𝑂𝑂 −𝑀𝑀 + 𝐻𝐻2𝑂𝑂    (1.13) 
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It should be noted that the hydrolysis reaction will always result in some residual 

hydroxyl groups since it is not fully reversible. Glasses with modifier cations, such as 

sodium, experience ion exchange reactions where the modifier ions are preferentially 

leached from the glass surface due to reactions with water. Some of these reactions are:  

 

Si-O-Na+ + H3O+  Si-OH + Na+ + H2O  (1.14) 

 

Si-O-Na+ + H2O  Si-OH + Na+ + OH-  (1.15) 

 

The pH around the reaction sites can change because of these ion-exchange reactions, 

resulting in changes in the reaction rates at the surface. The ion exchange process is 

considered the most prevalent initial reaction with alkali containing glasses like soda-

lime-silicate exposed to humid environments[68] 

For soda-lime-silicate glass, as the ion exchange reactions progress, sodium is 

leached to the surface of the glass. This produces a silica-rich “gel” layer considerably 

weaker than the pristine structure (Figure 1.5a and Figure 1.5b). This silica-rich layer 

itself begins to degrade as the ion exchange process creates an inherently basic 

environment that accelerates the hydrolysis of siloxane bonds. The thickness and 

topology of the silica-rich layer can vary depending on whether the glass is exposed to 

water in atmospheric or aqueous environments. By studying the corrosion in aqueous 

environments, the rate of growth of the silica-rich layer has been determined to be driven 

initially by diffusion controlled processes where the rate of growth is proportional to the 
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square root of time[69]. Departure from diffusion-controlled processes occur as the pH of 

the layer increases and the silica layers then dissolve.  

In humid conditions, the leached ions of a soda lime silicate glass accumulate on 

the surface and consequentially react with environmental species to form a wide variety 

of crystalline deposits on the surface (Figure 1.5c and Figure 1.5d). 

 

 

Figure 1.5. Soda-lime-silicate glass weathering process, starting with  a) a clean surface, 
onto which b) a water film is adsorbed, followed by c) the development of an ion 

deficient silica-rich layer and the enrichment of environmental gases into the water film, 
and finally d) the precipitation of crystalline weathering products on surface[68]. 

 

The most common surface deposits are calcium and sodium carbonates, with 

metal nitrates and sulfates often forming as well[70], [71].  The link between the 
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formation of crystalline weathering products on the glass surface and their direct effect 

on critical flaw formation is not fully known due to the inability to directly observe crack 

initiation and subsequent crack propagation on a glass surface. Micro-pitting has been 

observed on the surfaces of weathered  SLS glass, and was attributed to the growth of 

crystallites, which were removed prior to imaging[71].  

1.1.5. Modeling Strength and Fatigue of Glass.  There have been several areas 

of focus in current glass modeling research, including property-structure prediction, 

predictive modeling of liquidus temperature and viscosity, glass relaxation, corrosion 

simulation, and nano-scopic crack initiation and propagation[3]. Because commercial 

glass is typically composed of several glass formers (SiO2, Al2O3, B2O3, etc.) and 

different modifiers (Na2O, CaO, K2O, etc.), with structures that vary widely with thermal 

history (fictive temperature), it is inherently complex, which makes predicting structure-

property relations an ongoing challenge[2], [3]. Smedskjaer, et al. have used topological 

constraint theory to predict some properties like hardness and ionic diffusion[72]–[74]. 

This theory considers glass structures as nodes on a network and eliminates 

considerations that do not affect the macroscopic properties of a glass[1]. However, these 

models are still relatively simple, ignoring considerations like fictive temperature, 

structural heterogeneities, and point defects.  

Molecular dynamic (MD) simulations have been better adapted to understanding 

the dependence of mechanical properties on structure and the influence and formation of 

heterogeneities such as voids. In particular, the inelastic and elastic response of glass to 

pressure and to tensile stress have been described[6], [75]–[77]. Plastic flow has been 

observed at indentations and at cracks tips[77]. MD simulations of these phenomena 
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show that SLS glass under uniform pressure behaves like an elastic solid. However, 

under uni-axial compressive and tensile stresses, Si-O bonds were found to repeatedly 

break and recombine while the distribution of network modifiers remained the same [78], 

[79]. On the other hand, when silica, which has a more polymerized structure, was 

strained in uniaxial tension, structural voids were produced. These results indicate the 

that controlling structural differences and void formation in silica and modified silicate 

glasses can suppress crack formation and growth via the increase of plastic flow. Recent 

advancements in observing crack growth on the nanoscale have supported the molecular 

dynamic models for void formation and deformation of glass structure under stress[34].  

Molecular dynamic models have also been created to study the interactions of 

water with modified silicate glass bulk and surface structures.  Taniguchi and Ito [80] 

provided new insight into the incorporation of  -OH and H2O in sodium silicate glasses 

by using MD to model mechanical behavior of ion-substituted hydrous glass (NH)  and 

H2O molecular-inserted hydrous glass (NM). They found that the NH glass had a 

significantly lower packing density resulting in easier deformation, and that the –OH 

groups degrade the mechanical properties of the glass more readily than do the 

incorporation of H2O molecules. There have also been developments in simulating the 

absorption of water on silica glass surfaces and to a lesser extent, on multi-component 

silicate glass surfaces[81]–[85]. These studies have been used to interpret observed 

interactions of glass properties such as strength degradation and fatigue resistance.  
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1.2. MEASURING STRENGTH AND FATIGUE OF GLASS 

1.2.1. Traditional Extrinsic Strength Measurements.   The mechanical strength 

of glass can be tested using several traditional methods including tensile tests [27], [45], 

ring-on-ring test[47], three-point bend test[86], and four-point bend test[87], [88].  These 

traditional techniques have complications when used to measure the intrinsic strength of 

glass and are usually chosen to reflect the application of the glass being studied. For 

tensile testing (Figure 1.7), fibers must be gripped on both ends potentially creating 

damage and skewing the strength measurements. Another detrimental aspect of the 

tensile test is that the tested volume and surface area of the fiber are much larger 

compared to other methods, increasing the likelihood that an extrinsic flaw will 

determine the strength measured and broaden the distribution of measurements[5].  

 

 

Figure 1.6.  Schematic of tensile test for strength measurements of glass fibers. 
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Flat glass samples are typically evaluated using ring-on-ring or three- and four-

point bend tests. Figure 1.6 shows the schematics of the three- and four-point bending 

set-ups. These tests involve relatively smaller testing volumes than typical fiber tensile 

tests. However, like tensile testing, these tests still risk creating damage at the points of 

contact between the glass surface and the testing apparatus.  Fracture analysis is often 

combined with these testing methods as a way to discern whether the origin of fracture is 

due to the test or is intrinsic with the sample; e.g., bubbles, pre-existing sample damage, 

etc. 

 

 

Figure 1.7. Schematic diagram of a three-point bend test (left) and a four-point bend test 
(right). 

 

1.2.2. Measuring Pristine or Intrinsic Strength of Glass.   Many of the studies 

described above were designed to evaluate the effects of extrinsic flaws and, to a lesser 

extent, processing-induced variables like inhomogeneity. These measurements were then 

extrapolated to predict glass material performance in a particular application. Flaw-free 

samples are needed to study the intrinsic strength of brittle materials like glass. Gupta 

defined three criteria to determine if the measured strength is intrinsic[89]: 

 

1. There should be no sample size dependence for the measured strength 

2. The distribution of measured strengths should be narrow 

3. The measured strength should be high 



22 

To achieve these criteria, common strategies are to minimize the probability of an 

extrinsic flaw being included in the testing volume, minimize handling between 

fabrication and testing to avoid inducing flaws, and/or apply a surface treatment such as 

an HF rinse to eliminate surface flaws[5], [39], [66].  Glass plate and rod samples tend to 

be unsuitable due to the processing and handling steps necessary to create the samples 

prior to the test itself. However, fibers can be processed more quickly than plates or rods 

and can be tested with less handling. Fibers with a diameter less than 0.5mm can be 

prepared without residual stresses [90], [91], allowing immediate testing after fiber 

formation. Fibers are also easy to handle and store to avoid incurring damage to the 

surface. Due to the ease of handling and fabrication, hundreds of samples can be 

produced in a fraction of the time required to prepare other sample forms, allowing for 

large sample sizes that have near identical processing conditions to eliminate variances 

that can occur for samples that require more extensive processing, such as polishing. 

Failure studies of fibers have been found to satisfy Gupta’s three criteria. Several studies 

have shown that if a melt is sufficiently homogenized, then there is no dependence of 

strength on the diameter of the fiber[24], [44]. Additionally, tight distributions of fibers 

have been observed in both tensile and two-point bend testing. Under inert conditions, the 

highest observed strength of glass to date have been observed with fibers [41], [92], [93]. 

Two Point Bend Method.  Predecessors to the two-point bend method go as far 

back as 1950, when Sinclair defined the “loop” method for testing fiber strength by 

bending a fiber into a loop and closing the loop until failure. This test produced failure 

strengths that were two or three times greater than were previously achieved. Thirty years 

later, Matthewson et al. determined the failure strains of silica optical fibers using a 
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refined version of the loop test known as the two-point bend test[91]. The two-point bend 

(TPB) method is a quick way to evaluate the failure characteristics of glass and poses 

many advantages over traditional mechanical testing methods. In particular, the fibers are 

not gripped like they are in a conventional tensile test, but are instead bent into a ‘U’ 

shape and placed between two parallel face-plates (Figure 1.8). Fibers can be tested in 

either dynamic or static conditions, but dynamic conditions are more typical due to the 

shorter testing times[94], [95]. During a dynamic test, one of the face plates closes at 

constant velocity, the faceplate velocity (vfp), reducing the gap between the two face 

plates, increasing the stress on the fiber which is maximized on the outer surface of the 

“U”, until the fiber snaps. The maximum tensile stress is concentrated at the tip of the 

“U”, creating an effective gauge length of microns, instead of millimeters-to-centimeters 

in a typical tensile test[91], [96]. Faceplate velocities between 50-10,000µm/sec can be 

achieved with the TPB apparatus used in the present study.  An acoustic sensor detects 

the snap of as broken fiber and the distance between the face-plates (D) at failure is 

recorded. The diameters (d) of the two broken ends of the fiber are recorded and used to 

calculate the failure strain, εf, using [91]: 

 

𝜀𝜀𝑓𝑓 = 1.198 � 𝑑𝑑
𝐷𝐷−𝑑𝑑

�    (1.16) 

 

There are several benefits to the TPB technique. As mentioned before, the 

technique does not require unusual handling or preparation of the fiber samples. 

Uncoated fibers can be tested in pristine condition, but coated fibers can also be tested. 

The testing volume is much smaller than those tested using other techniques. The 



24 

apparatus also allows for easy environmental control, like immersion in liquid nitrogen or 

water, because the testing set up is compact and easily encased. With other methods, 

particularly tensile testing, immersion in liquid nitrogen can be difficult. 

 

 

Figure 1.8. Schematic of the two-point bend method test set up. 

 

Due to control of the environmental conditions, a dynamic TPB test can be used 

to determine the dynamic fatigue parameter ‘n’ with relative ease. With dynamic fatigue, 

failure strains decrease with increasing relative humidity, decreasing stress/strain rate, or 

increasing temperature[44]. Shiue and Matthewson[97] compared several models for 

measuring fatigue in glass using TPB. By fitting various models to the failure strain vs 

strain rate TPB data, it was determined that a power law model fit the fatigue data the 

best, although an exponential law model has parameters with better physical meaning.  

Using the power law model, the slow crack growth and dynamic fatigue studies can be 

directly compared, which is not possible using the exponential models. Therefore the 

power law model is widely preferred [44]. 
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Using the TPB method, Rondinella and Matthewson found correlations between 

fatigue parameters measured at constant strain rates (𝜀𝜀̇), constant stress rates (�̇�𝜎), and 

constant faceplate velocity rates (vfp) [98]. Rondinella and Matthewson determined ‘n’ 

from constant faceplate velocity using equation[98]: 

 

𝑛𝑛 = 1 + 1

𝑑𝑑�
𝑙𝑙𝑜𝑜𝑙𝑙𝜀𝜀𝑓𝑓
𝑙𝑙𝑜𝑜𝑙𝑙𝑣𝑣𝑓𝑓𝑓𝑓

�
     (1.18) 

 

where ‘d(log(εf)/dlog(vfp))’ is the slope of the fitted line for each set of data in an average 

failure strain vs. the faceplate velocity experiment.  

There are downsides to the two-point bend method. Data is reported in terms of 

failure strain because it is difficult to calculate the failure strength of a glass from the 

failure strains due to the non-linear elastic modulus at failure strains greater than 

~2%[99]. Limited data exists to calculate the non-linear elastic behavior of glass because 

of the difficulty and limitations of measuring the third and fourth order elastic constants  

with current testing methods[99]. Another downside to the two-point bend method is that 

the origin of the failure has not been observed because of the extensive damage that 

occurs to the ends of the fiber on failure. Atomic Force microscopy, optical microscopy, 

and Scanning Electron microscopy have all failed to identify the failure source of glass 

fibers[100]. Despite these drawbacks, the TPB technique and its applications has been 

extensively discussed in the literature[24], [30], [39]–[42], [44], [90], [91], [101], [102]. 

The two-point bend method has been used in a variety of studies of the failure 

characteristics of glass. For example, melt history effects have been described for fibers 
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drawn from melts at various temperatures and after different times, to yield a link 

between melt homogeneity and the resulting distribution of fiber strains. Melting for 

longer times and at higher temperatures almost always results in narrower distributions 

and higher failure strains of fibers[27], [44]. However, it was observed that melts with a 

volatile component eventually produced fibers with broader distributions of failure strains 

due to the resulting structural heterogeneities[44]. Figure 1.9 shows the average failure 

strains of commercial SLS glass fibers measured in liquid nitrogen using the two-point 

bend technique. As time and temperature of melting increase, the failure strains 

distributions narrow (increasing the Weibull Modulus) and the average failure strains 

increase. After longer periods of time, although the failure strains see little decrease, the 

distribution of failure strains begin to broaden (decrease in Weibull modulus).  

TPB experiments have also been done to characterize and quantify the inert and 

environmental fatigue characteristics of different compositions of glass. The fatigue 

susceptibility of SLS glass is independent of testing humidity whereas silica and E-glass 

(an alkaline earth aluminoborosilicate glass) showed a clear dependence on humidity 

(Figure 1.10). The phenomena were attributed to the reaction order increasing with 

increasing humidity[42]. Studying the inert failure strains of fibers has also yielded new 

insights into the effect of composition on the failure of glass. Lower studied various 

alkali silicate, aluminosilicate, and sodium calcium silicate glasses and was able to 

determine how relatively small changes in glass composition affect the inert failure 

characteristics [30]. For these glasses, the inert failure strains were shown to increase 

with increasing modifier content. This trend was attributed to the decrease in Young’s 

modulus with increasing fractions of non-bridging oxygen that constitute the glass 
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structure. The decrease in Young’s modulus allowed structures to deform when stressed, 

allowing for greater failure strains to be achieved (Figure 1.11)[30].   

 

  

Figure 1.9. Average failure strains of commercial SLS glass fibers measured in liquid 
nitrogen using two-point bend technique. Fibers were formed from melts homogenized at 

(a) 1120ᵒC, (b) 1220ᵒC, and (c) 1320ᵒC for varying lengths of time. The corresponding 
Weibull modulus for these glasses are shown in figure (d).[44]  

 

Most intriguing from TPB studies of inert failure is the observation of the inert 

delayed failure effect (IDFE)[39]. For ‘normal’ glasses, like silica, failure strains 

decrease with decreasing rates of applied stress, a behavior predicted by Gupta and 
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Kurkjian’s description of inert fatigue. However, for ‘anomalous’ glasses, failure strain 

increases with decreasing rates of applied stress, as shown for a series of soda-lime 

silicate glasses in  Figure 1.12.[30]  Data like this have been used to quantify the IDFE, 

according to: 

 

 𝐼𝐼𝐷𝐷𝐹𝐹𝐸𝐸 = 100 ∗ (𝜀𝜀𝑓𝑓1−𝜀𝜀𝑓𝑓2)
𝜀𝜀𝑓𝑓1

 (1.19) 

 

where 𝜀𝜀𝑓𝑓1 and 𝜀𝜀𝑓𝑓2 are failure strains measured at different faceplate velocities (vfp), and 

vfp(1)<vfp(2). 

 

 

Figure 1.10. Fatigue parameter values for commercial silica, E-glass, and soda-lime 
silicate glasses. Lines are guides for the eyes[42].  
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Figure 1.11. The effect of increasing non-bridging oxygens due to increasing modifier 
content on the failure strains of several glasses. Glasses shown include vNa2O*(1-v)SiO2 
(NS), 0.25Na2O*wAl2O3*(0.75-w)SiO2 (NAS), xK2O*(1-x)SiO2 (KS), yNa2O*zCaO*(1-

y-z)SiO2, and silica (mol%). All measurements were done in liquid nitrogen with a 
faceplate velocity of 4000μm/s. 

 

 

Figure 1.12. Failure strain distributions of fibers from various sodium calcium silicate 
glass compositions (mol%) measured in liquid nitrogen. Open symbols represent fibers 
broken with a faceplate velocity of 50μm/s, and closed symbols represent fibers broken 

with a faceplate velocity of 4000 μm/s.[43] 
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There is an interesting correlation between IDFE and the indentation behavior of 

silicate glasses. In anomalous glasses such as silica, diamond indentors densify the glass 

structure in the indentation zone, whereas in normal glasses like SLS, shear bands are 

observed [57]. Coincidentally, glasses with a negative IDFE have been classified as 

‘normal’ whereas glasses with a positive IDFE  have been classified as ‘anomalous’[5]. 

Table 1.1 summarizes the effects of silicate glass composition on IDFE behavior and 

elastic anomaly.  

 

Table 1.1. List of IDFE parameters and elastic anomalies for various glasses (mol%) [30] 

Glass IDFE Elastic Anomaly 

Silica (SiO2) ≤ 0 anomalous 
E-Glass ≤ 0 anomalous 
Soda-lime-silicate  
(15%Na2O, 5%CaO, 80%SiO2) 

> 0 normal 

Sodium Silicate (Na2O < 15%) ≤ 0 anomalous 
Sodium Silicate (Na2O ≥ 15%) > 0 normal 
Potassium Silicate (K2O < 13%) ≤ 0 anomalous 
Potassium Silicate (13% < K2O < 25%) ≤ 0 normal 
Potassium Silicate (K2O > 25%) > 0 normal 

 

 

Molecular dynamic models of  normal and anomalous glasses support these 

observations, revealing that alkali modified glasses exhibit increased plastic flow in 

uniaxial stress, whereas silica responds more like an elastic solid to the applied stress[79]. 

The indentation and molecular dynamic studies support the theory that anomalous IDFE 

glasses experience structural reorganization during the slow stressing rates possible under 
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inert conditions[80], [103], [104]. The IDFE effect has also been observed to be greater 

in glasses that exhibit a lower level of brittleness from indentation studies[39]. Soda lime 

silicate glasses have been shown as one of these anomalous glasses. Proposed theories 

suggest densification, plastic flow, or deformation are responsible for the decrease in 

brittleness. In an effort to observe these structural changes in inert environments, Lower 

used the TPB system to strain fibers under liquid nitrogen to 90% of the failure strain 

under liquid nitrogen. When the fibers were removed, no permanent deformation of the 

bent fibers was observed[30]. However, Yoshida used micro-Raman spectroscopy to 

reveal stress-induced structural changes near the fracture source of sodium borosilicate 

fibers (Figure 1.13) [105]. These structural changes included an increase in the average 

Si-O-Si bond angle and a decrease in the number of Si-O small ring structures.  

The TPB technique has also been used to quantify the effect of stress-induced 

structural changes induced by temperature and water vapor. Lezzi et. al. demonstrated 

increases in failure strains for fibers held under a tensile load at temperatures above 

ambient, but lower than the glass transition temperature[106]. This observation was made 

under both tensile load (silica fibers) and bending load (E-glass and SLS fibers) (Figure 

1.14). The increase in failure strains was attributed to the surface of the fiber structurally 

relaxing while under tension or bending, which induced a surface compression layer. This 

surface stress relaxation effect was further explored for strained fibers held at elevated 

temperature in air with different humidity values for extended periods of time[107]. After 

removal from the fixture, the fibers had residual curvature from the induced residual 

compressive layer. It was found that this compressive layer could be removed, and the 

fiber gradually straightened after washing with HF solution. Additionally, they showed a 
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clear increase in residual compressive layer with increased humidity during stressing, 

which indicates that water plays a crucial role in mechanism of surface stress relaxation. 

The dependence of the surface stress relaxation phenomenon on the presence of water 

was attributed stress relief from H2O reactions on the fiber surfaces, which was observed 

in both silica and modified silicate glasses[106]. These studies on stress relaxation have 

given quantifiable explanation into why ion-exchange glasses experience a degradation of 

strength due to compressive relaxation over time[108]. 

 

 

Figure 1.13. Raman spectra of sodium borosilicate fibers with a composition of 1Na2O-
40xB2O3-(80-40x)SiO2 where (a) x=0 (b) x=0.5 (c) x=1 (d) x=1.5, before (dotted) and 

after (solid) deformation in failure using TPB. The estimated fracture stress, σf, is noted.  
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Figure 1.14. Failure strains of 125μm commercial soda-lime silicate glass fibers after 
applied bending stress while in a 200ᵒC with ~6 Torr H2O atmosphere[106]. 

 

The two-point bend technique has been used to study surface stress relaxation and 

the compositional dependence of failure and fatigue. Few studies have been done on glass 

fibers weathered in zero-stress conditions for extended periods of time, which are more 

representative of storage conditions of commercial glass products. In one study, the TPB 

technique was used to study the time dependence of mechanical strength degradation of 

pristine silica fibers under zero-stress. It was determined that at near ambient 

temperatures, degradation was due to well-known water interactions, but at higher 

temperatures, the strength degradation was attributed to surface crystallization [109]. 

Additionally, TPB has been used to study the weathering characteristics of E-glass fibers 

under various environmental conditions [110], [111]. The fatigue susceptibility of E-glass 



34 

fibers was shown to be independent of weathering time or conditions despite a marked 

decrease in failure strains over the 90 day weathering period, and this was attributed to 

weathering reactions on the fiber surfaces developing critical flaws[110], [111]. These 

findings indicate that the effect of fatigue decreases over the weathering period as flaws 

become more consequential. The ability to relate zero-stress weathering mechanisms, 

mechanical failure, surface degradation, and fatigue susceptibility to each other can 

reveal valuable information about the long-term performance of glass products.  

1.3. SUMMARY 

The purpose of this work was to understand the effects of environment and zero-

stress weathering on the failure characteristics of commercial soda-lime silicate container 

glass. The two-point bend method was used to characterize the failure strains of freshly-

drawn fibers produced from melts of the commercial SLS glasses. The reproducibility of 

the pristine fiber fatigue parameter and failure behavior is consistent with respective 

values reported in the literature. The changes in fatigue behavior, surface characteristics, 

and failure strains after weathering in ambient air, in 50°C water, 80%RH/50°C air, and 

10%RH/50°C air, have been examined. The role of surface reaction layers and the 

activity of water to the subsequent degradation of mechanical properties is discussed, and 

changes in fatigue behavior have been related to the reactivity of the weathering 

conditions. The effects of water incorporated into the glass during processing on the 

weathering characteristics has also been evaluated. These experiments provide 

information about the relative sensitivity of glass to fatigue and the mechanisms by which 

fatigue occurs and provide a means to test whether environmental reactions and forming 
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conditions make a glass more or less susceptible to fatigue. By understanding the sources 

of fatigue and weathering, strategies for improving, or retaining, the strength of glass 

objects can be developed. 
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2. METHODS 

2.1. GLASS PREPARATION 

Two sources of commercial soda-lime-silicate (SLS) container glass, provided by 

Owen-Illinois, Inc. (Perrysburg, OH) and designated OI-A (ketchup bottles) and OI-B 

(spirit bottles), were used in these experiments (Figure 2.1). Both sets of containers came 

from the same O-I container manufacturing facility but were manufactured about two 

years apart. The nominal composition of these glasses, provided by the manufacturer, is 

13Na2O-11CaO-0.5K2O-0.5MgO-1Al2O3-74SiO2 (wt%). The bottles were crushed using 

a steel crusher to produce a coarse powder, with particle sizes between about 50 and 500 

microns, as shown in a representative particle size distribution in Figure 2.2. 60g or 160g 

of cullet was then remelted in a platinum crucible with a volume of 30mL or 84mL, 

respectively.  These masses were selected to provide reproducible fiber diameters from 

the respective crucibles. Initial experiments with OI-A were done with fibers pulled from 

the smaller crucible. However, the larger crucible was used to pull larger quantities of 

fibers from both OI-A and OI-B, required in the later experiments.  

All cullet samples were remelted in ambient air except for several melts where the 

water content was intentionally controlled. All melts were conditioned the same way.  

The crucible was placed in a furnace at 1000°C and heated at 225°C /hour to 1450°C and 

held at that temperature for 4 hours. The melt was them cooled to 1220°C, the 1000 P 

isokom temperature for this glass, and then held for four hours to produce a well-

conditioned, bubble-free melt suitable for pulling homogenous fibers. These processing 

conditions are similar to those used by Tang for drawing homogenized commercial SLS 
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glass fibers [44]. To increase the residual water content of the glass, distilled water was 

added to the cullet in the platinum crucible until the water level was at the top of the 

crucible. The crucible was then melted in a furnace under a cap of humid air that was 

bubbled through 70°C water. To obtain low water content melts, some cullet was melted 

in a vacuum furnace (~135 torr) at 1100°C for 1 hour. The low water content melt was 

cooled to room temperature and then transferred to a high temperature furnace at 1000°C, 

heated at 225°C /hour to 1450°C under a cap of dry argon gas and held at that 

temperature for 4 hours. 

 

 

Figure 2.1. Soda-lime silicate bottles designated OI-A (left) and OI-B (right).  

~ 30mm 

~ 45mm 
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Figure 2.2. Cumulative mass (greater than) distribution of cullet size after crushing. 

2.2. FIBER FORMATION 

 A well-conditioned, bubble free melt was transferred to a furnace located below 

the fiber-pulling mechanism and the temperature of this furnace was set based on the 

crucible size and melt viscosity; the latter varied with residual water content.  Pulling 

temperatures are summarized in Table 2.1. A water-cooled copper coil was lowered to 

about 4 cm above the crucible through a hole in the top of the furnace. The copper coil 

controled the fiber surface viscosity to ensure a continuous and consistent pull. The fiber 

pulling system is shown in (Figure 2.3).  

A silica glass rod was used to draw the initial fiber from the melt surface through 

the copper coil and straight up onto a rotating cage positioned above the furnace (Figure 

2.3). Double-sided tape was used to secure the drawn fiber to the cage allowing the cage 

to draw the fiber upwards and around the cage as it rotated. The cage moved 1.6mm 
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horizontally per rotation to separate the fibers as they are drawn to ensure a pristine 

surface condition. Two different cages were used. The cage shown in Figure 2.3 was used 

only for pristine fibers that were tested immediately after drawing. For fibers used in the 

weathering experiments, a cage with removable racks, shown in Figure 2.4, was used.  

 

Table 2.1. Pulling temperatures for glass melt. 

Crucible Size Water Content Pulling Temperature 

30mL Average 1120°C 

84mL Low 1100°C 

84mL Average 1090°C 

84mL High 1075°C 

 

 

The fiber diameter was monitored by eye throughout the entire fiber pulling 

process. Fiber diameters could be adjusted by increasing the temperature of the crucible 

furnace, the fiber drawing speed, or adjusting the height of the copper cooling coil 

relative to the melt surface. For a typical run, the furnace temperature was increased 

approximately 10°C every 5 minutes to maintain a consistent fiber thickness. The pulling 

temperature was dependent on crucible size because the larger crucible retained more 

heat during fiber pulling and therefore was not as sensitive to the temperature of the 

furnace at the start of pulling. Water content of the glass affects the viscosity of the melt 

and therefore the high and low water content glasses required different pulling 

temperatures (Table 2.1). If the fibers were initially drawn too thin or too thick, the 

copper cooling coil was lowered or raised, respectively. In the early experiments with OI-

A, the cage rotation speed was also adjusted to maintain a consistent fiber diameter. 
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However, for later experiments with OI-B, the cage rotation speed was held constant, in 

the range of 1.5-2 m/s. Roughly 1800 samples, ten centimeters long, could be drawn from 

a single large cullet melt. 

 

 

Figure 2.3. The fiber pulling system. 

 

Pulling conditions were adjusted to draw fibers with a consistent diameter of 

125±25μm over the 15-minute drawing period. Fiber diameters were measured with an 

Mitutoyo micrometer. At the conclusion of a run, the diameters of ten fibers distributed 

across the cage were measured and if these diameters did not fall in the range of 

125±25μm, the run was scrapped. There were practical issues to avoid testing fibers 

outside of this preferred range. Fibers with diameters less than about 100 µm were 

difficult to test because they failed at faceplate separation distances smaller than what 
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could be obtained without running the risk of forcing the faceplates together. Fibers with 

diameters greater than about 150 µm could be tested without issue when pristine but were 

difficult to test after prolonged weathering. The first 10 rows of fibers were always 

discarded because the diameters were typically too small at the start of a draw. 

Occasionally, the last 10% of the fibers drawn from a cooler melt were considerably 

thicker the rest of the draw.  These fibers were also discarded. 

 

 

Figure 2.4. The removable frame cage for fiber pulling. 

2.3. WEATHERING FIBERS 

Fibers were either tested immediately in their pristine state or weathered under 

zero-stress conditions in controlled environments, before testing. Some fibers were aged 
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in distilled water by immersing the fiber racks in a water-filled container that was sealed 

and then held in an environmental chamber (VWS Scientific Humidity Cabinet) set at 

50°C. Other fibers were weathered in 10%RH/50°C and 80%RH/50°C air; dry or wet air 

was moved through the respective environmental chamber (Lindberg Blue and VWS 

Scientific Humidity Cabinet). Fibers weathered in ambient conditions were stored in a 

vented container on a laboratory bench. 

2.4. TWO-POINT BEND TESTING OF FIBERS 

The failure strains of pristine and weathered fibers were determined using a 

custom-built two-point bending (TPB) system [42,84] (TNL Tool and Technology, LLC). 

A fiber was removed from the rack by handling the ends to prevent contact to the 

surfaces in the middle of the sample where the maximum stress was applied during 

testing. The first fiber tested was taken from the left side of a rack, the second fiber tested 

was taken from the middle of a rack, and the third fiber was taken from the right side of 

the rack. This order was repeated until at least 20 fibers were tested from each rack. Each 

fiber was bent into a ‘U’ shape and placed between the two parallel face-plates of the 

TPB system. One of the face plates was then closed at a constant velocity, the faceplate 

velocity (vfp), reducing the gap distance between the two face plates, increasing the stress 

applied to the outer tip of the bent fiber until the fiber failed.  An acoustic sensor detected 

the fiber failure and the distance between the face-plates (D) at failure was recorded. The 

fiber diameter (d) at the two broken ends of the fiber was measured using a Mitutoyo 

digital micrometer, with a resolution of 0.001 mm, and recorded. The failure strain, εf, 

was then calculated using[48]: 
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 𝜀𝜀𝑓𝑓 = 1.198 � 𝑑𝑑
𝐷𝐷−𝑑𝑑

� (2.1)   

 

Faceplate velocities were varied between 100-10,000µm/sec. The relative 

humidity during  testing was controlled by an air handling system that mixes dry and wet 

air to achieve the desired relative humidity. Air with the desired humidity flowed through 

a shroud that covered the TPB face plates and was allowed to equilibrate for 30 seconds 

prior to the start of each measurement made in air. The relative humidity was measured 

during this time with a digital psychrometer [Extech RH305] with an accurate 

measurement range between 5-85%±3%RH. Failure strains were also measured after 

immersing the fiber-loaded TBP face plates in a container of liquid nitrogen. During 

liquid nitrogen testing, the ambient relative humidity was kept lower than 30% to avoid 

formation of frost on the TPB fixture. The TPB fixture was periodically warmed to room 

temperature and water condensation was removed before the next test. 

2.5. STATISTICAL ANALYSIS OF FAILURE STRAINS 

2.5.1. Weibull Statistics.   Weibull statistics were used to describe the 

distributions of failure strain data acquired by two-point bend testing. The Weibull 

modulus, m, is a parameter that describes the critical flaw density in the set of samples. 

Weibull proposed that the risk of failure is proportional to a function of the stress, f(σ), in 

the volume of a body[112]: 

 

𝑓𝑓(𝜎𝜎) = � 𝜎𝜎
𝜎𝜎0
�
𝑚𝑚

      (2.2) 
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where σo is a characteristic strength which is dependent on the distribution function and 

m, known as the Weibull modulus, is a constant describing the material homogeneity. A 

high Weibull modulus is derived from tight failure distributions which are a result of 

uniform critical flaw distributions.  

Weibull statistics were used to describe the failure probability of the glass fibers 

at various strains. To determine the Weibull modulus from the TPB data, the cumulative 

failure probability was plotted against the natural logarithms of failure strain, 𝜀𝜀𝑓𝑓, and the 

Weibull modulus (m) was determined from the slope of the resulting distributions: 

 

𝑚𝑚 =  
ln�𝑙𝑙𝑛𝑛� 1𝑃𝑃𝑠𝑠

�� 

ln (𝜀𝜀𝑓𝑓)
         (2.3) 

 

where 𝑃𝑃𝑠𝑠 is the probability of survival and was determined using: 

 

𝑃𝑃𝑠𝑠 = 1 − 𝑣𝑣−0.5
𝑛𝑛

 (2.4) 

 

Weibull statistics were determined to be suitable for analyzing fiber failures strains 

because the natural log of the failure strain to double natural log of the failure probability 

data was usually linear.  

2.5.2. One-Way ANOVA and Statistical Significance Analysis. When 

comparing two independent sets of failure strains, a two-sample T-test was used to 

determine the significance of the differences in the means of the two sets. For three or 

more independent failure strain distributions, one-way analysis of variance (ANOVA) 
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was used to determine the statistical significance of any differences. Origin 2018 

software was used to calculate the significance levels for both the T-test and one-way 

ANOVA.      

2.6. SURFACE CHARACTERIZATION OF FIBERS 

Fiber surfaces were imaged using a FEI Helios NanoLab 600 DualBeam scanning 

electron microscope. Two-centimeter sections of fibers were attached to a graphite 

adhesive surface and then coated with Gold/Palladium (Denton Vacuum Coating 

System). At least three fibers from each experimental data set were examined. In some 

cases, fibers were first washed by dipping for five seconds, three times, in distilled water 

to remove crystalline deposits prior to SEM analysis. The fibers were examined using a 

voltage of 5kV and magnification range of 500x- 20,000x. Atomic Force Microscopy 

(AFM) was also used to image fiber surfaces and to measure the surface roughness. The 

AFM was a Nanoscope IIIa Scanning Probe Microscope. 

Quantitative compositional analyses were done with energy dispersive x-ray 

spectroscopy (EDS. The Helios SEM has an Oxford Energy Dispersive X-ray 

Spectrometer. Fiber surfaces were examined using a 7kV voltage over the area of 

interest. Oxford’s INCA software and database were used to analyze EDS peaks and 

intensities and perform x-ray compositional mapping.  

Raman Spectroscopy measurements were made with either a Horiba Jobin Yvon 

LabRAM Aramis or a Horiba Jobin-Yvon Xplora μRaman spectrometer. Fibers were 

taped to a glass microscope slide.  For the Aramis system, a 632.5nm HeNe laser was 
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focused onto the surface with a 10x objective. For the Xplora system, a 532nm laser was 

focused onto the surface with a 10x objective 

A Continuum Infrared Microscope was used to collect IR spectra from polished 

glass patties to estimate residual water contents. To make the glass patties, the glass melts 

after fiber drawing were immediately reheated in a furnace at 1450°C for 15min and then 

poured into three-inch diameter glass patties on a steel plate.  The patties were annealed 

at 550°C for 2 hours before cooling to room temperature and cut into ~1 inch square 

samples. The samples were then polished to a 2500 grit finish using progressively finer 

SiC polishing pads and kerosene as a non-aqueous lubricant. The final samples were 

~3mm thick. 
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3. FATIGUE AND FAILURE CHARACTERISTICS OF PRISTINE 
COMMERCIAL SODA-LIME-SILICATE GLASS 

3.1. OVERVIEW 

Multiple trials were done on pristine samples of both OI-A and OI-B to determine 

the reproducibility of the failure strain measurements. Each trial was a set of at least 20 

fibers drawn from separate melts processed in ambient conditions, and the measurements 

were made over the course of three years. In addition, melts from OI-B glass were 

prepared either under vacuum (OI-BV) or in water-saturated conditions (OI-BH) to vary 

the residual water contents of the glass, compared to melts processed under ambient 

conditions. Failure strain distributions of OI-A and OI-B fibers were determined in room 

temperature (25°C) air and relative humidities (RH) controlled between 10%-80%, and 

under liquid nitrogen. The fatigue parameter was determined for both OI-A and OI-B 

under different values of RH, using failure strains collected at different faceplate 

velocities. OI-BV and OI-BH failure strains were determined in room temperature air at 

40% RH and in liquid nitrogen, and their fatigue parameters were determined in room 

temperature air at 40%RH.  

3.2. RESULTS   

3.2.1. Reproducibility of Failure Strain Distributions.   Figure 3.1 shows the 

distributions of failure strains collected in 40%RH/25°C air and under liquid nitrogen for 

five trials of OI-A. With a 95% confidence, there are no significant differences between 

the means of the five trials for either respective testing condition. Fibers tested in liquid 

nitrogen have much higher failure strains than those tested in 40%RH/25°C air. Fibers 
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tested in ambient conditions had tighter failure strain distributions, and so greater average 

Weibull moduli (49.6 – 68.6), than those tested in liquid nitrogen (m=24.4 – 29.7) (Table 

3.1). 

 

 

Figure 3.1. Failure strains of five independently drawn sets of OI-A glass, measured at a 
4000µm/sec faceplate velocity in either room temperature air at 40%RH (closed symbols) 

or in liquid nitrogen (open symbols). 

 

Figure 3.2 shows the failure strains for the five trials of OI-B container glass. 

Similar to OI-A, with a 95% confidence, there is not a significant difference between the 

mean failure strains of the five trials tested in either liquid nitrogen or 40%RH/25°C air. 

The fibers tested in ambient conditions have a greater Weibull modulus (50.6 – 79.4) than 
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those tested in liquid nitrogen (33.6 - 57.7). Table 3.1 summarizes the average failure 

strain and Weibull modulus for each trial of pristine OI-A and OI-B fibers. 

 

 

Figure 3.2. Failure strains of five independently drawn sets of OI-B glass, measured at a 
4000µm/sec faceplate velocity in either room temperature air at 40%RH (closed symbols) 

or in liquid nitrogen (open symbols). 

 

The OI-A fibers consistently had failure strains that were 3% greater than the OI-

B fibers (Figure 3.3) when tested in 40%RH/25°C air, and ~13% greater failure strains 

when tested in liquid nitrogen (Figure 3.4). The failure strains of both OI-A and OI-B 

fibers tested in 40%RH/25°C air are similar to those collected under similar conditions 

for a commercial soda lime silicate by Tang et. al.[42], and to those collected by Lower 
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[43] on fibers drawn from a laboratory melt with the nominal composition15.5 Na2O-9.4 

CaO-75.1 SiO2 (mol%) (Table 3.1). 

 

Table 3.1. Average failure strains for commercial and laboratory SLS glass tested with 
the TPB in similar condition[42], [43]. 

Source Testing Conditions Average 
Failure 
Strain 

Weibull 
Modulus 

Commercial SLS[42] LN2: 4000µm/sec 16.35±0.14 43.9 
Laboratory SLS (15.5-9.4-75.1 
mole%)[43] 

LN2: 4000µm/sec 19.03±0.10 287 

Laboratory SLS (10.4-9.4-80.2 
mole%)[43] 

LN2: 4000µm/sec 16.73±0.11 179 

OI-A Commercial SLS Trial 1 LN2: 4000µm/sec 19.78±0.88 24.7 
OI-A Commercial SLS Trial 2 LN2: 4000µm/sec 19.69±0.80 29.7 
OI-A Commercial SLS Trial 3 LN2: 4000µm/sec 19.56±1.00 24.4 
OI-A Commercial SLS Trial 4 LN2: 4000µm/sec 19.67±0.83 28.5 
OI-A Commercial SLS Trial 5 LN2: 4000µm/sec 19.63±0.81 28.0 
OI- B Commercial SLS Trial 1 LN2: 4000µm/sec 17.20±0.46 44.8 
OI- B Commercial SLS Trial 2 LN2: 4000µm/sec 17.59±0.64 57.7 
OI- B Commercial SLS Trial 3 LN2: 4000µm/sec 17.20±0.51 33.6 
OI- B Commercial SLS Trial 4 LN2: 4000µm/sec 17.35±0.60 37.4 
OI- B Commercial SLS Trial 5 LN2: 4000µm/sec 17.58±0.36 35.1     

Commercial SLS[42] 42%RH: 4000µm/sec 6.42±0.12 66.6 
OI-A Commercial SLS Trial 1 40%RH: 4000µm/sec 6.51±0.14 54.7 
OI-A Commercial SLS Trial 2 40%RH: 4000µm/sec 6.48±0.16 49.3 
OI-A Commercial SLS Trial 3 40%RH: 4000µm/sec 6.59±0.12 68.6 
OI-A Commercial SLS Trial 4 40%RH: 4000µm/sec 6.58±0.14 57.6 
OI-A Commercial SLS Trial 5 40%RH: 4000µm/sec 6.54±0.16 49.6 
OI- B Commercial SLS Trial 1 40%RH: 4000µm/sec 6.27±0.10 79.4 
OI- B Commercial SLS Trial 2 40%RH: 4000µm/sec 6.21±0.15 50.6 
OI- B Commercial SLS Trial 3 40%RH: 4000µm/sec 6.30±0.14 54.6 
OI- B Commercial SLS Trial 4 40%RH: 4000µm/sec 6.39±0.12 65.4 
OI- B Commercial SLS Trial 5 40%RH: 4000µm/sec 6.42±0.10 83.8 
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Figure 3.3. Fiber failure strains dependence on fiber diameter for OI-B and OI-A glass 
tested room temperature air at in 40%RH. 

 

 

Figure 3.4. Fiber failure strains dependence on fiber diameter for OI-B and OI-A glass 
tested in room temperature air at 40%RH. 
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The dependence of fiber failure strains on fiber diameter, measured for both 

glasses in room temperature air at 40%RH and in liquid nitrogen, are also shown in 

Figure 3.3 and Figure 3.4, respectively. Regression analyses, the results of which are 

given in each figure, indicate slight negative correlations of failure strain with fiber 

diameter. 

3.2.2. Fatigue Parameter of Pristine Fibers. The Weibull distribution of failure 

strains for pristine OI-A and OI-B fibers tested in room temperature air with different 

levels of relative humidity are shown in Figure 3.5 and Figure 3.6, respectively. As seen 

in previous studies, the failure strains increase with decreasing relative humidity[42]. 

Figure 3.7 and Figure 3.8 show the effects of faceplate velocity on the failure strains of 

pristine OI-A and OI-B fibers, respectively, tested in air with 40% relative humidity. 

Here, failure strains increase with greater faceplate velocity.   

Rondinella and Matthewson used the faceplate velocity dependence of failure 

strain to calculate the fatigue parameter, ‘n’, according to[98]: 

 

𝑛𝑛 = 1 + 1

𝑑𝑑�
𝑙𝑙𝑜𝑜𝑙𝑙𝜀𝜀𝑓𝑓
𝑙𝑙𝑜𝑜𝑙𝑙𝑣𝑣𝑓𝑓𝑓𝑓

�
               (3.1) 

 

Figure 3.9 and Figure 3.10 show the logarithmic plots of faceplate velocity and average 

failure strain, tested at varied levels of humidity, for OI-A and OI-B fibers, respectively. 

The slopes of the fitted lines were used with Equation 3.1 to calculate values of ‘n’ for 

the different experimental conditions. 
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Figure 3.5. Weibull distributions of failure strains for OI-A fibers tested at 4000µm/sec in 
room temperature air with different levels of relative humidity. 

 

 

Figure 3.6. Weibull distributions of failure strains for OI-B fibers tested at 4000µm/sec in 
room temperature air with different levels of relative humidity. 
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Figure 3.7. Weibull distributions of failure strains for OI-A fibers tested in room 
temperature air, 40%RH at various faceplate velocities. 

 

 

Figure 3.8. Weibull distributions of failure strains for OI-B fibers tested in room 
temperature air, 40%RH at various faceplate velocities. 
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Figure 3.9. Average failure strains of pristine OI-A glass fibers measured as a function of 
faceplate velocity in room temperature air with different values of relative humidity. 

 

 

Figure 3.10. Average failure strains of pristine OI-B glass fibers measured as a function 
of faceplate velocity in room temperature air with different values of relative humidity. 
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Figure 3.11 shows the values of the fatigue parameter measured at different levels 

of humidity for OI-A and OI-B fibers. The 95% confidence and prediction bands are 

shown in dark grey and light grey, respectively. The linear fit of the data shows a slope of 

-0.00399±0.00624. The fatigue parameter values are similar for OI-A and OI-B at 60 and 

80% RH but are lower for OI-A at 20 and 40% RH. Table 3.2 compares the fatigue 

parameter values measured in this study with those determined for soda-lime silicate 

glasses by a variety of techniques and reported in the literature, 

 

 

Figure 3.11. Fatigue parameters of OI-A (closed symbols) and OI-B (open symbols) glass 
over a range of humidity. 95% confidence and prediction band are shown in dark and 

light grey, respectively. The line shows the linear fit of all the data. 
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Table 3.2. Fatigue parameter values for soda-lime silicate glass from this study and 
fatigue parameters values reported in the literature that were determined by other testing 

methods. All measurements were taken at room temperature (RT). 
Sample 

Form 

Testing Method Testing Environment Fatigue 

Parameter 

Ref 

Fiber Two Point Bend 10-80%RH 16.3 ± 2.9 Current Study 

Fiber Two Point Bend 0.7-92%RH 16.5 ± 4.1 [42] 

Plate Slow Crack Growth RT Water 16.1 ± 3.1 [113] 

Strips Four Point Bend RT Water 15.5 ± 3.4 [114] 

Plate Symmetric Bending RT Water 13.6 ± 3 [88] 

Abraded 

Rod 

Slow Crack Growth RT Water 16.9 [35] 

Rod Four Point Bend 100%RH 16 [51] 

Strips Four Point Bend RT Water 14.7 [88] 

Abraded 

Rod 

Three Point Bend RT Water 15.5 [88] 

Abraded 

Rod 

Three Point Bend RT Water 16.8 [88] 

Abraded 

Rod 

Three Point Bend RT Water 16.2 [88] 

Bars Indentation Air 16.1 [115] 

Bars Indentation RT Water 18.9 [115] 

Plate Slow Crack Growth 0.017-100%RH and RT 

Water 

~20 [54] 

Plate Slow Crack Growth 0.002%RH and RT Water ~16.4 [58] 

 

 
3.2.3. Failure and Fatigue of Fibers with Different Residual Water Contents. 

FTIR spectroscopy was used to determine the water content of the glasses processed 

under ambient, dry, and wet conditions.  The ambient processed glass is OI-B Trial 5, 

discussed previously, and the wet- and dry-processed samples were also from OI-B, 
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prepared at a similar time as OI-B Trial 5. Figure 3.12 shows the FTIR spectra for the 

three glasses processed in the different conditions. There are clear peaks at 2800cm-1 and 

3500 cm-1 which are attributed to strongly and weakly bonded –OH, respectively[116]. 

The magnitude of the peaks increases for glasses processed with increasing water 

activity.  

 

 

Figure 3.12. FTIR spectra of OI-B glasses processed under dry, ambient, and wet 
conditions. Solid lines indicate the spectra from the first sample while dashed lines 

indicate spectra from the second sample. 

 

The intensity of the absorption peak at 2800cm-1 was used to determine the water 

concentration, following the procedure described by  Stuke, et al. [117]. The water 

content of the glasses was calculated using the Beer-Lambert Law: 
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𝐶𝐶𝑣𝑣 = 𝐴𝐴2800
𝜌𝜌∙𝑡𝑡∙𝜀𝜀2800

     (3.2) 

 

where ρ is the glass density, t the sample thickness, and  𝐴𝐴2800 and 𝜀𝜀2800 are the 

absorbance and extinction coefficient at the 2800cm-1 band, respectively. The density was 

assumed to be consistent at 2.50x10-3kg/m3 among the glasses based on prior work 

showing that the density of SLS glass is unaffected by water contents up to 500ppm 

[118], [119]. The value used for 𝜀𝜀2800 was 50.8 L ∙ mol−1 ∙ cm−1 [117]. The water 

contents were then determined to be 140±7 ppm-wt, 180±1 ppm-wt, and 270±14 ppm-wt 

for the dry, ambient and wet processed glasses, respectively. These glasses will be 

referred to as 140ppm, 180ppm, and 270ppm, respectively. 

Figure 3.13 shows the Weibull distributions of failure strains for the pristine 

fibers drawn from 140ppm, 180ppm, and 270ppm melts. At a 95% confidence level, the 

mean of the inert failure strain measured in liquid nitrogen of the 270ppm fibers is 

significantly lower than those for the 140ppm and 180ppm fibers, whereas the means of 

the inert failure strains for the 140ppm and 180ppm fibers, are not significantly different 

from each other. The failure strains from testing in 40%RH conditions appear to have the 

reverse dependence on water content. With a 95% confidence level, the failure 

distributions are all significantly different, and the 270ppm glass has the highest failure 

strain in ambient conditions and 140ppm and 180ppm fibers have lower failure strains. 

Table 3.3. shows the fatigue parameters measured for all three glasses in 40%RH, room 

temperature air; each of these values falls within the 15.5 – 16.5 range typical for pristine 

OI-B fibers (Figure 3.11). 
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Figure 3.13. Weibull distributions of failure strains for pristine fibers with varying water 
content. Open symbols are fibers tested in liquid nitrogen and closed symbols represent 

fibers tested in 40%RH, room temperature air. 

 

Table 3.3. Fatigue parameters determined in 40%RH, room temperature air for OI-B 
glasses with different residual water contents. 

Water Content Fatigue Parameter 
140 ppm 16.0 ± 0.6 
180 ppm 15.5 ± 0.9 
270 ppm 15.6 ± 0.4 

 

3.3. DISCUSSION 

3.3.1. Intrinsic Strength of SLS.  For the commercial soda-lime silicate glasses 

in this study, the average failure strains of pristine OI-A and OI-B glass fibers, measured 

in room temperature air at 40% RH and in liquid nitrogen compare well with previous 

two-point bend studies of similar glasses[43], [44] (Table 3.1), although OI-A had a 13% 
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greater inert failure strain than OI-B. It has been argued that the high failure strains and 

low standard deviations for fibers tested in inert conditions using the two point bend 

method are representative of the intrinsic strength of different glasses[66], [102]. To 

estimate the failure stress (σf) of the fibers from the failure strain (εf), Hooke’s law can be 

used where E is the first order elastic modulus: 

 

𝜎𝜎 = 𝐸𝐸 × 𝜀𝜀     (3.3) 

 

However, for strains above about 2%, the elastic modulus is non-linear, but can be 

estimated by [120]: 

 

𝐸𝐸 = 𝐸𝐸𝑜𝑜 + 𝐸𝐸1𝜀𝜀 + 1
2
𝐸𝐸2𝜀𝜀2    (3.4) 

 

where E0, E1, and E2 are the second, third, and fourth order elastic moduli, respectively. 

The stress-strain relationship can then be described as: 

 

𝜎𝜎 = 𝐸𝐸𝑜𝑜𝜀𝜀 + 1
2
𝐸𝐸1𝜀𝜀2 + 1

6
𝐸𝐸2𝜀𝜀3    (3.5) 

Cavaill determined the second- and third-order elastic moduli for a soda-lime-

silicate glass using Brillouin scattering[121]. However, it is difficult to measure the 

fourth-order modulus. Gupta and Kurkjian [99] were able to estimate the fourth-order 

elastic modulus by assuming, for a flawless material, the intrinsic failure stress (𝜎𝜎∗) is at 

a maximum compared to the intrinsic failure strain (𝜀𝜀∗). Therefore: 
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𝐸𝐸(𝜀𝜀∗) = 𝐸𝐸𝑜𝑜 + 𝐸𝐸1𝜀𝜀 + 1
2
𝐸𝐸2𝜀𝜀2 = 0    (3.6) 

 

Solving for the fourth order elastic constant, E2, in Equation 3.6 and subbing it into 

Equation 3.5 gives: 

 

𝜎𝜎 = 𝐸𝐸0𝜀𝜀 + 1
2
𝐸𝐸1 − �𝜀𝜀

3

3
� �𝐸𝐸0+𝐸𝐸1𝜀𝜀

∗

(𝜀𝜀∗)2 �    (3.7) 

 

Table 3.4 summarizes the results from using the Kurkjian-Gupta method[99] to 

convert the failure strains to failure stress, and compares these failure strengths to those 

reported in the literature. OI-B and OI-A failure strengths in ambient conditions compare 

well to those reported by Tang[41]. In inert conditions, OI-B failure strengths are similar 

to literature values, whereas the OI-A failure strengths are somewhat greater. The 

variance in inert strength between OI-A and OI-B indicates that there may be some 

compositional or structural differences between the two glasses.  

 
Table 3.4. Failure Strength Data for SLS glass fibers tested in ambient or inert 

environments from this study and reported in the literature. 

Glass  Testing Condition Estimated Failure 
Strength 

Reference 

OI-A FIBERS Liquid Nitrogen 10.2±0.2GPa Present Study 
OI-B FIBERS Liquid Nitrogen 8.9±0.2GPa Present Study 
SLS FIBERS Liquid Nitrogen 8.4±0.1GPa [41] 
SLS FIBERS Liquid Nitrogen 7.4±0.6GPa [122] 
SLS FIBERS Liquid Nitrogen 7.5 GPa [86] 
OI-A FIBERS 40%RH/RT 4.7±0.1GPa Present Study 
OI-B FIBERS 40%RH/RT 4.5±0.1GPa Present Study 
SLS FIBERS 40%RH/RT 4.0±0.1GPa [42] 
SLS FIBERS 25ᵒC Air 3.4±0.4GPa [122] 
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A Weibull modulus from a strength study of a brittle material is usually between 5 

and 10, and a Weibull modulus above 25 is considered to be high[123]. The Weibull 

moduli for the failure strains of the OI-B and OI-A fibers are consistently greater than 25 

when measured in both ambient and inert testing conditions, and are similar to values 

determined from two-point bending study of other remelted commercial SLS glass[42], 

Table 3.1. Two-point bend studies of laboratory batched and melted silicate glasses have 

yielded Weibull moduli greater than 100[43].   These differences may reflect a greater 

degree of structural homogeneity for the simpler, laboratory processed glasses.  In 

modified silicate glasses, different modifiers have different interatomic spacing and bond 

angles within the glass network[124]. Molecular dynamic studies have shown that alkali-

rich regions form on the nano-scale in modified glasses [125], [126]. The inherent 

inhomogeneity of interatomic spacing and distribution of alkali-rich regions could 

contribute to the broader failure strain distribution observed in commercially produced 

glasses compared to compositionally simpler laboratory prepared glasses.  

The Weibull modulus for failure strains of fibers tested in inert conditions is 

lower than the Weibull modulus of fibers tested in ambient conditions (Table 3.1). Tang 

observed a similar trend in a two-point bend study of commercial soda-lime silicate fibers 

tested in ambient and inert conditions, for melts processed at 1120°C for up to 16 hours 

[44].  The presence of water in ambient conditions could nucleate and grow new flaws 

during the test, rather than only propagating pre-existing flaws. In inert conditions, the 

source of failure is likely at pre-existing flaws, which may or may not be present near the 

highest stressed area at the tip of the u-shaped fiber. Therefore, the failure strains of the 

fibers will be higher when the pre-existing flaw is farther from the tip. However, in 
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ambient conditions the critical flaw might be from the nucleation and growth of a new 

flaw at the tip of the u-shape where strained bonds are being attacked by water. In this 

case, the distribution of pre-existing flaws has less influence on the distribution of failure 

strains.  

Alternatively, the narrowing of the distribution of failure strains could be related 

to the relative effect of pre-existing flaws compared to the effect of fatigue. The 

distribution of inert failure strains represents the variation in intrinsic flaw size. If the 

effect of fatigue is significantly greater than the effect of the size of the intrinsic flaws, 

then the failure strains at room temperature are more representative of the effect of 

fatigue, rather than the effect of flaw size. Because the failure distributions are narrower 

in ambient conditions, it is likely that to some extent sufficiently small flaw sizes do not 

affect the rate of fatigue reactions. 

There is a small, negative correlation between the failure strain and fiber diameter 

(Figures 3.3 and 3.4).  Lower [42] noted a similar, but smaller negative correlation (-

0.00013/µm) for the failure strains of E-glass fibers. The negative correlations in this 

study have a large standard deviation so it is possible that they are insignificant. 

However, these correlations might reflect a probability that a larger critical flaw will be 

activated when a larger fiber is tested, similar to the sample size dependence of the 

strengths of brittle materials[112]. A second possibility is that some residual stress is 

retained in the larger fibers and this residual stress reduces failure strain (strength) in the 

larger fibers. Residual stresses in the fibers could possibly occur from “tempering” of the 

fiber during rapid cooling. The residual stress in tempered glass can be calculated 

using[127]: 
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𝜎𝜎 =  𝐸𝐸∙𝛼𝛼
1−𝜇𝜇

∙ 𝜌𝜌∙𝑐𝑐𝑓𝑓
𝜆𝜆
∙ ℎ ∙ 𝐹𝐹2 ∙ 𝑏𝑏     (3.2) 

 

where 𝜎𝜎 is the residual stress; E is the elastic modulus; 𝛼𝛼 is the coefficient of 

thermal expansion (CTE); μ is Poisson’s ratio; ρ is the density; 𝑐𝑐𝑝𝑝 is the specific heat; 𝜆𝜆 

is the thermal conductivity; ℎ is the cooling rate; 𝐹𝐹 is the characteristic dimension (in this 

case the radius of the fiber); and 𝑏𝑏 is the shape factor of the glass. In the case of 

tempering, the residual stresses will be compressive. From equation 3.2, a thicker fiber 

would have a larger residual compressive stress than a thinner fiber, and therefore, should 

have a higher failure strain compared to thinner fibers. This is the opposite of the trend 

observed in Figures 3.3 and 3.4 so it is unlikely that tempering stress is present in the 

fibers.  

The dynamic fatigue parameters for OI-A and OI-B glass fibers at room 

temperature appear to agree well with each other and appear to be independent of 

humidity, at least above 40%RH RH (Figure 3.11). The fatigue parameter at values of 

relative humidity between 10-40% is less consistent between OI-B and OI-A; OI-B has a 

consistently greater fatigue parameter at lower values of humidity than OI-A indicating a 

lower susceptibility to fatigue compared OI-A glass. 

Wiederhorn [40], Tang et. al. [51], and Krohn et. al. [110] all found that the 

fatigue parameter for SLS remained unchanged over a wide range of humidity and in 

room temperature water. However, there is plenty of evidence that the fatigue parameters 

of silica and of E-glass are dependent on humidity (Figure 1.10)[42]. Studies of the 

fatigue process for SLS show that it depends on an exchange of the Na+ ions in the glass 

with H3O+ ions at the tip of a critical flaw (Equation 1.3)[46], [72]. In contrast, the 
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fatigue mechanism of cross-linked glasses like E-glass and silica is primarily through the 

hydrolysis of Si-O-Si bonds[69]. Tang et. al. argued that the fatigue parameter for SLS is 

independent in atmospheres with humidity values above 1%RH. They attributed the 

independence of the fatigue parameter to the faster kinetics of ion-exchange reactions 

compared to the hydrolysis reactions that account for fatigue in silica and E-glass [42].  

The average fatigue parameter for the SLS glass over the 10-80% RH range of 

testing environments in the present study agrees very well with values obtained by 

several other methods on different sample geometries (Table 3.2). With the exception of 

Wiederhorn’s fatigue parameters derived from a slow crack growth method[54], all 

values in Table 3.2 fall within the predicted interval (~13-19) in Figure 3.11. Wiederhorn 

noted that for slow crack growth, crack propagation behavior dominates, whereas for 

pristine surfaces, crack initiation prior to crack propagation must be taken into 

account[54]. This difference results in an increase in fatigue parameter for slow crack 

growth studies due to a limiting factor like diffusion of water to the crack tip, slowing the 

effect of fatigue reactions. For glass surfaces exposed to the ambient, there is not a 

similar barrier that potentially limits the influence of water.  

3.3.2. Effect of Residual Water Content on Pristine Glass Failure and 

Fatigue.  Water is dissolved into the glass structure as either OH- species or water 

molecules. Figure 3.14 shows the concentration of OH and water molecules as a function 

of cumulative water content in soda lime silicate glass[69]. At water concentrations 

below 0.5wt% (5000ppm-wt), the water is almost entirely incorporated as OH species 

into the glass structure (Figure 3.14). Commercial container glasses typically have a 

water contents between 100ppm-wt and 300ppm-wt [128], which is consistent with the 
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range of water contents, 140ppm-wt to 270ppm-wt, noted in this study, and this water is 

expected to be dominated by OH- species.   

The pristine failure strains of the glass show some dependence on water content. 

The 180ppm and 140ppm fibers are similar, but the 270ppm fibers have a 9% lower 

failure strain when measured under liquid nitrogen (Figure 3.13). McMillan and Chlebik 

reported a 10% decrease in inert failure strengths for soda lime silicate glass with 

increasing OH content up to 400ppm-wt[129], but increasing fracture strength with water 

concentrations above 400ppm. Other studies on glasses with increasing water contents 

above 1wt% have consistently shown an increase in fracture strength [130], [131]. This 

has been attributed to the increased plasticity due to the increase in non-bridging oxygens 

(NBO) for higher water content glasses[131]. When the water is only dissolved as OH 

species, the NBOs formed are significantly different than the NBOs associated with alkali 

and alkaline earth ions. Hydroxyl species act as a terminal species in the glass network, 

whereas alkali and alkaline earth ions maintain an oxygen metal ion bridge (O- - M+ - O-). 

This creates a complete break in the silicate network, which weakens the structure. Under 

stress, these weaker sites could become the critical flaws. 

The susceptibility to fatigue for soda lime silicate glasses in ambient conditions 

has been shown to increase with increasing water contents above 79ppm[129], [130]. The 

increase in fatigue susceptibility was attributed to the decreased chemical durability of 

water-containing alkali and alkaline earth silicate glasses. Further studies of the fatigue 

susceptibility of sodium silicate glasses measured in inert environments also observed an 

increase in susceptibility to fatigue with increasing water content[130]. The increase in 

inert environment was attributed to the molecular water in the glass inducing fatigue 
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reactions. All three glasses in the present study have similar fatigue parameters of 15.5-

16 (Table 3.3). It is likely that any decrease in the fatigue parameter with increasing 

water content is obscured by the margin of error in this study.  

 

 

 Figure 3.14. Concentrations of OH groups and H2O molecules in commercial soda lime 
silicate glass as a function of total water content for SLS [69]. 
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4. EFFECT OF WEATHERING AND CORROSION ON FATIGUE AND 
FAILURE OF SODA LIME SILICATE GLASS 

4.1. OVERVIEW 

In this section, the effects of weathering and corrosion on the failure, fatigue, and 

surface characteristics of soda lime silicate glasses with different water contents is 

examined. SLS fibers were exposed to 10-80%RH air at 50°C, ambient laboratory air, 

and immersed in 50°C water for up to for up to 95 days. The susceptibility to fatigue was 

evaluated over the exposure period for these different conditions. The changes in the fiber 

surfaces were also characterized using analytical Scanning Electron Microscopy (SEM), 

Raman Spectroscopy, and Atomic Force Microscopy (AFM). The effects of weathering 

on the failure strain and fatigue susceptibility of glasses with different residual water 

contents was also determined.  

4.2. RESULTS 

4.2.1. Failure Strains. The Weibull distributions of failure strains for OI-A and 

OI-B fibers exposed to 80%RH/50°C air and tested in room temperature air (40%RH, 

4000μm/s faceplate velocity) are shown in Figure 4.1 and Figure 4.2, respectively. For 

OI-A, the failure strain distributions initially broaden with weathering time, although 

after 14 days of weathering, the distributions begin to narrow again. The failure strain 

distributions of OI-B fibers remain relatively narrow throughout the entire period of 

weathering. Similar trends in the failure strain distributions of weathered fibers tested in 

liquid nitrogen were also noted  for the OI-A fibers (Figure 4.3) and the OI-B fibers 

(Figure 4.4).  These failure strains were also collected at 4000µm/s faceplate velocity. 
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Figure 4.1. Failure strain distributions of OI-A fibers weathered in 80%RH/50°C air for 
up to 95 days and tested in 40%RH, room temperature air. 

 

Figure 4.5 and Figure 4.6 show the average failure strains for OI-A and three 

trials of OI-B fibers weathered in 80RH/50°C conditions, measured in room temperature 

air (40% RH) and in liquid nitrogen, respectively. The average failure strains for both 

testing conditions decrease over the entire weathering period of 95 days for OI-A fibers 

and 28 days for OI-B fibers. The failure strains for both glasses initially decrease rapidly 

to approximately 30% of the initial failure strain over the first 21 days of weathering, 

then continue to decrease more slowly after that. 

Average failure strains of OI-B fibers measured in room temperature, 40%RH air 

and in liquid nitrogen after being aged in 50°C water are compared to those weathered in 

80%RH/50°C air in Figure 4.7. Failure strains decreased for fibers aged in water for the 

first three days, then leveled off after that, whereas failure strains continued to decrease 

for samples weathered in 80%RH/50°C air. Figure 4.8 shows the Weibull modulus for 
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the failure strain distributions in Figure 4.7. The fibers tested in ambient conditions have 

a greater Weibull modulus (52.3 – 62.0) than those tested in liquid nitrogen (21.0 – 47.2). 

However, there does not appear to be a notable difference between the Weibull modulus 

of fibers aged in 50ᵒC water and fibers weathered in 80%RH/ 50ᵒC conditions. 

 

 

Figure 4.2. Failure strain distributions of OI-B fibers weathered in 80%RH/50°C air for 
up to 95 days and tested in 40%RH, room temperature air. 

 

Fibers with different water contents were weathered in 80%RH/50°C air, and 

those failure strain data are shown Figure 4.9 and Figure 4.10, for measurements made in 

room temperature, 40%RH air and in liquid nitrogen, respectively. After 28 days of 

weathering in 80%RH/50oC, the failure strain (ε) is only 20-25% of the pristine failure 

strain (εp), for both testing conditions. There was a greater decrease in failure strain for 

weathered 270ppm glass, particularly when measured in ambient conditions; viz., Figure 

4.8. 



72 

 

Figure 4.3. Failure strain distributions of OI-A fibers weathered in 80%RH/50°C air for 
up to 95 days and tested in liquid nitrogen. 

 

 

Figure 4.4. Failure strain distributions of OI-B fibers weathered in 80%RH/50°C air for 
up to 95 days and tested in liquid nitrogen. 
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Figure 4.5. Average failure strains of OI-A and OI-B fibers weathered in 80%RH/50°C 
air and tested in 40%RH, room temperature air. 

 

 

Figure 4.6. Average failure strains of OI-A and OI-B fibers weathered in 80%RH/50°C 
air and tested in liquid nitrogen. 
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Figure 4.7. Average failure strains, measured at room temperature in air (40% RH) 
(closed symbols) and under liquid nitrogen (open symbols), for OI-B fibers aged in either 

50°C water or 50°C/80%RH air. Lines are guides for the eyes. 

 

 

Figure 4.8. Weibull modulus for failure strain distributions, measured at room 
temperature in air (40% RH) (closed symbols) and under liquid nitrogen (open symbols), 
for OI-B fibers aged in either 50°C water or 50°C/80%RH air. Lines are guides for the 

eyes. 
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Figure 4.11 and Figure 4.12 summarize the time-dependent failure strains 

normalized to the pristine failure strain and measured in room temperature, 40%RH air 

and in liquid nitrogen, respectively, for fibers weathered in lower humidity conditions. 

The failure strains of both OI-A and OI-B fibers initially increase when the fibers are 

exposed to 10%RH/50°C air, and then after about three days, failure strains decrease, but 

to a much smaller degree than what happens in 80%RH/50°C air (Figure 4.5). Fibers 

weathered under ambient conditions and in 40%RH/50°C air show similar initial 

increases in failure strain.  The scatter in the liquid nitrogen data (Figure 4.11) is greater 

than in the 40%RH air data (Figure 4.10), but the former also show some increases in 

failure strains for fibers aged 3-5 days, then little fall-off in failure strain for fibers 

weathered for longer times, in contrast to the significant loss in failure strain for fibers 

weathered in 80%RH/50°C air (Figure 4.6).   

Figure 4.13 and Figure 4.14 show similar weathering time-dependences for the 

normalized failure strains for fibers with different residual water contents exposed to 

10%RH/50°C air, tested in room temperature, 40%RH air and in liquid nitrogen, 

respectively. All three glasses with different residual water contents appear to follow the 

same weathering trends. When tested in air, failure strains increase by about 5% over the 

first 3-7 days of exposure, then gradually fall to about 93% of the pristine values after 28 

days exposure (Figure 4.12).  When tested in liquid nitrogen, failure strains increase by 

10-15% over the first week of exposure, with little loss over 28 days (Figure 4.13).  In 

contrast, when these fibers are exposed to 80%RH/50°C air, failure strains decrease to 

20% of their original values after two weeks of exposure (Figure 4.9).  
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Figure 4.9. Normalized failure strains of OI-B fibers with different residual water 
contents tested in room temperature, 40%RH air at 4000µm/sec after weathering in 

80%RH/50°C air. 

 

 

Figure 4.10. Normalized failure strains of OI-B fibers with different residual water 
contents tested in liquid nitrogen at 4000µm/sec after weathering in 80%RH/50°C air. 
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Figure 4.11. Normalized failure strains of OI-A and OI-B fibers weathered in the 
conditions indicated and tested in room temperature, 40%RH air at 4000µm/sec. 

 

 

Figure 4.12. Normalized failure strains of OI-A and OI-B fibers weathered in the 
conditions indicated and tested in liquid nitrogen at 4000µm/sec. 
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Figure 4.13. Normalized failure strains of OI-B fibers with different residual water 
contents after weathering in 10%RH/50°C air and tested in room temperature 40%RH air 

at 4000µm/sec . 

 

 

Figure 4.14. Normalized failure strains of OI-B fibers with different residual water 
contents after weathering in 10%RH/50°C air and tested in liquid nitrogen at 

4000µm/sec. 
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4.2.2. Fatigue Susceptibility. The fatigue parameter for both OI-A and OI-B 

glass fibers weathered in 50°C/80%RH air increases with weathering time, from about 15 

to about 22-25, as shown in Figure 4.15.  For comparison, the fatigue parameters 

measured under similar conditions for E-glass are in the range 21-25 [42] and for fused 

silica fibers, fatigue parameters are 23-27 [64].  Thus, the sensitivity to fatigue of the 

weathered SLS fibers is less than it is for fresh SLS fibers, becoming more similar to 

those reported for more durable glasses. Figure 4.15 also shows that the fatigue 

parameters of fibers aged in 50°C water increased at the same rate as those of fibers 

weathered in 80%RH/50°C air over a similar time period. 

 

 

Figure 4.15. Fatigue parameters for OI-A and OI-B fibers measured in 40%RH, room 
temperature air. Fibers were weathered in either 50°C/80%RH air or aged in water at 

50°C for up to 28 days.  

 

Figure 4.16 shows the fatigue parameters of OI-B fibers held in 50°C water for 0, 

3, or 7 days, and then tested in room temperature air at different levels of humidity, from 
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20%RH to 80%RH. The fatigue parameter appears to be independent of humidity for the 

pristine fibers and for fibers immersed in water for 3 days, although the latter were 

consistently greater. Fatigue parameters measured from fibers immersed in 50°C water 

for 7 days were significantly greater than those from the 0 and 3 day samples, particularly 

at 20%RH. 

 

 

Figure 4.16. Fatigue parameters for OI-B fibers aged 50°C water for 0, 3, and 7 days, and 
tested in room temperature air at different levels of humidity. 

 

For glasses with different water contents, the fatigue parameter of all fibers 

steadily increases from 15.5-16 to 21-23 after weathering in 80%RH/50°C air (Figure 

4.16). The 270ppm water content glass has the greatest fatigue parameter, 23, after 

weathering for 28 days. In contrast, the fatigue parameters after weathering in 

10%RH/50°C air for up to thirty days varied little from the values measured for the 

pristine glasses, remaining in the range 15-16.5 (Figure 4.16). As was the case for the 
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270ppm fibers weathered in 80%RH/50°C air, the 270ppm fibers weathered in 

10%RH/50°C air had a greater fatigue parameter than the other two sets of fibers. 

 

 

Figure 4.17. Fatigue parameters of OI-B fibers with different residual water contents, 
weathered in 10%RH/50°C air (open symbols) and in 80%RH/50°C air (closed symbols). 

 

4.2.3. Surface Characterization. The surfaces of pristine and weathered fibers 

were examined by atomic force microscopy (AFM). Figure 4.18 shows the flattened 

images collected from OI-A fibers after three days exposure to 50°C/80%RH air. The 

root-mean square (RMS) surface roughness, Rq, of the pristine fiber is 1.0±0.5nm. After 

one day of weathering in 50°C/80%RH air, tiny dendritic features appear on the surface, 

increasing the surface roughness to 51±5nm. Also present on the surface after one day of 

weathering are surface features that were too large to be captured by the AFM. The AFM 

image from day three captures the edge of one of these features.  

Scanning electron microscopy (SEM) images of OI-A glass surfaces weathered in 

50°C/80%RH air for up to 30 days are shown in Figure 4.19. Corrosion features larger 
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than those in the AFM images are apparent after one day of weathering. The surface 

features get progressively larger over time, evolving from micron-sized circular features 

(1-7 days) to more crystalline features that are tens of microns long (30 day).  Similar 

features formed on the surfaces of weathered OI-B fibers (Figure 4.20).  

 

 

Figure 4.18. AFM images of a SLS surface weathered for up to 3 days in 80%RH/50°C 
air. 

 

Figure 4.21 shows a comparison of fibers before and after rinsing with distilled 

water. Many of the surface features appear to have been removed with rinsing. However, 

there are still several features remaining. Fibers aged in 50°C water for 7 days show no 

visible surface features (Figure 4.22).  

Figure 4.23 shows images collected from the surfaces of OI-A fibers after 100 

days of weathering in 80%RH/50°C air. Large deposits are present, including those that 

extend several microns above the fiber surface (Figure 4.23B). Figure 4.23C shows 

surface features at higher magnifications.  These features were rinsed off the surfaces in 

distilled water to reveal sub-micron etch pits (Figure 4.23D and E). 

 

Pristine 1 Day 3 Days 
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Figure 4.19. SEM images of OI-A fiber surfaces after weathering in 80%RH/50°C air for 

up to 30 days. 
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Figure 4.20. SEM images of OI-B fiber surfaces during weathering in 80%RH/50°C air 

for up to 28 days. 
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Figure 4.21. SEM images of OI-B fibers weathered in 80%RH/50°C air before rinsing 

(left side) and after rinsing (right side) in distilled water. 
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Figure 4.22. SEM image of an OI-B fiber surface after weathering in 50°C water for 7 
days. 

 

Figure 4.24 shows SEM images of the surfaces of pristine OI-B fibers and fibers 

exposed to 80%RH/50°C air for 28 days.  The weathered samples show the presence of 

surface species similar to those shown above.  EDS data was collected from the areas 

outlined in each of the images in Figure 4.24, and the resulting atom ratios are listed with 

each image. Clearly, these surface features are enriched in Ca and Na relative to the 

pristine glass surface. 

Figure 4.25 shows EDS maps of sodium- and calcium-rich deposits that formed 

on the surfaces of OI-A fibers weathered for 100 days in 80%RH/50°C air. These maps 

also show that these features are rich in carbon, indicating that they are likely Na-

carbonates.  
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Figure 4.23. SEM images of OI-A fibers weathered for 100 days in 80%RH/50°C air; A) 
low magnification image of deposited crystals; B) magnified image of a surface feature; 
C) magnified image of surface bloom; D) image of a fiber surface after it was rinsed in 
distilled water; E) magnified image of an etch pit revealed after the fiber was rinsed in 

distilled water. 
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Figure 4.24. SEM images of a pristine OI-B fiber (left) and fibers weathered 28 days in 
80%RH/50°C air (center and right), along with atom ratios obtained by EDS for the areas 

outlined in each image. 

 

The Raman spectrum from the pristine OI-B fiber surface is shown in Figure 

4.26A, and is similar to spectra collected from soda-lime silicate glass, reported by 

Brawer and White [132]. The 945 cm-1 and 1095 cm-1 bands are associated with Si-O-Si 

asymmetric stretching modes, and the 535 cm-1 and 775 cm-1  bands have been assigned 

to the Si-O-Si bending modes and the Si-O-Si symmetric stretching modes, 

respectively[133].  A Raman spectrum collected from a surface feature on a fiber after 45 

days of weathering in 80%RH/50°C air is shown in Figure 4.25B. New peaks at 1045cm-

1 and 1280cm-1 indicate the presence of sodium bicarbonate[134] There is also a shift in 

the Si-O-Si symmetric stretching peak, from 775 cm-1 peak in the spectrum from the 

pristine glass to 790 cm-1 in the weathered glass. Scanning electron microscopic images 

of the surfaces of the OI-B fibers weathered in 10%RH/50°C air for up to 28 days are 

shown in Figure 4.28, and compared with the surface of a fiber weathered in 

80%RH/50°C air for one day (Figure 4.28B).  The surface of the latter fiber is covered 

with micron-scale corrosion spots, whereas those fibers weathered in 10%RH/50°C air  

5µm 5µm 5µm 

Pristine Surface 
Ca/Si Ratio: 0.15±0.006 
Na/Si Ratio: 0.29±0.002 

Weathered 28 Days 
Ca/Si Ratio: 0.16±0.018 
Na/Si Ratio: 0.41±0.003 

Weathered 28 Days 
Ca/Si Ratio: 0.68±0.007 
Na/Si Ratio: 0.43±0.002 
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show little evidence for corrosion, at least on the scale of the fiber weathered for a day in 

80%RH/50°C. Higher magnification images, however, of the OI-A (Figure 4.28) and OI-

B (Figure 4.29) fibers reveal the presence of sub-micron sized features that appear to 

inconsistently change size, shape, and distribution with weathering time. Rinsing the 

fibers in water the surface removes these surface features (Figure 4.30). 

 

 

 
Figure 4.25. EDS x-ray scans of a surface feature on an OI-A fiber after 100 days in 

80%RH/50°C air. 

 

Examining the surfaces of the fibers weathered in ambient conditions in Figure 

4.39 shows dark micron sized circles appearing after just 8 hours of exposure to 

~40%RH/25°C air. Similar dark areas can be seen in Figure 4.28 and Figure 4.29 

surrounding the features on several of the images. After 5 and 20 days of weathering in 

~40%RH/25°C air, features are similar to those seen in appear in Figure 4.28 and Figure 
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4.29. After 60 days of weathering, features are ~1 micron and clustered in groups ~5 

microns larger, and there are distinct dark areas located in between the clusters of 

features. Unlike Figure 4.28 and Figure 4.29, the features in Figure 4.30 appear to grow 

consistently over the weathering period. 

For glasses with different residual water contents, microscopic examination of the 

surfaces of fibers weathered in 80%RH/50°C air shows that surface features across all 

glasses grow from ~5µm to ~20µm over the 30 days weathering period (Figures 4.33-

4.36). The development of surface features over the first 7 days does not appear to be 

dependent on the residual water content of the glass. At 14 days, the 270ppm glass has 

distinct 15-20 micron sized features compared to the 140ppm or 180ppm glasses. At 30 

days, all fibers have distinct surface features ~20 microns in size. 

 

 

Figure 4.26. Raman spectrum from a pristine OI-B pristine glass fiber surface (A) and an 
OI-B glass fiber surface after weathering for 45 days in 80%RH/50°C air. 
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SEM images of the fiber surfaces weathered in 10%RH/50°C air are shown in 

Figure 4.36-Figure 4.39. The 180ppm and 270ppm surfaces appear to age similarly to the 

previous fibers examined (Figure 4.28 and Figure 4.29). However, there are grey spots on 

the surfaces of the140ppm fibers after 28 days that closely resemble the grey areas 

identified on the ambient weathered fibers (Figure 4.31). 

 

 
Figure 4.27. SEM images of OI-B fibers A)Pristine, b) weathered 1 day in 80%RH/50°C 
air, and weathered in 10%RH/50°C air for (c) 1 day, (d) 7 days, (e) 14 days, and (f) 28 

days. 
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Figure 4.28. Higher magnification SEM images of OI-A fiber weathered for up to 30 

days in 10%RH/50°C air. 
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Figure 4.29. Higher magnification SEM images of OI-B fibers weathered for up to 28 

days in 10%RH/50°C air. 
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Figure 4.30. SEM images of OI-B fibers weathered for up to 28 days in a 10%RH/50°C 

air, then rinsed in distilled water. 
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Figure 4.31 SEM images of fiber surfaces after weathering in 80%RH/50°C air for 1 day. 

 

 

Figure 4.32. SEM images of fiber surfaces after weathering in 80%RH/50°C air for 7 days. 
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Figure 4.33. SEM images of fiber surfaces after weathering in 80%RH/50°C air for 14 days. 

 

 

Figure 4.34. SEM images of fiber surfaces after weathering in 80%RH/50°C air for 28 days.  

96 
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Figure 4.35. SEM images of fiber surfaces after weathering in 10%RH/50°C air for 1 day. 

 

 

Figure 4.36. SEM images of fiber surfaces after weathering in 10%RH/50°C air for 7 days. 
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Figure 4.37. SEM images of fiber surfaces after weathering in 10%RH/50°C air for 14 days. 

 

 

Figure 4.38. SEM images of fiber surfaces after weathering in 10%RH/50°C air for 28 days. 

98 
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Figure 4.39. SEM images of OI-A fiber weathered for up to 60 days in ~40%RH/25°C 

air. 

4.3. DISCUSSION 

4.3.1. Processing Effects on Weathering of Glass Fibers. The changes in the 

breadths of the failure distributions for the OI-A fibers through 95 days of weathering in 

50°C/80%RH air, shown in Figure 4.1 and Figure 4.3, contrasts with the relatively 

consistent failure distributions for the  OI-B fibers, shown in Figure 4.2 and Figure 4.4.  

Defects created by processing or handling can limit glass strength[4], [135], but both sets 

of pristine fibers have similar, narrow failure distributions, so there seems not to be 

significant differences in the respective pristine samples, making it more likely that there 
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are differences in the development of the strength-limiting weathering products on the 

respective glass surfaces. This would indicate preferential corrosion on the glass surface 

where some weathering defect sites grow faster than others or the distribution of these 

weathering flaws is broader and/or non-uniform in size. Because critical flaws could not 

be observed due to their nanoscopic size, it was not possible to determine whether the 

failure strain distributions were controlled by non-uniform flaw growth or broader 

starting distributions. The narrowing of failure strains for the OI-A fibers after about 

three weeks of weathering (Figure 4.1and Figure 4.3) indicates that the critical flaw 

distributions are becoming more uniform.  

The OI-A glass fibers were produced principally by adjusting the drawing speed 

to maintain consistent fiber diameters. It was not uncommon in these experiments to 

produce large numbers of fibers with diameters that fell out of the acceptable range. In 

later experiments using OI-B glass, the drawing process was modified to use a constant 

drawing speed, while adjusting the height of the copper cooling and furnace temperature 

to maintain constant fiber diameters. Drawing stresses are known to affect the properties 

of glass fibers. Increasing the axial stress during the drawing of E-glass fibers has been 

shown to increase both the anisotropy of the structure and the orientation of defects to  

produce residual stresses[136].  Carnali et. al. found that the increased stretching forces 

on pristine blown glass surfaces increased the number of surface heterogeneities[137], 

and these heterogeneities were found to etch preferentially when exposed to water. It is 

possible that there were differences in the drawing stresses used to produce the OI-A and 

OI-B fibers and these different conditions created heterogeneities in surface composition 
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that reacted with water in different ways to produce broader distributions of strength 

limiting flaws when the OI-A fibers were exposed to humid conditions.   

4.3.2. Decrease in Failure Strains from Weathering. OI-A and OI-B fiber 

failure strains decrease with increasing weathering time in humid air (Figure 4.5 and 

Figure 4.6) and in water (Figure 4.7). The decrease in failure strain after weathering in 

humid environments has been observed for other silicate glasses [95], [110], [111], [138]. 

For both OI-A and OI-B, the average inert failure strain decreases rapidly over the first 

21 days of weathering in 80%RH/50°C air. Fibers decrease at a rate of ~5% per day when 

tested in inert conditions. After 14 days, the failure strains decrease at a much slower rate 

of ~0.006% per day for the remainder of the experiment (Figure 4.5). SLS fibers 

weathered in 50°C water undergo a similar rapid initial decrease in average failure strain, 

although the rate of decrease appears to level out after 7 days instead of 14 days (Figure 

4.7). This initial rapid decrease in average failure strain with weathering has been seen 

for E-glass samples as well[110], [111], [139]. E-glass fibers weathered and tested under 

identical conditions undergo a ~1.5% decrease per day in failure strains in the first seven 

days[111], which is considerably slower than the degradation of failure strain in the 

present SLS glass fibers.  

The ratio of the failure strain measured in air and in liquid nitrogen for pristine 

fibers are shown in Table 4.1. There is no noticeable different between OI-A trial 1 and 

OI-B trials 1-3. Figure 4.40 shows the ratio of failure strains measured in room 

temperature air (40% RH) (Figure 4.5) to those measured under liquid nitrogen (Figure 

4.6) for the weathered OI-A and OI-B glasses. The failure strain ratio for pristine fibers 

range from 0.34-0.40 and increases to 0.45-0.56 after 30 days of weathering independent 
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of water content or source glass.  The failure strain values measured in air depend both on 

the fatigue effects of atmospheric water as well as any physical damage that weathering 

does to the fiber surfaces, whereas the failure strain values in liquid nitrogen depend 

principally on surface damage since water activity is minimized.  The increase in the 

failure strain ratios with weathering indicate that the relative influence of fatigue is less 

for the weathered fibers, in agreement with the increase in the fatigue parameters 

measured for both sets of SLS fibers with increasing weathering time (Figure 4.15). 

 

Table 4.1. Ratio of the failure strain measured in air and in liquid nitrogen for pristine 
fibers. 

Trial Failure Strain Ratio 
OI-A Trial 1 0.34 ± 0.02 
OI-B Trial 1 0.39 ± 0.01 
OI-B Trial 2 0.36 ± 0.01 
OI-B Trial 3 0.37 ± 0.01 

 

 

Since the effects of water are minimized when testing is done under liquid 

nitrogen, the decreasing failure strains, and implied decreasing fiber strength, with 

weathering time is attributed to the development of larger critical flaws created by the 

weathering reactions. The relationship between failure strength (σf) and an estimated 

critical flaw depth (c*) can be estimated using the Griffith equation[11]: 

 

𝜎𝜎𝑓𝑓 = �2𝐸𝐸𝛾𝛾
𝜋𝜋𝑐𝑐∗

�
1/2

       (4.1) 
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where E is the elastic modulus and γ is the fracture surface energy. If non-linear elastic 

modulus effects are ignored, then failure strain will be directly proportional to failure 

strength and will have a similar dependence on the nature of the critical flaw, c*. 

Therefore, the decrease of average inert failure strain with weathering time should be 

inversely correlated with the increase in critical flaw size. Using the estimation for the 

fourth order elastic modulus derived by Gupta and Kurkjian, described in Section 3.3.1, 

the failure strength (σ) can be determined from failure strain (ε) and the inert failure 

strain (ε*) using equation 4.2: 

 

𝜎𝜎 = 𝐸𝐸0𝜀𝜀 + 1
2
𝐸𝐸1 − �𝜀𝜀

3

3
� �𝐸𝐸0+𝐸𝐸1𝜀𝜀

∗

(𝜀𝜀∗)2 �     (4.2) 

 

where E0 and E1 are the second and third order elastic moduli, respectively. Since ε = ε* 

in inert conditions, this equation can be simplified to: 

 

𝜎𝜎𝑓𝑓∗ = 2
3
𝐸𝐸0𝜀𝜀𝑓𝑓∗ + 1

6
𝐸𝐸1𝜀𝜀𝑓𝑓∗

2     (4.3) 

 

Griffith’s equation (Equation 4.1) can be used to estimate the critical flaw depth 

from the inert failure strengths derived from Equation 4.3. Using values for the second 

and third order moduli, 72 GPa, and 121 GPa, respectively, determined by Cavaill using 

Brillouin scattering[121], the critical flaw sizes were estimated and are shown in Figure 

4.41. 
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For pristine fiber surfaces, AFM characterization revealed topological features 

that were submicron wide and 1-2nm deep (Figure 4.18). Interestingly, the depths of the 

features correlate well with the predicted critical flaw size using the Griffith equation 

derived from the failure strains of the pristine fibers broken in liquid nitrogen (Figure 

4.41). These surface “flaws” could be the critical stress concentrators that cause failure 

on the pristine fiber surfaces. They also could serve as nucleation sites for the dendritic 

crystals observed with AFM after one day of weathering in 80%RH/50°C air (Figure 

4.18). 

 

 

Figure 4.40. Ratio of the average failure strain measured in room temperature air at 
40%RH to those measured in liquid nitrogen for OI-A and OI-B glasses weathered in 

50°C/80%RH air. 
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Figure 4.41. Estimated critical flaw sizes derived from the average failure strains 
measured under liquid nitrogen for SLS fibers weathered in 80%RH/50°C air and in 50°C 

water. Lines are linear fits to the estimated flaw sizes. 

 

After three days, the surface roughness from AFM is >50nm, which is larger than 

the predicted flaw sizes after 3 days of weathering in 80%RH/50ᵒC in Figure 4.41. It is 

important to note that the Griffith equation assumes that all flaws are scratch-like and 

atomically sharp [140], which is a reasonable assumption for a pristine fiber surface. For 

aged and weathered surfaces, the shape and uniformity of the critical flaws is likely to be 

changing with time, and therefore, the estimated flaw size would change as well. 

Alternatively, the size and shape of the developing surface features observed with AFM 

may not be predictive of the critical flaw size. 

Beyond three days, the dendritic features appear to coalesce and form features too 

large to be observed by AFM. The coalescence of dendritic surface features into larger 
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features on SLS surfaces over a seven days weathering period in 100%RH/25°C air has 

been previously observed [142]. The SEM images in Figure 4.19 and Figure 4.20 show 

continuous growth of these surface features over the 30-day weathering period in 

80%RH/50°C air. Surface features with dimensions of ~2-5µm appear after one day of 

weathering, and these features grow and consolidate to form larger features (20-40µm) 

after 30 days of weathering. The features after 14 days of weathering in 80%RH/50°C air 

appear to be needle-like or hexagonal in nature (Figure 4.21), which is consistent with the 

morphologies of crystals grown on the inside of weathered container glass bottles stored 

in ambient conditions for a year[70] (Figure 4.42).  

 

 

Figure 4.42. SEM images of a glass bottle surface stored outside and with direct exposure 
to the environment for 1 year[70]. 

 

The relationship between these large surface features and the decrease in failure 

strains due to the growth of critical flaws is not easily determined. Verita et. al. washed 

the interior of SLS bottles after weathering and observed the presence of hexagonal 
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pits[71]. The washing method was not disclosed, but the hexagonal pits closely matched 

the hexagonal growths on the unwashed surface (Figure 4.43).  

 

 

Figure 4.43. SEM images of glass bottle surface features stored for 1 year outside with 
direct exposure to the environment before (left) and after (right) cleaning [71]. 

 

Rinsing OI-B fibers in distilled water revealed no obvious surface pits after the 

first 30 days of weathering (Figure 4.21). Corrosion products remained attached to the 

surfaces and so it is possible that the cleaning method was insufficient to reveal damage. 

Samples that were weathered for 100 days in 80%RH/50°C air created much more 

extensive surface bloom features that were associated with obvious etch pits that were 

revealed after rinsing these fibers in water (Figure 4.23). These pits, which were widely 

distributed over the fiber surface, are evidence for the local dissolution of the glass. If 

such pits are the critical flaws that limit the strengths of severely weathered glass, then 

the tight distributions of failure strains for these fibers (e.g., Figure 4.3), indicate that they 

must have similar dimensions and distributions.   
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Characterization by EDS of the surface features that form after 28 days of 

weathering show that they are enriched in calcium and sodium with respect to silicon 

concentration, Figure 4.24, as well as carbon, Figure 4.25. These analyses are consistent 

with the formation of sodium carbonate and calcium carbonate, as has been seen in 

previous studies of weathered SLS glass [68], [70], [71], [134], [143].  

Fibers immersed in water do not show the formation of any surface precipitation 

products (Figure 4.22).  This is likely because the leached ions are able to diffuse into the 

surrounding water away from the fiber surface. Additionally, the Weibull moduli for 

fibers aged in 50ᵒC water and fibers weathered in 80%RH/50ᵒC conditions are similar, 

which indicates the distributions of flaws are similar between the two conditions.    

The surface features and critical flaw development is related to the macroscopic 

weathering reactions on SLS surfaces. In humid weathering conditions, water droplets 

first condense on the fresh glass surfaces, where an ion-exchange reaction occurs 

between the alkali ions in the glass and protonated water, to produce a hydrated, alkali 

depleted layer on the glass and an alkaline water layer on the glass surface [67].  

Equations 4.4 and 4.5 describe the possible ion exchange reactions: 

 

|
− 𝑆𝑆𝑆𝑆 −

|
 𝑂𝑂−𝑁𝑁𝑁𝑁+ + 𝐻𝐻2𝑂𝑂 ⟶  

|
− 𝑆𝑆𝑆𝑆 −

|
 𝑂𝑂𝐻𝐻 + 𝑁𝑁𝑁𝑁+ +  𝑂𝑂𝐻𝐻−          (4.4) 

 

|
− 𝑆𝑆𝑆𝑆 −

|
 𝑂𝑂−𝑁𝑁𝑁𝑁+ + 𝐻𝐻3𝑂𝑂+  ⟶  

|
− 𝑆𝑆𝑆𝑆 −

|
 𝑂𝑂𝐻𝐻(𝐻𝐻2𝑂𝑂) + 𝑁𝑁𝑁𝑁+         (4.5) 
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When the pH of the water layer exceeds about 9 [67], the siloxane bonds in the silicate 

network can be hydrolyzed to release silicic acid, as represented by Equation 4.6: 

 

𝑆𝑆𝑆𝑆 − 𝑂𝑂 
|

− 𝑆𝑆𝑆𝑆 −
|

 𝑂𝑂𝐻𝐻 +  𝑂𝑂𝐻𝐻−  ⟶  𝑆𝑆𝑆𝑆 − 𝑂𝑂
|

− 𝑆𝑆𝑆𝑆 −
|

 𝑂𝑂𝐻𝐻 

 

⟶  𝑆𝑆𝑆𝑆 − 𝑂𝑂− +  𝑆𝑆𝑆𝑆(𝑂𝑂𝐻𝐻)4      (4.6) 

 

Another reaction on the glass surface is hydration [67], the process by which water 

molecules diffuse into the glass structure via voids in the glass or surface film structure. 

The rate of diffusion is dependent on the void size. Hydration can occur simultaneously 

with ion-exchange and hydrolysis reactions. As the hydrolysis reactions break down the 

silicate network, larger voids and open pathways created in the structure allow for further 

penetration of water molecules, which in turn promote further ion-exchange and 

hydrolysis reactions.  

 

Figure 4.44. Pristine glass surface. 

OH 

OH 

OH 

OH OH 
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The effect of these weathering processes is summarized in the series of diagrams 

in Figure 4.44 - Figure 4.48. At first, the ion exchange reactions (Equation 4.4 and 

Equation 4.5) result in the accumulation of OH- and Na+ ions and increase the pH that 

would promote rapid hydrolysis reactions (Figure 4.45)[71]. However, the increase in pH 

is inhibited by the dissolution of acidic gases in the atmosphere, such as SO2, CO2, and 

NOx, which dissolve into the surface water droplets or layers (Figure 4.46).  

 

 

Figure 4.45. Formation of a water film after exposure to humid conditions. Ion-exchange 
of alkali and alkaline ions with water creates a silica-rich gel layer. Hydration of the gel 

layer occurs by the diffusion of water molecules. 

 

The decrease in the surface pH slows the hydrolysis reactions and dissolution of the 

silicate network. Eventually, the leached alkali and alkaline earth ions react with the 

acidic gases to form alkali and alkaline carbonates, sulfates, etc. At some point, the 

solubility limit of these products in the surface water layer is reached, and crystalline 

deposits precipitate on glass surface [68], [70] (Figure 4.47). Despite the decrease in 
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surface pH due to acidic gases, the presence of pits (Figure 4.23) indicate that the pH is 

still high enough that hydrolysis is occurring to some extent (Figure 4.48).  

 

 

Figure 4.46. Dissolution of acidic gases from the atmosphere into the alkaline surface 
water film. 

 

 

Figure 4.47. Development of weathering products from reactions of alkali and alkaline 
ions with acidic gases. 
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The corrosion processes (Figure 4.49 - Figure 4.51) in water are similar to those 

in humid air, however the OH- and Na+ ions that are produced can diffuse away from the 

glass surface through the water (Figure 4.49). This prevents the local pH from rapidly 

increasing and therefore, slowing or limiting the attack on the silicate structure. 

Additionally, it is possible that the absence of precipitated crystallites (Figure 4.22) may 

influence the shape and uniformity of critical flaws. The higher failure strains for fibers 

aged in 50ᵒC water for 14 days compared to fibers weathered in 80%RH/50ᵒC conditions 

(Figure 4.7) could be attributed solely to flaw shape rather than the kinetics of the surface 

reactions. Figure 4.50 shows the development of flaws on aged fiber surface that are 

similar to the flaws hypothesized to develop on a weathered fiber surface (Figure 4.36). 

Figure 4.51 shows the development of alternative flaw shape. Further work is needed to 

determine the underlying topography in order to better understand the nature and true size 

of the critical flaws on weathered and aged surfaces. 

 

 

Figure 4.48. Acceleration of hydrolysis reactions that break down the silicate network. 
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Figure 4.49. SLS glass in water: Ion-exchange of alkali and alkaline ions with water 

creating a silica rich gel layer. After ion exchange, ions diffuse away from glass surface. 
Hydration of gel layer from diffusion of water molecules. 

 

Figure 4.50. Hydrolysis reactions create critical flaws on the glass surface after aging in 
50ᵒC water. 
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Figure 4.51. Hydrolysis reactions create critical flaws on the glass surface after aging in 
50ᵒC. 

 

4.3.3. Increase in Failure Strains of Fibers Weathered in Low Humidity Air. 

The SEM images of the surfaces of the OI-A and OI-B fibers weathered in 10%RH/50°C 

air reveal significantly less degradation compared to fibers weathered in 80%RH/50°C air 

(e.g., Figure 4.27), although images of the surfaces collected at a higher magnification 

show surface deposits that are round and submicron in size (Figure 4.28 and Figure 4.29). 

Dark spots appear have formed after just 8 hours in ambient conditions (Figure 4.31). 

Similar dark areas surround several of the larger features that form after weathering in 

both 10%RH/50°C and ~40%RH/50°C air (Figure 4.28, Figure 4.29, and Figure 4.31). 

These images all show varying sizes and numbers of droplet and particle-like features.  

Comparable features have been observed on the surfaces of other glasses weathered in 

similar conditions[111], [141], [144]. Features observed on  E-glass fibers weathered in 

10%RH/50°C air were believed to be organic particles that were either electrostatically 
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attracted to the surface or organic pollutants diffused into water droplets condensed on 

the surface [111], [141]. Similar features on soda-lime-silicate glass have been described 

as “wax-like”[145]. It has been suggested that features start developing within 10 minutes 

on a freshly formed surface[144]. The features were too small to chemically analyze in 

the present study. However, other studies have tracked the feature growth and indicate 

that feature remains “wax-like” after three months in ambient conditions before 

developing primarily into sodium sulfate and sodium carbonate crystallites after one 

year[141], [144]. The removal of the crystallites after one year revealed pits associated 

with their location[71].  The inconsistent growth of these surface features implies that 

their growth is either influenced by an external uncontrolled factor, such as the deposition 

of atmospheric particles, or that the individual fibers develop the features differently due 

to variations in processing conditions. Because the frames with fibers were stacked on 

racks during the weathering experiments, it is not unreasonable to assume that organic 

particles could have settled unevenly on the fiber surfaces. The fibers used in the SEM 

analyses were randomly selected from the storage racks. Alternatively, as is discussed in 

section 4.3.1, heterogeneities from processing may affect the development of flaws and 

the flaw distributions. The preferential formation of these weathering products may 

reveal the relative homogeneity of an individual fiber surface. However, the Weibull 

moduli for the failure strains remain consistent for OI-B fibers weathered in 

80%RH/50°C (Figure 4.2 and Figure 4.4) implying that these heterogeneities do not 

affect the distribution of failure strains over the weathering period in this study.  This is 

supported by the lack of observable damage on the fiber surface after rinsing with water 

(Figure 4.30). Figure 4.52 shows the ratio of failure strains measured in ambient 
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conditions to those measured under liquid nitrogen for the fibers weathered in the 

10%RH/50°C, 40%RH/50°C, and in ambient environments. The ratios do not change 

significantly for any of these three sets of samples, remaining consistently between 0.30 

and 0.39; this is in sharp contrast to the large increase in this ratio, to 0.45-0.56, for fibers 

weathered in 80%RH/50°C air (Figure 4.40).  The constant ratio indicates that neither 

flaws nor fatigue become more consequential during the aging period.  

The initial short-term (three day) weathering of OI-A and OI-B fibers at 

10%RH/50°C, 40%RH/50°C, and ~40%RH/25°C (ambient) environments increases the 

failure strain measured both in air (Figure 4.11) and in liquid nitrogen (Figure 4.12). In 

fact, the ratio of the inert failure strain to ambient failure strain does not change with 

weathering time (Figure 4.51). Additionally, unlike glasses weathered in 80%RH/50°C 

air, fibers weathered in 10%RH/50°C air did not show a measurable increase in the 

fatigue parameter over the 30-day weathering period (Figure 4.16), and so it is unlikely 

that the fatigue mechanism or rate is affected by weathering at these lower levels of 

humidity. Therefore, it appears that structural changes on the glass surface from exposure 

to these low humidity conditions are initially impeding crack initiation or propagation. 

This effect has not been seen for pristine silica or E-glass fibers weathered in similar low 

humidity conditions [111], [146].  

A possible explanation for the increase in failure strains is that surface 

hydroxylation increases the energy required for crack initiation on the glass surface. 

Molecular dynamic simulations have shown that water preferentially adsorbs on a silicate 

glass surface at high energy defects, such as three-coordinated Si and non-bridging 

oxygen [82]. After adsorption, the defect sites restructure into lower energy sites, thereby 
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decreasing the concentration of defects[82], [147]. Molecular dynamic studies have 

shown that these reactions occur on soda silicate glass surfaces within the first pico-

second after fracture (Figure 4.53). The effect of the surface hydroxylation at longer 

times has not been studied with molecular dynamics so it is not clear that the defect 

concentration on the surface continues to decrease after the initial reactions.  

Additionally, silica has also been shown to undergo similar surface hydroxylation 

restructuring (Figure 4.53), but it does not exhibit an increase in failure strain [146]. 

Therefore, the hydroxylation is likely not the primary mechanism for the increase in 

failure strains. 

 

 

Figure 4.52. Ratio of the average failure strain measured in ambient air (room 
temperature, 40%RH) to that measured under liquid nitrogen for OI-A and OI-B glasses 

weathered under the conditions indicated. Line is a guide for the eye. 
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Another possible explanation for the increase in failure strains after exposure to 

low humidity air involves the relative kinetics of the ion-exchange and hydrolysis 

reactions at the SLS surfaces. At lower humidity, hydrolysis and ion-exchange reactions 

are significantly slowed due to the lower activity of water. Since ion-exchange reactions 

typically precede hydrolysis reactions during weathering, the leaching of sodium ions is 

the driving weathering mechanism for a longer period of time whereas in high humidity 

conditions, the period of time prior to significant network hydrolysis would be much 

shorter. It is likely that hydration is also occurring during this period. Several studies 

have shown that the ratio of Na+ to H+ during ion-exchange is one to three for soda lime 

silicate glasses reacted in room temperature water[69], [148]. This indicates that the 

surface is hydrated simultaneously during the ion-exchange reactions (Equation 4.5). The 

rate of hydration will increase with ongoing ion-exchange reactions, and thick hydrated 

silica-rich surface layer with accumulated sodium ions on the surface will eventually 

form[67]. The surface features on the glass cannot be discounted as inert entities during 

this initial weathering process. The features are likely the product of dissolved SO2 and 

CO2 in the condensed water reacting with the sodium rich glass surface.  

As proposed, the formation of the hydrated, silica-rich layer occurs faster than the 

hydrolysis reactions. Because the silicate network remains intact during the ion-exchange 

and hydration, the resulting surface is likely homogenous and uniform and therefore, 

devoid of structural flaws that can act as stress concentrators. When the silicate network 

begins to dissolve via hydrolysis reactions, the resulting corrosion front has been shown 

in this study and in the literature to proceed non-uniformly, creating pitting on the 

surfaces (Figure 4.46) [71], [144]. These etch pits act as stress concentrators and decrease 
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the failure strains. This explanation would suggest that it is the rate of hydrolysis 

reactions that drives the growth of flaws and the resulting decrease in SLS glass strength 

during weathering.  

 

 

Figure 4.53. Surface defect concentration as a function of simulation time after the instant 
of fracture[82]. 

 

Recent studies of the mechanical properties of SLS glass surface have shown that 

SLS glasses are surprisingly more resistant to mechanochemical wear in the presence of 

water compared to most silicate glasses [149].This increased resistance has not been 

observed in alkali aluminosilicate, silica, borosilicates, or E-glass[150]. Luo et. al. 

demonstrated that surface sodium ions and subsurface hydrous species both play 

important roles in tangential shear resistance from mechomechanical wear on a soda lime 
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silicate glass surfaces in humid environments [151]. However, they concluded that 

further modeling and experimentation is required to understand the roles of these species 

in the increased shear resistance. To better understand this phenomenon, Luo et.al. 

hydrothermally treated SLS surfaces in a pressurized, humid conditions to create a highly 

hydrated sodium depleted surface layer[152]. This hydrated layer was found to have a 

lower hardness and, a decreased wear resistance; the fracture toughness of the glass 

surface also increased.  Enhanced fracture toughness was also recently observed for a 

hydrated cesium aluminoborate glass[153]. In this study, the glass was exposed to 

ambient conditions for 7 days. After 7 days, the fracture toughness of the glass increased 

from 30N to 490N. Removing the hydrated layer by polishing decreased the fracture 

toughness back to 30N. The mechanism behind the increased fracture toughness and wear 

resistance is also not well understood. One theory speculates that the surface is similar to 

a hydrated silica surface, inferred from the higher fracture toughness and alkali depletion, 

and therefore, suppresses crack initiation and propagation[152]. Alternatively, a 

prominent theory is that the topological constraints in the hydrated, alkali-depleted layer 

decrease due to the increase in OH- groups [152], [154].  This could contribute to the 

enhancement of glass network “flexibility”[153]. To relate these studies to the increasing 

failure strain effect observed in the present work requires further experimentation to (1) 

quantify and verify the surface and subsurface species of SLS glass exposed to 

10%RH/50°C air, and (2) understand how the change in mechanical properties of a 

surface layer several nanometers thick can prevent crack initiation and propagation in 

tension.  
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4.3.4. Fatigue Susceptibility of Weathered Surfaces.  As noted above, the ratio 

of failure strains for weathered fibers tested in ambient conditions (40%RH, room 

temperature air) compared with those tested under liquid nitrogen initially increase with 

weathering time, before leveling off after several weeks (Figure 4.40).  This indicates that 

the influence of water in the ambient conditions on the failure mechanism is becoming 

relatively less important than the damage that has been accumulating during weathering.  

There are corresponding increases in the fatigue parameter for the weathered fibers 

(Figure 4.15) that are consistent with less influence of atmospheric water on the failure 

process. 

Coated silica fibers have also shown an increase in the fatigue parameter after 

weathering in 85%RH/85°C conditions for 30 days and ambient conditions for 2 years 

[95]. The decrease in susceptibility to fatigue in the silica fibers was attributed to either 

the coating becoming more resistant to OH ion penetration or to the saturation of the 

silica glass surface with OH ions resisting further corrosion during testing. Similarly, the 

decrease in fatigue susceptibility (increase in fatigue parameter) of SLS could indicate 

that the alkali-deficient gel layer or weathering crust is interfering with atmospheric water 

reaching the critical flaw tips, reducing the fatigue susceptibility. Fibers weathered in 

water do not form an alkaline weathering crust because corrosion products are 

transported away from the surface, but they do form a silica-rich reaction layer similar to 

what forms on fibers weathered in humid conditions[155]. Figure 4.16 shows that the 

fatigue parameter for 50°C water-aged fibers also increases, indicating a decrease in the 

susceptibility to fatigue, with increasing weathering time at a similar rate to that 

measured for fibers weathered in 80%RH/50°C air. This supports the hypothesis that the 
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decrease in fatigue susceptibility is primarily driven by the formation of the silica-rich gel 

layer on the glass surface and not the formation of the alkaline weathering products. 

Figure 4.54. shows a diagram of a critical flaw encased in the alkali deficient silica rich 

‘gel’ layer on a weathered soda lime silicate glass surface. The critical flaw acts as the 

stress concentrator that decreases the failure strain. However, the silica ‘gel’ interferes 

with atmospheric water interactions with the glass, reducing the fatigue susceptibility. 

 

 

 

Figure 4.54. Diagram of a critical flaw encased in the alkali deficient silica rich ‘gel’ on a 
weathered soda lime silicate glass surface. 

 

The average fatigue parameter of SLS fibers weathered for 30 days in 

80%RH/50°C air is similar to the fatigue parameter of silica and E-glass, reported to be 

in the range 20-30[44], when measured in ambient conditions. Differences between SLS, 

silica, and E-glass surfaces include silica and E-glass surfaces being less reactive with 

water [43] and that the primary fatigue mechanism is hydrolysis not ion-exchange[44]. If 
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the SLS glass surface is becoming less reactive to water, it could be due to the alkali-

deficient gel layer being fully water “saturated” resulting in additional water in the 

atmosphere having less influence on the crack growth. However, if water saturation was 

the only cause of the decrease in fatigue susceptibility, the fatigue parameter should 

remain independent of testing humidity. Figure 4.16 shows that SLS fibers weathered in 

80%RH/50°C air for seven days are more sensitive to the relative humidity of the testing 

environment. As previously discussed by Tang et. al.[42], the fatigue parameter for 

pristine SLS glass is independent of humidity above 1%RH, and that finding was 

confirmed here (Figure 3.11). However, the fatigue susceptibility of both E-glass and 

silica are dependent on humidity because for these glasses, the fatigue is driven by the 

slower Si-O hydrolysis reactions[42]. Therefore, it is also possible that the decrease in 

fatigue susceptibility of SLS could indicate that the alkali-deficient gel layer is resisting 

further ion-exchange reactions.  
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Secondary ion mass spectroscopy and nuclear magnetic resonance studies of the 

leached layers that form on SLS glasses indicate that the surfaces become increasingly 

similar to fused silica with reaction times[48]. A shift in the dependence of fatigue from 

ion exchange reactions to the hydrolysis of Si-O bonds in the silica-like layer may be 

occurring. This fatigue mechanism shift would result in an increase in the fatigue 

parameter because the Si-O hydrolysis reactions are slower than the ion-exchange 

reactions[67]. This supports the hypothesis that the formation of “silica-like” surfaces on 

weathered SLS fibers determine their fatigue behavior.  

Another way to describe the change in fatigue mechanism is to take into account 

the reaction order. The order of a reaction describes the dependence of reaction rate on 

the reactant concentration. A reaction order of 1 indicates that the reaction is dependent 

on the concentration of a singular species. Higher reaction orders indicate that the 

reaction is dependent on more than one species or the square of the concentration of a 

single species. Duncan et. al. defined the empirical dependence of failure strains obtained 

in the two-point test on the relative humidity[64]: 

 

𝜀𝜀𝑓𝑓 ∝ (𝑅𝑅𝐻𝐻)𝑎𝑎      (4.10) 

 

The reaction order, m, could then be determined from the fatigue parameter by[64]: 

 

𝑚𝑚 = 𝑁𝑁 × (1 − 𝑛𝑛)     (4.11) 
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where a is derived from the dependence of failure strains on the humidity and the fatigue 

parameter ‘n’ is considered to be a constant derived from the average value over the 

humidity range. Figure 4.55 shows the humidity dependence of failure strain for glass 

fibers weathered in 50°C water for up to seven days and measured in room temperature 

air at the indicated RH value. ‘a’ can be determined from the linear slope of the data in 

Figure 4.55.  At lower humidity, Wiederhorn observed that the reaction order for soda-

lime-silicate decreases from 1 to 0.5. He attributed this to the presence of more than one 

fatigue reaction occurring at low humidity[54].   Table 4.2 shows that the reaction order, 

calculated from Equation 4.11 and the ‘a’ values determined from Figure 4.55, increased 

from 1.3±0.1 to 2.3±0.4 over the weathering period.  The reaction order of the pristine 

glass is comparable to values reported for SLS[42], [54]. The reaction order is near 1 for 

pristine SLS glasses because at low values of humidity, only one water molecule is 

available to break a bond [42]. However, at higher humidity: 

 

− 
|
𝑆𝑆𝑆𝑆 −
|

𝑂𝑂𝑁𝑁𝑁𝑁+ + 2𝐻𝐻2𝑂𝑂 → − 
|
𝑆𝑆𝑆𝑆 −
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𝑂𝑂𝐻𝐻 (𝐻𝐻2𝑂𝑂) + 𝑁𝑁𝑁𝑁+ + 𝑂𝑂𝐻𝐻−     (4.12) 

 

In this scenario, two water molecules are available to break bonds. For hydrolysis 

reactions, Armstrong et. al. surmised that if the reaction with water in Equation 4.9 is 

second order, then the first order is with OH- [55]. Tang et. al. attributed the lower 

reaction order of SLS glasses in humid conditions to the acceleration of corrosion from 

the local increase in pH from the production of OH- in the ion exchange reactions[42]. As 
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the glass ages, the production of OH- decreases because of the sodium depleted layer 

slowing the fatigue reaction on the weathered surface. 

 

 

Figure 4.55. Humidity dependence of failure strains for OI-B glass fibers aged in 50°C 
water for up to seven days and measured in room temperature air at the indicated RH 

value. 

 

Table 4.2 Reaction order values for fibers OI-B glass aged in 50°C  water for up to 7 
days, from the data in Figure 4.55.  

 m 

Pristine 1.3 ± 0.1 

Aged 3 Days 2.1 ± 0.3 

Aged 7 Days 2.3 ± 0.4 

 

 

4.3.5. Dependence on Residual Water Content in Soda Lime Silicate Glass. It 

has been well documented that the concentration of water between 100-500ppm can have 
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significant effects the properties of the glass[118], [130], [131], [156]. Therefore, the 

effect of water content on the fatigue and weathering characteristics is of interest. Section 

4.3.2 to section 4.3.4 discuss the role of water in surface reactions during weathering and 

stress corrosion. Figure 4.10 and Figure 4.14 show the effect of residual water content on 

the inert failure strain of glass fibers weathered in 80%RH/50°C air and 10%RH/50°C 

air, respectively. Glasses with higher and lower water contents see the same rapid 

decrease in ambient and inert failure strains after exposure to 80%RH/50°C air for 28 

days (Figure 4.9 and Figure 4.10).  In inert conditions, the water content does not appear 

to have any effect on the failure strains despite the 270ppm glass having lower pristine 

failure strengths (Figure 3.13) compared to the 140ppm and 180ppm glass. This indicates 

that the rate of flaw growth via weathering reactions is independent of residual water 

concentration below 300ppm.  

The fibers weathered in 10%RH/50°C air do not show a difference or a trend in 

failure strains measured in ambient conditions. However, the failure strains of the fibers 

measured in ambient conditions after weathering in 80%RH/50°C air show that the 

270ppm fibers have a 5% greater decrease in failure strains compared to the 140ppm and 

180ppm fibers. Figure 4.56 shows the ratios of the ambient and inert failure strains. There 

are similar increases among all three glasses over the 28-day weathering period in 

80%RH/50°C air and 10%RH/50°C air. All three glasses have a similar ratio after 28 

days of weathering, which means that the effect of fatigue and flaws is independent of 

water concentration.  

The fatigue parameter is possibly greater for the 270ppm glass that the 140ppm 

and 180ppm, which mean the susceptibility to fatigue is lower for the 270ppm glass 
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(Figure 4.17). If this trend is real, this is in direct contradiction with other studies that 

found that susceptibility to fatigue increases with increasing residual water content in 

sodium silicate glasses[129], [130]. Ultimately, the bulk water content of the glass in the 

100-300ppm range likely does not affect the weathering and fatigue characteristics of 

SLS in a meaningful way.  

 

 

Figure 4.56. Ratio of the average failure strain measured in room temperature air at 
40%RH to those measured in liquid nitrogen for OI-B glasses with different water 

contents weathered in 80%RH/50°C air. Open symbols represent fibers weathered in 
80%RH/50ᵒC conditions and closed symbols represent fiber weathered in 10%RH/50ᵒC 

conditions. 
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5. SUMMARY AND AFTERWORDS 

 

Understanding the mechanistic sources of failure in pristine and weathered soda 

lime silicate glass has been of great interest to the commercial glass industry. This section 

summarizes the insights to the failure of pristine and weathered soda lime silicate glasses 

from this work, and suggestions for future work are included. 

The two-point bend method has been shown to provide reproducible failure 

strains that are consistent with values reported in the literature. This method was able to 

distinguish subtle differences in failure behavior between commercial soda lime silicate 

glasses with the same nominal composition, but that were processed in the same facility 

years apart. The sensitivity of the TPB method was also able to show that the fatigue and 

failure characteristics did not meaningfully change for pristine and weathered soda lime 

silicate glasses with water contents between 140ppm and 270ppm.  

The effect of processing on the development of critical flaws during weathering 

was also observed. When fibers were drawn with different techniques, although the 

pristine failure strains had similar narrow distributions, the weathered fibers were shown 

to have either narrow or broad failure strains depending on fiber drawing technique. The 

broad failure strains were attributed to preferential or increased flaw growth at structural 

inhomogeneities caused by the processing technique. This is an interesting insight that 

although pristine properties of glass are similar, weathering may reveal processing effects 

that would have otherwise gone unnoticed. It may be possible to evaluate the 

homogeneity of a glass at a higher resolution by weathering the glass first. 
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This study produced several insights into the fatigue and failure behavior of SLS 

weathered in 80%RH/50ᵒC condition.  AFM characterization of pristine fiber surfaces 

revealed topological features that were the same size as the predicted critical flaw size 

derived from the failure strains. After weathering the samples in 80%RH/50ᵒC air, 

surface analysis of reaction products and weathering damage indicated that expected 

weathering reactions were occurring. It was also determined that fibers weathered in 

80%RH/50ᵒC have very different failure and surface characteristics after weathering 

compared to fibers aged in 50ᵒC water. This was attributed to differences in the critical 

flaw development and topological differences between the two conditions. It would be 

interesting in future experiments to control the reaction layer depth by aging fibers in a 

controlled pH solution before TPB testing. This would eliminate the uncertainty in the 

reaction layer thickness and, therefore, make a more reliable comparison to the predicted 

flaw sizes. Etching the aged fiber surfaces and evaluating the etched surface roughness 

with AFM may help reveal underlying topography of the damage layer in order to better 

understand the nature and true size of the critical flaws relative to the reaction layer 

thickness. 

The fatigue susceptibility of soda lime silicate glass was shown to increase over 

the weathering period in 80%RH/50ᵒC. This increase was attributed to the formation of a 

silica rich ‘gel’ layer on the surface of the glass. The ‘gel’ layer could act as a water 

saturated barrier decreasing the effect of fatigue during testing. Alternatively, the alkali 

depletion in the silica rich ‘gel’ layer results in a change in fatigue reaction. The 

increased dependence of the fatigue parameter on testing humidity indicated that the 

latter is more likely. 
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Probably the most intriguing observation in this study is that failure strains of 

fibers aged in ambient and 10%RH/50ᵒC conditions increase over the first 3 days of 

aging. This revelation adds insight to the ongoing discussions in the literature about the 

unique chemomechanical behavior of soda lime silicate glass in humid conditions. It was 

surmised that the hydrated, alkali-deficient layer that forms on the fiber surface either has 

a greater fracture toughness that suppresses crack initiation and propagation or that the 

OH- groups in the hydrated layer decrease the topological constraints on the surface of 

the glass resulting in an increased “flexibility” of the glass structure. This work did not 

attempt to quantify the mechanical properties of this reaction layer. Therefore, it would 

be worthwhile to gather information on the hardness and elastic modulus of the reaction 

layer using nanoindentation. Additionally, it would be important to study the increasing 

failure strain effect over a wider range of temperatures and humidities. Fibers aged in 

80%RH/50ᵒC do not show any increase in failure strain while preliminary data 

(Appendix D) shows an astounding 25-30% increase in inert failure strain for fibers aged 

in 18%RH/50ᵒC, which indicates that the magnitude of the increasing failure strain effect 

is sensitive to the weathering humidity. In conjunction to experiments, molecular 

dynamic (MD) studies on the kinetics of the interaction of water with sodium-leached 

sites and the subsequent distortion of the hydrated, alkali depleted silicate network would 

be of interest. Additionally, MD studies of an alkali-depleted, hydrated layer could give 

insight into energy dissipation mechanism under tension of this layer compared to 

pristine surfaces.  



 

 

 

APPENDIX A. 

FAILURE AND FATIGUE OF EMERALD AND FLINT SODA LIME SILICATE 
GLASS 
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OVERVIEW 

Flint and Emerald soda-lime silicate glass bottles were provided by Owen-Illinois, 

Inc. The bottles were re-melted in a platinum crucible at 1450°C in air for four hours to 

produce a well-conditioned, bubble-free melts. The well-conditioned, bubble-free 

emerald and flint melts were transferred into the box furnace and left for four hours at 

1220°C and 1175ᵒC, respectively, the 1000 P isokom temperature reported by Tang[44]. 

The melts were then cooled to the fiber-pulling temperature of 1135°C. Fibers were 

produced using the method described in section 2.2. The failure strains and fatigue 

parameters were then determined using the two-point bend method according to the 

method in section 2.4. 

   

RESULTS 

Figure A.1.-A.3. shows the distributions of failure strains recorded for pristine 

flint and emerald glass fibers measured in room temperature air at different values of 

relative humidity and faceplate velocities.  The emerald glass fibers have consistently 

greater failure strains than the pristine flint fibers. Figure A.4. shows the fatigue 

parameter for the emerald and flint glasses at different values of humidity.  These values 

are summarized in Table A.1. 

 

 



 134 

 

Figure A.1. Failure strain distributions of flint (black symbols) and emerald (green 
symbols) tested in 20%RH at faceplate velocities between 100-10,000μm/s. 

 

 

 

Figure A.2. Failure strain distributions of flint (black symbols) and emerald (green 
symbols) tested in 40%RH at faceplate velocities between 100-10,000μm/s. 
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Figure A.3. Failure strain distributions of flint (black symbols) and emerald (green 
symbols) tested in 60%RH at faceplate velocities between 100-10,000μm/s. 
 

 

 

Figure A.4. Fatigue parameter for emerald and flint glass fibers tested in room 
temperature air with different levels of relative humidity.  
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Table A.1. Failure strain (εf) measured at different faceplate velocities (vfp) in air at 25°C 
and the corresponding fatigue parameter (n) for emerald and flint soda lime silicate glass. 

 
εf (%) in 25ᵒC humid air n 

vfp (μm/s) = 100 500 4000 10000 
 

Flint (RH 20%) 5.33±0.15 5.87±0.15 6.75±0.21 7.29±0.18 15.7±1.3 

Flint (RH 40%) 4.9±0.09 5.49±0.15 6.24±0.25 6.78±0.27 15.2±1.4 

Flint (RH 60%) 4.56±0.11 5.01±0.12 5.81±0.08 6.19±0.21 15.6±1.5 

Emerald (RH 20%) 5.33±0.15 6.09±0.19 6.78±0.35 7.31±0.44 15.8±0.7 

Emerald (RH 40%) 5.01±0.13 5.40±0.27 6.52±0.53 7.10±0.27 14.8±0.5 

Emerald (RH 60%) 4.67±16 5.15±0.10 5.74±0.73 6.39±0.30 15.9±0.5 

 

 

Table A.2. Weibull moduli for failure distributions of emerald and flint glass fibers 
measured at different faceplate velocities (vfp) in air at 25°C. 

 
Weibull Modulus in 25°C humid air 

vfp (μm/s) = 100 500 4000 10000 

Flint (RH 20%) 40.3 38.0 39.9 49.8 

Flint (RH 40%) 75.6 45.0 28.8 29.4 

Flint (RH 60%) 50.1 49.4 85.3 33.2 

Emerald (RH 20%) 42.1 37.7 22.2 18.9 

Emerald (RH 40%) 43.3 20.6 12.8 30.4 

Emerald (RH 60%) 32.7 64.0 7.1 38.9 
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APPENDIX B. 

EFFECT OF CYCLIC WEATHERING CONDITIONS ON FATIGUE AND 
FAILURE OF SODA LIME SILICATE GLASS 
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OVERVIEW 

Soda-lime silicate OI-A glass bottles provide by Owen-Illinois, Inc. were used in 

this study. The fibers were produced from the glass bottle according to the method 

section 2.2. 

Pristine fibers were exposed to either static weathering conditions at 

80%RH/50°C or cyclic weathering conditions were fibers were rotated between 

80%RH/50°C and 10%RH/50°C conditions every 12 hours. Fibers were weathered for 60 

days. Failure strains were determined with the two-point bend mechanism periodically 

over the 60 days weathering period. Scanning electron microscopy was used to examine 

the surfaces over the weathering period using the method described in section 2.6. 

 

RESULTS  

Previous results from weathering of OI-A SLS fibers in 80%RH/50°C are shown 

in Figure 4.1 and Figure 4.3 in section 4.2.1. Figure B.1. and Figure B.2. show the 

average failure strains after weathering in cyclic and static conditions over 60 days. There 

is a similar rapid decrease in failure strain over the first 14 days for both cyclic and static 

weathering conditions compared to Figure 4.1 and Figure 4.3. However, the failure 

strains in Figure B.1. and Figure B.2. after 30 days are much greater than those shown in 

Figure 4.1 and Figure 4.3. This data was completely anomalous to every other weathering 

experiment in 80%RH/50°C air. Unfortunately, the source of this variation in degradation 

is not known but may be due to a faulty relative humidity sensor. Since the rate of 

degradation of the statically weathered fibers falls somewhere between the 40%/25°C and 
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80%RH/50°C trends, it is assumed that high humidity chamber was at or above ambient 

humidity (40%RH) for the experiment.   

Figure B.1 and Figure B.2. show average failure strains of fibers weathered 

statically and cyclically and tested in in 40%RH room temperature air and in liquid 

nitrogen, respectively. The x-axis in these figures is adjusted to cumulative exposure time 

to 80%RH/50ᵒC since it has been shown in section 4 that exposure to 10%RH/50ᵒC has a 

negligible effect on the failure strain compared to exposure at 80%RH. For both cyclic 

and static conditions, the fiber failures strains decrease with increasing weathering time. 

For the first 30days, the cyclic and static weathered fibers agree very well with each 

other. However, at day 60 the fibers appear to diverge considerable. Figure B.3. shows 

the failure distributions for both conditions at Day 60. Figure B.4. shows that the fatigue 

parameter increases for both cyclically and statically weathered fibers. 

 

  

Figure B.1. Average failure strains of cyclically and statically weathered fibers tested in 
40%RH room temperature air with a faceplate velocity of 4000μm/s. 
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Figure B.2. Average failure strain distribution of cyclically and statically weathered 
fibers tested in liquid nitrogen with a faceplate velocity of 4000μm/s. 

 

 

Figure B.3. Failure strain distributions of statically and cyclically weathered fibers after 
60 days of weathering, tested in 40%RH room temperature air with a faceplate velocity 

of 4000μm/s. 
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Figure B.4. Fatigue parameters measured at 40%RH/25ᵒC with a faceplate velocity of 
4000μm/s of fibers weathered in cyclic and static conditions for up to 30 days. 

 

Electron micrographs of the surfaces of these statically and cyclically weathered 

fibers over the first 30 days of weathering are shown in Figure B.5. Initially, the surfaces 

appear similar, but the appearances diverge around day16 when visually the surface 

features for cyclically weathered samples appear to be smaller and more evenly dispersed 

than those on the statically weathered surfaces. This is confirmed by looking at the 

average distribution of features and the average longest width of features show in Figure 

B.6. and Figure B.7., respectively. Features on the cyclically weathered surfaces are on 

average 11.6±4.2µm in size and 36.1±12.4 features per 10,000µm2, whereas the statically 

weathered features are 34.5±7.6µm and 3.8±2.6 features per 10,000µm2 after 30 days of 

weathering.  
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Figure B.5. SEM image comparison of statically (left) and cyclically (right) weathered 
fibers. 
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Figure B.6. Average surface deposit size of statically and cyclically weathered fibers. 

 

 

Figure B.7. Surface deposit density of cyclically and statically weathered fibers. 



 144 

 

Figure B.8. Raman spectra of OI-A glass fiber surface features after weathering for 100 
days in an 80%RH/50C environment. Red and black arrows indicated bands associated 

with sodium sulfate and sodium sesquicarbonate, respectively. 
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APPENDIX C. 

OPTICAL MICROSCOPY IMAGES OF WEATHERED EMERALD AND FLINT 
SODA LIME SILICATE GLASS 
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OVERVIEW 

Flint and Emerald soda-lime silicate glass bottles were provided by Owen-Illinois, 

Inc. It is unknown when the bottles were manufactured. The bottles were carefully scored 

and broken to avoid creating glass fragments or disturbing the inner surfaces of the 

bottles. The final pieces were approximately 2 cm x 2cm. These pieces were placed in a 

humidity chamber at 80%RH/50ᵒC with the inner surface facing up. The pieces were 

weathered for up to 60 days and periodically examined with an optical microscope (Hirox 

KH-8700 Digital Microscope) over the weathering period. 

Additionally, some pieces of the flint bottle were re-melted in a platinum crucible 

at 1450°C in air for four hours to produce a well-conditioned, bubble-free melt. Fibers 

were drawn from the melt according to the method in section 2.2. The pristine fibers were 

placed in a humidity chamber at 80%RH/50ᵒC and periodically examined with an optical 

microscope over a period of 300 days. 

 

RESULTS 

 Figure C.1. and Figure C.2. show the inner surfaces of the emerald and flint glass 

pieces, respectively, after weathering in 80%RH/50ᵒC conditions for 60 days. The as 

received surface of the flint bottle has more surface features than the inner surface of the 

as received emerald bottle. The flint surface has larger circular features roughly 10 

microns in size surrounded by submicron black dots. The emerald surface also has 

submicron black dots, but instead of circular features, there are needle shaped features 

approximately 1 micron in size. Features on both the emerald and flint bottle surfaces 

grow over the weathering period. However, the emerald glass features are less than 20 
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micron long needle shaped after 60 days while the flint glass features are larger (>20 

microns) and irregular shaped instead of circular. 

 Figure C.3. and Figure C.4. show the flint fiber surfaces throughout the 300 days 

weathering period in 80%RH/50°C air. Features grow over the weathering period and are 

>90 microns in length after 29 days. The shape of the features is circular after one day but 

become irregular shaped after 8 days. At 35, 100, and 300 days, the features 

progressively evolve into needle like features that are similar to those observed on the 

emerald inner bottle surface after weathering for 60 days in the same conditions. 
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Figure C.1. Inner surfaces of emerald glass bottle as received and after weathering in 

80%RH/50°C air for 60 days.  
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Figure C.1. Inner surfaces of flint glass bottle as received and after weathering in 
80%RH/50°C air for 60 days.  
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Figure C.3. Flint glass fibers after weathering in 80%RH/50°C air for 29 days. 
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Figure C.4. Flint glass fibers after weathering in 80%RH/50°C air for 300 days. 
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APPENDIX D. 

WEATHERING OF GLASS FIBERS IN VARIED HUMIDITIES  
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OVERVIEW 

Soda-lime silicate OI-A glass bottles provide by Owen-Illinois, Inc. The bottles 

were re-melted in a platinum crucible at 1450°C in air for four hours to produce a well-

conditioned, bubble-free melt. The well-conditioned, bubble free glass melt was 

transferred into the box furnace and left for four hours at 1220°C, the 1000 P isokom 

temperature reported by Tang[44]. The melt was then cooled to the fiber-pulling 

temperature of 1135°C. A silica glass rod is used to draw the initial fiber from the melt 

onto a rotating cage. The cage is designed to separate individual fibers and ensure a 

pristine glass surface.  

To examine the effect of humidity on failure strains at lower values of relative 

humidity, a set of fibers was pulled and separated into four groups and weathered at 50°C 

in a vacuum chamber (~700 Torr, Lab-Line Squaroid Duo-Vac Oven) and in air with a 

relative humidity of 10%, 18%, and 41%. For weathering in 10%RH, a Lindberg Blue 

furnace was used. To obtain relative humidities of 18% and 41% at 50°C, saturated salt 

solutions were made by using Lithium Chloride and Potassium Carbonate, 

respectively[157], and placed in heated ovens (Boekel Industries) set at 50°C. Relative 

humidity and temperature for the 10%, 18%, and 41% humidity experiments were 

measured once a day using the Extech RH305 psychrometer.  

Fibers were tested using two-point bend (TPB) technique and were typically 100-

150 microns in diameter. In a TPB test, fibers bent in the a ‘U’ shape and placed in 

between two parallel faceplates. The parallel faceplates then compress the bent fiber at 

constant rate until the fiber breaks. The distance at break can be used to calculate the 
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failure strain of the fibers. The failure strain (εf) was determined from the break distance 

(D) and fiber diameter (d) using [91]: 

 

𝜀𝜀𝑓𝑓 =
1.198 × 𝐹𝐹
(𝐷𝐷 − 𝐹𝐹)

 

 

A faceplate of 4000μm/s was used. Failure strains were determined as a function of 

weathering time for both ambient conditions (room temperature air at 40%RH (Figure 

D.1.)) and under liquid nitrogen (Figure D.2.). The surface of the fibers was examined 

with scanning electron microscopy periodically throughout the weathering period. 

 

RESULTS 

Every set of fibers exhibited an initial increase in failure strain, reaching a 

maximum after two days. Figure D.3. summarizes the humidity dependence of the 

increase in the two-day failure strain values, relative to the respective pristine values, and 

show that fibers weathered in 18%RH air had the largest overall increase in failure strain 

with an increase in failure strains of 20% in ambient testing and 27% in inert testing. In 

addition, the relative increases in failure strains for the two-day weathered fibers 

measured in liquid nitrogen were consistently greater than those measured in ambient air 

(room temperature, 40%RH).   
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Figure D. 1.  Average failure strains of OI-B fibers weathered in 50°C air with different 
levels of humidity, tested in room temperature 40%RH air at 4000µm/sec.  
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Figure D.2.  Average failure strains of OI-B fibers weathered in 50°C air with different 
levels of humidity and tested in liquid nitrogen at 4000µm/sec. 
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Figure D.3.  Percent increase in average failure strains for OI-B fibers weathered for 2 
days in air with different levels of humidity and measured in ambient air or liquid 

nitrogen. It was assumed that the humidity of the vacuum chamber was below 10%RH. 

 

Figure D.4 shows scanning electron microscopic images of fiber surfaces after 3 

days of weathering. The surfaces of fibers weathered in vacuum and 10%RH air appear 

to have sub-micron deposits on their surfaces, similar to the deposits shown in Figure 

4.28. The fibers weathered in 41%RH appear to have largest particles at ~0.5 microns. 

EDS analyses (not shown) indicate no significant compositional differences for the 

surfaces of fibers weathered in vacuum, 10%RH, and 41%RH environments. On the 

other hand, the fibers weathered in 18%RH show ~5 micron sized deposits in addition to 

the sub-micron deposits, and EDS found evidence for chlorine on the surfaces of fibers 

weathered for 4 days (Table D.1.). 



 158 

The presence of features on the vacuum-weathered fiber surfaces indicate that 

they were deposited on the sample surfaces and are not necessarily the result of surface 

corrosion. The vacuum chamber was not flushed with dry air and was opened twice prior 

SEM analysis on day three. Therefore, it can be assumed that there was exposure to 

humidity for brief periods over the weathering period resulting in the growth of features 

observed in Figure D.4. It is likely given the larger feature size of samples weathered in 

higher humidities that water assists in coalescence and growth of the droplet features over 

time.  

 

Table D.1. EDS analysis of surface feature on fibers weathered for 3 days in 
18%RH/50ᵒC conditions compared to a pristine fiber surface. 

Element (wt%) 18%RH Pristine 
O 29.26±0.3 44.12±0.25 

Na 16.19±0.22 10.18±0.13 

Mg 0.72±0.09 1.18±0.09 

Al 0.50±0.1 0.62±0.09 

Si 23.70±0.31 36.40±0.23 

Ca 4.53±0.88 7.51±0.28 

Cl 25.1±0.42 - 

 

 



 159 

 

Figure D.4. SEM images of OI-B fibers weathered 3 days at 50ᵒC in (A) 10%RH (B) 
18%RH (C) 40% RH (D & E) Vacuum at ~700torr. 
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