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ABSTRACT 

Machine learning and computational intelligence have facilitated the development 

of recommendation systems for a broad range of domains. Such recommendations are 

based on contextual information that is explicitly provided or pervasively collected. 

Recommendation systems often improve decision-making or increase the efficacy of a 

task. Real-Time Strategy (RTS) video games are not only a popular entertainment medium, 

they also are an abstraction of many real-world applications where the aim is to increase 

your resources and decrease those of your opponent. Using predictive analytics, which 

examines past examples of success and failure, we can learn how to predict positive 

outcomes for such scenarios. To do this, one way to represent this type of data in order to 

model relationships between entities is by using graphs. The vast amount of data has 

resulting in complex and large graphs that are difficult to process. Hence, researchers 

frequently employ parallelized or distributed processing. But first, the graph data must be 

partitioned and assigned to multiple processors in such a way that the workload will be 

balanced, and inter-processor communication will be minimized. The latter problem may 

be complicated by the existence of edges between vertices in a graph that have been 

assigned to different processors. One objective of this research is to develop an accurate 

predictive recommendation system for multiplayer strategic games to determine 

recommendations for moves that a player should, and should not, make which can provide 

a competitive advantage. Another objective is to determine how to partition a single 

undirected graph in order to optimize multiprocessor load balancing and reduce the number 

of edges between split subgraphs. 
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1. INTRODUCTION 

 

Technology is continuously developing, creating a rapid “inflation” process that 

compounds over time. Although this development has solved many problems, it has also 

created new challenges. One of these challenges is the volume of data produced. Countless 

sources can produce this kind of massive data, for example, medical records, mobile phone 

applications, automated data creation, and customer databases.  

Before looking for an appropriate way to analyze this massive amount of data, we 

need to determine what problem we are trying to solve. For instance, are we interested in 

predicting the next stage of a satisfactory condition? Do we want to develop specific 

recommendations with a view to taking proactive steps in military situations? Are we 

interested in predicting the type of problem that is expected to occur for a particular 

system? From this point of view, driving the analysis in a particular direction will depend 

primarily on the type of problem we wish to solve. One effective way to solve this type of 

problem is the graph. We can take advantage of the graph in the field of computer science 

for such kinds of problems in three different ways: increase performance, provide 

flexibility, and improve the speed of movement. 

1.1. GRAPHS AND NETWORKS 

A graph, mathematically, is a combination of arbitrary objects called nodes/vertices 

connected via paths/edges. The information, or data, can be visualized using graphs to 

uncover their relation and facilitate handling them. Either one big graph or transaction 

graphs can be used to represent a large volume of data. The choice of one of these forms 
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depends primarily on the nature of the data that will be dealt with. Basically, various 

operations can be performed on the vertices and edges within the graph, for instance, 

partition one large graph into many of those small ones based on some requirements, 

adding/deletion of vertices/edges into or from the graph's collection, or checking whether 

two vertices share an edge (are connected as frequent). Graphs are used all over the place. 

Networking makes heavy intensive use of them, and they are also utilized in artificial 

intelligence, data mining, game development, geoinformatics, bioinformatics, and many 

other disciplines. Effectively, anything that contains a set of connections can be represented 

in a graph form. Computer scientists have developed a great deal of theory about graphs 

and operations on them. This is partly because graphs can be used to represent many 

problems in computer science that are otherwise abstract. 

Graphs can be categorized into various types based on the number of vertices/edges, 

interconnectivity, and their overall structure. The main feature in all types of graphs is 

whether they are directed or undirected. The difference is the same as between one 

directional and bidirectional streets. In a directed graph, the direction matters, and the edge 

can not be used in the other direction, while in an undirected graph, the direction does not 

matter, and can be simulated using a directed graph by using pairs of edges in both 

directions. Some graphs are extreme because they are made up of vertices only with no 

edges to connect them. For example, a Null graph consists of only a few vertices and a 

Trivial graph has only one vertex. These types of graph are not our focus.  

The other type of graph is called connected graphs. To be a connected graph, it 

must fulfill the requirement of at least one existing edge for every vertex connected to some 

other vertex at the other side of the edge. If there is an edge from every single vertex to 
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every single other vertex, this will be a fully connected graph (or it can be called a 

complete graph). A graph will be called just connected if there is a path to get from each 

vertex to each of the other vertices, not necessarily in a direct path. Many categories fall 

under these two types of graph, whether it is full connect or not, such that Full-clique, Near-

clique, Full-bipartite, Near-bipartite, Star, and Chain. Figures 1.1, 1.2, 1.3, and 1.4 show 

examples of these types of graph. 

 

Full-clique Near-clique
 

Figure 1.1: Clique Graph 

 

Full-bipartite Near-bipartite
 

Figure 1.2: Bipartite Graph 
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Figure 1.3: Star Graph 

 

 

Figure 1.4: Chain Graph 

 

1.2. FREQUENT SUBGRAPH MINING 

The quintessence of graph mining is frequent subgraph mining (FSM), where the 

objective here is to extract all the frequent subgraphs in a given dataset whose existence 

counts are with/above a specified threshold. Many applications (e.g., chemoinformatics, 

bioinformatics, or machine learning) have utilized the FSM process in order to extract the 

critical knowledge [1, 2, 3, 4, 5, 6, 7] from data. The detection of beneficial hidden patterns 

in a very massive dataset represents its objective. This step will assist to reveal properties 

that identify real-world graphs from random graphs and uncover anomalies in a specific 

graph such as in 1) mining biochemical structures, 2) program control flow analysis, 3) 

mining XML structures or Web communities, 4) building blocks for graph classification, 

clustering, compression, comparison, and correlation analysis, or 5) fraud detection in 
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telecommunications networks, auction networks, social networks, or cyber-attacks and 

intrusion. 
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Figure 1.5: An illustration of the Anti-monotonicity property. If {c, d, e} is frequent, then 
all subsets of this itemset are frequent 

 

Anti-monotonicity means that a 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑛𝑛 subgraph is frequent only if all of its 

subgraphs are frequent [9]. As an illustration of the above property, consider the structure 

shown in Figure 1.5. If a subgraph such as {c, d, e} is found to be frequent, then the anti-

monotonic property suggests that all of its 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑛𝑛 subgraphs (i.e., the shaded itemsets in 

this figure) must also be frequent. The intuition behind this property is as follows: any 

subgraph that contains {c, d, e} must contain {c, d}, {c, e}, {d, e}, {c}, {d}, and {e}, (i.e., 

subgraphs of the 3-itemset). Therefore, if the support for {c, d, e} is greater than the support 

threshold, so are its subgraphs. 
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Conversely, if a subgraph such as {a, b} is infrequent, then all of its subgraphs 

must be infrequent too. As illustrated in Figure 1.6, the entire subgraph containing 

subgraphs of {a, b} can be pruned immediately once {a, b} is found to be infrequent. This 

strategy of trimming the exponential search space based on the support measure is known 

as support-based pruning. Such a pruning strategy is made possible by a key property of 

the support measure, namely, that the subgraph support never exceeds its original source 

support. Any measure that possesses an anti-monotonic property can be incorporated 

directly into the mining algorithm to effectively prune the candidate search space. 
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Figure 1.6: An illustration of support-based pruning. If {a, b} is infrequent, then all 
supersets of {a, b} are eliminated. 
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1.3. FREQUENT SUBGRAPH MINING COMPUTATIONAL CHALLENGES 

1.3.1. Key Computational Challenges in Frequent Subgraph Mining. The main 

challenge in subgraph mining is efficiency [4, 6, 8], where 

• The cardinality of the graph collection to be mined may be very large in both 

transaction and single graphs; for example, a biological network may consist of 

7496 vertices (|𝑉𝑉| =  7496) with 515 distinct labels and 25408 edges (|𝐸𝐸| =

 25408) [9]. 

• The number of graphs generated by the subgraph extension process is completely 

abundant. This abundance has a significant impact on increasing the cost of support 

evaluation, which is the core of the frequent subgraph mining process. The pattern-

growth algorithm extends a frequent graph directly by adding a new edge in every 

possible position. It does not perform expensive join operations. A potential 

problem with the edge extension is that the same graph can be discovered multiple 

times. Also, a new edge to be extended could be frequent or not. The support 

evaluation is more complicated than subgraph extension and will cost more time 

during the mining process. A major challenge in mining frequent subgraphs is that 

the mining process often generates a huge number of patterns. This is because if a 

subgraph is frequent, all of its subgraphs are frequent as well. A frequent graph 

pattern with 𝑛𝑛 edges can potentially have 2𝑛𝑛 frequent subgraphs, which is an 

exponential number. 

• Testing for graph isomorphisms is computationally intensive. The isomorphism 

challenge is that the vertices and edges in a given pair of graphs may be mapped in 
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a variety of ways. The number of possible mappings may be exponential in terms 

of the number of the vertices.  

• Communication cost in distributed processing (i.e., MapReduce) is also an 

important concern, as large amounts of intermediate data may be generated and 

transferred among workers. Excessive network transmission increases the overall 

execution time of graph mining and may also lead to bottlenecks and failures. 

1.3.2. Variation of Sequential, Distributed, and Parallel Processing in 

Frequent Subgraph Mining. Both parallel and distributed processing share the same 

challenge when they deal with either single or transaction graphs. The partitioning of a 

single graph or distributing of transaction graphs must satisfy the quality graph partitioning 

(guarantee of not losing any data), multilevel paradigm, and load balancing. One 

straightforward partition scheme for transaction graphs is to distribute the graphs [3], so 

that each partition contains the same number of graphs from the set of graphs 𝓖𝓖 =

(𝑮𝑮𝟏𝟏,𝑮𝑮𝟐𝟐, … ,𝑮𝑮𝒏𝒏). This works well for most of the datasets. However, for datasets where the 

size (edge count) of the graphs varies substantially, another splitting option occurs where 

the total number of edges aggregated over the graphs in a partition are close to each other. 

In this way, the load balancing factor of distributed processing will be improved. From 

another side, the number of partitions is also an important tuning parameter. The 

partitioning of the single graph considered can be a big challenge. The choice of the proper 

partitioning method will save a lot of edges from not being lost and maintain the frequency 

rules. 

Frequent subgraph patterns from a single large graph in the distributed platform 

rely on computing the support of a pattern [1]. If the input graphs are partitioned over 
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various worker nodes, the local support of a subgraph in the respective partition at a 

worker node is not very useful for deciding whether the given subgraph is frequent or not. 

Support measures that simply count the occurrences of a pattern may violate the anti-

monotonic property since occurrences of the pattern may overlap with each other. In a 

single graph, the challenge in mining a partitioned graph is that there can be false negative 

patterns (i.e., a pattern 𝑝𝑝 that is globally frequent can be missed because certain edges 

involved in subgraph isomorphisms for 𝑝𝑝 span different partitions). Communication cost 

(in distributed processing like MapReduce) is also an important concern as large amounts 

of intermediate data may be generated and transferred among workers. Excessive network 

transmission increases the overall execution time of graph mining, where the support 

computation cannot be delayed arbitrarily and may lead to bottlenecks and failures. 

Both scenarios, single and transaction graph settings, share the scalability problems 

in the mining sequential patterns process, including 1) maximum time required for 

scanning the database, 2) size of the mining dataset, where large data input may exceed 

memory resources of a single machine, and 3) vast amounts of CPU time required to 

compute frequent patterns. 

A huge number of possible sequential patterns may be hidden in databases. A 

mining algorithm should find the complete set of patterns when possible to satisfy the 

minimum support (frequency) threshold. This should be done in a manner that is highly 

efficient and scalable, involving only a small number of database scans and incorporating 

various kinds of user-specific constraints. Also, sequential pattern mining requires, besides 

the discovery of frequent itemsets, the arrangement of these itemsets in sequences and the 
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discovery of which of these are frequent. Moving towards a parallel or distributed 

environment is very important to solve the challenges in sequential pattern mining. 

1.4. SUMMARY 

Graphs are everywhere. The capability of a graph database to solve multiple domain 

problems, such as in biological networks, chemical patterns, social networks, or computer 

network and web data patterns, really are endless. The objective of this dissertation is to 

mine the historical data, whether structured or unstructured (e.g., real-time strategy (RTS) 

games or medical data) to discover and analyze the value hidden in their connection.  
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PAPER 

I. THE USE OF FREQUENT SUBGRAPH MINING TO DEVELOP A 
RECOMMENDER SYSTEM FOR PLAYING REAL-TIME STRATEGY 

GAMES 

 

Isam A. Alobaidi1, Jennifer L. Leopold1, and Ali A. Allami2 

1Department of Computer Science, Missouri University of Science and Technology, 
Rolla, MO 65409 

2Electrical Engineering & Computer Science Department, University of Missouri, 
Columbia, MO 65211 

ABSTRACT 

Machine learning and computational intelligence have facilitated the development 

of recommendation systems for a broad range of domains. Such recommendations are 

based on contextual information that is explicitly provided or pervasively collected. 

Recommendation systems often improve decision-making or increase the efficacy of a 

task. Real-time strategy (RTS) games are one domain where computationally determined 

recommendations for moves that a player should, and should not, make can provide a 

competitive advantage. The goal of our research is to develop an accurate predictive 

recommendation system for multiplayer strategic games that is based on frequent subgraph 

mining. Herein we present that approach and validate it using the historical data of one 

RTS game. 
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1. INTRODUCTION 

The ever-increasing expansion of information and communications technology has 

initiated a new era for the development of recommendation systems for a wide variety of 

application domains (e.g., entertainment, E-commerce, E-health, etc.); see Figure 1. 

Recommendations could be for products or services that a customer might consider 

purchasing, treatments that a doctor might consider prescribing for a patient, or a sequence 

of actions that a robot should perform in a certain situation. Typically, the 

recommendations are based on an analysis of historical data, often characterized as positive 

and negative examples for the recommendation scenario. In order to be of value, 

recommendation systems must have high predictive accuracy. 

 

 

Figure 1: Recommender System Classification 

 

Another venue where recommendation systems can be valuable is strategic games. 

Players have long been interested in studying previously played games to try to discern 
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which moves are advantageous to make and which moves should be avoided. With the 

current widespread interest in online, real-time strategy (RTS) games, which can involve a 

diverse and complex set of entities and functionality, determining which moves to make 

(and which not to make) can be extremely challenging. Fortunately, there are several 

databases of played games that can be analyzed to glean some insight. 

In this study, we develop a predictive recommendation system for strategic 

multiplayer games that is based on graph mining. Using a database of played games, we 

model each of those games as a directed graph, and use frequent subgraph mining to look 

for patterns of moves that occurred frequently in winning games; these form the basis of 

our recommendations for moves that a player should make. Similarly, we look for patterns 

of moves that occurred frequently in losing games; those become the basis of our 

recommendations for moves that a player should not make. We test the accuracy of our 

method by repeatedly partitioning our database of played games into training and test 

datasets, and testing for the occurrence of true positives, true negatives, false positives, and 

false negatives. We also compare our method to an alternative approach, frequent sequence 

mining. 

The organization of this paper is as follows. Section 2 provides a brief discussion 

of the main topics in this paper: game data mining, frequent subgraph mining, and frequent 

sequence mining. The particular algorithm that we used for frequent subgraph mining is 

explained in more depth in Section 3. A description of the RTS game data that we used for 

testing our method is provided in Section 4. Our experimental method and results are 

discussed in Section 5. A summary of this research and consideration of future work is 

discussed in Section 6. 
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2. BACKGROUND 

In this section we briefly discuss some of the related work that has been done in 

the fields of game data mining, frequent subgraph mining, and frequent sequence mining. 

2.1. GAME DATA MINING 

One objective of game data mining is to analyze a collection of played games and 

find patterns of moves that were made in winning (and possibly losing) games. Game data 

mining was the main focus of research in [1, 2, 3]. In [2] a method, Playtracer, for game 

analysis and improvement was proposed. A multidimensional scaling strategy was applied 

to cluster players and game states, and a detailed visual representation of the paths taken 

by players during the game was provided. Specifically, Classical Multidimensional Scaling 

(CMDS) [4] was used in order to visualize the paths. The Playtracer method showed mutual 

ways that players succeeded and failed, and enabled tracking a specific player’s progress 

across multiple levels. 

Two widely used data mining techniques, Classification and Regression Trees 

(CART) and artificial neural networks, were utilized in [3] to analyze a collection of game 

data (i.e., STEAM) for predictive purposes. CART is a decision tree algorithm that aims to 

build a predictive model based on the values of several inputs. Artificial neural networks 

also attempt to discover new patterns from inputs by subjecting them to a repetitive 

learning process. The aim of this study was to predict what should be followed as accurately 

as possible. Their method relied on the analysis of the online reviews (e.g., number of 

screenshots, number of reviews of a specific action) to achieve their objectives. 
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2.2. FREQUENT SUBGRAPH MINING 

Given a single (directed or undirected) graph, it can be useful to know which 

subgraphs occur at least 𝑛𝑛 times where 𝑛𝑛 is a user-specified threshold for frequency. 

Similarly, given a collection of graphs and a frequency threshold 𝑛𝑛, it may be important to 

know which subgraphs occur in at least 𝑛𝑛 of those graphs. The process of answering this 

question is called frequent subgraph mining. 

 Several methods for frequent subgraph mining were presented in [5, 6, 7, 8]. An 

algorithm that finds only maximal frequent subgraphs from a collection of graphs was 

given in [5]. This method consists of two basic steps: (1) from a collection of graphs, all 

frequent trees (i.e., undirected graphs in which any two vertices are connected by exactly 

one path) are first found; (2) from the mined trees, maximal subgraphs then are constructed. 

This strategy can significantly reduce the size of the result set. 

Another method was proposed in [6] to only find closed frequent graph patterns 

instead of mining all subgraphs. The main idea behind this method was to consider the 

graph 𝑔𝑔 closed when it is not possible to find a proper supergraph of 𝑔𝑔 with the same 

support (i.e., frequency) as 𝑔𝑔. 

An algorithm named Fast Frequent Subgraph Mining (FFSM) was developed in 

[7]. The strategy in that work was to reduce the number of redundant candidate subgraphs 

that are examined by utilizing specialized operations (called FFSMJoin and FFSM-

Extension) to generate the candidate subgraphs. 

A technique for finding frequent subgraphs in a large sparse graph was proposed in 

[8]. In that work, two approaches for exploring the search space of subgraphs were 

examined. A breadth-first approach was employed in their first algorithm, HSI-GRAM, 
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examining the search space for frequent subgraphs in a horizontal way. A depth-first 

approach was employed in their second algorithm, VSI-GRAM, to explore the search space 

in a vertical fashion when looking for frequent subgraphs. 

Amongst many of the frequent subgraph mining algorithms that have been 

developed, computationally expensive extension/joining operations (to create larger 

candidate subgraphs from smaller frequent subgraphs) and false positive pruning (to reduce 

the search space) have been the biggest challenges that researchers have tried to address. 

Unfortunately, most methods have been limited to only working on a single graph or a 

collection of graphs, but not being applicable to both settings. 

Frequent subgraph mining is a reasonable approach to consider for game mining. 

Each played game can be represented as a directed graph, wherein a vertex represents a 

move made by a player in that game and an edge represents two consecutive moves. It then 

could prove useful to identify subgraphs (i.e., sequences of moves) that frequently occur 

in the collection of graphs (i.e., played games). 

2.3. FREQUENT SEQUENCE MINING 

Frequent sequence mining is used to find a set of patterns amongst a collection of 

instances that specify a sequence (e.g., a list) of items. This methodology can be used for 

diverse types of data; in [9] it was used to look for patterns in sequences of speech and bio-

signals based on methods proposed in [10]. 

In [11], researchers proposed an algorithm called Sequential Pattern Discovery 

using Equivalence classes (SPADE). It starts by computing the frequencies of single-item 

sequences. In the next step, it counts the frequency of two-item sequences using a bi-
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dimensional matrix to count the number of sequences for each pair of items. Subsequent 

𝑛𝑛-item sequences are processed by joining 𝑛𝑛 − 1-item sequences using lists of 𝑖𝑖𝑖𝑖s 

representing other objects. The size of those 𝑖𝑖𝑖𝑖s lists is the number of sequences in which 

an item appears. 

A disadvantage to frequent sequence mining algorithms is that the results (i.e., the 

most frequently occurring sequences) do not list the items in the same order that they may 

have appeared in an instance’s sequence in the dataset; the method does not care about the 

order in which an item appeared in an instance’s sequence, it simply cares about whether 

or not the item occurred in the instance’s sequence. Nonetheless this method can potentially 

provide some predictive recommendations from a strategic game dataset where each game 

can be viewed as sequences of moves by a winner and a loser. 

3. METHODOLOGY: FREQUENT SUBGRAPH MINING 

The primary data mining technique that we used to develop a predictive 

recommendation system for strategic games was frequent subgraph mining. As mentioned 

in the previous section, we modeled each played game as a graph where a vertex 

represented a move in the game and an edge represented two consecutive moves. A game 

graph was not a strictly linear sequence of edges because some moves in turn generated 

multiple moves (e.g., a move could create a monster that would in turn propagate additional 

monsters, each of which would result in a new vertex and edge). We then analyzed the 

collection of graphs (a dataset of played games) to find frequent subgraphs: sequences of 
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moves that were common to several winners’ games and sequences of moves that were 

common to several losers’ games. 

In this section we start by briefly providing some basic graph terminology that will 

facilitate discussion of the particular frequent subgraph algorithm that we utilized for our 

study. 

3.1. PRELIMINARIES 

Let 𝒢𝒢 = {𝐺𝐺1,𝐺𝐺2, … ,𝐺𝐺𝑛𝑛} be a set of linear directed graphs which represents the 

historical data in our case. Each 𝐺𝐺𝑖𝑖 represents a single game's moves, such that 𝐺𝐺𝑖𝑖 = (𝑉𝑉𝑖𝑖,𝐸𝐸𝑖𝑖) 

where 𝑉𝑉𝑖𝑖 represents a node labeled as an action code of a player's move, while an edge in 

𝐸𝐸𝑖𝑖 represents two consecutive moves. A graph 𝑇𝑇 = (𝑉𝑉𝑇𝑇 ,𝐸𝐸𝑇𝑇) is a subgraph of 𝐺𝐺𝑖𝑖 =

(𝑉𝑉𝑖𝑖,𝐸𝐸𝑖𝑖) 𝑖𝑖𝑖𝑖𝑖𝑖 𝑉𝑉𝑇𝑇 ⊆  𝑉𝑉𝐺𝐺𝑖𝑖 ,𝐸𝐸𝑇𝑇 ⊆  𝐸𝐸𝐺𝐺𝑖𝑖 . 

Definition 1. Let 𝑇𝑇 = (𝑉𝑉𝑇𝑇 ,𝐸𝐸𝑇𝑇) be a subgraph of a graph 𝐺𝐺𝑖𝑖 = (𝑉𝑉𝑖𝑖,𝐸𝐸𝑖𝑖). A subgraph 

isomorphism of 𝑇𝑇 to 𝐺𝐺𝑖𝑖 is an injective function 𝑓𝑓:𝑉𝑉𝑇𝑇 ⟶ 𝑉𝑉𝐺𝐺𝑖𝑖  satisfying (𝑓𝑓(𝑢𝑢),𝑓𝑓(𝑣𝑣)) ∈ 𝐸𝐸𝐺𝐺𝑖𝑖 

for all edges (𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸𝑇𝑇. Intuitively, a subgraph isomorphism is a mapping from 𝑉𝑉𝑇𝑇 to 𝑉𝑉𝐺𝐺𝑖𝑖  

such that each edge in 𝐸𝐸𝐺𝐺𝑖𝑖 is mapped to a single edge in 𝐸𝐸𝑇𝑇 and vice versa. 

Problem 1. Given a set of graphs 𝒢𝒢, the frequent subgraph isomorphism mining problem 

is defined as finding all subgraphs 𝑇𝑇 in 𝐺𝐺 such that 𝑡𝑡𝐺𝐺(𝑇𝑇) ≥ 𝜏𝜏, where 𝑡𝑡𝐺𝐺(𝑇𝑇) is the number 

of graphs in 𝐺𝐺 that contain 𝑇𝑇 and 𝜏𝜏 is the user-specified threshold. 

Problem 2. Given a set of graphs 𝒢𝒢 such that each 𝐺𝐺𝑖𝑖 is divided into three phases 

𝐺𝐺𝑖𝑖1,𝐺𝐺𝑖𝑖1,𝐺𝐺𝑖𝑖3 and a frequent subgraph 𝑇𝑇, the frequent phase mining problem is defined as 

finding all subgraphs 𝑇𝑇 in 𝐺𝐺𝑖𝑖𝑖𝑖 such that 𝑡𝑡𝐺𝐺𝑖𝑖𝑖𝑖(𝑇𝑇) ≥ 𝜏𝜏, where 𝜏𝜏 is the user-specified threshold. 
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In our case, problem (2) counts the actual frequency (i.e., occurrences) of each 

subgraph provided that it is greater than or equal to 𝜏𝜏. However, this may not be useful in 

various cases [8, 12], while others necessitate the exact number of occurrences (like graph 

indexing in [13]. 

3.2. GraMi ALGORITHM 

For the purpose of generating candidate subgraphs, a variety of frequent subgraph 

mining and subgraph extension algorithms have been developed, as discussed in previous 

work [8, 14, 15]. In particular, GraMi [15] is one of the most efficient methods and is the 

foundation for the work presented in this paper. The key ideas behind GraMi are briefly 

outlined here. 

Algorithm 1 is used to find a set of all frequent edges fEdges in the collection of 

graphs = {𝐺𝐺i=1,...,n}. All of these frequent edges have support greater than or equal to the 

assigned threshold 𝜏𝜏. Because of the anti-monotone property, only frequent edges will be 

considered when finding the frequent subgraphs. Algorithm 2 is given each frequent edge 

to extend it to a new frequent subgraph. This is done by incorporating that edge with 

another subgraph. All extensions created in previous iterations are excluded by utilizing 

the DFScode canonical form that was introduced for gSpan [14]. The set Candidate in 

Algorithm 2 will include all the new subgraph extensions that had not been considered in 

prior iterations. In subsequent steps, any new subgraph extension within the set Candidate 

that does not meet the support threshold 𝜏𝜏 requirement will be discarded. If any of those 

subgraphs had been extended, they would produce a new non-frequent subgraph according 

to the anti-monotonic property. 



 

 

20 

Algorithm 1 Frequent Subgraph Mining - 𝐹𝐹𝐹𝐹𝐹𝐹 

 
Input 𝒢𝒢 = {𝐺𝐺𝑖𝑖=1,…,𝑛𝑛} and frequency threshold 𝜏𝜏 

 
Output All 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑠𝑠 𝑆𝑆(𝐺𝐺𝑖𝑖) with the support ≥ 𝜏𝜏 

 
  1: 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑠𝑠 ⟵ 𝜙𝜙 

 
  2: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 0 

 
  3:   for each edge 𝑒𝑒𝐺𝐺𝑖𝑖 do 

 
  4:       if 𝑒𝑒𝐺𝐺𝑖𝑖 = 𝑒𝑒𝐺𝐺𝑖𝑖+1 then 

 
  5:          𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + + 

 
  6:       end-if 

 
  7:       if 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≥ 𝜏𝜏 then 

 
  8:            𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ⟵ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ⋃ 𝑒𝑒𝐺𝐺𝑖𝑖 

 
  9:       end-if 
10:   end-for 
11:   for each 𝑒𝑒 ∈  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 do 

 
12:        𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑠𝑠 ⟵  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑠𝑠 ⋃ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑒𝑒,𝒢𝒢, 𝜏𝜏,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) 

 
13:       Remove 𝑒𝑒 from 𝒢𝒢 and ,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

 
14:   end-for 

 
15: return 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑠𝑠 

 
 

Algorithm 2 Subgraph Extension - 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

 
Input 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑠𝑠 𝑆𝑆,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and frequency threshold 𝜏𝜏 

  
Output All 𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 with the support ≥ 𝜏𝜏 

 
  1: 𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 ⟵ 𝜙𝜙 

 
  2: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ⟵ 𝜙𝜙 

 
  3:   for each 𝑒𝑒 ∈  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and 𝑛𝑛 ∈  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑠𝑠 do 

 
  4:       if 𝑒𝑒 fit to extend 𝑛𝑛 then 

 
  5:          Generate a new subgraph 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 
  6:          if 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 exist in 𝒢𝒢 and not generated before then 
  7:             𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ⟵ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ⋃  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  
  8:          else 
  9:             remove 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 

 
10:          end-if 
11:        end-if 
12:   end-for 
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13:   for each 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ∈  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 do 

 
14:       if 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 count in 𝒢𝒢 ≥ 𝜏𝜏 then 
15:          𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛  ⟵  𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 ⋃ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, 𝒢𝒢, 𝜏𝜏,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) 
16:       end-if 
17:   end 
18: return 𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 

 
 

3.3. USING FREQUENT SUBGRAPHS TO MAKE RECOMMENDATIONS 

In this section we discuss the algorithms that we utilized in order to mine the game 

dataset for frequent subgraphs and build a recommendation system. The task of finding the 

number of occurrences for each subgraph was carried out using Algorithm 3. The 

mechanism for node-finding was used for matching the first node of a candidate subgraph 

with its occurrence in the original dataset. The objective of this process was to determine 

the starting point for conducting a depth-first search (DFSearch) to find all similar 

subgraphs in the winner (or loser) graph collection. These results were stored temporarily 

in a temp set to compute their replication in the subsequent steps, and then the final result 

was placed within ExactFSG set. 

It was decided that the recommendation system might be more useful if the moves 

were analyzed for three phases of the game: the beginning of the game, the middle of the 

game, and the end of the game. This is traditionally being done for strategic games (i.g. 

chess) with the aim of analysis. Hence each game was divided into the first third number 

of moves, the second third number of moves, and the last third number of moves. Our work 

is not fixed to three phases; the number of phases can be easily modified by making a small 

change in Algorithm 4 to handle 𝑘𝑘 phases. The objective of Algorithm 4 was to determine 

the number of occurrences of each individual subgraph considering in which phase of the 
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game the sequence of moves was made. Algorithm 4 takes the ExactFSG set that was 

introduced by Algorithm 3 and facilitates the node-finding and DFSearch process to 

determine the phase of each individual frequent subgraph in this set. The node-finding 

mechanism was used a second time in subsequent steps, but only to identify the first node 

identity, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐼𝐼𝐼𝐼, of the candidate subgraph assigned to it from the original dataset this 

time. It is worth mentioning that we consider the majority of appearances to decide the 

phase of the frequent subgraph. It should be noted that the subgraph nodes may straddle 

two consecutive phases. If so, we report that subgraph as it appeared in two phases. 

 

Algorithm 3 Exact Subgraph Frequency 

 
Input 𝒢𝒢 = �𝐺𝐺𝑖𝑖=1,…,𝑛𝑛�,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑠𝑠 𝑆𝑆 and frequency threshold 𝜏𝜏 

 
Output All the Exact Frequent Subgraph with their frequency 

 
  1: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 0 

 
  2:   for 𝑖𝑖 = 1 ⟶ all graphs in (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑠𝑠) do 
  3:       𝑓𝑓𝑓𝑓𝑓𝑓 =  0 
  4:      for 𝑗𝑗 = 1 ⟶ all graphs in (𝒢𝒢) do 
  5:           if findnode (𝐺𝐺𝑗𝑗 ,  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑠𝑠𝑖𝑖)  ≠  0 do 
  6:               𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ⟵ dfsearch (𝐺𝐺𝑗𝑗  ,  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑠𝑠𝑖𝑖) 
  7:               if 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≥ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠( 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑠𝑠𝑖𝑖) & 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖( 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑠𝑠𝑖𝑖,𝐺𝐺𝑗𝑗) do 
  8:                  𝑓𝑓𝑓𝑓𝑓𝑓 + + 
  9:               end-if 
10:           end-if 
11:        end-for 
12:       if 𝑓𝑓𝑓𝑓𝑓𝑓 ≥ 𝜏𝜏 do 
13:          𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + + 
14:          𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) ⟵  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑠𝑠𝑖𝑖 
15:       end-if 
16:   end-for 
17: return 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 
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Algorithm 4 Majority of Subgraph Appearance 
Input 𝒢𝒢 = �𝐺𝐺𝑖𝑖=1,…,𝑛𝑛� and 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 

 
Output Display each 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 and the locate 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 

 
  1: 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 = 0,   𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 = 0,   𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3 = 0 

 

  

 

  2: 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎1 = 0,   𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎2 = 0,   𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎3 = 0 
  3:   for 𝑖𝑖 = 1 ⟶ all graphs in (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) do 
  4:       𝑓𝑓𝑓𝑓𝑓𝑓 =  0 
  5:      for 𝑗𝑗 = 1 ⟶ all graphs in (𝒢𝒢) do 
  6:           𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = ⌈𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐺𝐺𝑖𝑖)/3⌉ 
  7:           if findnode (𝐺𝐺𝑗𝑗 ,𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)  ≠  0 do 
  8:               𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ⟵ dfsearch (𝐺𝐺𝑗𝑗  ,𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) 
  9:               if 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≥ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) & 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖( 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑠𝑠𝑖𝑖,𝐺𝐺𝑗𝑗) do 
10:                  for 𝑘𝑘 = 1 ⟶  size(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) do 
11:                        𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐼𝐼𝐼𝐼 = findnode (𝐺𝐺𝑗𝑗 ,𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖) 
12:                        if 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐼𝐼𝐼𝐼 ≤ 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 do 
13:                            𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 + + 
14:                        elseif 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐼𝐼𝐼𝐼 > 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎   &   𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐼𝐼𝐼𝐼 ≤ 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 2  do 
15:                            𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + + 
16:                        else 
17:                            𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3 + + 
18:                        end-if 
19:                  end-for 
20:                end-if 
21:              end-if 
22:       if 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 ≠ 0 do 
23:          if 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 do 
24:              𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎1 + + 
25:          elseif 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 < 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 do 
26:              𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎2 + + 
27:          else do 
28:              𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎1&2 + + 
29:          end-if 
30:       elseif 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 ≠ 0 do 
31:          if 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3 do 
32:              𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎2 + + 
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33:          elseif 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 < 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3 do 
34:              𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎3 + + 
35:          else do 
36:              𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎2&3 + + 
37:          end-if 
38:       else 
39:             𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎3 + + 
40:      end-if 
41:    end-if 
42:  end-for 
43: return 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 result 

 

4. DATA DESCRIPTION 

Interloper is an online multiplayer real-time strategy (RTS) game [16]. The game 

allows the creation and deployment of entities, and the destruction of an opponent’s 

entities. A player wins the game when the other player’s entities/assets have been destroyed 

or the other player cannot create any more assets. A dataset of 19 played games involving 

2 players was obtained for this study. Each player’s move in the dataset was encoded with 

15, 7, or 6 digits. The first two digits in a code of length 15 or 7 represented the type of 

action (i.e., move); only the first digit was used in a code of length 6 to represent the type 

of action. The last four digits in all codes were used to represent a counter of each specific 

action. The purpose of the counter was to produce a unique data item for each move in the 

game. The middle eight digits in a code of length 15 was used to represent the source and 

destination location when moving an entity. The player ID was represented with the third 

digit in codes of lengths 15 and 7, and with the second digit in codes of length 6. 
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For this study the dataset was separated into the winner’s moves and the loser’s 

moves for each game. Because of the limited size of the dataset we obtained (i.e., 19 

games), a program was written to increase the number of games to 90 and 120 by randomly 

duplicating games. Our method was tested on both the original dataset of size 19 and the 

larger datasets of sizes 90 and 120. 

5. EXPERIMENTAL EVALUATION 

In this section we discuss the criteria by which we evaluated the performance of 

our recommendation system. As noted above, we analyzed the game in terms of three 

phases (i.e., beginning game, middle game, and end game) by dividing each game into 

three equal parts; the total number of moves in a game (by both the winner and the loser) 

ranged from 183 to 5,338. For each of the 3 phases analyzed, 60% of the data were used 

for training and the remaining 40% were used for testing with 𝑘𝑘-fold cross-validation [17]. 

We measured precision and recall, which are viewed as metrics of exactness and 

completeness of testing, respectively. Equations 1 and 2 are the mathematical formulas for 

precision and recall, respectively. 

 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 (1) 

 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
 (2) 
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The trade-off between precision and recall was measured by using for another 

metric named F-measure [17], which represents the harmonious mean between precision 

and recall. The accuracy scale was applied to measure the closeness of the measured value 

to the true value. Equations 3 and 4 are the mathematical formulas of F-measure and 

accuracy, respectively. 

 

 𝐹𝐹 −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  2 ∗
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

 (3) 

 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
 (4) 

5.1. EXPERIMENT AND RESULTS 

In this section we present the results of analyzing the Interloper game dataset using 

both frequent subgraph mining and frequent sequence mining. The algorithms presented in 

Section 3 were (collectively) implemented in Matlab and Java. SPADE (discussed in 

Section 2.3) was implemented in R. Our experiments were executed on an Intel(R) Core 

(TM) i7-6700 CPU@3.40GHz computer with 32GB memory. 

Tables 1 and 2 show some of the experimental results of frequent subgraph mining 

using a threshold of 2 for the winner and loser datasets consisting of 19 games. The first 

and second columns show the actions in the frequent subgraphs with their number of 

occurrences from the entire dataset, respectively. The tables also list the phase of the game 

in which each frequent subgraph most often was found. The fourth column in each table is 



 

 

27 

a classification of the majority of that subgraph’s actions; we classified that game’s 

actions as either offensive, defensive, or movement (of an entity in the game space). 

 

Table 1: Winner Data 
Winner Subgraph Frequency Majority of Appearance Classification 

2810040 2810041 2810042 3 Second phase offensive 

2810035 2810036 2810037 4 First phase offensive 

2300171 2300172 2300173 2300174 3 Second and Third phase move 

2300171 2300172 2300173 6 Second phase move 

2810084 2810085 2810086 2810087 3 First and Second phase offensive 

2810084 2810085 2810086 3 Third phase offensive 

2500010 2500011 2500012 2 Third phase offensive 

 

Table 2: Loser Data 
Winner Subgraph Frequency Majority of Appearance Classification 

2710003 2810015 2810017 3 First phase offensive 

2810003 2810005 2710001 2 First phase offensive 

2810024 2810026 2810028 6 First phase offensive 

2810008 2810010 2810012 3 Third phase offensive 

2510000 2510001 2510002 3 Third phase offensive 

2310187 2310188 2310189 3 Second phase move 

2310419 2310420 2310421 4 Third phase move 

 

These results were obtained by performing 3-fold cross-validation, repeated five 

times. Each time, for the 19-game dataset, 12 games were selected randomly (without 

duplication) for training, and the remaining 7 games were used for testing. The size of the 

resulting frequent subgraphs ranged from two nodes with one edge to four nodes with three 

edges. All of the two-node subgraphs were ignored because of the limited information they 



 

 

28 

provide for the recommendation objective (i.e., only two moves) compared to larger 

subgraphs. 

Frequent subgraphs that were found in the winner graphs indicate actions that are 

recommended for a player to do, whereas frequent subgraphs that were found in the loser 

graphs indicate actions that are recommended that a player should not do. The benefit of 

the counter attached to each action reflects the relative number of times the player had 

made that type of move in that game. Characterizing the actions, such as offensive or 

defensive, gives a general notion of the strategy the player is employing in that sequence 

and would facilitate mapping one game’s actions to another’s (e.g., mapping Interloper’s 

offensive actions to StarCraft’s offensive actions). 

 

 

Figure 2: Comparison of Average Precision, Recall and F-measure for Different 
Number of Games 
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Figure 2 shows the precision, recall, and F-measure scores obtained for each 

phase of the game that was analyzed. In order to ensure the fineness of the results, three 

different sizes of datasets were tested: 19, 90, and 120 games. All of these tests were subject 

to the same conditions of the 3-fold cross-validation with five repetitions. Averages for 

these five repetitions were calculated to determine the final results of these metrics. 

Precision and recall can be affected when the size of the input dataset increases. Despite 

this, our system did not experience a significant difference in those results. Figure 3 shows 

the comparison of average accuracy for the different sized datasets. 

 

 

Figure 3: Comparison of Average Accuracy for Different Number of Games 

 

We also utilized frequent sequence mining to analyze the Interloper game data; 

specifically, we used an implementation of the SPADE algorithm discussed in Section 2.3. 

The majority of the SPADE results (some of which are shown in Table 3 for the 19-game 

dataset) were not consecutive sequences of actions from games; they were simply lists of 
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individual actions that had occurred in some order in a majority of winners’ or losers’ 

games. While this was somewhat informative, it was equivalent to if we had limited our 

frequent subgraph mining to subgraphs of single vertices (no edges). Unfortunately, the 

highest support for the results returned by SPADE was 0.5, meaning that only 50% of the 

games in the tested dataset contained the reported list of actions. This was the case for not 

only the 19-game dataset, but also the larger 90- and 120-game datasets. Consequently, we 

did not feel that the predictive accuracy of the recommendations we could make from these 

results would be high, and did not pursue cross-validation testing. 

 

Table 3: Portion of the SPADE Output for the 19-Games Dataset 
Dataset Phase Support Subgraph 

Winner 1 0.5 
2300005 2300006 
2300000 2300005 2300006 
2300000 2300004 2300005 2300006  

Winner 2 0.3 2700018 

Winner 3 0 No result 

Loser 1 0.4 2810003 
2710007 2810003 

Loser 2 0.2 2710017 
2810064 2810066 
2710017 2810064 2810066 

Loser 3 0.2 
600011 
500010 600011 
500010 600009 600011 

 

6. CONCLUSION AND FUTURE WORK 

The use of recommendation systems has become widespread in our society. In 

general, they examine historical data and try to predict what should be done in the future. 

Herein we have applied a graph data mining technique, frequent subgraph mining, to a 
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strategy game dataset to develop a system that can provide recommendations about 

moves that a player should and should not make in order to improve his/her chances of 

winning the game. As proof of concept, we tested our system on a real-time strategy (RTS) 

game dataset, and achieved very accurate results when we tested our recommendations. 

We also attempted to apply another technique, frequent sequence mining, but did not find 

that it provided as useful or accurate recommendations. 

In the future we plan on testing our approach on other RTS games such as StarCraft, 

and will try to develop a generalized mapping scheme for action types that will be 

applicable for the broader genre of RTS games. We then hope to apply this approach to 

other problem domains that can map their entities and actions to those of a strategic game 

in a broad semantic sense, where resources are effectively created and destroyed, and where 

it would be beneficial to have recommendations for optimal management of those 

resources.  
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ABSTRACT 

Real-Time Strategy (RTS) video games are not only a popular entertainment 

medium, they also are an abstraction of many real-world applications where the aim is to 

increase your resources and decrease those of your opponent. An obvious application is a 

military battle; yet another example is a person’s physical health where it is advantageous 

to increase the number of healthy cells in the body and destroy cancerous cells (wherein 

cancer is your opponent). Using predictive analytics, which examines past examples of 

success and failure, we can learn how to predict positive outcomes for such scenarios. 

Herein we show how discriminative subgraph mining can be employed to analyze a 

collection of played RTS games, and make recommendations about sequences of actions 

that should, as well as should not, be made to increase the chances of winning future games. 

As proof of concept, we present the results of an experiment that utilizes our strategy for 

one particular RTS game. 
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1. INTRODUCTION 

Real-Time Strategy (RTS) games are a subgenre of strategy video games wherein 

the participants position and maneuver units (e.g., troops, robots, and drones) and structures 

under their control to secure areas and destroy their opponent’s assets. In some games, the 

created entities can in turn create and destroy other entities. Hence the focal points of such 

games are: resource generation and destruction, and indirect control of units and structures 

(via other units and structures). RTS games typically have a diverse set of resources which 

the player can deploy, basically offensive or defensive in nature, and a large variety of 

environments/storylines from which to select, often with a military science fiction theme; 

a popular and sophisticated example is StarCraft. The games are usually multi-player, with 

the winner determined by some criterion such as the player with the most assets at the end 

of a certain time period or by the last player remaining after all other players’ assets have 

been depleted. Although the RTS game scenario is used for entertainment purposes, it can 

be abstracted as a model for real-world applications such as military battles, 

cyberinfrastructure networks that may need to be managed as they come under malicious 

attack, and even disease history/diagnosis systems which track a patient’s symptoms, 

treatments, and disease progression over time. 

Herein we test the hypothesis that predictive analytics can be employed to examine 

a collection of played games and make recommendations as to what a player should do and 

what a player should not do in order to increase the chances of winning the game the next 

time s/he plays. As proof of concept, this method will be tested for one particular RTS 

game; however, the method that we employ should be applicable to any multi-player RTS 
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game and possibly could be generalized to sequences of categorically offensive versus 

defensive moves for any RTS game. Specifically, we will model the moves of each played 

game as directed graphs for the winner’s and loser’s moves, respectively, and apply 

discriminative subgraph mining to identify our game strategy recommendations.  

The organization of this paper is as follows. Section 2 provides a brief overview of 

game data mining, data mining techniques used in predictive analytics, and discriminative 

subgraph mining. Section 3 explains the discriminative subgraph mining algorithm that we 

utilized for our study. Section 4 outlines the experiment that we conducted to test our 

hypothesis and the results that we obtained. A summary and conclusions of our research 

are given in Section 5. Future work is discussed in Section 6.  

2. RELATED WORK 

2.1. GAME DATA MINING 

For years there has been interest in analyzing games played by others in order to 

become a more competitive player. In its earliest form, people sought to identify the moves 

in the game that led to desirable, rather than undesirable, outcomes. For many games it is 

not only the quantity of assets, but particular features of the assets in the game that must 

be considered (e.g., an asset’s functionality and location). For example, in the game of 

chess, given the choice, it is usually better to have one bishop than three pawns; position 

of a piece on the game board is also important as a bishop that is blocked by other pieces 

may not be able to attack. A number of studies have been conducted wherein a database of 

played games is analyzed to determine the winning percentage under various scenarios 
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such as games in which one player has two bishops and no knights and the other player 

has two knights and no bishops after some point in a chess game; see [1, 2] for examples 

of such studies. Contemporary genres of games, such as RTS video games, have a much 

more sophisticated collection of assets (e.g., game pieces) than traditional games such as 

chess and the characteristics of the assets can be much more diverse. Accordingly, analysis 

of desirable asset acquisition and deployment throughout a game has become more 

complex and computationally expensive. 

Another branch of game data mining, also known as game telemetry, involves 

analysis of the people who play the game and/or the personas they may create. There are 

databases of this information for various online games and mining software to analyze data 

such as the players’ skill level and time spent having played the game; see [3] for an 

example of such software. Some analyses may try to relate features from a player’s profile 

to his/her winning percentage and odds of winning future games. This area of study is not 

the focus of the research pursued herein; we do not consider any data related to a player’s 

profile. 

As is discussed in [4], the intentions of game data mining should be made clear. 

Description describes patterns found in the game data; similarly, characterization is a 

summation of some general features associated with the data. These patterns could be 

independent of whether they occurred in the winners’ games or the losers’ games, or 

whether the patterns occurred in a majority or a minority of the games in the dataset. 

Description and characterization are the fundamental, general goals of most data mining 

efforts. Classification (and clustering) are used to compare and organize some features of 

the data into classes; with game data this usually isn’t necessary since we are most 
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interested in classifications as winning and losing games, information which is already 

known. Discrimination seeks to identify the differences between groups of instances in the 

game data beyond just the classification of winning and losing. Prediction has the goal of 

providing a rule (or some form of guideline) that can be used as guidance for playing or 

forecasting the outcome of future games. The work presented in this study focuses on 

discrimination and prediction of game data.   

2.2. DATA MINING TECHNIQUES USED IN PREDICTIVE ANALYTICS 

Utilizing mathematical modeling, the field of predictive analytics examines past 

examples of success and failure to determine the variables that lead to successful outcomes 

and can be used to make predictions about future events.  It has been used widely in the 

financial and insurance sectors. Here we briefly discuss some of the most common types 

of data mining methods used for predictive analytics. 

Regression analysis: Linear regression is one type of regression analysis commonly 

used for predictive analytics. This method analyzes the relationship between a dependent 

variable and a set of independent variables. The relationship is expressed as an equation 

that predicts the value of the dependent variable as a linear function of the independent 

variables. For game data the dependent variable is typically the outcome of the game (i.e., 

win or lose) and the independent variables can be the various possible moves. Given the 

number of possible moves in an RTS game and the number of possible sequences of moves, 

this method could be computationally prohibitive.  

Rule induction: Rule induction methods such as association rule mining seek to find 

relationships between variables in the dataset. For example, it could be determined that 
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when the player does actions A and B, s/he also does actions C and D. By applying 

association rule mining on only the winners’ games, we could identify some actions that 

winning players did. Similarly, by mining the losers’ games, we could find some actions 

common to losing players. However, we then would have to examine the differences 

between those rule sets to gain knowledge about what winners did that losers did not do, 

and vice-versa. It should be noted that rule mining typically generates a considerable 

number of rules because of its combinatorial approach; typically, only rules meeting a 

certain support threshold are retained.  

Decision trees: Decision trees are most often used for classification and can be 

thought of as a graphical depiction of a rule; each branch of a decision tree can be thought 

of as a separate rule consisting of a conjunction of the attribute predicates of nodes along 

that branch. One approach would be to construct decision trees from the winning games 

and losing games, respectively. Resultingly, the issues previously mentioned for 

association rule mining of the RTS game data would apply for decision tree methods as 

well. 

Clustering: Clustering is a way to categorize a collection of instances in order to 

look for patterns; groups are formed to maximize similarity between the instances within a 

group and to maximize dissimilarly between instances in different groups. Game data are 

already clustered into two groups: winners and losers. For the purpose of analyzing 

successful (and unsuccessful) actions, we would likely attempt to form clusters of action 

sequences. As with linear regression, given the number of possible moves in an RTS game 

and the number of possible sequences of moves, this method would be computationally 

prohibitive, and likely would result in an uninformative number of clusters, unless some 
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type of feature reduction mapping method was employed (i.e., mapping specific actions 

and their time of occurrence in the game to more generalized representations). 

Neural networks: Neural networks are composed of a series of interconnected nodes 

that map a set of inputs into one or more outputs. The interconnections between inputs 

(which, for the game data, could be actions in the game) are determined based on an 

analysis of the played games. As with clustering, this method likely would be 

computationally prohibitive, and would probably not yield useful results, for the RTS game 

data unless we employed some type of data reduction mapping, which subsequently could 

result in loss of useful, specific information. 

2.3. DISCRIMINATIVE SUBGRAPH MINING 

Many problems can be modeled with graphs, wherein entities are represented as 

vertices and relationships between entities are represented as edges. When the relationship 

between two vertices has some semantic distinction of a predecessor and a successor, the 

edges are directed and hence the graph is considered directed. A played RTS game can be 

modeled as a directed graph where each action (e.g., move) is represented by a vertex and 

an edge represents two consecutive actions that were made in the game. By necessity, each 

vertex also must be identified by which player performed that action. The moves for one 

player do not form a strictly linear sequence because an action can generate multiple 

actions; for example, the player may create a drone which in turn simultaneously spawns 

5 more drones, each of which becomes a new vertex, and 5 edges are created from the 

propagating drone vertex. 
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Finding interesting patterns in graphs (both directed and undirected) has been 

well-researched and is applicable to many problem domains in fields such as 

bioinformatics, cheminformatics, and communication networks. An ‘interesting’ pattern in 

a graph could be a subgraph that appears frequently over a collection of graphs or could be 

a subgraph that has a particular topography (e.g., a clique). Another type of interesting 

pattern is a discriminative subgraph. 

Discriminative subgraph mining seeks to find a subgraph that appears in one 

collection of graphs, but does not appear in another collection of graphs. This approach has 

been used to study several problems including identifying chemical functional groups that 

trigger side-effects in drugs [5], classifying proteins by amino acid sequence [6], and 

identifying bugs in software [7, 8, 9]. Here we briefly discuss some of the strategies that 

have been employed for discriminative subgraph mining. 

In [10] the authors define global-state networks, a collection of graphs that 

represent a series of snapshots taken over a period of time and model some event. Each 

snapshot graph has the same topology, but the nodes and/or edges in each graph may have 

different values. The authors’ technique, MINDS, is specifically designed to find 

minimally discriminative subgraphs in large global-state networks. The network graph 

search space is organized as a set of decision trees to scrutinize the changes from one 

snapshot to the next in the collection. To reduce an exponential subgraph search space, 

they employ a Monte Carlo Markov sampling strategy. While the strategies employed in 

MINDS were found to work well for the global-state networks, they would not be 

appropriate for the RTS game dataset where each game, and hence each graph’s topology, 

can differ significantly from other games. Additionally, as will be discussed in Section 3, 
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game data mining should not necessarily be limited to just finding minimally 

discriminative subgraphs. 

Discriminative subgraph mining was used in [11] to find subgraphs that would 

cover as many positive examples and as few negative examples as possible. The test dataset 

contained protein structures possessing a specific function and proteins not having that 

function. Each graph contained approximately 1,000 edges and was very dense (i.e., in 

terms of the number of edges relative to the number of vertices in the graph). Two heuristics 

were employed to reduce the computational complexity of the mining process. Together 

these heuristics were used to assign a score to each candidate discriminative subgraph; the 

score considered the number of positive graphs minus the number of negative graphs in 

which the subgraph was found. Only the smallest such subgraphs with high scores were 

returned in the results; any (larger) subgraph that contained one of these (smaller) 

subgraphs was not further examined, thereby reducing the search space. This algorithm 

could have been adapted for the predictive game strategy study, but would have had to 

have been run for both the cases of the winning games being the positive examples and the 

losing games being the negative examples, and the winning games being the negative 

examples and the losing games being the positive examples in order to find 

recommendations for what should and should not be done to win the game.  

Another strategy for dealing with the large search space normally incurred with 

discriminative subgraph mining was presented in [12]. As discussed above, a scoring 

scheme was used to evaluate the discrimination potential of candidate subgraphs. However, 

The Learning To Search (LTS) algorithm of [12] differed from the work of [11] by 

combining the scoring scheme with a sampling strategy to select candidate subgraphs. 
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Candidates deemed promising (in terms of their score) were added to a list and further 

extended with edges for additional consideration; non-promising candidates were 

discarded, thereby implementing a branch-and-bound search. This method was tested on 

protein datasets with good prediction accuracy and a faster runtime than some other 

discriminative mining methods. As with the algorithm in [12], this approach possibly could 

be used to analyze a strategy game dataset.  

Discriminative subgraph mining also has been used to find bugs in software in [7, 

8, 9]. For this application, a program is modeled as a graph based on its control flow graph. 

In brief, a control flow graph is a directed graph made up of nodes representing basic 

blocks. Each basic block contains one or more statements from the program. There is an 

edge from basic block 𝐵𝐵𝑖𝑖 to basic block 𝐵𝐵𝑗𝑗 if program execution can flow from 𝐵𝐵𝑖𝑖 to 𝐵𝐵𝑗𝑗. 

Traces through the control flow graph for inputs that produce correct results forms one 

collection of graphs and traces for inputs that produce incorrect results forms a second 

collection of graphs. The idea is to look for a discriminative subgraph between the two 

collections of graphs; this represents the lines of code that are, or are not, being executed 

when the bug occurs. The algorithm presented in [7] utilizes the LEAP algorithm [13] as a 

branch-and-bound heuristic on the search space of graphs that it examines; it is based on 

the observation that subgraphs with higher frequency are more likely to be discriminative. 

This algorithm was modified slightly to specifically scrutinize certain programming 

constructs and subsequently was tested in [8, 9]. This general approach to discriminative 

subgraph mining is applicable to the RTS game dataset and is discussed in more detail in 

the next section. 
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3. METHODOLOGY: DISCRIMINATIVE SUBGRAPH MINING  

The algorithm we employed for discriminative subgraph mining is similar to the 

approach taken in [8, 9], but does not employ any heuristics specific to game data. Although 

we ran it sequentially, it easily lends itself to parallel or distributed processing. 

Let 𝐶𝐶+ and 𝐶𝐶− represent two sets of (undirected or directed) graphs for which we 

want to find a discriminative subgraph; that is, we want to find a subgraph that appears in 

the graphs in 𝐶𝐶− and does not appear in the graphs in 𝐶𝐶+, or vice-versa. We shall refer to 

𝐶𝐶+ as the positive graphs and 𝐶𝐶− as the negative graphs although this naming convention 

has no direct semantic correlation to the classification of the graphs in those respective sets 

(e.g., ‘winner’ does not necessarily mean positive). The function FindDiscriminativeGraph 

(Algorithm 1) first removes non-discriminative edges from the graphs in both sets; since 

such edges appear in the graphs in both sets, they cannot be used to differentiate the graphs 

in the those sets. FindDiscriminativeGraph then calls CreateDiscriminativeGraph 

(Algorithm 2) to try to find a subgraph that is common to all graphs in 𝐶𝐶−, but not common 

to all the graphs in 𝐶𝐶+. If we are unable to find such a graph, then the function 

RelaxedCreateDiscriminativeGraph (Algorithm 3) is called, which relaxes the requirement 

that the subgraph we seek not be present in all of the 𝐶𝐶+ graphs; instead the subgraph only 

has to not be present in 𝛼𝛼 ∗ |𝐶𝐶+| of the 𝐶𝐶+ graphs, where 𝛼𝛼 is a user-specified parameter 

(our default is 𝛼𝛼 =  0.5).  

FindDiscriminativeGraph and CreateDiscriminativeGraph use a function called 

Augment; this function takes a subgraph 𝐺𝐺 and adds to it an edge (and possibly a node) 

such that the source vertex exists in 𝐺𝐺, and the edge (and destination node) exists in all 
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graphs in subgraph collection 𝑆𝑆1. In this way, a subgraph with an additional edge that 

exists in all elements of 𝑆𝑆1 is created and considered by the algorithm. 

 
Algorithm 1 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ (𝐶𝐶+, 𝐶𝐶−, 𝛼𝛼, 𝛽𝛽)  

 
𝐶𝐶+:  set of positive graphs 
𝐶𝐶−:  set of negative graphs 
𝛼𝛼   : percentage of graphs that discriminative subgraph need not be present in 𝐶𝐶+ 
        when relaxing conditions 
𝛽𝛽   : percentage of graphs that discriminative subgraph need not be present in 𝐶𝐶− 
        when relaxing conditions 
  1: remove non-discriminative edges from graphs in 𝐶𝐶+ and 𝐶𝐶−; 
  2: 𝐺𝐺 =  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ(𝐶𝐶− ,𝐶𝐶+ ); 
  3:   if 𝐺𝐺 is empty then  
  4:      𝐺𝐺 =  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ(𝐶𝐶− ,𝐶𝐶+, |𝐶𝐶+| ∗  𝛼𝛼); 
  5:      if 𝐺𝐺 is empty then 
  6:          𝐺𝐺 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ(𝐶𝐶+ ,𝐶𝐶−); 
  7:          if 𝐺𝐺 is empty then 
  8: 𝐺𝐺 =  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ(𝐶𝐶+ ,𝐶𝐶−, |𝐶𝐶−| ∗  𝛽𝛽); 
  9:          end-if 
10:       end-if 
11:    end-if 
12: return 𝐺𝐺  

 

If we still fail to find a discriminative subgraph, then the difference likely does not 

involve edges that are in all graphs in 𝐶𝐶− and not in graphs in 𝐶𝐶+, but rather involves edges 

in the 𝐶𝐶+ graphs that are not in the 𝐶𝐶− graphs. Thus, we again call 

𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ, but reverse the order of the parameters (𝐶𝐶+ and 𝐶𝐶−) from 

our previous call. If we still fail to find a discriminative subgraph, we again call 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ and look for a subgraph that only has to not be 
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present in 𝛽𝛽 ∗ |𝐶𝐶−| of the 𝐶𝐶− graphs, where 𝛽𝛽 is a user-specified parameter (our default 

is 𝛽𝛽 =  0.5). 

 
Algorithm 2 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ (𝑆𝑆1,𝑆𝑆2)  

 
𝑆𝑆1:  set of graphs 
𝑆𝑆2:  set of graphs 
  1: 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = queue of 1-edge subgraphs in 𝑆𝑆1; 
  2:   while 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is not empty do 
  3:            𝐺𝐺 =  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹.dequeue ( ); 
  4:            if 𝐺𝐺 is not in any graph in 𝑆𝑆2then 
  5:                return (𝐺𝐺); 
  6:            end-if 
  7:        NewGraphs = Augment (𝐺𝐺); 
  8:            for each graph 𝐺𝐺′ in NewGraphs do 
  9:                  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹.enqueue (𝐺𝐺′); 
10:            end-for 
11:     end-while 
12: return (empty graph)  

 

It is possible that the resulting discriminative graph will be disconnected. 

Additionally, it could be the case that multiple subgraphs could qualify as a discriminative 

subgraph. The algorithm addresses both of these cases by returning the maximal 

discriminative subgraph; this result may be disconnected and will include all possible 

discriminative edges. It should be noted that it also is possible that our algorithm will not 

find any subgraph that meets the discriminative conditions. This could occur if the 

requirement that at least 𝛼𝛼 (𝛽𝛽) of the graphs in 𝐶𝐶−(𝐶𝐶+) must have at least one edge in 

common has not been satisfied.  

The computational complexity of the process is dependent upon the number of 

graphs in each collection and the number of edges in each graph. As specified in line 1 of 
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CreateDiscriminativeGraph, we begin by examining each single edge from each graph 

in one of the graph collections. However, in lines 7-9 of that algorithm, we potentially build 

larger subgraphs that must be searched for; this is the subgraph isomorphism problem, 

which is NP-complete. 

 
Algorithm 3 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ (𝑆𝑆1,  𝑆𝑆2, 𝛾𝛾)  

 
𝑆𝑆1:  set of graphs 
𝑆𝑆2:  set of graphs 
 𝛾𝛾 :  threshold for number of graphs discriminative subgraph must be present in 
  1: 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = queue of 1-edge subgraphs in 𝑆𝑆1; 
  2:   while 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is not empty do 
  3:            𝐺𝐺 =  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹.dequeue ( ); 
  4:            if 𝐺𝐺 is in < 𝛾𝛾 graph in 𝑆𝑆2then 
  5:                return (𝐺𝐺); 
  6:            end-if 
  7:        NewGraphs = Augment (𝐺𝐺); 
  8:            for each graph 𝐺𝐺′ in NewGraphs do 
  9:                  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹.enqueue (𝐺𝐺′); 
10:            end-for 
11:     end-while 
12: return (empty graph) 

 

4. EXPERIMENT AND RESULTS 

In this section we discuss the details of an experiment we conducted to test the 

hypothesis that predictive analytics, specifically discriminative subgraph mining, can be 

employed to examine a collection of played strategy games and make recommendations as 

to what a player should do, and should not do, in order to increase the chances of winning 

the game in the future.  
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4.1. EXPERIMENTAL SETUP 

The game that we selected is an online, multi-player RTS game called Interloper 

[14]. Interloper was chosen over more sophisticated RTS games like StarCraft because of 

its relatively limited set of action types which include: creating territory tiles, spawning 

drones, spawning blockades, creating units (e.g., sentinels, drones, defenders, destroyers, 

markers, bombs, blockades, and snipers), building structures, destroying targets, moving 

and positioning characters, removing characters, hitting characters, and exploding 

characters. We obtained a database of 19 played Interloper games from the game’s 

developer. Each of these games contained the sequence of actions performed by each of 

two players, with a designation of which player won the game. Each action type in the data 

file had a documented integer encoding. The total number of moves (for both players) in a 

game in the dataset ranged from 183 to 5,338.  

For each game in the dataset we created two individual files: one for the winner’s 

moves and one for the loser’s moves. The format for each of the data files that we created 

was modeled as a directed graph, one edge per line, where each vertex was an action, and 

an edge represented a consecutive sequence of (two) actions made in that game. As with 

games such as chess, we thought it would be interesting to analyze (and make 

recommendations for) the game in three phases: the beginning game, the middle game, and 

the end game. In chess there is no clear definition of when the middle game begins and 

ends, or when the end game begins. Similarly, we had no such guidelines for Interloper. 

Therefore, we simply divided each game file into the first third number of moves, the 

middle third number of moves, and the last third number of moves, and referred to these 

as phases 1, 2, and 3 of the games, respectively. Each phase was analyzed separately. 



 

 

49 

As described in the previous section, our discriminative subgraph mining 

algorithm would not find a discriminative subgraph unless a certain percentage of the 

graphs in each (𝐶𝐶− or 𝐶𝐶+) “collection” had at least a certain percentage of edges in 

common. Therefore, we had to test small groups of games at a time. To make sure that we 

did not miss any possible common edges, we tested every combination of two winning and 

two losing graphs; that is, a pair of winning graphs played the role of 𝐶𝐶+ in 

FindDiscriminativeGraph and a pair of losing graphs played the role of 𝐶𝐶−. We then 

reversed the roles (i.e., a pair of losing graphs played the role of 𝐶𝐶+ and a pair of winning 

graphs played the role of 𝐶𝐶−). Depending on whether the discriminative subgraph was 

found in 𝐶𝐶+ or 𝐶𝐶− for the particular assignment to those parameters told us whether the 

moves should be recommended as something that should be done in order to increase the 

chance of winning (because it was a difference found in the winning graphs) or something 

that should not be done (because it was a difference found in the losing graphs). 

To test the predictive accuracy of our method, we performed cross validation on 

the dataset of 19 played games. For phase 1, we used 5-fold cross validation. Five partitions 

were created, 4 of which contained 4 games and 1 of which contained 3 games; by ‘game’ 

we mean both the winner and loser for that game. A random number generator 

(www.random.org/lists/) was used to determine which games were assigned to each 

partition (with no duplication). For each of the 5 iterations of the 5-fold cross validation, 

the “training” dataset was formed from 4 of the partitions and the “test” dataset was the 

remaining partition; the roles of the partitions were rotated through each iteration of the 5-

fold cross validation. Discriminative subgraphs were determined from all possible pairs of 

winning and losing games in the “training” dataset (i.e., 4 of the 5 partitions). This resulted 

http://www.random.org/lists/
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in a set of subgraphs that formed the recommendations for actions that should be done 

and a set of subgraphs which formed the recommendations for actions that should not be 

done in order to win the game.  

The error rate was calculated as follows. If a recommendation for what should be 

done (subgraph) was found in one of the winning graphs in the test partition, it was counted 

as a true positive (TP); if instead that recommendation (subgraph) was found in one of the 

losing graphs in the test partition, it was counted as a false positive (FP). If a 

recommendation for what should not be done (subgraph) was found in one of the losing 

graphs in the test partition, it was counted as a true negative (TN); if instead that 

recommendation (subgraph) was found in one of the winning graphs in the test partition, it 

was counted as a false negative. The error rate was calculated as 1 – ((𝑇𝑇𝑇𝑇 +

 𝑇𝑇𝑇𝑇) / (𝑇𝑇𝑇𝑇 +  𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹 +  𝐹𝐹𝐹𝐹)), and was averaged over the five iterations of the 5-fold 

cross validation. 

For phases 2 and 3 of the game, significantly fewer discriminative subgraphs were 

found than for phase 1; this will be discussed in the next section. Therefore, instead of 

creating 5 partitions for cross-validation, we only created 3 partitions: 2 partitions 

contained 6 games and 1 partition contained 7 games. Consequently, only 3 iterations were 

run in those cross validations instead of 5. As was done for phase 1, games still were 

randomly chosen for each partition for each test. All cross-validation tests (for all phases) 

were repeated 5 times. 

It should be noted that the discriminative subgraph mining algorithm was 

implemented in Python 3.7. A combination of Python programs and bash scripts were 
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created for data file conversions and batch program executions. All programs were 

executed on a Dell Intel i7-7700 3.60 GHz 64 GB RAM Windows 10 PC. 

4.2. EXPERIMENTAL RESULTS 

Each of the three phases of the game was analyzed separately using cross-

validation, with each cross-validation test repeated 5 times with randomized data (game) 

assignment for training and test data from the 19-game dataset. Table 1 shows the average 

error rate for each of the cross-validation tests for each phase, as well as the average error 

rate over each phase’s 5 tests.  The resulting predictive accuracy was good, considering 

that, in general, discriminative subgraphs can have very low frequencies. The collective 

recommendations (for moves that should be made and moves that should not be made) 

were accurate approximately 86.5%, 92.4%, and 98.7% of the time for phases 1, 2, and 3 

of the game, respectively.  

 

Table 1. Cross-Validation Test Results 
Test No. Phase 1 Avg. Error Rate Phase 2 Avg. Error Rate Phase 3 Avg. Error Rate 

1 14.40% 10.60% 1.00% 

2 13.40% 0.08% 1.60% 

3 13.00% 9.10% 0.70% 

4 13.50% 9.80% 2.00% 

5 13.30% 8.50% 1.40% 

Avg. 13.32% 7.62% 1.34% 

 

It should be noted that the accuracy for phases 2 and 3 were likely much higher 

than for phase 1 in part because 3-fold (rather than 5-fold) cross validation testing was used 
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for those phases and because there were significantly fewer discriminative subgraphs to 

test in those phases. 

For phase 1 of the game, when testing all pairs of 2 winning and 2 losing graphs, 

2,333 discriminative subgraphs were found that constituted “should do” recommendations 

and 2,270 discriminative subgraphs were found that represented “should not do” 

recommendations. The average size of the “should do” recommendation subgraphs was 28 

edges; the smallest had 1 edge and the largest had 170 edges. The average size of the 

“should not do” recommendation subgraphs was 22 edges; the smallest had 1 edge and the 

largest had 168 edges. 

Of the ten most frequently recommended “should do” subgraphs, 3 contained 3 

edges (i.e., 4 moves) and 4 contained 4-5 edges (i.e., 5-6 moves). In contrast, 5 of the 10 

most frequently recommended “should not do” subgraphs contained only 1 edge (i.e., 2 

moves) and 5 contained 2-3 edges (i.e., 3-4 moves). Thus, for this phase of the game, we 

are not able to provide quite as much information about what a player should not do as we 

can say about what a player should do. 

The types of actions in the phase 1 discriminative subgraphs were predominantly 

only two types: creation of territory tiles and (fast) moves of a game character. In the 

Interloper game, creation of territory files can be considered an offensive action against 

one’s opponent. Movement of a game character could be either an offensive or defensive 

action; the player’s intent (e.g., moving away from danger versus moving to a more 

strategic position in the game space) cannot be deduced from the game data. Another 

observation that can be made from these particular discriminative subgraphs is a counter 

that is associated with both of these types of moves. For each game, the counter for each 
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type of action begins at 1 and is incremented by 1 each time that type of action occurs. 

The phase 1 discriminative subgraphs differed not only in sequences of territory tile 

creation and character movement, but also in how relatively early (or late) those actions 

occurred and in what succession. For example, an edge (2800029, 2800030) represents two 

tile creations with counters 29 and 30, indicating that these were tile creations that occurred 

well after the game had started (i.e., they were the 29th and 30th tile creations that this 

player made). Their occurrence in a discriminative subgraph would indicate that it either is 

or is not advisable to create so many tiles (back to back) in the first phase of the game. 

For phase 2 of the game, when testing all pairs of 2 winning and 2 losing graphs, 

250 discriminative subgraphs were found that represented “should do” recommendations 

and 213 discriminative subgraphs were found that characterized “should not do” 

recommendations. These were about 90% less than the respective numbers of subgraphs 

found in phase 1. This is not surprising as the number (and order) of different moves that 

a player could (and likely did) make increased at this point in the game, thereby reducing 

the number of graphs that had edges in common and could meet the criteria of 

FindDiscriminativeGraph. The average size of the “should do” recommendation subgraphs 

was 25 edges; the smallest had 1 edge and the largest had 274 edges. The average size of 

the “should not do” recommendation subgraphs was 14 edges; the smallest had 1 edge and 

the largest had 155 edges.  

The most frequently recommended “should not do” subgraphs in phase 2 only 

contained a single edge (i.e., 2 moves); thus, there was a further decrease in the amount of 

information we could provide a player in terms of what not to do in order to win the game. 

In contrast, 3 of the top 6 most frequently recommended “should do” subgraphs contained 
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at least 11 edges (i.e., 12 moves). Overall, compared to phase 1, this can be seen as the 

ability to provide much more information about what a player should do in order to win 

the game during this phase. Unfortunately, again the types of actions that occurred in the 

discriminative subgraphs were limited, mostly moving a game character (although now at 

a slower speed than in phase 1); we had anticipated seeing more offensive actions during 

this phase of the game. 

For the final phase of the game, 68 discriminative subgraphs were found that 

characterized “should do” recommendations; this was a 97% decrease from the number 

found in phase 1 and a 72% decrease from the number found in phase 2. In this phase, 36 

discriminative subgraphs were found that represented “should not do” recommendations; 

this was a 98.4% decrease from the number of such subgraphs found in phase 1 and an 

83% decrease from the number found in phase 2. As mentioned previously, the moves in 

this phase of the game likely varied more from game to game, and, as such, it became more 

difficult to meet the criteria stipulated in FindDiscriminativeGraph. The average size of 

the “should do” recommendation subgraphs was 22 edges, which was only slightly smaller 

than what had been seen in the other two phases; the smallest had 1 edge and the largest 

had 115 edges, which was by far the smallest of the three phases. The average size of the 

“should not do” recommendation subgraphs was 18 edges, which is the average size 

between what was seen for phases 1 and 2; the smallest had 1 edge and the largest had 145 

edges, which was slightly smaller than in phase 2. There were 92% fewer discriminative 

subgraphs found in phase 3 than had been found in phase 1. 

For phase 3, we finally saw some of the most frequently recommended “should not 

do” subgraphs have multiple edges (i.e., more than 2 moves); of the top 7 such subgraphs, 
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3 contained more than 4 edges, and 2 of those contained 9-10 edges. Amongst the top 7 

most frequently recommended “should do” subgraphs, only 1 had a single edge; the 

average number of edges for the others in this list was 7 edges (i.e., 8 moves). Although 

we could provide more recommendations about what ‘not to do’ in phase 3 than for phases 

1 and 2, we still could provide much more information about what ‘to do’ during this phase 

of the game.  

The majority of the actions in the “should do” subgraphs still involved (slow) 

movement of a game character whereas the actions in the “should not do” subgraphs 

predominantly involved territory tile creation, removal of a game character, and/or 

positioning of a game character. Territory tile creation and removal of a game character 

can be considered offensive actions in Interloper; as mentioned previously, positioning of 

a game character could be for offensive or defensive purposes, which cannot be determined 

from the game data. We were surprised that none of the discriminative subgraphs (for any 

of the phases) included any defensive actions (e.g., spawning a blockade); however, there 

are by far more offensive types of actions in the game than defensive actions. 

Of all the pairs of 2 winner and 2 loser graphs tested, only a few failed to produce 

a discriminative subgraph. There were no contradictory results; that is, it was never the 

case that a sequence of actions in essence would be both recommended and not 

recommended. Some test pairs produced the same results as other pairs; duplicates were 

not included in the counts of discriminative subgraphs reported for each phase. Some test 

pairs produced discriminative subgraphs that were subgraphs of other reported 

discriminative subgraphs; this was not unexpected since some test (game) pairs had edges 

in common. 
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5. SUMMARY AND CONCLUSIONS 

Herein we tested the hypothesis that a form of predictive analytics, namely 

discriminative subgraph mining, can be used to examine a set of played strategy games and 

generate a set of recommendations that could be used to predict the chances of winning the 

game in the future. Using a dataset of played games of a multi-player, Real-Time Strategy 

(RTS) video game, Interloper, we modeled each game as a graph and found a collection of 

subgraphs that specified sequences of actions that players should, and should not, make in 

each of three phases of the game. Although the dataset only contained 19 games, the 

experimental results showed that the accuracy of our recommendations was high. Overall, 

our recommendations for our test game, Interloper, were more informative in terms of what 

a player should do at each of three phases of the game in order to win; however, we also 

were able to provide some information about what the player should not do. Most 

importantly, this study has served as a proof of concept that this approach may be a 

promising strategy for not only game predictive analytics, but also for other problem 

domains that involve direct and indirect resource generation and destruction. 

6. FUTURE WORK 

We plan to test our discriminative subgraph mining approach on other types of RTS 

games. If we have the success that we had with Interloper, we hope to establish a mapping 

between action types and assets in this genre of games so that a more generalized 

recommendation system can be developed. We also hope to explore ways to make the 

algorithms more efficient, perhaps applying some heuristics to reduce the search space that 



 

 

57 

are inherent to the nature of game data. Ultimately, we intend to abstract this strategy to 

other problem domains such as a health care disease tracking and prediction systems using 

the same foundation of analyzing examples of success and failure in order to make 

recommendations for future positive outcomes. 
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ABSTRACT 

Machine learning and computational intelligence have facilitated the development 

of recommendation systems for a broad range of domains. Such recommendations are 

based on contextual information that is explicitly provided or pervasively collected. 

Recommendation systems often improve decision-making or increase the efficacy of a 

task. Real-Time Strategy (RTS) video games are not only a popular entertainment medium, 

they also are an abstraction of many real-world applications where the aim is to increase 

your resources and decrease those of your opponent. Using predictive analytics, which 

examines past examples of success and failure, we can learn how to predict positive 

outcomes for such scenarios. The goal of our research is to develop an accurate predictive 

recommendation system for multiplayer strategic games to determine recommendations 

for moves that a player should, and should not, make and thereby provide a competitive 
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advantage. Herein we compare two techniques, frequent and discriminative subgraph 

mining, in terms of the error rates associated with their predictions in this context. As proof 

of concept, we present the results of an experiment that utilizes our strategies for two 

particular RTS games. 

1. INTRODUCTION 

The ever-increasing expansion of information and communications technology has 

initiated a new era for the development of recommendation systems for a wide variety of 

application domains (e.g., entertainment, E-commerce, E-health, etc.). Recommendations 

could be for products or services that a customer might consider purchasing, treatments 

that a doctor might consider prescribing for a patient, or a sequence of actions that a robot 

should perform in a certain situation. Typically, the recommendations are based on an 

analysis of historical data, often characterized as positive and negative examples for the 

recommendation scenario. In order to be of value, recommendation systems must have high 

predictive accuracy. 

Another venue where recommendation systems can be valuable is strategic games. 

Real-Time Strategy (RTS) games are a subgenre of strategy video games wherein the 

participants position and maneuver units (e.g., troops, robots, and drones) and structures 

under their control to secure areas and destroy their opponent’s assets. In some games, the 

created entities can in turn create and destroy other entities. Hence the focal points of such 

games are: resource generation and destruction, and indirect control of units and structures 

(via other units and structures). 



 

 

61 

RTS games typically have a diverse set of resources which the player can deploy, 

basically offensive or defensive in nature, and a large variety of environments/storylines 

from which to select, often with a military science fiction theme; a popular and 

sophisticated example is StarCraft. The games are usually multi-player, with the winner 

determined by some criterion such as the player with the most assets at the end of a certain 

time period or by the last player remaining after all other players’ assets have been depleted. 

Although the RTS game scenario is used for entertainment purposes, it can be abstracted 

as a model for real-world applications such as military battles, cyberinfrastructure networks 

that may need to be managed as they come under malicious attack, and even disease 

history/diagnosis systems which track a patient’s symptoms, treatments, and disease 

progression over time. 

In this study, we test the hypothesis that predictive analytics can be employed to 

examine a collection of played games and make recommendations to increase the chances 

of winning the game the next time a person plays. Using a database of played games, we 

model each of those games as a directed graph, and use frequent subgraph mining and 

discriminative subgraph mining, respectively, to look for patterns of moves that occurred 

in winning games; these form the basis of our recommendations for moves that a player 

should make. Similarly, we look for patterns of moves that occurred in losing games; those 

become the basis of our recommendations for moves that a player should not make. We 

test the accuracy of our two methods by partitioning our database of played games into 

training and test datasets, and testing for the occurrence of true positives, true negatives, 

false positives, and false negatives. We also compare these two methods against each other, 

in terms of error rate of predictions. 
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The organization of this paper is as follows. Section 2 provides a brief discussion 

of the main topics in this paper, including game data mining and data mining techniques 

used in predictive analytics. The particular algorithms that we used for frequent subgraph 

mining and discriminative subgraph mining are explained in more depth in Section 3. A 

description of the RTS game data that we used for testing our method is provided in Section 

4. Our experimental method and results are discussed in Section 5. A summary of this 

research and consideration of future work is discussed in Section 6. 

2. BACKGROUND 

In this section we briefly discuss some of the related work that has been done in 

the fields of game data mining, frequent subgraph mining, and discriminative subgraph 

mining. 

2.1. GAME DATA MINING 

For years there has been interest in analyzing games played by others in order to 

become a more competitive player. In its earliest form, people sought to identify the moves 

in the game that led to desirable, rather than undesirable, outcomes. For many games it is 

not only the quantity of assets, but particular features of the assets in the game that must 

be considered (e.g., an asset’s functionality and location). For example, in the game of 

chess, given the choice, it is usually better to have one bishop than three pawns; position 

of a piece on the game board is also important as a bishop that is blocked by other pieces 

may not be able to attack. A number of studies have been conducted wherein a database of 

played games is analyzed to determine the winning percentage under various scenarios 
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such as games in which one player has two bishops and no knights and the other player 

has two knights and no bishops after some point in a chess game; see [1, 2] for examples 

of such studies. Contemporary genres of games, such as RTS video games, have a much 

more sophisticated collection of assets (e.g., game pieces) than traditional games such as 

chess and the characteristics of the assets can be much more diverse. Accordingly, analysis 

of desirable asset acquisition and deployment throughout a game has become more 

complex and computationally expensive. 

One objective of game data mining is to analyze a collection of played games and 

find patterns of moves that were made in winning (and possibly losing) games. Game data 

mining was the main focus of research in [3, 4, 5]. In [4] a method, Playtracer, for game 

analysis and improvement was proposed. A multidimensional scaling strategy was applied 

to cluster players and game states, and a detailed visual representation of the paths taken 

by players during the game was provided. Specifically, Classical Multidimensional Scaling 

(CMDS) [6] was used in order to visualize the paths. The Playtracer method showed mutual 

ways that players succeeded and failed, and enabled tracking a specific player’s progress 

across multiple levels. 

Two widely used data mining techniques, Classification and Regression Trees 

(CART) and artificial neural networks, were utilized in [5] to analyze a collection of game 

data (i.e., STEAM) for predictive purposes. CART is a decision tree algorithm that aims to 

build a predictive model based on the values of several inputs. Artificial neural networks 

also attempt to discover new patterns from inputs by subjecting them to a repetitive 

learning process. That method relied on the analysis of online reviews (e.g., number of 

screenshots and number of reviews of a specific action) to predict what should be done 
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next in a game. Another branch of game data mining, also known as game telemetry, 

involves analysis of the people who play the game and/or the personas they may create. 

There are databases of this information for various online games and mining software to 

analyze data such as the players’ skill level and time spent having played the game; see [7] 

for an example of such software. Some analyses may try to relate features from a player’s 

profile to his/her winning percentage and odds of winning future games. This area of study 

is not the focus of the research pursued herein; we do not consider any data related to a 

player’s profile. 

As is discussed in [8], the intentions of game data mining should be made clear. 

Description describes patterns found in the game data; similarly, characterization is a 

summation of some general features associated with the data. These patterns could be 

independent of whether they occurred in the winners’ games or the losers’ games, or 

whether the patterns occurred in a majority or a minority of the games in the dataset. 

Description and characterization are the fundamental, general goals of most data mining 

efforts. Classification (and clustering) are used to compare and organize some features of 

the data into classes; with game data this usually isn’t necessary since we are most 

interested in classifications as winning and losing games, information which is already 

known. Discrimination seeks to identify the differences between groups of instances in the 

game data beyond just the classification of winning and losing. Prediction has the goal of 

providing a rule (or some form of guideline) that can be used as guidance for playing or 

forecasting the outcome of future games. The work presented in this study focuses on 

discrimination and prediction of game data. 
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2.2. DATA MINING TECHNIQUES USED IN PREDICTIVE ANALYTICS 

Utilizing mathematical modeling, the field of predictive analytics examines past 

examples of success and failure to determine the variables that lead to successful outcomes 

and can be used to make predictions about future events.  It has been used widely in the 

financial and insurance sectors. Here we briefly discuss some of the most common types 

of data mining methods used for predictive analytics. 

Regression analysis: This method analyzes the relationship between a dependent 

variable and a set of independent variables. For game data the dependent variable would 

likely be the outcome of the game (i.e., win or lose) and the independent variables would 

be the various possible moves.  

Rule induction: Rule induction methods such as association rule mining seek to find 

relationships between variables in the dataset. By applying association rule mining on only 

the winners’ games, we could identify some actions that winning players did. Similarly, by 

mining the losers’ games, we could find some actions common to losing players.  

Decision trees: Decision trees are most often used for classification and can be 

thought of as a graphical depiction of a rule; each branch of a decision tree can be thought 

of as a separate rule consisting of a conjunction of the attribute predicates of nodes along 

that branch. One approach would be to construct decision trees from the winning games 

and losing games, respectively.  

Clustering: Clustering is a way to categorize a collection of instances in order to 

look for patterns; groups are formed to maximize similarity between the instances within a 

group and to maximize dissimilarly between instances in different groups. Game data are 

already clustered into two groups: winners and losers. For the purpose of analyzing 
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successful (and unsuccessful) actions, we would likely attempt to form clusters of action 

sequences.  

Neural networks: Neural networks are composed of a series of interconnected nodes 

that map a set of inputs into one or more outputs. The interconnections between inputs 

(which, for the game data, could be actions in the game) could be determined based on an 

analysis of the played games.  

Most of the above methods would be computationally prohibitive, and would 

probably not yield useful results, for the RTS game data unless we employed some type of 

data reduction mapping, which subsequently could result in loss of useful, specific 

information. 

2.3. SUBGRAPH MINING 

Many problems can be modeled with graphs, wherein entities are represented as 

vertices and relationships between entities are represented as edges. When the relationship 

between two vertices has some semantic distinction of a predecessor and a successor, the 

edges are directed and hence the graph is considered directed. A played RTS game can be 

modeled as a directed graph where each action (e.g., move) is represented by a vertex and 

an edge represents two consecutive actions that were made in the game. By necessity, each 

vertex also must be identified by which player performed that action. The moves for one 

player do not form a strictly linear sequence because an action can generate multiple 

actions; for example, the player may create a drone which in turn simultaneously spawns 

5 more drones, each of which becomes a new vertex, and 5 edges are created from the 

propagating drone vertex. 
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Subgraph mining is a technique used to discover a particular pattern in graphs. 

Two techniques will discuss here. 

2.3.1. Frequent Subgraph Mining. Given a single (directed or undirected) graph, 

it can be useful to know which subgraphs occur at least 𝒏𝒏 times where 𝒏𝒏 is a user-specified 

threshold for frequency. Similarly, given a collection of graphs and a frequency threshold 

𝒏𝒏, it may be important to know which subgraphs occur in at least 𝒏𝒏 of those graphs. The 

process of answering this question is called frequent subgraph mining. 

 Several methods for frequent subgraph mining were presented in [9, 10, 11, 12]. 

Amongst many of the frequent subgraph mining algorithms that have been developed, 

computationally expensive extension/joining operations (to create larger candidate 

subgraphs from smaller frequent subgraphs) and false positive pruning (to reduce the 

search space) have been the biggest challenges that researchers have tried to address.   

2.3.2. Discriminative Subgraph Mining. Discriminative subgraph mining seeks 

to find a subgraph that appears in one collection of graphs but does not appear in another 

collection of graphs. This approach has been used to study several problems including 

identifying chemical functional groups that trigger side-effects in drugs [13], classifying 

proteins by amino acid sequence [14], and identifying bugs in software [15, 16, 17]. 

Various discriminative subgraph mining algorithms are given in [15, 16, 17, 18, 19], some 

of which are tailored for particular problems; due to space limitations, they are not 

discussed in detail here. 
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3. METHODOLOGY 

In this section we discuss the two graph mining methods that we utilized for a 

predictive recommendation system for strategic games. 

3.1.  FREQUENT SUBGRAPH MINING 

One of the data mining techniques that we used to develop a predictive 

recommendation system for strategic games was frequent subgraph mining. As mentioned 

in the previous section, we modeled each played game as a graph where a vertex 

represented a move in the game and an edge represented two consecutive moves. A game 

graph was not a strictly linear sequence of edges because some moves in turn generated 

multiple moves (e.g., a move could create a monster that would in turn propagate additional 

monsters, each of which would result in a new vertex and edge). We then analyzed the 

collection of graphs (a dataset of played games) to find frequent subgraphs: sequences of 

moves that were common to several winners’ games and sequences of moves that were 

common to several losers’ games. In this section we first briefly provide some basic graph 

terminology that will facilitate discussion of the particular frequent subgraph algorithm 

that we utilized for our study. 

3.1.1. Preliminaries. Let 𝓖𝓖 = {𝑮𝑮𝟏𝟏,𝑮𝑮𝟐𝟐, … ,𝑮𝑮𝒏𝒏} be a set of linear directed graphs 

which represents the historical data. Each 𝑮𝑮𝒊𝒊 represents a single game's moves, such that 

𝑮𝑮𝒊𝒊 = (𝑽𝑽𝒊𝒊,𝑬𝑬𝒊𝒊) where 𝑽𝑽𝒊𝒊 represents a node labeled as an action code of a player's move, 

while an edge in 𝑬𝑬𝒊𝒊 represents two consecutive moves. A graph 𝑻𝑻 = (𝑽𝑽𝑻𝑻,𝑬𝑬𝑻𝑻) is a subgraph 

of 𝑮𝑮𝒊𝒊 = (𝑽𝑽𝒊𝒊,𝑬𝑬𝒊𝒊) 𝒊𝒊𝒊𝒊𝒊𝒊 𝑽𝑽𝑻𝑻 ⊆  𝑽𝑽𝑮𝑮𝒊𝒊 ,𝑬𝑬𝑻𝑻 ⊆  𝑬𝑬𝑮𝑮𝒊𝒊. 
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Definition 1. Let 𝑇𝑇 = (𝑉𝑉𝑇𝑇 ,𝐸𝐸𝑇𝑇) be a subgraph of a graph 𝐺𝐺𝑖𝑖 = (𝑉𝑉𝑖𝑖,𝐸𝐸𝑖𝑖). A subgraph 

isomorphism of 𝑇𝑇 to 𝐺𝐺𝑖𝑖 is an injective function 𝑓𝑓:𝑉𝑉𝑇𝑇 ⟶ 𝑉𝑉𝐺𝐺𝑖𝑖  satisfying (𝑓𝑓(𝑢𝑢),𝑓𝑓(𝑣𝑣)) ∈ 𝐸𝐸𝐺𝐺𝑖𝑖 

for all edges (𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸𝑇𝑇. Intuitively, a subgraph isomorphism is a mapping from 𝑉𝑉𝑇𝑇 to 𝑉𝑉𝐺𝐺𝑖𝑖  

such that each edge in 𝐸𝐸𝐺𝐺𝑖𝑖 is mapped to a single edge in 𝐸𝐸𝑇𝑇 and vice versa. 

Problem 1. Given a set of graphs 𝒢𝒢, the frequent subgraph isomorphism mining problem 

is defined as finding all subgraphs 𝑇𝑇 in 𝐺𝐺 such that 𝑡𝑡𝐺𝐺(𝑇𝑇) ≥ 𝜏𝜏, where 𝑡𝑡𝐺𝐺(𝑇𝑇) is the number 

of graphs in 𝐺𝐺 that contain 𝑇𝑇 and 𝜏𝜏 is the user-specified threshold. 

Problem 2. Given a set of graphs 𝒢𝒢 such that each 𝐺𝐺𝑖𝑖 is divided into three phases 

𝐺𝐺𝑖𝑖1,𝐺𝐺𝑖𝑖1,𝐺𝐺𝑖𝑖3 and a frequent subgraph 𝑇𝑇, the frequent phase mining problem is defined as 

finding all subgraphs 𝑇𝑇 in 𝐺𝐺𝑖𝑖𝑖𝑖 such that 𝑡𝑡𝐺𝐺𝑖𝑖𝑖𝑖(𝑇𝑇) ≥ 𝜏𝜏, where 𝜏𝜏 is the user-specified threshold. 

In our case, problem (2) counts the actual frequency (i.e., occurrences) of each 

subgraph provided that it is greater than or equal to 𝜏𝜏. However, this may not be useful in 

various cases [12, 20], while others necessitate the exact number of occurrences (like graph 

indexing in [21]. The choice of three for number of phases was an arbitrary decision 

influenced by board games such as chess that have tradictionally been analyzed in terms of 

the moves made in the beginning, middle, and end of the game. 

3.1.2. GraMi Algorithm. For the purpose of generating candidate subgraphs, a 

variety of frequent subgraph mining and subgraph extension algorithms have been 

developed, as discussed in previous work [12, 22, 23]. In particular, GraMi [23] is one of 

the most efficient methods and is the foundation for the work presented in this paper. The 

key ideas behind GraMi are briefly outlined here. Algorithm 1 is used to find a set of all 

frequent edges fEdges in the collection of graphs = {𝑮𝑮𝐢𝐢=𝟏𝟏,...,𝐧𝐧}. All of these frequent edges 

have support greater than or equal to the assigned threshold 𝝉𝝉. Because of the anti-
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monotone property, only frequent edges will be considered when finding the frequent 

subgraphs. 

 
Algorithm 1 Frequent Subgraph Mining - 𝐹𝐹𝐹𝐹𝐹𝐹 

 
Input 𝒢𝒢 = {𝐺𝐺𝑖𝑖=1,…,𝑛𝑛} and frequency threshold 𝜏𝜏 

 
Output All 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑠𝑠 𝑆𝑆(𝐺𝐺𝑖𝑖) with the support ≥ 𝜏𝜏 

 
  1: 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑠𝑠 ⟵ 𝜙𝜙 

 
  2: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 0 

 
  3:   for each edge 𝑒𝑒𝐺𝐺𝑖𝑖 do 

 
  4:       if 𝑒𝑒𝐺𝐺𝑖𝑖 = 𝑒𝑒𝐺𝐺𝑖𝑖+1 then 

 
  5:          𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + + 

 
  6:       end-if 

 
  7:       if 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≥ 𝜏𝜏 then 

 
  8:            𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ⟵ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ⋃ 𝑒𝑒𝐺𝐺𝑖𝑖 

 
  9:       end-if 
10:   end-for 
11:   for each 𝑒𝑒 ∈  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 do 

 
12:        𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑠𝑠 ⟵  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑠𝑠 ⋃ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑒𝑒,𝒢𝒢, 𝜏𝜏,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) 

 
13:       Remove 𝑒𝑒 from 𝒢𝒢 and ,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

 
14:   end-for 

 
15: return 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑠𝑠 

 
 
 
Algorithm 2 is given each frequent edge to extend it to a new frequent subgraph. 

This is done by incorporating that edge with another subgraph. All extensions created in 

previous iterations are excluded by utilizing the DFScode canonical form that was 

introduced for gSpan [22]. The set Candidate in Algorithm 2 will include all the new 

subgraph extensions that had not been considered in prior iterations.  

In subsequent steps, any new subgraph extension within the set Candidate that does 

not meet the support threshold 𝜏𝜏 requirement will be discarded. If any of those subgraphs 
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had been extended, it would produce a new non-frequent subgraph according to the anti-

monotonic property. 

 
Algorithm 2 Subgraph Extension - 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

 
Input 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑠𝑠 𝑆𝑆,𝑓𝑓𝑓𝑓𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔 and frequency threshold 𝜏𝜏 

  
Output All 𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 with the support ≥ 𝜏𝜏 

 
  1: 𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 ⟵ 𝜙𝜙 

 
  2: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ⟵ 𝜙𝜙 

 
  3:   for each 𝑒𝑒 ∈  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and 𝑛𝑛 ∈  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑠𝑠 do 

 
  4:       if 𝑒𝑒 fit to extend 𝑛𝑛 then 

 
  5:          Generate a new subgraph 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 
  6:          if 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 exist in 𝒢𝒢 and not generated before then 
  7:             𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ⟵ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ⋃  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  
  8:          else 
  9:             remove 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 

 
10:          end-if 
11:        end-if 
12:   end-for 
13:   for each 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ∈  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 do 

 
14:       if 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 count in 𝒢𝒢 ≥ 𝜏𝜏 then 
15:          𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛  ⟵  𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 ⋃ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, 𝒢𝒢, 𝜏𝜏,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) 
16:       end-if 
17:   end 
18: return 𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 

 
 
 
3.1.3. Using Frequent Subgraphs to Make Recommendations. In this section we 

discuss the algorithms that we utilized in order to mine the game dataset for frequent 

subgraphs and build a recommendation system. The task of finding the number of 

occurrences for each subgraph was carried out using Algorithm 3.  

The mechanism for node-finding was used for matching the first node of a 

candidate subgraph with its occurrence in the original dataset. The objective of this process 
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was to determine the starting point for conducting a depth-first search (DFSearch) to 

find all similar subgraphs in the winner (or loser) graph collection. These results were 

stored temporarily in a temp set to compute their replication in the subsequent steps, and 

then the final result was placed within ExactFSG set. 

 
Algorithm 3 Exact Subgraph Frequency 

 
Input 𝒢𝒢 = �𝐺𝐺𝑖𝑖=1,…,𝑛𝑛�,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑠𝑠 𝑆𝑆 and frequency threshold 𝜏𝜏 

 
Output All the Exact Frequent Subgraph with their frequency 

 
  1: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 0 

 
  2:   for 𝑖𝑖 = 1 ⟶ all graphs in (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑠𝑠) do 
  3:       𝑓𝑓𝑓𝑓𝑓𝑓 =  0 
  4:      for 𝑗𝑗 = 1 ⟶ all graphs in (𝒢𝒢) do 
  5:           if findnode (𝐺𝐺𝑗𝑗 ,  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑠𝑠𝑖𝑖)  ≠  0 do 
  6:               𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ⟵ dfsearch (𝐺𝐺𝑗𝑗  ,  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑠𝑠𝑖𝑖) 
  7:               if 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≥ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠( 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑠𝑠𝑖𝑖) & 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖( 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑠𝑠𝑖𝑖,𝐺𝐺𝑗𝑗) do 
  8:                  𝑓𝑓𝑓𝑓𝑓𝑓 + + 
  9:               end-if 
10:           end-if 
11:        end-for 
12:       if 𝑓𝑓𝑓𝑓𝑓𝑓 ≥ 𝜏𝜏 do 
13:          𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + + 
14:          𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) ⟵  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑠𝑠𝑖𝑖 
15:       end-if 
16:   end-for 
17: return 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 

 
 

3.2. DISCRIMINATIVE SUBGRAPH MINING  

The algorithm we employed for discriminative subgraph mining is similar to the 

approach taken in [16, 17], but does not employ any heuristics specific to game data. 

Although we ran it sequentially, it easily lends itself to parallel or distributed processing. 
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Let 𝐶𝐶+ and 𝐶𝐶− represent two sets of (undirected or directed) graphs for which 

we want to find a discriminative subgraph; that is, we want to find a subgraph that appears 

in the graphs in 𝐶𝐶− and does not appear in the graphs in 𝐶𝐶+, or vice-versa. We shall refer 

to 𝐶𝐶+ as the positive graphs and 𝐶𝐶− as the negative graphs although this naming convention 

has no direct semantic correlation to the classification of the graphs in those respective sets 

(e.g., ‘winner’ does not necessarily mean positive).  

 
Algorithm 4 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ (𝐶𝐶+, 𝐶𝐶−, 𝛼𝛼, 𝛽𝛽)  

 
𝐶𝐶+:  set of positive graphs 
𝐶𝐶−:  set of negative graphs 
𝛼𝛼   : percentage of graphs that discriminative subgraph need not be present in 𝐶𝐶+ 
        when relaxing conditions 
𝛽𝛽   : percentage of graphs that discriminative subgraph need not be present in 𝐶𝐶− 
        when relaxing conditions 
  1: remove non-discriminative edges from graphs in 𝐶𝐶+ and 𝐶𝐶−; 
  2: 𝐺𝐺 =  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ(𝐶𝐶− ,𝐶𝐶+ ); 
  3:   if 𝐺𝐺 is empty then  
  4:      𝐺𝐺 =  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ(𝐶𝐶− ,𝐶𝐶+, |𝐶𝐶+| ∗  𝛼𝛼); 
  5:      if 𝐺𝐺 is empty then 
  6:          𝐺𝐺 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ(𝐶𝐶+ ,𝐶𝐶−); 
  7:          if 𝐺𝐺 is empty then 
  8: 𝐺𝐺 =  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ(𝐶𝐶+ ,𝐶𝐶−, |𝐶𝐶−| ∗  𝛽𝛽); 
  9:          end-if 
10:       end-if 
11:    end-if 
12: return 𝐺𝐺  

 
 
The function FindDiscriminativeGraph (Algorithm 4) first removes non-

discriminative edges from the graphs in both sets; since such edges appear in the graphs in 

both sets, they cannot be used to differentiate the graphs in the those sets. 
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FindDiscriminativeGraph then calls CreateDiscriminativeGraph (Algorithm 5) to try to 

find a subgraph that is common to all graphs in 𝐶𝐶−, but not common to all the graphs in 

𝐶𝐶+. If we are unable to find such a graph, then the function 

RelaxedCreateDiscriminativeGraph (Algorithm 6) is called, which relaxes the requirement 

that the subgraph we seek not be present in all of the 𝐶𝐶+ graphs; instead the subgraph only 

has to not be present in 𝛼𝛼 ∗ |𝐶𝐶+| of the 𝐶𝐶+ graphs, where 𝛼𝛼 is a user-specified parameter 

(our default is 𝛼𝛼 =  0.5).  

 
Algorithm 5 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ (𝑆𝑆1,𝑆𝑆2)  

 
𝑆𝑆1:  set of graphs 
𝑆𝑆2:  set of graphs 
  1: 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = queue of 1-edge subgraphs in 𝑆𝑆1; 
  2:   while 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is not empty do 
  3:            𝐺𝐺 =  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹.dequeue ( ); 
  4:            if 𝐺𝐺 is not in any graph in 𝑆𝑆2then 
  5:                return (𝐺𝐺); 
  6:            end-if 
  7:        NewGraphs = Augment (𝐺𝐺); 
  8:            for each graph 𝐺𝐺′ in NewGraphs do 
  9:                  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹.enqueue (𝐺𝐺′); 
10:            end-for 
11:     end-while 
12: return (empty graph)  

 
 
FindDiscriminativeGraph and CreateDiscriminativeGraph use a function called 

Augment; this function takes a subgraph 𝐺𝐺 and adds to it an edge (and possibly a node) 

such that the source vertex exists in 𝐺𝐺, and the edge (and destination node) exists in all 

graphs in subgraph collection 𝑆𝑆1. In this way, a subgraph with an additional edge that exists 

in all elements of 𝑆𝑆1 is created and considered by the algorithm. 
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If we still fail to find a discriminative subgraph, then the difference likely does 

not involve edges that are in all graphs in 𝐶𝐶− and not in graphs in 𝐶𝐶+, but rather involves 

edges in the 𝐶𝐶+ graphs that are not in the 𝐶𝐶− graphs. Thus, we again call 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ, but reverse the order of the parameters (𝐶𝐶+ and 𝐶𝐶−) from 

our previous call. If we still fail to find a discriminative subgraph, we again call 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ and look for a subgraph that only has to not be 

present in 𝛽𝛽 ∗ |𝐶𝐶−| of the 𝐶𝐶− graphs, where 𝛽𝛽 is a user-specified parameter (our default is 

𝛽𝛽 =  0.5). 

 
Algorithm 6 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ (𝑆𝑆1,  𝑆𝑆2, 𝛾𝛾)  

 
𝑆𝑆1:  set of graphs 
𝑆𝑆2:  set of graphs 
 𝛾𝛾 :  threshold for number of graphs discriminative subgraph must be present in 
  1: 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = queue of 1-edge subgraphs in 𝑆𝑆1; 
  2:   while 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is not empty do 
  3:            𝐺𝐺 =  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹.dequeue ( ); 
  4:            if 𝐺𝐺 is in < 𝛾𝛾 graph in 𝑆𝑆2then 
  5:                return (𝐺𝐺); 
  6:            end-if 
  7:        NewGraphs = Augment (𝐺𝐺); 
  8:            for each graph 𝐺𝐺′ in NewGraphs do 
  9:                  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹.enqueue (𝐺𝐺′); 
10:            end-for 
11:     end-while 
12: return (empty graph) 

 
 
It is possible that the resulting discriminative graph will be disconnected. 

Additionally, it could be the case that multiple subgraphs could qualify as a discriminative 

subgraph. The algorithm addresses both of these cases by returning the maximal 
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discriminative subgraph; this result may be disconnected and will include all possible 

discriminative edges. It should be noted that it also is possible that our algorithm will not 

find any subgraph that meets the discriminative conditions. This could occur if the 

requirement that at least 𝛼𝛼 (𝛽𝛽) of the graphs in 𝐶𝐶−(𝐶𝐶+) must have at least one edge in 

common has not been satisfied.  

The computational complexity of the process is dependent upon the number of 

graphs in each collection and the number of edges in each graph. As specified in line 1 of 

CreateDiscriminativeGraph, we begin by examining each single edge from each graph in 

one of the graph collections. However, in lines 7-9 of that algorithm, we potentially build 

larger subgraphs that must be searched for; this is the subgraph isomorphism problem, 

which is NP-complete. 

4. DATA DESCRIPTION 

Interloper [24] and StarCraft II [25] are online multiplayer real-time strategy (RTS) 

games. These games allow the creation and deployment of entities, and the destruction of 

an opponent’s entities. A player wins the game when the other player’s entities/assets have 

been destroyed or the other player cannot create any more assets. In this study, a dataset of 

19 played games involving 2 players was obtained for Interloper, and a dataset of 228 

played games involving 2 players was obtained for StarCraft II. Each of these games 

contained the sequence of actions performed by each of two players, with a designation of 

which player won the game. Each move in the Interloper’s/StarCraft II dataset was encoded 

with 6-7 digits. Certain digits represented the action type, other digits represented the 
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player ID, and other digits represented a counter (distinguishing how many times a 

particular action had been executed by a particular player). 

As with games such as chess, we thought it would be interesting to analyze (and 

make recommendations for) the games in three phases: the beginning game, the middle 

game, and the end game. In chess there is no clear definition of when the middle game 

begins and ends, or when the end game begins. Similarly, we had no such guidelines for 

Interloper and StarCraft. Therefore, we simply divided each game file into the first third 

number of moves, the middle third number of moves, and the last third number of moves, 

and referred to these as phases 1, 2, and 3 of the games, respectively. Each phase was 

analyzed separately. 

5. EXPERIMENTAL EVALUATION 

In this section we discuss the details of an experiment we conducted to test the 

hypothesis that predictive analytics, specifically frequent and discriminative subgraph 

mining, can be employed to examine a collection of played strategy games and make 

recommendations as to what a player should do, and should not do, in order to increase the 

chances of winning the game in the future.  

5.1. EXPERIMENTAL SETUP 

We analyzed the game in terms of three phases (i.e., beginning game, middle game, 

and end game) by dividing each game into three equal parts; the total number of moves in 

a game (by both the winner and the loser) ranged from 183 to 5,338 in Interloper and from 

595 to 5,245 in StarCraft. For each of the three phases analyzed, 80% of the data were used 
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for training and the remaining 20% were used for testing with 5-fold cross validation. A 

random number generator (www.random.org/lists/) was used to determine which games 

were assigned to each partition (with no duplication). This process was repeated five times 

for each phase in order to avoid any bias during the measure of error rate. Accuracy was 

used to evaluate the closeness of the measured value to the true value. Equation 1 is the 

mathematical formula of accuracy where TP is true positive, TN is true negative, FP is 

false positive, and FN is false negative. 

 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇
 (1) 

 

If a recommendation for what should be done (subgraph) was found in one of the 

winning graphs in the test partition, it was counted as a true positive (TP); if instead that 

recommendation (subgraph) was found in one of the losing graphs in the test partition, it 

was counted as a false positive (FP). If a recommendation for what should not be done 

(subgraph) was found in one of the losing graphs in the test partition, it was counted as a 

true negative (TN); if instead that recommendation (subgraph) was found in one of the 

winning graphs in the test partition, it was counted as a false negative. The error rate was 

calculated as 1 –  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, and was averaged over the five iterations of the 5-fold cross 

validation.  

For phase 1 of the Interloper game, we used 5-fold cross validation. Five partitions 

were created, 4 of which contained 4 games and 1 of which contained 3 games; by ‘game’ 

we mean both the winner and loser for that game. For phases 2 and 3 of the Interloper 

game, significantly fewer discriminative subgraphs were found than for phase 1; this will 

http://www.random.org/lists/
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be discussed in the next section. Therefore, instead of creating 5 partitions for cross-

validation, we only created 3 partitions: 2 partitions contained 6 games and 1 partition 

contained 7 games. Consequently, only 3 iterations were run in those cross validations 

instead of 5. As was done for phase 1, games still were randomly chosen for each partition 

for each test. The same procedure of 5-fold cross validation was utilized for the three phases 

of StarCraft game. In each phase of this game five partitions were created, 4 of which 

contained 46 games and 1 of which contained 44 games; 5 iterations were run in those 

cross validations. This was unlike what happened with phase 2 and 3 of Interloper game 

because this time enough discriminative subgraphs were found for this purpose. 

5.2. EXPERIMENT RESULTS 

In this section we present the results of analyzing the Interloper and StarCraft games 

dataset using both frequent subgraph mining and discriminative subgraph mining. The 

algorithms of frequent subgraph mining presented in Section 3.1 were (collectively) 

implemented in Matlab and Java. The algorithms of discriminative subgraph mining 

presented in Section 3.2 were implemented in Python 3.7. A combination of Python 

programs and bash scripts were created for data file conversions and batch program 

executions. Our experiments were executed on an Intel(R) Core (TM) i7-6700 

CPU@3.40GHz computer with 32GB memory.  

5.2.1. FSM - Experimental Results. Tables 1, 2, 3, and 4 show some of the 

experimental results of frequent subgraph mining using a threshold of 2 for the winner and 

loser datasets consisting of 19 Interloper’s games and a threshold of 10 for the winner and 

loser datasets consisting of 228 StarCraft’s games.  
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Table 1: Winner Data of FSM – Interloper Game 
Winner Subgraph Frequency Classification 

2810003 2810004 2810005 2810006 13 offensive 

2800002 2400005 2400006 2800003 2400007 2400008 28 move  

2110001 2610001 2110002 21 defensive 

2400001 2400002 2400003 2800001 16 move 

 

Table 2: Loser Data of FSM – Interloper Game 
Winner Subgraph Frequency Classification 

2810010 2810011 2810012 2810013 15 offensive 

2810002 2710001 2810003 2810004 2810005 22 offensive 

2110011 2110012 2110013 2810014 2110015 2810016 26 defensive 

2410008 2810010 2410012 33 move 

 

Table 3: Winner Data of FSM – StarCraft II Game 
Winner Subgraph Frequency Classification 

1262215 1262216 1262217 1262218 73 offensive 

1272171 1272172 1272173 1272174 1272175 26 offensive 

1572171 1572172 1272173 1572174 58 move 

1772219 1272220 1772221 1772222 1272223 1772224 1772225 

 

63 defensive 

 

Table 4: Loser Data of FSM – StarCraft II Game 
Winner Subgraph Frequency Classification 

1292114 1772278 1772279 1772280 1772281 1772282 85 offensive 

1592115 1292116 1592117 1592118 32 move 

1762199 1262200 1762201 1262202 1762203 1762204 46 defensive 

3622407 3622408 3622409 17 offensive 

 

The first and second columns show the actions in the frequent subgraphs with their 

number of occurrences from the entire dataset, respectively. The third column in each table 

is a classification of the majority of that subgraph’s actions; we classified that game’s 
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actions as either offensive, defensive, or movement (of an entity in the game space). 

These results were obtained by performing 5-fold cross-validation, repeated five times. 

Each time, for the 19-game Interloper dataset, 15 games were selected randomly (without 

duplication) for training, and the remaining 4 games were used for testing. For the 228-

game of StarCraft’s dataset, 182 games were selected randomly (without duplication) for 

training, and the remaining 46 games were used for testing. 

The size of the resulting frequent subgraphs ranged from two nodes with one edge 

to twenty-eight nodes with twenty-seven edges. All of the two-node subgraphs were 

ignored because of the limited information they provide for the recommendation objective 

(i.e., only two moves) compared to larger subgraphs. Frequent subgraphs that were found 

in the winner graphs indicate actions that are recommended for a player to do, whereas 

frequent subgraphs that were found in the loser graphs indicate actions that are 

recommended that a player should not do. The benefit of the counter attached to each action 

reflects the relative number of times the player had made that type of move in that game. 

Characterizing the actions, such as offensive or defensive, gives a general notion of the 

strategy the player is employing in that sequence and would facilitate mapping one game’s 

actions to another’s (e.g., mapping Interloper’s offensive actions to StarCraft’s offensive 

actions).  

Tables 5 and 6 show the average error rate for each of the cross-validation tests for 

each phase, as well as the average error rate over each phase’s 5 tests for Interloper and 

StarCraft, respectively. The resulting predictive accuracy was not good for frequent 

subgraph mining; in general, frequent subgraphs can have very low frequencies at times 

and high frequencies at other times. The collective recommendations (for moves that 
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should be made and moves that should not be made) were accurate approximately 

50.28%, 39.67%, and 14.32% of the time for phases 1, 2, and 3 of Interloper, respectively. 

It should be noted that this ratio improved slightly to 45.13.% when measuring the error 

rate for phase 1 of StarCraft but increased to 40.1% and 24.1% for phase 2 and 3. We 

attribute this increase in the error rate to the increase in the number of winner frequent 

subgraphs found in the loser dataset and the loser frequent subgraphs found in the winner 

dataset.  

 

Table 5. Cross-Validation Test Results of FSM – Interloper Game 
Test No. Phase 1 Avg. Error Rate Phase 2 Avg. Error Rate Phase 3 Avg. Error Rate 

1 50.21% 36.67% 7.87% 

2 45.91% 41.92% 24.08% 

3 47.94% 42.6% 14.33% 

4 54.83% 38.86% 11.23% 

5 52.52% 38.27% 13.99% 

Avg. 50.28% 39.67% 14.32% 

 

Table 6. Cross-Validation Test Results of FSM - StarCraft II Game 
Test No. Phase 1 Avg. Error Rate Phase 2 Avg. Error Rate Phase 3 Avg. Error Rate 

1 45.53% 

 

44.83% 24.26% 

2 45.71% 

 

41.62% 22.26% 

3 45.42% 38.33% 29.02% 

4 43.6% 40.71% 22.71% 

5 45.42% 34.55% 22.1% 

Avg. 45.13% 40.1% 24.1% 

 

5.2.2. DSM - Experimental Results. Tables 7 and 8 show the average error rate 

for each of the cross-validation tests for each phase, as well as the average error rate over 
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each of the phase 5 tests for Interloper and StarCraft, respectively. The resulting 

predictive accuracy was good, considering that, in general, discriminative subgraphs can 

have very low frequencies. The collective recommendations (for moves that should be 

made and moves that should not be made) had error rates of approximately 13.32%, 7.62%, 

and 1.34% of the time for phases 1, 2, and 3 of Interloper, respectively. It should be noted 

that this ratio improved to 10.52%, 7.38%, and 2.52% when measuring the error rate for 

the first, second, and third phase of StarCraft. We attribute this decrease in the error rate to 

the decrease in the number of winner discriminative subgraphs found in the loser dataset 

and the loser discriminative subgraphs found in the winner dataset. 

 

Table 7. Cross-Validation Test Results of DSM – Interloper Game 
Test No. Phase 1 Avg. Error Rate Phase 2 Avg. Error Rate Phase 3 Avg. Error Rate 

1 14.40% 10.60% 1.00% 

2 13.40% 0.08% 1.60% 

3 13.00% 9.10% 0.70% 

4 13.50% 9.80% 2.00% 

5 13.30% 8.50% 1.40% 

Avg. 13.32% 7.62% 1.34% 

 

Table 8. Cross-Validation Test Results of DSM - StarCraft II Game 
Test No. Phase 1 Avg. Error Rate Phase 2 Avg. Error Rate Phase 3 Avg. Error Rate 

1 10.70% 7.70% 1.90% 

2 9.80% 6.70% 3.90% 

3 10.10% 8.40% 1.70% 

4 10.90% 7.60% 1.20% 

5 11.10% 6.50% 3.90% 

Avg. 10.52% 7.38% 2.52% 
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For phase 1 of the Interloper game, when testing all pairs of 2 winning and 2 

losing graphs, 2,333 discriminative subgraphs were found that constituted “should do” 

recommendations and 2,270 discriminative subgraphs were found that represented “should 

not do” recommendations. The average size of the “should do” recommendation subgraphs 

was 28 edges; the smallest had 1 edge and the largest had 170 edges. The average size of 

the “should not do” recommendation subgraphs was 22 edges; the smallest had 1 edge and 

the largest had 168 edges.  

For phase 1 of StarCraft, when testing all pairs of 2 winning and 2 losing graphs, 

33,981 discriminative subgraphs were found that constituted “should do” 

recommendations and 28,503 discriminative subgraphs were found that represented 

“should not do” recommendations. The average size of the “should do” recommendation 

subgraphs was 146 edges; the smallest had 1 edge and the largest had 297 edges. The 

average size of the “should not do” recommendation subgraphs was 82 edges; the smallest 

had 1 edge and the largest had 268 edges. 

For phase 2 of Interloper, when testing all pairs of 2 winning and 2 losing graphs, 

250 discriminative subgraphs were found that represented “should do” recommendations 

and 213 discriminative subgraphs were found that characterized “should not do” 

recommendations. These were about 90% less than the respective numbers of subgraphs 

found in phase 1. This is not surprising as the number (and order) of different moves that 

a player could (and likely did) make increased at this point in the game, thereby reducing 

the number of graphs that had edges in common and could meet the criteria of 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ. The average size of the “should do” recommendation 

subgraphs was 25 edges; the smallest had 1 edge and the largest had 274 edges. The average 
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size of the “should not do” recommendation subgraphs was 14 edges; the smallest had 

1 edge and the largest had 155 edges.  

The situation was not similar in phase 2 of StarCraft, where there were about 42% 

less than the respective numbers of subgraphs found in phase 1. When testing all pairs of 

2 winning and 2 losing graphs, 14,264 discriminative subgraphs were found that 

represented “should do” recommendations and 12,656 discriminative subgraphs were 

found that characterized “should not do” recommendations. The average size of the “should 

do” recommendation subgraphs was 109 edges, which was only slightly smaller than what 

had been found in phase 1 and 3; the smallest had 1 edge and the largest had 384 edges. 

The average size of the “should not do” recommendation subgraphs was 94 edges; the 

smallest had 1 edge and the largest had 285 edges. 

For the final phase of Interloper, 68 discriminative subgraphs were found that 

characterized “should do” recommendations; this was a 97% decrease from the number 

found in phase 1 and a 72% decrease from the number found in phase 2. In this phase, 36 

discriminative subgraphs were found that represented “should not do” recommendations; 

this was a 98.4% decrease from the number of such subgraphs found in phase 1 and an 

83% decrease from the number found in phase 2. As mentioned previously, the moves in 

this phase of the game likely varied more from game to game, and, as such, it became more 

difficult to meet the criteria stipulated in 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ. The average size of 

the “should do” recommendation subgraphs was 22 edges, which was only slightly smaller 

than what had been seen in the other two phases; the smallest had 1 edge and the largest 

had 115 edges, which was by far the smallest of the three phases. The average size of the 

“should not do” recommendation subgraphs was 18 edges, which is the average size 
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between what was seen for phases 1 and 2; the smallest had 1 edge and the largest had 

145 edges, which was slightly smaller than in phase 2. There were 92% fewer 

discriminative subgraphs found in phase 3 than had been found in phase 1. In the final 

phase of StarCraft, 7,047 discriminative subgraphs were found that characterized “should 

do” recommendations; this was a 75% decrease from the number found in phase 1 and a 

39% decrease from the number found in phase 2. In this phase, 4,550 discriminative 

subgraphs were found that represented “should not do” recommendations; this was an 86% 

decrease from the number of such subgraphs found in phase 1 and a 64% decrease from 

the number found in phase 2. The average size of the “should do” recommendation 

subgraphs was 119 edges; the smallest had 1 edge and the largest had 255 edges. The 

average size of the “should not do” recommendation subgraphs was 73 edges, which is 

close to the average size between what was seen for phases 1 and 2; the smallest had 1 edge 

and the largest had 246 edges.  

Instead of looking at all the result subgraph (recommendations), the user should be 

able to view only the top 𝑘𝑘 “should” and “should not do” subgraphs, where k is a user-

specified parameter. For example, among the top ten frequently recommended "should do" 

subgraphs in phase 1 of Interloper, 3 had 3 edges (i.e., 4 moves) and 4 contained 4-5 edges 

(i.e., 5-6 moves). In contrast, 5 of the 10 most frequent “should not do” subgraphs contained 

only 1 edge (i.e., 2 moves) and 5 contained 2-3 edges (i.e., 3-4 moves). It should be noted 

that the “should” and “should not do” subgraphs can vary in the number of edges they 

contain; thus, we may not be able to provide as much information about what a player 

should not do as we can say about what a player should do (or vice versa).  The type of 

action can have an important role in characterizing a recommended subgraph (i.e., 
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predominantly offensive, defensive, or movement). In the Interloper or StarCraft game, 

creation of territory files likely is considered an offensive action against one’s opponent. 

Movement of a game character could be either an offensive or defensive action; the player’s 

intent (e.g., moving away from danger versus moving to a more strategic position in the 

game space) cannot be deduced from the game data.  

Another observation that can be made from discriminative subgraphs is a counter 

that is associated with both of these types of moves. For each game, the counter for each 

type of action begins at 1 and is incremented by 1 each time that type of action occurs. For 

example, edges (4921156, 3881100, 4921157, 4921158) in phase 2 of a StarCraft game 

represent three factory creations (actions beginning 492) with counters 156, 157, and 158 

(where the counter is initialized to 100), indicating that these particular factories were built 

well after the game had started. Their occurrence in a discriminative subgraph would 

indicate that it either is or is not advisable to build so many factories early in the game. 

6. CONCLUSION AND FUTURE WORK 

The use of recommendation systems has become widespread in our society. In 

general, they examine historical data and try to predict what should be done in the future. 

Herein we have applied graph data mining techniques, frequent and discriminative 

subgraph mining, to multiplayer, Real-Time Strategy (RTS) video games, Interloper and 

StarCraft, to develop a system that can provide recommendations in order to improve a 

player’s chances of winning a future game. We modeled each game as a graph and found 

a collection of subgraphs that specified sequences of actions that players should, and should 
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not, make in each of three phases of the game. When testing datasets of both games, 

experimental results of discriminative subgraph mining showed that the accuracy of our 

recommendations was high (an average of 93% accuracy for all three phases of both 

games), and better than when using frequent subgraph mining. Overall, our 

recommendations for our test games were more informative in terms of what a player 

should do at each of three phases of the game in order to win; however, we also were able 

to provide some information about what the player should not do. Most importantly, this 

study has served as a proof of concept that the discriminative subgraph approach may be a 

promising strategy for not only game predictive analytics, but also for other problem 

domains that involve direct and indirect resource generation and destruction.   

In the future we plan to establish a mapping between action types and assets in this 

genre of games so that a more generalized recommendation system can be developed. We 

also hope to explore ways to make the algorithms more efficient, perhaps applying some 

heuristics to reduce the search space that are inherent to the nature of game data. 

Ultimately, we intend to abstract this strategy to other problem domains such as a health 

care disease tracking and prediction systems using the same foundation of analyzing 

examples of success and failure in order to make recommendations for future positive 

outcomes. 
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ABSTRACT 

Graphs have long been used to model relationships between entities. For some 

applications, a single graph is sufficient; for other problems, a collection of graphs may be 

more appropriate to represent the underlying data. Many contemporary problem domains, 

for which graphs are an ideal data model, contain an enormous amount of data (e.g., social 

networks). Hence, researchers frequently employ parallelized or distributed processing. 

But first the graph data must be partitioned and assigned to the multiple processors in such 

a way that the work load will be balanced, and inter-processor communication will be 

minimized. The latter problem may be complicated by the existence of edges between 

vertices in a graph that have been assigned to different processors. Herein we introduce a 

strategy that combines vocabulary-based summarization of graphs (𝑉𝑉𝑉𝑉𝑉𝑉) and detection of 

hotspots (i.e., vertices of high degree) to determine how a single undirected graph should 

be partitioned to optimize multi-processor load balancing and minimize the number of 

edges that exist between the partitioned subgraphs. We benchmark our method against 

another well-known partitioning algorithm (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) to demonstrate the benefits of our 

approach. 
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1. INTRODUCTION 

 
Graphs have long been used to model relationships between entities. For some 

applications, a single graph is sufficient; for other problems, a collection of graphs may be 

more appropriate to represent the underlying data. Some of these graphs may contain an 

enormous amount of data (e.g., social networks). Hence, parallelized or distributed 

processing often is employed. Before the analysis commences, typically the graph dataset 

is partitioned, and a subset of data is assigned to each processor. The partitioning should 

be done in such a way that the ensuing work load will be balanced and inter-processor 

communication will be minimized. These tasks can be particularly challenging for a single 

graph; consideration must be given to which vertices are assigned to which partitions (i.e., 

processors) and what edges originally existed between those vertices. 

Ideally, partitions should be of approximately equal size, and the number of edges 

between vertices that are in different partitions should be minimized. The problem of 

finding good partitions in these respects has been studied in graph theory. Despite the 

numerous algorithms that have been proposed and implemented, the complexity of this 

problem is still considered NP-complete. 

In general, most graph partitioning algorithms utilize either edge-cut partitioning 

or vertex-cut partitioning. Edge-cut partitioning splits the vertices of a graph into disjoint 

sets of approximately equal size considering the minimum number of cut-edges (e.g., 

PowerGraph [3], Spark GraphX [4], and Chaos [13]). In contrast, vertex-cut partitioning 

splits the edges of a graph into equal-sized sets. In this approach, the partitioning of a single 

graph must satisfy two requirements: the quality graph partitioning criterion (which 
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guarantees no lost data) and load balancing. Many studies have shown that edge-cut 

partitioning produces more accurate results on large real-world graphs [3, 4]. 

Herein we introduce a novel vertex-cut partitioning strategy that determines how a 

single, undirected graph should be partitioned to optimize multi-processor load balancing 

and minimize the number of edges that exist between the partitioned subgraphs. Our 

approach, 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺, first uses vocabulary-based summarization [9] to identify the most 

highly connected structures that exist in the graph (e.g., cliques, stars, and chains). We then 

find the vertices in those structures that have the highest degree; these are called hotspots. 

The hotspots become the starting points from which subgraph partitions are formed. 

This paper is organized as follows. In Section 2 we briefly discuss some of the 

related work in graph partitioning. We present the 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 algorithm in Section 3, and 

include a discussion of the 𝑉𝑉𝑉𝑉𝑉𝑉 summarization algorithm. In Section 4 we benchmark our 

method against another well-known partitioning algorithm (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) to demonstrate the 

benefits of our approach. Concluding remarks and a discussion of future work are provided 

in Section 5. 

2. RELATED WORK 

In this section, we briefly review some of the research that has been done in graph 

partitioning. Despite the numerous sequential, distributed, and parallel algorithms that have 

been developed, the complexity of this problem is still considered to be NP-complete. One 

of the most significant challenges of the problem continues to be minimizing the loss of 

information (from the original graph dataset) when the partitions are formed; that is, the 

goal is to minimize the number of edges (from the original graph) that exists between 
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vertices that are in different partitions, a situation which is more likely to occur as the 

number of partitions increases. 

Some heuristic methods for sequential graph partitioning of a single graph are 

discussed in [2, 6]. One offline method (wherein the entire graph is resident in memory), 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, is proposed in [6]. This method produces high-quality partitions in terms of 

uniformity of partition size and minimization of “lost” edges. However, because of the 

offline setting, it cannot handle large graphs. The 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 algorithm consists of three 

phases: coarsening, partitioning, and refinement. During each phase, a sequence of 

specialized algorithms is applied. These algorithms help in selecting the maximal 

matchings in the coarsening phase, partitioning of the coarse graph in the partitioning 

phase, and projecting the graph back to the original graph in the refinement phase. An 

extension to 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (Streaming 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 Partitioning method (𝑆𝑆𝑆𝑆𝑆𝑆)) is proposed in [2], 

replacing the offline setting of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 by an online setting. 𝑆𝑆𝑆𝑆𝑆𝑆 provides the ability to 

adjust the memory capacity, and subsequently decrease computational requirements by 

applying the partitioning method to small subgraphs. 

Some graph partitioning techniques are designed for specific application problems. 

Another technique for local (i.e., memory-resident, sequential processing) graph 

partitioning [1] specifically targets fixed cardinality problems such as 𝑘𝑘-densest subgraph 

and max 𝑘𝑘-vertex cover. The authors developed a fixed parameter algorithm using a 

greediness-for-parameterization technique. Clustering systems are used as a base in [16]. 

In this research, the authors propose a heuristic graph edge partitioning strategy, Neighbor 

Expansion (NE), with polynomial running time. Their goal was to reduce the running time 
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and communication cost for some specific applications such as triangle counting and 

PageRank. 

The graph partitioning problem in a distributed environment is addressed in [7, 8, 

11, 12, 14]. The authors in [12] propose a fully distributed algorithm called JA-BE-JA. 

This algorithm is built on two types of partitioning: vertex-cut and edge-cut partitioning; 

the absence of central coordination and the processing of each vertex independently make 

this algorithm well-designed for distributed processing. Another distributed algorithm, 

PACC (Partition-Aware Connected Components), based on graph partitioning for edge- 

filtering and load-balancing, is proposed in [11]. The authors of [14] propose a multi-level 

label propagation (MLP) method that uses distributed memory of several machines for 

partitioning the graphs. Another distributed partitioning algorithm is discussed in [10], 

PARallel Submodular Approximation algorithm (Parsa), also configures the partitions to 

fit the storage and computation ability of each machine. 

One important characteristic of graph partitioning algorithms is the strategy 

employed for selecting the vertex around which the subgraph will be built for each 

partition. Many algorithms select such vertices randomly. Our approach was motivated by 

MELT [15], MapReduce-based Efficient Large-scale Trajectory anonymization. The main 

objective of that work was to examine paths traveled by people in a geographical space, 

and then partition the space into regions around popular locations (e.g., a coffee house, an 

exercise center, etc.); those locations are referred to as hotspots. As will be discussed later 

in this paper, the utilization of hotspots as a basis for forming partitions is a novel feature 

of our partitioning strategy. 
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3. METHODOLOGY 

In this section, we present the 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 strategy for partitioning a single, undirected 

graph. We begin with some preliminary definitions that will facilitate this discussion. An 

explanation of the vocabulary-based summarization of graphs (𝑉𝑉𝑉𝑉𝑉𝑉) technique developed 

in [9] then follows; this is a key component for our approach as it is used to determine 

subgraphs of high connectivity (e.g., cliques, stars, and chains). Finally, our complete set 

of algorithms is presented, detailing how the vocabulary-based summarization and 

identification of hotspots lead to the creation of optimal partitioning. 

3.1. PRELIMINARIES 

Definition 1. Graph: A graph 𝐺𝐺 is a tuple (𝑉𝑉,𝐸𝐸, 𝐿𝐿) where 𝑉𝑉 is a finite set of nodes called 

the vertex set of 𝐺𝐺, and 𝐸𝐸 is a set of 2-element subsets of  𝑉𝑉(𝐸𝐸 ⊆ 𝑉𝑉 × 𝑉𝑉) called the edge 

set of 𝐺𝐺. The nodes and edges are labeled by the function 𝐿𝐿. 

Definition 2. Graph partitioning: A graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) will be partitioned into 𝑘𝑘 

subgraphs 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠′  =  (𝑉𝑉′,𝐸𝐸′), 𝑠𝑠𝑠𝑠𝑠𝑠 = 1, . . . ,𝑘𝑘. Each 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠′ ⊂ 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 where 𝑉𝑉𝑖𝑖  ∩  𝑉𝑉𝑗𝑗 = 0 for 

𝑖𝑖 ≠  𝑗𝑗, and each 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠′ ⊂ 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠. 

Definition 3. Full-clique: Let 𝐺𝐺 =  (𝑉𝑉,𝐸𝐸) be an undirected graph. A set 𝐹𝐹𝐹𝐹 of vertices in 

𝐺𝐺 is called a Full-clique if any two distinct vertices in 𝐹𝐹𝐹𝐹 are adjacent in 𝐺𝐺, when 𝑘𝑘 ≥ 1. 

The Full-clique term may refer to the subgraph in some cases. If several edges are missing, 

this will be defined as a Near-clique. 

Definition 4. Full bipartite core: Let 𝐺𝐺 =  (𝑉𝑉,𝐸𝐸) be an undirected graph. A set 𝐹𝐹𝐹𝐹 of 

vertices in 𝐺𝐺 is called Full-bipartite if two sets of vertices 𝑆𝑆1 and 𝑆𝑆2, 𝑆𝑆1 ∩ 𝑆𝑆2 = 𝜙𝜙, have 
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edges between them, where each vertex in 𝑆𝑆1will be connected to every edge in 𝑆𝑆2 but 

not within the same set. When the core is not fully connected this will be defined as a Near-

bipartite core.  

Definition 5. Star: A Star consists of one internal vertex in set 𝑆𝑆1 connected to 𝑘𝑘 edges of 

other sets 𝑆𝑆𝑖𝑖+1 (spokes). A Star is considered as a special case of a Full bipartite core. 

Definition 6. Chain: A Chain is a sequence of vertices such that all vertices have degree 

2, except two of them have degree 1. 

Figure 1 shows examples of these structure types. 

 

(a) Full-Clique (b) Near-Clique (c) Full-bipartite 

(d) Chain (e) Star 
 

Figure 1: Types of Structures 

3.2. 𝑽𝑽𝑽𝑽𝑽𝑽 GRAPH SUMMARIZATION 

The ability to summarize information about highly connected subgraphs contained 

within a large graph can greatly facilitate understanding of the graph as a whole. 

Vocabulary-based summarization of Graphs (𝑉𝑉𝑉𝑉𝑉𝑉) [9] is a formal methodology developed 



 

 

99 

for this purpose. Using a set of terms (i.e., a vocabulary) like full-cliques, near-cliques, 

full-bipartite core, near-bipartite core, stars, and chains, 𝑉𝑉𝑉𝑉𝑉𝑉 provides a summary of the 

most highly connected and frequently occurring structures in a graph. For problem domains 

like social networks and communication networks, these are typically the structures of most 

interest. 

 
Algorithm 1 𝑉𝑉𝑉𝑉𝑉𝑉 

 
Input Graph 𝐺𝐺 

 
Output Graph summary 𝑀𝑀, encoding cost. 

 
  1: Subgraph Generation. Using graph decomposition methods, produce a set of 
   candidate subgraphs, which may overlap with each other. 
  2: Subgraph Labeling. Characterize each subgraph as one of the vocabulary 
   structure types. 
  3: Summary Assembly. From the candidate structures, select a non-redundant subset 
 to instantiate the graph model 𝑀𝑀. Utilizing a heuristic model (e.g., PLAIN, 
 TOP10, TOP100, GREEDY’nFORGET), the set of structures with the lowest 
 description cost will be selected. 

 
 
Algorithm 1 outlines the main steps that are performed in 𝑉𝑉𝑉𝑉𝑉𝑉; see [9] for a more 

detailed discussion. Using graph decomposition methods, candidate subgraphs are first 

generated. They are then classified as various connected structures such as cliques, stars, 

and chains; if a subgraph qualifies as more than one of these structure types, a scoring 

method (based on minimum description length (MDL)) is used to determine which 

structure type that subgraph best fits. 𝑉𝑉𝑉𝑉𝑉𝑉 then uses another scoring system to determine 

which collection of those structures best characterizes the graph as a whole. This is called 

the summary model, and could include all of the structures (PLAIN), just the 𝑘𝑘 structures 
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with the best scores (TOP10, TOP100), or a combination of structures whose total score 

is best (GREEDY’nFORGET). 

3.3. PROPOSED ALGORITHM 

In 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺, we first use 𝑉𝑉𝑉𝑉𝑉𝑉 to identify the most highly connected, and frequently 

occurring, subgraphs. That produces a set of structures (i.e., the model summary), 𝑆𝑆. 

Algorithm 2 is then used to select a subset of 𝑆𝑆 which we call the majority structures, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀. 

The number of majority structures depends on the desired number of partitions, 𝑛𝑛. The 𝑛𝑛 

structures in 𝑆𝑆 that have the largest number of vertices become the majority structures. 

 
Algorithm 2 Select the Majority Structures 
Input 𝑆𝑆 is set of structures produced by 𝑉𝑉𝑉𝑉𝑉𝑉,  
           𝑛𝑛 is number of desired partitions  
Output 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 contains 𝑛𝑛 structures in 𝑆𝑆 that have the largest number of vertices 
   1: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = Sort structures in 𝑆𝑆 in descending order by number of vertices 
  2:    for 𝑖𝑖 = 1 to 𝑛𝑛 do 
  3:         𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀[𝑖𝑖] = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆[𝑖𝑖] 
  4:    end-for 
  5: return 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 

 
 
 
For each majority structure, Algorithm 3 is applied to identify the vertex that has 

the highest degree; in the case of a tie, an arbitrary choice between those qualifying vertices 

is made. These vertices of highest degree are called hotspots. 

After assigning the hotspots, the actual partitioning commences. The subgraph that 

will be assigned to a partition will consist of all the vertices in a hotspot’s structure unless 

that number of vertices exceeds the total number of vertices in the graph divided by the 

number of desired partitions; that is considered the ideal partition size. In Algorithm 4, we 
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start a depth-first search from a hotspot vertex (denoted as 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻). The 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 

denoted in the algorithm is the set of structures from which the hotspot was selected.  

 

Algorithm 3 Assign the HotSpot 
Input 𝑆𝑆 = (𝑉𝑉𝑆𝑆,𝐸𝐸𝑆𝑆) is a structure 

 
Output 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is a vertex in 𝑉𝑉𝑆𝑆 that is the hotspot vertex for structure 𝑆𝑆 = (𝑉𝑉𝑆𝑆,𝐸𝐸𝑆𝑆) 

 
  1:   for 𝑖𝑖 = 1 to |𝑉𝑉𝑆𝑆| do 
  2:          𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑖𝑖] = 0 
  3:   end-for 
  4:   for 𝑖𝑖 = 1 to |𝑉𝑉𝑆𝑆| do 
  5:     for 𝑗𝑗 = 1 to |𝑉𝑉𝑆𝑆| do 
  6:         if there is an 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖, 𝑗𝑗) in 𝐸𝐸𝑆𝑆 then 
  7:           𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑖𝑖] = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑖𝑖] + 1 
  8:         end-if 
  9:     end-for 
10:   end-for 
11: 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 1 
12:   for 𝑖𝑖 = 2 to |𝑉𝑉𝑆𝑆| do 
13:      if 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻] ≤ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑖𝑖] then 
14:          𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑖𝑖 
15:      end-if 
16:   end-for 
17: return 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 

 
 

 
There are two discontinuation criteria for building a subgraph partition; the 

expansion will stop when either of those conditions is satisfied: 

1. The current size of a partition subgraph has reached the ideal partition size. 

2. The path length from the current vertex to the hotspot has reached a maximum 

threshold (i.e., the total number of desired partitions). 
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Some vertices from the original graph may not be included in any partition 

using these conditions. To handle those cases, we perform a breadth-first search starting 

from each hotspot until all nodes are included in some partition. 

 

Algorithm 4 Graph Partitioning 
Input Graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸),𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻, and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 

 
            𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻  is a vertex in the structure connected to the largest number of edges 
          𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  is a set containing structures that have the largest number of vertices 
          𝑛𝑛  is the number of partitions 
Output All 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ of 𝐺𝐺, where |𝑉𝑉| of each subgraph ≥ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

 
  1: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  |𝑉𝑉|/ 𝑛𝑛 
  2:    if |𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖| ≤  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 then   
  3:        Include all nodes of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 in 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 
  4:    end-if 
  5:    Perform 𝐷𝐷𝐷𝐷𝐷𝐷 starting from each 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 
  6:         𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝐷𝐷𝐷𝐷𝐷𝐷 ⟵ 𝐷𝐷𝐷𝐷𝐷𝐷 
  7:    Perform 𝐵𝐵𝐵𝐵𝐵𝐵 starting from each 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 
  8:         𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝐵𝐵𝐵𝐵𝐵𝐵 ⟵ 𝐵𝐵𝐵𝐵𝐵𝐵 
  9: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ ⟵ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝐷𝐷𝐷𝐷𝐷𝐷 ∪ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝐵𝐵𝐵𝐵𝐵𝐵 
10: return 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ 

 
 

3.4. COMPUTATIONAL COMPLEXITY 

The complexity of one well-known partitioning method that is considered to 

produce high-quality partitions, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 [6] (implemented as kmetis), is approximately 

𝑂𝑂(𝑉𝑉 + 𝐸𝐸 + 𝑘𝑘 log 𝑘𝑘) where 𝑉𝑉 is the number of nodes, 𝐸𝐸 the number of edges, and 𝑘𝑘 is the 

number of partitions [5]. In contrast, the complexity of 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 is approximately 𝑂𝑂(𝑉𝑉 +

𝐸𝐸 + 𝑛𝑛 log 𝑛𝑛) where 𝑉𝑉 is the number of nodes, 𝐸𝐸 is the number of edges, and 𝑛𝑛 is the number 

of structures. Contributing to the overall complexity of 𝐺𝐺𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃 is the complexity of BFS 
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and DFS, which are 𝑂𝑂(𝑉𝑉 + 𝐸𝐸), and the complexity of sorting 𝑛𝑛 structures, which is 

𝑂𝑂(𝑛𝑛 log 𝑛𝑛). We are not including the complexity of the 𝑉𝑉𝑉𝑉𝑉𝑉 processing, which has not 

been published by its authors. 

4. RESULTS AND ANALYSIS 

In this section we compare the results of partitioning three datasets using 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 

and another well-known partitioning method, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, which was discussed in Section 2. 

The 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 algorithms presented in Section 3.2 and 3.3 were (collectively) implemented 

in Matlab and C++. A C++ implementation of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 was downloaded from the Karypis 

Lab website [5]. Our experiments were executed on an Intel(R) Core(TM) i7-6700 

CPU@3.40GHz computer with 32 GB memory. 

4.1. DATA DESCRIPTION 

Three single undirected graphs were used to evaluate our approach. Table 1 lists 

descriptive information about the graphs. One graph was synthetically generated; a second 

graph represented a two-dimensional finite element mesh; the third graph represented a 

three-dimensional finite element mesh. 

 

Table 1: Description of the Graphs Tested 
Graph Name Number of Nodes Number of Edges Description 

Synthetic 1565 3561 Synthetically generated 

4ELT 15606 45878 2D Finite element mesh 

COPTER2 55476 352238 3D Finite element mesh 
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4.2. EXPERIMENT AND RESULTS 

We executed 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 on each of the graphs listed in Table 1, testing 

seven different numbers of partitions for each graph. The results from each test were 

analyzed in terms of three different metrics: the number of interior edges per partition (i.e., 

edges in a partition’s graph), the number of exterior edges per partition (i.e., edges between 

vertices in a partition and vertices assigned to other partitions), and the total number of 

edges lost (i.e., edges from the original graph that were not represented in any of the 

partition graphs). 

Seven tests were conducted to create 10, 20, 30, 40, 50, 60, and 70 partitions, 

respectively, of the Synthetic graph. 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 failed to partition this graph into either 20 or 

40 partitions; the program simply failed to return any results. 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 produced results for 

all of the tested numbers of partitions for this graph. The representation of edges amongst 

partitions was not well distributed when 10 partitions were requested. Specifically, the 

number of interior edges in one of those partitions was much higher than in the other 

partitions, which was not an optimal partitioning. This was likely due to the fact that when 

a hotspot is selected from a structure, if the structure can fit entirely into a partition, all 

nodes from that structure automatically will be added to the partition before the depth-first 

search algorithm is run. This can then prevent other partitions from growing during depth-

first search (as would be the case in unconnected components), encouraging 

disproportionate partition sizes. Because the 4ELT and COPTER2 graphs were much 

larger than the Synthetic graph, we tested larger numbers of partitions for those graphs, 

namely: 100, 200, 300, 400, 500, 600, and 700.  
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Figure 2: Interior Edges per Partition 
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Figure 3: Exterior Edges per Partition 
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Figure 4: Total Edges Lost 
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For all three of the graphs listed in Table 1, in the majority of the tests, the 

partitions produced by 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 had a higher number of interior edges in each partition than 

the partitions produced by 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀. It can be seen in Figure 2 that more edges from the 

original graph were retained within the partitions produced by 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺. As shown in Figure 

3, the 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 partitioning resulted in fewer exterior edges (between partitions) than what 

occurred in the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 partitioning. Additionally, as shown in Figure 4, 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 

outperformed 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 in terms of reducing the total number of edges lost from the original 

graph. It should be noted that as the desired number of partitions grew, the difference in 

partition quality (in terms of the three metrics) obtained from both methods became less 

distinct. 

Because of the use of two methods (depth-first/breadth-first search) in 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 for 

the extension process that include vertices in/out of partition boundaries, we also evaluated 

different variations of our method. We ran 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 on the three test graphs using four 

different orders of processing: 

1. Depth-first search extension for vertices inside the partition boundaries followed 

by breadth-first search extension for vertices outside the partition boundaries. 

2. Breadth-first search extension for vertices inside the partition boundaries followed 

by depth-first search extension for vertices outside the partition boundaries. 

3. Depth-first search extension for vertices inside the partition boundaries followed 

by depth-first search extension for vertices outside the partition boundaries. 

4. Breadth-first search extension for vertices inside the partition boundaries followed 

by breadth-first search extension for vertices outside the partition boundaries. 
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We found that more consistent partitions were obtained (in terms of more 

interior edges and fewer external edges per partition) when we utilized the depth-first 

search extension process for vertices inside the boundaries followed by breadth-first search 

extension processing for vertices outside the boundaries. We also tested random 

assignment of hotspots. This was found to be unreliable in generating high-quality 

partitions. Interestingly, although the number of internal edges was not balanced across 

partitions utilizing randomization, 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 still outperformed 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 in terms of producing 

partitions with more internal edges and fewer external edges. 

5. CONCLUSION AND FUTURE WORK 

With the proliferation of data in our technological world and the usefulness of 

modeling some problems using graphs, it is becoming increasingly difficult to process an 

entire graph dataset in memory. It is more efficient to partition a single large graph, and 

process multiple smaller subgraphs. However, in doing so, the partitioning of what may be 

highly interconnected data must be done in such as way as to balance the work load 

amongst the individual processes, minimize inter-process communication, and minimize 

loss of information from the original dataset. The latter problems can occur if, in the 

original graph, there is an edge that exists between vertices assigned to different partitions. 

Herein we have presented an algorithm, 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺, for partitioning a single, 

undirected graph. Our algorithm strives to produce quality partitions in terms of: uniformity 

of the size of each partition, maximization of the number of edges from the original graph 

that are included in each partition, and minimization of the number of edges from the 
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original graph that effectively exist between partitions. Our approach is novel; we first 

utilize vocabulary-based summarization (𝑉𝑉𝑉𝑉𝑉𝑉) to find the most highly connected 

structures, and then find the vertices of highest degree (known as hotspots) within those 

structures. A benchmark comparison of 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 with another well-known, high-quality 

partitioning algorithm (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) demonstrated the benefits of our strategy. 

In the future, we plan to explore ways to distribute or parallelize the 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 

algorithms so that we can process even larger graphs than those tested for this study. To 

that end, we also may explore the use of some approximation (e.g., sampling) methods that 

may increase the efficiency of the assignment of vertices to partitions after identification 

of structures and hotspots. 
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SECTION 

2. CONCLUSIONS AND FUTURE WORK  

2.1. CONCLUSIONS  

This dissertation presents algorithms and methods to mine and analyze transaction 

graphs. Specifically, we have applied graph data mining techniques, frequent (FSM) and 

discriminative subgraph mining (DSM), to Real-Time Strategy (RTS) video game datasets 

to develop a system that can provide recommendations in order to improve one’s chances 

of winning the game.  

In paper I, frequent subgraph mining, has been applied to a strategy game dataset 

to develop a system that can provide recommendations about moves that a player should 

and should not make in order to improve his/her chances of winning the game. As proof of 

concept, we applied our system to a real-time strategy (RTS) game dataset during each of 

three phases of the game and achieved fairly accurate results when we tested using cross-

fold validation. We also attempted to apply another technique, frequent sequence mining, 

but did not find that it provided as useful or accurate recommendations.   

In paper II, we tested another graph mining technique, discriminative subgraph 

mining, on the same RTS game dataset. The predictions for what sequences of moves a 

player should and should not make in order to increase his/her chances of winning a game 

were found to be extremely accurate for each of three phases of the game when tested using 

cross-fold validation. 
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In paper III, a comparison between the two previously mentioned graph data 

mining techniques, frequent and discriminative subgraph mining, were compared and 

tested on a much larger dataset of played multi-player, Real-Time Strategy (RTS) video 

games. The earlier results were reinforced, with discriminative subgraph mining producing 

the more accurate recommendations than frequent subgraph mining, and those 

recommendations being highly accurate for all three phases of the game. 

In paper IV, we proposed an algorithm, GraPH, for partitioning a single, undirected 

graph. Our algorithm strives to produce quality partitions in terms of: uniformity of the size 

of each partition, maximization of the number of edges from the original graph that are 

included in each partition, and minimization of the number of edges from the original graph 

that effectively exist between partitions. Our approach is novel; we first utilize vocabulary-

based summarization (VoG) to find the most highly connected structures, and then find the 

vertices of highest degree (known as hotspots) within those structures. An implementation 

of the algorithm was benchmarked against a well-known partitioning algorithm (METIS) 

and was found to be superior in the aforementioned metrics for quality partitioning for 

most all test cases. 

2.2. FUTURE WORK 

As a part of the future research, we intend to extend the scope of the graph mining 

predictive analytics using real-life datasets other than game data (e.g., healthcare data). 

Although discriminative subgraph mining produced the best results for the game datasets, 

we will still compare both graph mining methods for the other types of datasets in case one 

method proves to be more useful than the other for different types of data.  
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In order to reduce the search space and speed up the computation process, we 

intend to work on heuristic algorithms for both FSM and DSM. It is possible, for example, 

that we could combine particular actions into categories based on semantic similarity (e.g., 

“create fort” and “create castle” into “create protective unit”) inorder to more quickly find 

common subgraphs. 
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