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ABSTRACT 

Aesthetics plays a key role in web design. However, most websites have been 

developed based on designers’ inspirations or preferences. While perceptions of 

aesthetics are intuitive abilities of humankind, the underlying principles for assessing 

aesthetics are not well understood. In recent years, machine learning methods have shown 

promising results in image aesthetic assessment. In this research, we used machine 

learning methods to study and explore the underlying principles of webpage aesthetics. 
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1. INTRODUCTION 

Aesthetics has been shown to have a dominant influence in e-commerce, such as 

in influencing buyers’ purchase decisions (Postrel, 2001). Aesthetics also affects users’ 

evaluations (Tractinsky et al., 2000) and preferences (Schenkman and Jonsson, 2000). 

Webpage design is an area that warrants attention to the assessments and dimensions of 

aesthetics. A good webpage design can bring many benefits, such as increased click rates, 

registration rates, subscription rates, volume of downloads, and conversions rates. From a 

business point of view, these factors are critical to revenue. When a group of websites 

offers similar services, users tend to choose sites that are visually more attractive than 

others (Touch et al., 2012). Research shows that aesthetics in web design is a major 

determinant of perceived credibility and trustworthiness (Fogg et al., 2003; McKnight et 

al., 2002). Aesthetics has also been shown to positively influence behavior, such as user 

performance and purchase intention (Reinecke et al., 2014; Moshagen et al., 2009; Bloch, 

1995).  

However, research on aesthetics is limited or lacking in the Human-Computer 

Interaction (HCI) area. The traditional HCI field has been mostly concerned with 

usability and functionality (Reinecke et al., 2014). Although designers are aware of the 

importance of aesthetics, design decisions are made mainly based on “inspiration” and 

“educated guesses” (Liu, 2003). It has also been shown that demographic differences, 

such as personality, gender, and age, can have an impact on aesthetic impressions (Moss 

& Gunn, 2009; Cyr et al., 2010; Reinecke & Bernstein, 2011; Wang, 2014).  



 

 

2 

Evaluating aesthetics is a highly subjective task. Different people can have 

different views on aesthetics. A beautiful webpage in one’s eyes can be unpleasant in the 

eyes of another. Sometimes, designers may develop websites which they believe to be 

aesthetic but are not welcomed by users.  

Most of the earlier research on aesthetics focus on design principles. The use of a 

quantitative modeling approach to study aesthetics is fairly scarce in the literature. 

Although the use of qualitative and interpretive approaches can provide deep insights into 

aesthetics, it is often not easy to apply their findings in practice. From the perspective of 

application, the use of quantitative methods could be easier to implement and test, and 

hence, can generate greater practical value. Also, it has been argued that general design 

principles may not apply in all contexts, especially from the perspective of aesthetics. On 

the one hand, the design criteria proposed by qualitative researchers often cannot be 

quantified or assessed quantitatively. On the other hand, the applicability of these criteria 

is based on the context. Besides, people’s demographic differences and personal tastes 

can also have an influence on aesthetic impressions (Lindgaard et al., 2006; Martindale et 

al., 1990; Reinecke & Gajos, 2014). 

With recent advances in machine learning and the boom and availability of data, 

machine learning techniques have become a powerful and efficient tool in computer 

vision. In the image recognition area, the convolutional neural network has been regarded 

as the biggest advancement. It has helped researchers in understanding complex 

phenomena and can potentially help us automatically assess aesthetics in HCI. In recent 

years, deep learning techniques have been shown to be better in assessing aesthetic 

quality of images than traditional methods that utilize webpage features associated with 
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aesthetics (Karayev et al., 2013; Lu et al., 2014, 2015a, 2015b; Dong & Tian, 2015; Kao 

et al., 2016; Kong et al., 2016; Mai et al., 2016; Jin et al., 2016; Wang et al., 2016a, 

2016b). 

However, there are differences between image aesthetics and web aesthetics. 

Image aesthetics are mostly used on photos and may not apply well to the area of web 

aesthetics. Although a webpage can be turned into an image file with a screenshot, there 

are many differences between the aesthetics of a webpage and an image. The composition 

of a webpage is generally more complicated and sophisticated than a photo. It contains 

many complex elements, such as text, borders, pictures, and even animations. Deep 

learning models recognize and learn objects based on the edges of them. There are far 

more edges between webpage elements in a screenshot than of a flower in a photograph. 

Despite many differences between webpage aesthetics and image aesthetics, there could 

be commonalities between them. According to a previous study (Lindgaard et al., 2006), 

the aesthetic impression of a webpage can be formed within 50ms. A webpage can be 

viewed as a whole image, and hence, we are interested to assess the performance of deep 

learning models that have been used in image aesthetics and apply them in the context of 

screenshots of webpages. 

Traditional assessments of webpage aesthetics draw on specific measures of a 

webpage to predict aesthetics. The advantage of this approach is that they can be 

quantified and used directly in webpage design to guide web designers when a 

comprehensive set of such measures is established in the literature. The disadvantage of 

this approach is that identifying and determining these measures are often difficult, 

require deep domain knowledge, and tend to miss other important measures. Further, the 
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extraction method of some measures is very complex, which is often difficult to apply 

directly in rapid web evaluation applications.  

In the deep learning area, Convolutional Neural Network (CNN) directly extracts 

abstract measures from image input. The advantage of this method is that it can make out 

key aspects of a picture. This approach effectively compensates for the shortcomings of 

traditional aesthetic assessment methods by treating webpages as images in the web 

assessment applications. While this approach sounds promising, it has its drawbacks. On 

the one hand, the neural network is a black box, which means we have no way of 

knowing how it rates a web page as beautiful or ugly. On the other hand, this method can 

potentially only train a model to predict webpage aesthetics, and often fails to come up 

with principles of aesthetics that the traditional approaches do. Whether one approach is 

superior to another is still debatable. We can only say that each approach has its 

advantages. However, attempts can be made to compare these approaches in assessing 

and understanding webpage aesthetics. 

In this thesis, we propose to use machine learning methods to study aesthetics. 

First, we will review related work, which includes fundamentals about aesthetics and 

machine learning methods used in this study. Second, we will describe the methodology 

for the study. Third, we will present the data analysis and the results. Next, we will 

present the shortcomings of the study and directions for future research. Finally, we will 

summarize the results and provide conclusions for the thesis. 
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2. RELATED WORK 

In this section, we will briefly introduce related work in the literature, which 

includes webpage aesthetics, aesthetics and user preferences, computational interface 

aesthetics, traditional webpage aesthetic assessment, and webpage aesthetic assessment 

using deep learning methods. 

2.1. WEBPAGE AESTHETICS 

Aesthetics or beauty is one of the three basic requirements of architecture 

according to Vitruvius, the first systematic theoretician of architecture (Kruft, 1994). The 

three requirements are: 

• Firmatis (Durability) – Architecture should be robust and remain in a good 

condition. 

• Utilitas (Utility) – Architecture should be useful and functioning well when 

people are using it. 

• Venustatis (Beauty) – Architecture should be delightful for people and their spirit. 

Among the three requirements, the theory of Venustatis (or beauty) is more 

complicated. Vitruvius believed that human’s “beauty” is the “truth of nature”, and 

“nature’s designs” are harmonic and symmetric.  

The terms, harmonic and symmetric, are closely associated with a term in 

aesthetics--balance. Balance is an important principle in aesthetics. Balance means that 

the visual weights of the page elements are evenly distributed throughout the page. When 
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a webpage is designed to be well balanced, users perceive equilibrium psychologically 

(Lindgaard, 1999).  

2.2. AESTHETICS AND USER PREFERENCES 

Preferences are strongly influenced by aesthetics (Tractinsky, 2004). First 

impressions are important. According to research, aesthetic impressions – the 

spontaneous emotional responses based on visual preferences – can seriously influence 

whether we perceive a product as useful or not (Sonderegger & Sauer, 2010). An 

aesthetic impression is typically formed within 50 to 500ms during the first contact, and 

it is persistent once it has been formed (Lindgaard et al., 2006; Tractinsky et al., 2006). 

Because of these characteristics of aesthetic impressions, researchers often use static 

screenshots of webpages to test whether users like those webpages (Reinecke et al., 

2013).  

User preferences, as measured by evaluations of various aspects of a system or by 

expressing attitudes towards the system, may not necessarily correspond to actual 

decisions to use or buy one system over another (Ben-Bassat et al., 2006). Although a 

user's final choice is influenced by many other factors (e.g., economics, environment, 

culture), the user’s preference based on its aesthetic impression is weighed heavily and is 

hard to overcome in the decision process (Russo et al., 1998). If people develop an initial 

preference for more attractive designs, judgments of objective measure information may 

shift in the direction of more attractive products (Hoegg et al., 2010).  

Although scholars have been trying to come up with universally applicable 

principles of aesthetics, many factors can significantly impact these principles. For 
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example, due to individual and cultural differences, aesthetics could be perceived 

differently by different people. Some people prefer concise designs while others prefer 

designs involving artistic or special effects, which makes aesthetic assessments somewhat 

subjective. Besides, websites frequently update their design styles to keep up with the 

latest trends in website design. Websites today are very different from those in the 90s. 

However, we do believe that it is useful to develop a better understanding of the 

principles of webpage aesthetics. In addition, machine learning is powerful in learning 

patterns based on data, which matches the characteristics and requirements of this 

research.   

2.3. COMPUTATIONAL INTERFACE AESTHETICS 

Computational interface aesthetics is a field of study aimed at developing a 

computation model for the aesthetic quality of interfaces. Past HCI studies have focused 

on coming up with universal aesthetics principles, and considerations of computational 

aesthetics have been largely ignored. Although aesthetic principles are useful in guiding 

designers in their work, they do have limitations. For example, individuals can have 

different aesthetic impressions when perceiving aesthetics (Lindgaard et al., 2006; 

Martindale et al., 1990; Reinecke & Gajos, 2014). Thus, it is appropriate to personalize 

design when targeting a specific group of users. More boldly speaking, if the technology 

is mature enough, the design should modify and improve itself with each user. 

It can be difficult to assess aesthetics objectively since aesthetics evaluation is 

expected to be subjective. Different people may have different views on what aesthetics 

is, which suggests that there will be large intra-class differences in aesthetic perceptions 
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(Jin, 2016). This problem is also challenging for machine learning algorithms since a 

large intra-class variance will significantly bring down the performance of regression or 

classification results. 

The main challenge in the traditional aesthetics quantifying field is to evaluate 

aesthetics from all aspects. Although more and more measures related to webpage 

aesthetics are found, the significance of each measure is not the same. Researchers have 

focused on two of the most striking measures: colorfulness and visual complexity 

(Reinecke & Gajos, 2014). 

Another challenge in computational interface aesthetics is that it requires 

knowledge from multidisciplinary areas such as mathematics, computer science, human-

computer-interaction, art, design, psychology, and so on. Besides, researchers from 

different knowledge domains prefer to explain aesthetics based on their respective 

expertise, which makes it difficult to reach a consensus in aesthetic assessments.  

2.4. TRADITIONAL WEBPAGE AESTHETIC ASSESSMENT 

Using aesthetic measures has been the main approach in the area of computational 

aesthetics. Researchers have been focusing on using aesthetic measures (i.e., aesthetic 

rule-based features) to assess and explain aesthetics. According to Jin et al. (2016), 

scholars in this area usually research using the following three steps: 

1. Collect or design interfaces according to the needs of the research, then conduct 

psychological experiments by having subjects assess the aesthetic quality of 

interfaces. The results of the assessment are generally presented in the form of an 

aesthetic score or class, such as “low” or “high”.  
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2. Craft measures or design principles such as rule of thirds, visual balance, and rule 

of simplicity. Some researchers use generic image features such as low-level 

image features, Fisher vectors, and bag of visual words to predict image 

aesthetics. The source of these papers can be found in Jin et al.’s (2016) reference 

section. 

3. Build a statistical model or use machine learning models such as Support Vector 

Machine and Random Forest to predict the aesthetic quality. The steps include 

training the model based on the objective measures crafted and the subjective 

aesthetic assessment collected, then use the model to predict the aesthetic quality 

or help explore the relationship between the measures and aesthetic quality. These 

methods are usually regarded as “white boxes” since they can explain or show the 

relationship between the independent and dependent variables. 

Measures of aesthetic dimensions or features are used as independent variables to 

assess the dependent variable, aesthetic quality. Although aesthetics is a fairly subjective 

concept, quantitative aesthetic measures do exist to quantify various aesthetic parameters 

and measures of screen layouts.  

Ngo’s theory (Ngo et al., 2003) is widely used as the baseline for measures of a 

layout. There are 14 measures in Ngo’s work (2003): Balance (BM), Equilibrium (EM), 

Symmetry (SYM), Sequence (SQM), Cohesion (CM), Unity (UM), Proportion (PM), 

Simplicity (SMM), Density (DM), Regularity (RM), Economy (ECM), Homogeneity 

(HM), Rhythm (RHM), as well as Order and Complexity (OM). The details of their 

formulas and computations are described in their original work (Ngo et al., 2003). 
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Aesthetic measurement application (AMA), that was developed by Zain et al. 

(2008) to automatically assess aesthetics, uses 6 measures, i.e., BM, EM, SYM, SQM, 

RHM, and OM, that are based on Ngo’s work. The aesthetic scores which were given by 

their model closely matched the rankings provided by the users. Altaboli and Lin (2011) 

found that three measures, BM, UM, SQM, have significant effects on perceived 

interface aesthetics. Maity and Bhattacharya (2017) found 9 measures, i.e., BM, CM, 

EM, HM, PM, RM, SQM, SYM, and UM, to be statistically significant in predicting 

aesthetics of webpages. However, they used a classification model instead of a linear 

regression model. Thus, the weights of these measures are not known and numerical 

evaluations cannot be offered by their study.  

In our research, we will carry out a study of predictive modeling, linear and non-

linear regression analysis, and exploratory analysis. Since we will be using a number of 

machine learning techniques and it is customary to refer to independent variables as 

features in the machine learning terminology, we will refer to measures of aesthetic 

dimensions as aesthetic features, or simply as features. 

2.5. WEBPAGE AESTHETIC ASSESSMENT USING DEEP LEARNING  

Boosted by the huge amount of data generated and vast improvement of 

computation capability, deep learning techniques have been greatly improved. In recent 

years, deep learning has gained tremendous success in computer vision, such as object 

recognition, object detection, and image classification (Jin et al., 2016; Szegedy et al., 

2015; He et al., 2016).  
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However, deep learning techniques have rarely been used in the area of webpage 

aesthetics. One related work is by Dou et al. (2019) who used a deep neural network 

composed of 5 convolutional layers, 2 max-pooling layers, 2 fully connected layers, and a 

regression layer to predict the aesthetic score of images of webpages. In addition, the 

transfer learning technique was applied to increase the performance of the aesthetic 

scoring model. 

2.6. MODEL DICTIONARY 

This thesis applies machine learning methods to assess the aesthetics of 

webpages. Many scholars have applied these methods to natural photographs (Datta et 

al., 2006; Wong & Low, 2009; Wu et al., 2010; Faria et al., 2013). 

2.6.1. Ordinary Least Squares Model. The Ordinary Least Squares (OLS) 

model is a statistical model of linear regression. It is used to estimate the relationship 

between one or more independent variables and the dependent variable. The basic idea is 

to minimize the sum of squares of the difference between the actual value and the model 

predicted value of the dependent variable. The OLS model can search the best matched 

parameters by minimizing the sum of squared errors. For a detailed introduction, please 

refer to the work of Hutcheson (2011). 

2.6.2. Decision Tree Model. The decision tree model is a tree-like model. The 

‘tree’ consists of nodes and branches. There are two types of nodes: internal nodes and 

leaf nodes. Each internal node represents a feature, and each leaf node represents a label 

or target. Branches represent the output of that feature attribute on a range of values. For 

details of decision trees, please refer to the paper by Quinlan (1986). 
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The decision-making process of a decision tree starts from the top-most internal 

node which is also called the root node. An observation is fed to the decision tree model, 

after which the observation will be directed to a node by a branch according to the 

specific feature value. This process continues until the leaf node is reached and the 

decision is made. 

Compared with other machine learning algorithms, decision trees have advantages 

in the following aspects: 

1. It is a white-box model that is easy to understand, which means we can 

understand and interpret the logic and meaning behind the decision trees. 

2. Data preparation is often simple or unnecessary for the decision trees. Other 

techniques often require steps such as changing data types or removing redundant 

or blank attributes. 

3. The computational complexity is not high; the output results are easy to 

understand and visualize. 

It also has some disadvantages: 

1. Easy to overfit. Sometimes decision trees can become so complex that they could 

not generalize to real-world data. Setting a minimum number of samples for the 

leave nodes or limiting the maximum tree depth can help to minimize overfitting. 

2. Decision trees give higher preferences to classes with high sample quantity. Thus, 

balancing the dataset is recommended if some classes dominate in quantity. 

2.6.3. Random Forest Model. A random forest model is a ‘forest’ which 

ensembles many decision trees. There should be no correlation or a very weak correlation 

between decision trees in the random forest. The output is determined by the prediction 
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which is voted by most of the decision trees. A detailed explanation of the random forest 

model can be found in the paper of Breiman (2001).  

Each decision tree in the random forest may be weak. However, the combination 

of them makes the random forest strong. Each decision tree can be regarded as an 

“expert” in their field (m features out of M total features) and there are numerous 

“experts” in the random forest. When a new problem (new data) is given to the random 

forest, these “experts” will vote for answers based on their perspectives. These 

characteristics of the random forest are also very suitable for the problem we want to 

solve in this thesis because random forest models can handle non-linear relationships, 

which may exist between the aesthetic features and the aesthetic ratings. In the field of 

computational aesthetics, experts and scholars often put forward a variety of 

measurement methods and often fail to reach a unified understanding of a universal 

method. By including all the measurements, it is appropriate for experts to vote on the 

best solution. 

Here is how a random forest is generated: 

1. N represents the number of training samples. M represents the number of total 

features. m represents the number of features that are randomly selected from M 

features.  

2. For each decision tree, a specific training set will be formed by sampling N cases 

from the original training set. Each case sampled will be put back to the sample 

pool, which means the same case could be sampled several times to form a 

specific training set. The cases that are not sampled will be used as the testing set  
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for evaluation and prediction. This sampling method is also called bootstrap 

sampling. 

3. For a specific decision tree in the random forest, some random features are 

selected from M features for a non-leaf node. An optimal feature will be selected 

from the features that are used for the node. 

4. Repeat steps 2&3 to form numerous decision trees, then the random forest is 

generated. A training set (bootstrap sampling) is formed by sampling N training 

cases (samples) with the method of sampling back, and the unsampled use cases 

(samples) are used to make predictions and evaluate the error. 

The random forest model has the following advantages: 

• Not easy to overfit data due to the randomness brought by the random 

forest. 

• It can handle data with many features without feature selection. 

• It can give estimates of the importance of features. 

• It can fit non-linear relationships. 

These advantages make the random forest a very suitable model for our research. 

We do not have to be concerned about non-linear relationships (as the model will take 

care of them), which is often the biggest concern with regression models. Further, the 

random forest model can pick features that are important, which means the random forest 

model is able to identify the important features. 

2.6.4. Gradient Boosting. Gradient Boosting is a machine learning technique that 

integrates weak models and iteratively makes a stronger model. These weak models are 
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typically decision trees. To investigate specific details of gradient boosting, please refer 

to the original paper by Friedman (2001).  

We discussed the random forest model above. Gradient boosting has much 

similarity with the random forest. Both models involve integrating weak models into a 

strong model. However, the random forest ensembles all the weak models in a parallel 

way, while gradient boosting does it iteratively. For example, we use decision trees as 

weak models to make a strong gradient boosting model. When we built the first decision 

tree, it may not work very well. When we try to build the second decision tree, we 

selectively build a better one than the first we built, which is the idea behind gradient 

boosting.  

2.6.5. Artificial Neural Network (ANN).  Artificial neural network (ANN) is a 

machine learning technique that simulates the human brain to realize artificial 

intelligence. It requires setting up the structure of a neural network for learning. An early 

attempt at ANN was to make them perform tasks that were difficult for traditional 

machine learning algorithms. It can be applied to various tasks such as speech 

recognition, computer vision, natural language processing, board games and video games, 

medical diagnosis and so on.  

Since artificial neural networks are based on the imitation of biological neural 

networks, this approach is closely related to cognitive science and neuroscience. 

Computational aesthetics falls well into the category of this field.  

2.6.5.1. Architecture of artificial neural network (ANN). To better understand 

the ANN, we will first start with a classic architecture of it. Figure 2.1 shows a basic 

three-layer neural network. The yellow nodes (i.e., left-most layer) is the input layer, the 
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red node (i.e., right-most layer) is the output layer, and the green node is the middle layer, 

which is also known as the hidden layer. In Figure 2.1, the input layer has three input 

units, the hidden layer has one hidden unit (also called a neuron or a perceptron), and the 

output layer has one output unit. 

  

 

2.6.5.2. Input layer. The input layer is designed to connect input information 

with the neural network for processing. Each circle in the input layer represents a feature 

or a channel of the input information. The input data for the neural network can come in 

various forms. For example, it can be a feature of whether your house comes with a 

garage in a property prices prediction problem. In computer vision, a circle in the input 

layer can represent the value of a pixel on a specific location of an image. You do not 

need to manually extract features from data as the neural network will try to 

automatically learn the patterns from the input information. In other words, these neural 

Figure 2.1. Basic Unit of an Artificial Neural Network — Artificial Neuron (Vaibhav, 

2018). 
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networks do not need to be fed with inputs of higher-level features, such as complexity 

and colorfulness, but can still make predictions on aesthetic quality. 

2.6.5.3. Hidden layer. In Figure 2.2, the working of a biological neuron is shown. 

The purpose of showing the working of a biological neuron is to demonstrate how an 

ANN is modeled after the working of biological neurons. 

 

 

 

 

 

 

 

 

 

Neurons have been studied and known by biologists since 1904. A neuron usually 

has multiple dendrites, which are mainly used to receive incoming information. There is 

only one axon but there are many axon terminals at the end of the axon that can send 

messages to many other neurons. The axon ends make connections with dendrites of 

other neurons and transmit signals.  

In Figure 2.3, the working of an artificial neuron is shown. An artificial neuron is 

made to simulate the biological neuron. The directed arc is the simulation of dendrite-

synapse-axon. From Figure 2.3, we can see that the inputs (x1, x2 … xm) are multiplied by 

corresponding weights (w1, w2 …wm) and then sent to the neuron. This process simulates 

Figure 2.2. How a Biological Neuron Works (Wikipedia 

Contributors, 2019). 
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the signal interaction between biological neurons. The weight of the directed arc indicates 

the strength of the neural signal interaction between interconnected artificial neurons 

(Feng, 2015). When the neuron receives the weighted signals, it sums them up and adds a 

bias factor, then the summed signal will be sent to an activation function 𝜑(∙) for 

processing and an output y will be generated. This y value will be transmitted to the next 

neuron as input or directly used as output if it is in the output layer.  

 

 

2.6.5.4. Output layer. The output layer summarizes all the information that has 

been processed by the previous layers and then generates one or more outputs depending 

on your specific problem. In this study, we formulate the problem of predicting aesthetics 

as a regression problem. Thus, the last layer will be using only one neuron to give a 

numerical score. 

 

Figure 2.3. Artificial Neuron (Jayesh, 2018). 



 

 

19 

2.6.6. Deep Neural Network (DNN). A deep neural network is formed when a 

simple neural network has more hidden layers. In general, a simple neural network is 

enough to solve many simple regression or classification problems. But when the 

problem is more complex, the neural network needs a more complex structure to improve 

its ability to deal with the problem.  

The complex structure makes deep neural networks better at fitting, but it also 

increases the demand for data volume. If the data is insufficient, overfitting is likely to 

occur. Overfitting makes the machine learning models perform well on the training data 

but poorly on test data or real-world data. As the number of data points increases, deep 

neural networks can surpass most other machine learning models. Thus, the industry may 

desire neural networks to be as deep as possible. In our case, however, the lack of data is 

a problem, as will be discussed in the next two sections. 

Deep neural networks have been extensively studied and used in modern times, 

and scholars have developed various deep neural networks to improve the performance of 

the network and to cope with various complex problems. Other types of deep neural 

networks include convolutional neural networks and recurrent neural networks. 

Convolutional neural networks are often used for computer vision problems, while 

recurrent neural networks are used for natural language processing problems. This thesis 

focuses on predictive modeling of webpage aesthetics, which makes convolutional neural 

networks particularly appropriate. Thus, we will briefly introduce convolutional neural 

networks next. 
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2.6.7. Convolutional Neural Network (CNN). As a class of deep neural 

networks, a convolutional neural network (CNN) is often used in the field of computer 

vision due to its superior performance. 

A classical CNN consists of one or more convolutional layers and fully connected 

layers at the top. These structures enable the CNN to more efficiently utilize the two-

dimensional structure of the input data. As an example, a CNN sequence is shown in 

Figure 2.4. 

 

 

Figure 2.4 is a simple plot of a CNN sequence classifying handwritten digits. This 

CNN is designed to recognize numbers in hand-written digit images. It consists of two 

convolutional layers, each followed by a max-pooling layer. After the second max-

pooling process, the “image” is flattened into a one-dimensional vector that feeds into a 

fully connected layer. A drop-out processing is carried out to avoid the overfitting 

Figure 2.4. A CNN Sequence to Classify Handwritten Digits (Sumit, 2018). 
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problem before the processed information is passed to the output layer, which gives the 

probability of being one of the numbers from 0 to 9.  

In computer vision problems, the CNN uses images as input data. Compared to 

other machine learning models, the preprocessing cost required on CNN is much lower. 

For a general machine learning model, people first need to manually design or select 

features for the model to learn. The CNN directly takes image data as inputs into the 

network, and the network learns to assign weights to various aspects/objects in the 

images.  

For example, in an animal image recognition program, CNN can identify images 

containing cats by analyzing sample images that have been manually labeled "cat" or "no 

cat" and using the results to identify cats in other images. They did so without being 

“told” that cats, for example, have the following features: fur, tails, whiskers and a cat-

like face. Instead, they automatically generate recognizable features from processing the 

training data. However, predicting aesthetic quality can be challenging for CNN because 

it is subjective and hard to describe. People can easily imagine what a cat looks like but it 

is much harder to explain, imagine, or predict aesthetic quality. 

2.6.7.1. Convolutional layer. Convolutional layers are the core layers of CNN. 

They are designed to extract different features from the input data by conducting 

convolution computations. Although conventional neural networks can achieve this goal, 

it requires an incredibly high number of parameters and it incurs some computation cost. 

Imagine the cost of which you need 10,000 hidden units in a hidden layer to fully connect 

to an image of resolution of 100*100.  
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The convolutional layers can efficiently extract features while keeping the 

computation cost and parameter number at a lower level, which allows you to have a 

deeper neural network. The convolutional layers which are at shallow levels may only 

extract some low-level features, such as edges, lines and corners, etc. Convolutional 

layers that are deeper in the networks can iteratively extract more complex features from 

these low-level features.  

2.6.7.2. Pooling layer. Pooling is another important concept in CNN, which is a 

form of non-linear reduced sampling. There are several types of pooling functions such as 

average pooling and max pooling. Max-pooling is the most common form of pooling. It 

divides the input image into multiple rectangular regions and outputs the maximum value 

for each sub-region. This characteristic of pooling directly reduced the data volume for 

processing. For example, a 32*32 input is going through a pooling layer. If the size of the 

pooling layer filter is 2×2, the size of the output data after the pool layer processing is 

16×16, which means that the existing data volume is suddenly reduced to 1/4 of the pre-

pool size.  

Intuitively, this mechanism works because once a feature is discovered, its precise 

location is far less important than its relative position to other features. The pooling layer 

will continuously reduce the space size of the data, so the number of parameters and 

calculation amount will also decrease, which also controls overfitting to a certain extent.  

In addition to maximum pooling, the pooling layer can also use other pooling 

functions, such as average pooling or even L2-norm pooling. In the past, average pooling 

has been widely used, but recently it has become less common due to the increased 

performance of maximum pooling in practice. 
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2.6.7.3. Fully connected layer. The fully connected layer (FC layer) is the same 

layer as you can see in a conventional neural network (non-convolutional). Each neuron 

in an FC layer is connected to all units in the previous layer.  

Convolutional neural networks are not all about convolutional layers or pooling 

layers. Many of the convolutional neural networks still use layers that appear in 

conventional neural networks. The FC layer usually appears at the top layers of a 

convolutional neural network for reasoning and concluding the results from previous 

layers. Due to the high increase in parameters brought by the FC layers, some advanced 

CNN architectures use pooling layers to replace some of the FC layers. Doing this can 

effectively reduce the computation cost. However, some researchers found that the FC 

layers can work as a "firewall" in transfer learning (Zhang et al., 2017). Transfer learning 

refers to using a trained CNN to learn another dataset with its existing trained weights. 

Zhang et al. (2017) found that convolutional neural networks with FC layers have better 

performance in transfer learning compared to convolutional neural networks without FC 

layers. The FC layers gave the CNN good knowledge transferability so that the trained 

CNN can adapt well on a slightly different dataset. 

This discovery is of great reference value to our research. Because some of the 

CNNs we use are pre-trained on some professional camera photo datasets, and we want 

to migrate these models to the webpage aesthetics screenshot dataset. However, we 

should pay more attention to the use of FC layers. 

2.6.8. MobileNet. MobileNet is a class of convolutional neural network 

architecture that has the feature of being lightweight. This feature of MobileNet makes it 



 

 

24 

more suitable for applications in mobile phones, drones or other devices lacking strong 

computation power. This architecture was introduced by Google. 

Although computation volume has been greatly reduced by convolutional 

networks, it is still relatively large for some devices. MobileNet uses depth-wise 

separable convolution instead of standard convolution, which significantly reduced the 

number of parameters. For the details of depth-wise convolution, please refer to the work 

of Howard et al. (2017).   

While MobileNet has the advantages of high efficiency and low complexity, it 

also sacrifices some accuracy. However, the loss of model accuracy is negligible 

compared to the value MobileNet brings to some devices of poor computation power. 

The introduction of MobileNet is valuable in the mobile market.  

2.6.9. NasNet (Neural Architecture Search Network). The full name of NasNet 

is Neural Architecture Search Network. The NasNet is a class of convolutional neural 

network architecture that was introduced by researchers from Google Brain (Zoph et al., 

2018). The main idea of NasNet is to search for the architecture in a small dataset and 

transfer it to a large dataset. In their original paper, they use a small dataset (CIFAR-10, a 

dataset with 60,000 32x32 color images in 10 classes) to automatically design the 

convolutional neural network and then use transfer learning to adapt the neural network 

to a large dataset (i.e., ImageNet, a very large dataset with more than 14 million images 

in numerous classes).  

2.6.10. Inception Neural Network. Inception neural network is a neural network 

architecture which was designed by Szegedy et al. (2015) from Google. Its general form 

is shown in Figure 2.5. 



 

 

25 

 

 

 

 

 

 

 

As shown in Figure 2.5, the inception module used a max-pooling layer as well as 

several convolutional layers of sizes such as 1*1, 3*3, and 5*5. The 1*1 convolutional 

layers are mainly used to reduce the magnitude of computation. The variety of scales and 

types of layers also follow the intuition that visual information should be processed 

through various channels and then aggregated together (Szegedy et al., 2015). 

An inception network is made by stacking the inception modules upon one 

another. It does not mean the inception network purely consists of the inception modules. 

The inception network can still contain the traditional convolutional layers. The inception 

modules are used more often in the higher layers, due to the infrastructural inefficiency in 

the current implementation. 

2.7. AESTHETIC METRICS 

Aesthetic metrics refer to the features for predicting aesthetics. The aesthetic metrics we 

are using are from previous researchers’ work (Reinecke & Gajos, 2014). The aesthetic 

Figure 2.5. Inception Module, with Dimensionality Reduction 

(Szegedy et al., 2015). 
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metrics include color-related metrics, space-based decomposition metrics and quadtree 

decomposition metrics. In this section, we will provide a brief explanation of the metrics 

to be used. 

2.7.1. Color. Color is one of the most important factors in human-computer 

interaction. Color has been shown to affect emotion (Coursaris et al., 2008; Lindgaard, 

2007), perceived trustworthiness (Cyr et al., 2010; Kim & Moon, 1998), users’ loyalty 

(Cyr, 2008) and purchase intention (Hall & Hanna, 2004). When we see a color, we 

generally see it as a whole. However, the colors we see contain rich information that 

affects our lives and perceptions in subtle ways. 

2.7.1.1. W3C colors. The value of a W3C color feature is the percentage of pixels 

that are most similar to one of sixteen colors defined by the W3C system. For details of 

W3C colors, please refer to https://www.w3.org/TR/html401. 

2.7.1.2. Hue, saturation and value. Average pixel values for hue, saturation, and 

value in the HSV (hue, saturation and value) color model. Researchers have tried various 

ways to define the color we perceive. One classical method is using the HSV color model 

to describe a color. H stands for hue, which tells what type of color it is. S stands for 

saturation, which represents the intensity of the color. V stands for value, which 

represents the visually perceived brightness of the color. 

2.7.1.3. Colorfulness. There are two colorfulness metrics used by Reinecke et al. 

(2013). The first was put forward by Yendrikhovskij et al. (1998). This colorfulness 

metric is computed by summing the average saturation and standard deviation across an 

image. To calculate the saturation, the chromaticity of the image is divided by the 

brightness. The brightness and chromaticity are defined using the principles from CIELab 
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color space. For more information about CIELab, please refer to 

https://www.xrite.com/blog/lab-color-space. 

The second colorfulness metric was proposed by Hasler and Suesstrunk (2003). 

This metric also follows the principles of CIELab color space. To calculate this 

colorfulness metric, the trigonometric length of the standard deviation of an image needs 

to be computed as well as the distance between the gravity center and the neutral axis. As 

the last step, this metric computes the weighted sum of the length and the distance.  

2.7.2. Space-based Decomposition. The space-based decomposition is a 

technique that is used to divide the webpage space into different parts along the vertical 

and horizontal directions. Space-based decomposition splits a page by separating its 

components along horizontal and vertical spaces on the page. The result of the 

decomposition is a tree that represents the website. The root of this tree is the entire 

webpage. The first and second layers can be the major components such as the title and 

body. The lower layers represent sub-parts of the higher levels. 

2.7.2.1. Number of leaves. It is the final number of leaves computed by space-

based composition (Ha et al., 1995). A webpage is recursively divided by space-based 

decomposition until there is no visible separator of space or a leaf has become too small. 

2.7.2.2. Number of image areas. Calculates the number of leaves identified as 

individual images by the algorithm. Adjacent images can be counted as an image area. 

2.7.2.3. Number of text groups. Calculates the number of groups that are 

identified as text. An individual group can be a single word, a single or multiple lines of 

text, or a paragraph.  
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2.7.2.4. Text area and non-text area. These two features estimate the areas that 

are recognized as text or non-text based on the results of space-based decomposition. 

2.7.3. Quadtree Decomposition. It is a decomposition technology that splits 

webpage based on entropy. The entropy reflects the complexity of an area. The entropy is 

usually calculated based on specific standards such as the size and intensity of the area. 

The quadtree decomposition repeatedly divides the webpage into subparts (leaves) along 

the horizontal and vertical directions. A threshold of area entropy will be given to 

indicate to the decomposition algorithm when to stop splitting the webpage. For more 

details of this approach, please refer to the research of Zheng et al. (2009). 

2.7.3.1. Number of quadtree leaves. Calculates the number of leaves that have 

the threshold amount of entropy. 

2.7.3.2. Symmetry. This metric evaluates the symmetricity of the layout of 

leaves. 

2.7.3.3. Balance. This metric calculates whether there are equal number of leaves 

across the horizontal axis and vertical axis. 

2.7.3.4. Equilibrium. This metric evaluates how the quadtree leaves are centered 

around the midpoint of an image. 

2.8. PERFORMANCE METRICS DICTIONARY 

Performance metrics are used to evaluate the effectiveness of trained machine 

learning models. Once the machine learning models have been trained using the training 

dataset, performance metrics will be used to measure how effective the model is using the 

validation dataset or testing dataset.  
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There are numerous performance evaluation metrics in the field. Different metrics 

apply to different situations. There are two main categories: evaluation metrics for 

classification and evaluation metrics for regression. Metrics for classification problems 

usually include accuracy, precision, sensitivity or recall, specificity, area under curve 

(AUC), and F1 score. Metrics for regression problems usually include mean absolute 

error (MAE), mean squared error (MSE), root mean squared error (RMSE), and R-

squared (R2). There are no strict limits on the use of these performance metrics. You can 

use metrics from regression problems on classification problems in some circumstances. 

But each metric has its best use and situation. In some cases, researchers even design 

unique metrics that are appropriate for their problems.  

In this thesis, we aim at predicting an aesthetic score and used mean absolute 

error (MAE), mean squared error (MSE), root mean squared error (RMSE), and R 

squared (R2) as our performance metrics. In this section, we will explain these 

performance metrics in more details.       

2.8.1. Mean Absolute Error. Mean absolute error (MAE) is the average of the 

absolute difference between the predicted values and the actual values. The higher the 

MAE, the worse the model performance. Its formula is shown in Equation (1): 

                                                       MAE =  
∑ |𝑦𝑖−𝑦�̂�|𝑛

𝑖=1

𝑛
                                                 (1) 

i means the ith sample; n is the number of samples in the dataset; 𝑦𝑖 is the actual value and 

𝑦�̂� is the predicted value of the ith sample.  

MAE is a score that weighs all differences equally. For example, the difference 

between 4 and 0 is twice the difference between 2 and 0. However, this difference will be 
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squared in the mean squared error (MSE) to be discussed next. MSE penalizes errors 

more than MAE. We will explain it in more details next.   

2.8.2. Mean Squared Error. Mean squared error (MSE) is the average of the 

squared difference between the predicted values and the actual values. The higher the 

MSE, the worse the model performance. Its formula is shown in Equation (2): 

                                                         MSE =  
∑ (𝑦𝑖−𝑦�̂�)2𝑛

𝑖=1

𝑛
                                                (2) 

i means the ith sample; n is the number of samples in the dataset; 𝑦𝑖 is the actual value and 

𝑦�̂� is the predicted value of the ith sample. 

MSE is one of the most used metrics in regression problems. However, this metric 

often comes with some problems. On the one hand, it often overestimates the errors when 

the differences are mostly greater than 1. As given as an example earlier, the difference 

between 4 and 0 is twice the difference between 2 and 0. However, when using the MSE 

as the performance metric, the difference will be squared. On the other hand, when most 

differences are lower than 1, MSE will underestimate the errors. Thus, MSE is not a 

favorable performance metric when your data is “noisy” because a noisy dataset will 

typically have many outliers. These outliers are significantly different from most of the 

other observations, which further amplifies the disadvantages of overestimating MSE 

metrics. 

2.8.3. Root Mean Squared Error (RMSE). Root Mean Squared Error (RMSE) 

is the square root of mean squared error (MSE). For explanations of MSE, please refer to 

the previous section. The formula for RMSE is shown in Equation (3): 

                                                  RMSE =  √
∑ (𝑦𝑖−𝑦�̂�)2𝑛

𝑖=1

𝑛
                                                    (3) 
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i means the ith sample; n is the number of samples in the dataset; 𝑦𝑖 is the actual value and 

𝑦�̂� is the predicted value of the ith sample. 

RMSE is a metric of how far the prediction data points deviate from the actual 

data points. It is usually used in regression analysis.  

RMSE is a non-negative metric. A lower RMSE is usually better than a higher 

RMSE when the metric is applied to the data with the same level of scale.  

Compared to MSE, it is less likely to overestimate or underestimate the 

performance of the model. However, RMSE is still proportional to the size of the error. A 

large outlier will significantly impact the RMSE.   

2.8.4. R Squared (R2). R squared, also called coefficient of determination, is a 

metric measuring the degree to which the dependent variable can be predicted by the 

independent variable(s). The formulas are shown in Equation (4), (5) and (6): 

                                                   𝑅2 = 1 − 
𝑀𝑆𝐸(𝑚𝑜𝑑𝑒𝑙)

𝑀𝑆𝐸(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
                                               (4) 

                                                   MSE(model) =  
∑ (𝑦𝑖−𝑦�̂�)2𝑛

𝑖=1

𝑛
                                        (5) 

                                                   MSE(baseline) =  
∑ (𝑦𝑖−�̅�)2𝑛

𝑖=1

𝑛
                                     (6) 

i means the ith sample; n is the number of samples in the dataset; 𝑦𝑖 is the actual value, �̅� 

is the mean of all 𝑦𝑖, and 𝑦�̂� is the predicted value. MSE (model) is the mean squared 

error of the trained model, while MSE (baseline) is the mean squared error of a baseline 

model which only gives the mean value of all 𝑦𝑖. 

𝑅2 can range from -∞ to 1 in the world of machine learning. The closer 𝑅2 is to 1, 

the better the model performance. There is a common misconception that 𝑅2 can only 

range from 0 to 1. As shown in the formula of 𝑅2 above, we can see that 𝑅2 can be less 

than 0. This situation happens when the MSE of our designed model is larger than the 
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MSE of the baseline model that only predicts the mean value, which is a horizontal line. 

Simply speaking, in the world of machine learning, when your model is doing worse than 

a horizontal line in fitting the data, 𝑅2 can be negative.  
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3. METHODOLOGY 

Aesthetic evaluation is a challenging task for machine learning because the 

perception of beauty or aesthetics can be subjective. Often users can only provide ratings 

or scores for aesthetics according to their aesthetic sense and intuition but cannot 

articulate the specific reasons. Experts and scholars have proposed different methods to 

quantify aesthetics. Traditional and mainstream methods include the development of 

aesthetic features (i.e., complexity, equilibrium and symmetry) based on aesthetic 

principles and the measurement of some low-level image features (i.e., color and texture). 

The advantage of this method is that the results can be directly applied by designers in 

practice once they are shown to be effective. The downside of this approach is that deep 

domain knowledge and insights from a lot of design work are necessary to arrive at 

effective and reliable results. Moreover, many of such methods are still in the theoretical 

stage, and it requires a lot of work and cost to translate them into practice. Therefore, the 

traditional methods can be harder to apply and less practical. 

With the Renaissance and vigorous development of artificial intelligence and 

machine learning in recent years, some scholars advocate deep learning methods to 

extract features directly from images (Khani et al., 2016; Talebi & Milanfar, 2018; Dou 

et al., 2019). Although deep learning methods often cannot come up with effective design 

principles, it can be direct and effective in application.  

It is hard to compare these two methods in terms of which is more superior. We 

will attempt to make some interesting comparisons from different angles and demonstrate 

the application of machine learning in this research.  
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3.1. ASSESSING AESTHETICS USING TRADITIONAL METHODS 

Assessing aesthetics using traditional methods usually involves using design 

features associated with aesthetics. In this thesis, we employed the features proposed by 

previous research (Reinecke et al., 2013).  

Reinecke et al. (2013) provided a traditional aesthetic measurement that uses 

design features to assess aesthetics. They extracted these features from screenshots of 

webpages. Each screenshot was taken at a 1024*768 resolution. Each pixel was identified 

by one of the W3C colors and the percentage of pixels of each W3C color in the image 

was recorded. The hue, saturation, and value were calculated based on the average of the 

pixels’ corresponding values.  

 

 

 

 

 

 

 

 

 

 

 

The quadtree decomposition technique was used to decompose the screenshot into 

subparts (also called leaves). Figure 3.1 shows a webpage being divided into subparts by 

Figure 3.1. Quadtree Decomposition (Reinecke et al., 2014). 
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quadtree decomposition. A webpage is being divided into subparts. An area will be 

recursively divided until the entropy of the area drops to a required level. Based on these 

subparts, text, image and non-text subparts were identified and calculated. Symmetry, 

balance and equilibrium were calculated based on the layout arrangement of the subparts.  

Space decomposition was also used to divide and classify the areas of text and 

image. It separates the webpage Figure 3.2 shows how the space decomposition divides a 

webpage. More details about the decomposition techniques can be found in Section 2.7.  

 

 

 

  

 

 

 

 

 

 

 

  

3.2. ASSESSING AESTHETICS USING DEEP LEARNING MODELS 

Assessing aesthetics using deep learning models is an approach that arises in 

recent years. Due to the boom of data and the increasing power of computers, deep 

learning techniques have become a viable approach in various fields. They are widely 

Figure 3.2. Space-Based Decomposition (Reinecke et al., 2014). 
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used in various fields of society. For example, a convolutional neural network can help 

doctors detect breast cancer. A recurrent neural network can help people write patent 

abstracts. There are numerous opportunities and potential uses of deep learning 

techniques that are waiting for people to explore and evaluate.  

In this study, we used several classes of convolutional neural networks to help us 

predict aesthetics based on the screenshots of websites. We first used some shallow 

convolutional neural networks with different layers, then we used several state-of-the-art 

convolutional neural networks, including NasNet, MobileNet and Inception-ResNet-V2. 

We hope to see promising results generated by these models. However, there are many 

difficulties and limitations about the approach as well, as will be discussed later. 

3.3. RESEARCH METHODOLOGY 

In this section, we experimented with predicting aesthetics using several different 

state-of-the-art machine learning models. We also conducted exploratory analysis on 

aesthetic features to validate the conclusions of previous research and to provide more 

insights. We will report the aesthetic prediction performance in the data analysis and 

results section. We chose Python as the programming language because it is powerful and 

suitable for rapid development. It is a great tool for data analysis, especially in machine 

learning and artificial intelligence. The Keras deep learning framework is adopted 

because it is easy to use and fast to develop, which allows users to assess various 

architectures quickly. The study was conducted using Google colab, which is a free 

Jupyter notebook environment provided by Google. We also used the free GPU of colab 

to speed up the training process, which is a Tesla T80 GPU. 
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All of the data analysis was carried out on the same dataset built by Reinecke and 

Gajos (2014). This dataset provided a data foundation for analyzing webpage aesthetics 

regardless of the approach used. The data set contains images with their corresponding 

aesthetic ratings, specific aesthetic features, as well as the demographic information of 

the participants. 

3.4. DATASET 

We used the public dataset collected by Reinecke et al. (2013). The dataset 

includes 398 screenshots of web pages and ratings from more than 40,000 participants. 

They conducted 10-minute online tests on their platform (LabintheWild.org) and 

advertised their study in online communities and college newsletters. This dataset can be 

found at http://labinthewild.org/data/index.php. Most of the participants are from the US 

(43%), followed by the United Kingdom (17%), Hungary (6%), Canada (5%), and 

Romania (3%). The rest were from other countries. There is demographic information in 

this dataset, but it is beyond the scope of this research to examine them. For more details, 

please refer to the original paper (Reinecke et al., 2014) and their website at 

LabintheWild.org. 

Thanks to Reinecke and Gajos’ (2014) contribution for making the first public 

dataset on webpage visual aesthetics available at LabintheWild.org. For each screenshot 

in the dataset, there are associated aesthetic ratings on a scale from 1 to 9, with 1 being 

the least visually appealing and 9 being the most visually appealing. We used the average 

aesthetic score of the participants for each image evaluated, unlike Dou et al.’s (2019) 

study of feeding the neural networks with these images and the aesthetic scores of each 

http://labinthewild.org/data/index.php
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individual user, which could potentially bias or overfit the results due to the duplication 

of data for each webpage. We averaged the aesthetic scores of the participants for each 

webpage due to the consideration that mathematical confusion can be caused by feeding 

the neural networks with the same image and a set of aesthetics scores that differ from 

one another. Future research can include the demographic information of the respondents 

to analyze differences in aesthetic preferences of users. Since the purpose of this study is 

to assess webpage aesthetics, taking the mean webpage aesthetic scores is most 

appropriate. 

3.5. DATA COLLECTION PROCESS 

The data collection process for the dataset was divided into two phases to 

determine the stability of the results. Before the two phases of the experiment, a practice 

phase was conducted in which participants rated a set of 5 webpages. In the first phase of 

the experiment, each participant was asked to rate 30 webpages that were randomly 

selected from 430 webpages. Of the 30 webpages, 22 are in English, 4 in foreign 

languages and 4 from Webby Award websites. The order of the 30 pages was randomly 

shuffled. Each participant was given 500ms to view a webpage to avoid excessive 

exposure to its contents. The participants were required to rate colorfulness, complexity, 

and visual appeal on a Likert scale from 1 to 9, where 1 represents “not at all colorful”, 

“not at all complex” and “not at all visually appealing”, and 9 represents the best scores 

for the three metrics. After the first phase, participants were encouraged to take a short 

break. 
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In the second phase, participants were asked to rate the same 30 webpages, but the 

order was randomly shuffled again. The purpose of doing this is to test the consistency of 

the ratings. According to Reinecke et al.’s (2013) experiment results, the ratings were 

consistent across the two phases. 

3.6. DEALING WITH MISSING DATA 

We started by dealing with missing values. However, most of the missing values 

exist in demographic features. Since demographic features are out of the scope of this 

research, we deleted all the demographic features.  

After deleting the demographic features, we found that there are still missing 

values in 4 features: ‘colorVerticalBalance’, ‘colorHorizontalBalance’, 

‘intensityVerticalBalance’, ‘intensityHorizontalBalance’. From previous research, we 

know that color and intensity are important features. Thus, we need to further address the 

missing values of the features. We found that missing values in ‘colorHorizontalBalance’ 

and ‘colorVerticalBalance’ are all in the same rows. One possible reason is that the 

original authors did not record the values for some specific webpages. However, if we 

delete these rows, we would lose around 30% of the useful data of other features. Further, 

we only have a small dataset and hence, deletion would significantly decrease the model 

performance. Thus, we filled in the missing values with the mean value. Future research 

should be noted for this data processing step. 

This method of filling missing data with mean values is beneficial for linear and 

neural network models. However, it makes tree models such as decision trees and the 

random forest harder to understand the patterns of the data. 
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3.7. DEALING WITH DUPLICATED DATA 

After dealing with missing data, we found that the dataset has duplications 

because webpage features were duplicated for all respondents of the same webpage. In 

other words, although there were numerous rows of data for each webpage (i.e., due to 

multiple respondents rating it), they are only 398 webpages in the dataset. This is to say, 

there were duplicated data on the features of the webpages such as colorVerticalBalance 

and intensityHorizontalBalance. Since having such duplications in the training set would 

confuse the machine learning models and create biases, we decided to use the mean 

rating for each webpage as the only output for the webpage. Hence, we collapsed all the 

rows for the same webpage and averaged the aesthetic ratings for each webpage to obtain 

its mean aesthetic rating. Hence, the final dataset has 398 records, one for each webpage. 

3.8. DATA SPLIT 

We used 70% of the dataset as our training data to train our models and 30% as 

our testing data to test or assess their generalizability to external data. This split 

percentage is common in the field.   

Data split in machine learning is done to randomly divide the data into different 

datasets (e.g., 80% of training data and 20% of test data). Part of the data is used to train 

the model, and part of the data is used to verify the correctness of the trained model. In 

the modern world of machine learning, we usually see two datasets as the outcomes of 

the data split: training dataset and testing dataset. The training data often consist of the 

input data and the corresponding output data, which is also known as the target or label. 

The model is fed with the input data and produces a predicted result, which is then 
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compared with the corresponding output data. The trained model will then be tested using 

the testing dataset to assess its performance in practice. Sometimes, a subset of the 

training data is used for validation purposes. However, since our dataset is small, this 

approach would not be appropriate. We chose to use the testing dataset for both 

validation and testing because we want to make full use of the dataset to improve the 

performance of the models. 

3.9. FEATURE SCALING 

Feature scaling is a data preprocessing technique to normalize the range of data. 

We have found that our dataset has a potential problem of having features of different 

ranges. Features with a larger range could have a huge impact on machine learning 

models compared to features with a relatively smaller range. Normalizing the features 

would make the range for all the features the same, i.e., on a scale of [0, 1], which also 

would speed up the computation with smaller numbers. 

For example, ‘colorHorizontalSymmetry’ is a feature that ranged from 0 to 1. 

‘numOfLeaves’ is a variable that depends on the specific webpages and hence, could 

have a maximum of 249 for this dataset. A change in numOfLeaves is more likely to 

change the model than a change in colorHorizontalSymmetry. This would cause 

colorHorizontalSymmetry to have a higher weight.  

However, tree-models are usually not influenced by the feature ranges. Tree-

models are based on the cut-off points instead of the ranges of data. Machine learning 

models rely on learning the distance between data points. These models are more likely 

to be influenced by the ranges of features. 
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Since features are of different numerical ranges and we used some non-tree 

models, we conducted feature scaling on our dataset by scaling all features to fall within 

the range of [0, 1]. 

3.10. STATISTICS OF PRE-PROCESSED DATA 

Next, we describe the data to uncover potential problems and to better understand 

the data. First, we made a statistical description of the data to understand the general 

distribution. We then made histograms of the data to better understand the characteristics 

of the distributions.  

Figure 3.3 and Figure 3.4 show the statistical description of aesthetic features 

such as W3C colors, ‘textArea’, etc. The table in Figure 3.3 shows the W3C color 

features. Figure 3.4 shows the rest of the aesthetic features used for predictive modeling. 

There are 398 rows of data left after being aggregated. The aesthetic ratings were 

averaged across each webpage. The mean value, standard deviation, min and max, 

quartiles (25%, 50% & 75%) of the features are shown in Figure 3.4.  

Figure 3.3 shows the W3C color features. The value of a W3C color feature refers 

the percentage of pixels that are close to this color. The values of the W3C colors were 

scaled to the range of [0, 1], with 0 representing 0% and 1 representing 100%. From 

Figure 3.3 of W3C color features, we can see that silver and white have higher mean 

values than the other colors. Many colors such as black and white can have max values of 

over 90%, which means the color may be used widely or as the theme color of a webpage 

in the dataset. As a rule of thumb, we often see websites using these colors as their theme 

colors.  
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Figure 3.4 displays other aesthetic features used for modeling. We can see that 

many features have very different ranges. Features such as ‘textArea’ and ‘nonTextArea’ 

have very large ranges. Some features such as symmetry, balance, equilibrium have a 

smaller range of [0, 1] due to the way they were calculated. For some predictive models, 

the differences brought by ranges can significantly affect the performance of the 

prediction. In general, these models could overestimate the significance of these features. 

Due to the reason that different ranges of features could cause an impact on predictive 

Figure 3.3. Statistics of W3C Color Features. 
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modeling, we conducted feature scaling. The details of feature scaling can be found in the 

previous section. The statistics of the features shown in this section are not scaled, in 

order to show their original characteristics to readers. 

 

 

Figure 3.5 and Figure 3.6 show the histograms of aesthetic features. Figure 3.5 

shows the W3C color features and Figure 3.6 shows the other aesthetic features. A brief 

explanation of W3C color features can be found in Section 2.7.  

From Figure 3.5, we can see that most of the colors such as aqua, gray and red are 

skewed to the right. The right-skewed shape means the mean value is greater than the 

median value. One possible explanation is that these colors generally are not used in large 

areas of webpages. Some of the colors such as fuchsia and lime are so rare in webpages 

Figure 3.4. Statistics of Other Aesthetic Features. 
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that their percentages are mostly zero for webpages. The distributions of silver and white 

are skewed to the left, which means these two colors are more common in webpages. 

However, these findings could be biased by the size of the dataset. A larger dataset would 

be more credible for validating these observations.  

 

 

 

Figure 3.6 shows the histograms of other aesthetic features used for predictive 

modeling. Details of these metrics can be found in Section 2.7. 

Figure 3.5. Histograms of W3C Color Features. 
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From Figure 3.6, we can see that most of the features are either left-skewed or 

right-skewed, with the exception of complexity since the feature ‘complexitymodel’ 

approximates a normal distribution.  

Previous research (Reinecke et al., 2013) has reported that complexity and 

colorfulness are two important features of visual appeal. From Figure 3.6, we found that 

complexity has a bell-shaped distribution and is approximately normally distributed, 

which means the webpages averaged around the medium complexity value (i.e., not too 

complex or too simple). For colorfulness, the distribution is skewed to the right, which 

Figure 3.6. Histograms of Other Aesthetic Features. 
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means the mean value is to the right of the median value. One possible explanation is that 

many of the webpages are less or not very colorful. To further validate these 

observations, a larger dataset and a more systematic study are required. 

 

 

 

 

Figure 3.7 and Figure 3.8 show the statistics and the density plot of the average 

aesthetic ratings respectively. According to the original paper (Reinecke et al., 2013), the 

webpages were rated on a scale from 1 to 9. The statistics in Figure 3.7 show that the max 

Figure 3.7. Statistics of Average Aesthetic Rating. 

Figure 3.8. Density Plot of Average Aesthetic Rating. 
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average rating can be as high as 7.03 and the lowest average rating can be as low as 1.49. 

The standard deviation (STD) is 1.02, which is relatively small compared to the scale of 

[1, 9]. The distribution of aesthetic ratings is normally distributed as shown in Figure 3.8. 

The median (50% quartile) aesthetic rating is 4.39, which is close to the average rating of 

4.33.  
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4. DATA ANALYSIS AND RESULTS 

4.1. MODEL PERFORMANCE (AESTHETIC FEATURE METHOD). 

We trained multiple machine learning models to predict the aesthetic scores based 

on aesthetic features. The features used can be found in Figure 3.3 and Figure 3.4. To 

assess the performance of these predictive models, we evaluated the model performance 

using mean absolute error (MAE), R-squared (R2), mean squared error (MSE) and root 

mean squared error (RMSE), as shown in Figure 4.1. More explanations of these 

performance metrics can be found in Section 2.8 on the performance metrics dictionary. 

 

 

Figure 4.1. Machine Learning Model Performance using Aesthetic Features. 

 

To predict aesthetic scores, we trained a multiple linear regression model, a 

decision tree model, a random forest model, a gradient boosting regression model, a 
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multilayer perceptron neural network with 3 layers (20, 15, 10 neurons), a multilayer 

perceptron neural network with 4 layers (20, 15, 10, 5 neurons), and a multilayer 

perceptron neural network with 5 layers (25, 20, 15, 10, 5 neurons). As shown in Figure 

4.1, we found that the random forest model has the best overall performance among these 

models. The second best is the gradient boosting regression model with very similar 

performance.  

4.1.1. Feature Selection. Feature selection refers to using machine learning 

techniques to select the features that contribute most to the predictive model or manually 

select the features that you are interested in.  

Rich domain knowledge is extremely important for selecting important features. 

Machine learning practitioners like to use models and various analysis techniques to infer 

important feature variables. In the business world, a data analytics professional with a 

keen business sense can determine, based on his or her experience and intuition, what 

features are important for business target variables.  

Good feature selection can significantly improve the performance of the model 

and build a robust model. By selecting aesthetic features from the feature pool, it helps us 

better understand the characteristics and underlying relationship of the data, which plays 

an important role in further improving the model and algorithm. In terms of practical 

application, fewer features can reduce the amount of data needed for prediction, so that 

the model can make relatively accurate predictions with only a few important features. In 

this section, we selected the features from two perspectives: research interest and 

importance.  
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4.1.2. Feature Selection Based on Interest. From the perspective of research 

interest, we would like to use colorfulness and complexity to predict the aesthetic rating. 

In previous research (Reinecke et al., 2013), colorfulness and complexity were shown to 

be important predictors for the visual appeal rating. They used quadratic terms of 

colorfulness and complexity to make up for the ‘U-shape’ nonlinear relationships with 

visual appeals. The experiment results of their model showed that their model explained 

48% variance in aesthetic preferences (R-squared = 0.48). 

Thus, we replicated the model using the random forest model because it has good 

explanatory power for non-linear relationships. 

 

Table 4.1. Performance Scores of the Random Forest Model Using Only Complexity and 

Colorfulness. 

Evaluation Result 

Mean Absolute Error         0.796155 

R-squared         -0.112257 

Mean Squared Error         1.133410 

Root Mean Squared Error       1.064617 

 

 

Table 4.1 shows the performance scores of the random forest model using only 

complexity and colorfulness as features without adding the quadratic terms for them. The 

mean absolute error, mean squared error and root mean squared error are relatively larger 

than the errors of the previous random forest model before the feature selection. Further, 

the r-squared score is negative, which means the model does not have enough power in 
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explaining the variance in the aesthetic rating. In general, the performance is not 

favorable compared to our previous models. Thus, we decided to do some feature 

engineering by adding the quadratic terms of these two features to the model. 

Table 4.2 shows the performance of the random forest model after we added the 

quadratic terms of complexity and colorfulness to the model. We can see that most of the 

performance metric scores are much improved. Although the performance has been 

improved, the scores of this model is still not as good as the one before feature selection. 

We expect the random forest model with non-linear relationship explanation ability to 

predict well by using the two features directly, but the results show that the model is 

more accurate when they are combined with quadratic terms. Future research should be 

noted about the improvement brought by adding higher order terms of the features. 

 

Table 4.2. Performance of Random Forest Using Features: Complexity, Colorfulness, 

Quadratic Term of Complexity and Quadratic Term of Colorfulness. 

Evaluation Result 

Mean Absolute Error         0.728622 

R-squared         0.096826 

Mean Squared Error         0.920350 

Root Mean Squared Error       0.959349 

 

 

Although adding quadratic performance brings improvement to the model, there 

is still a big gap in performance when compared to a full model using all aesthetic 
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features. Hence, the results show that complexity and colorfulness cannot fully explain 

the aesthetic rating.  

4.1.3. Feature Selection Based on Importance (Using Random Forest Model). 

The idea of selecting features based on importance is to use the machine learning 

algorithms to select the best features to build a prediction model. The model will be used 

to test the importance of each feature to the response variable. We will select the top-

most important features to build a simplified and more robust model. 

If the relationship between a feature and a response variable is non-linear, a tree-

based approach (decision tree, random forest, etc.) can be used. Tree-based methods are 

easier to use because they model non-linear relationships better and require less 

debugging. Based on previous research (Reinecke et al., 2013) and the performance of 

the linear regression model, many features may have a non-linear relationship with the 

aesthetic rating. Thus, it is very appropriate to use a tree-based model to select important 

features. In this thesis, I will use the random forest model to select the best features since 

it is the best model we found for this problem. We trained the model with all features and 

let the model compute the importance of these features. The importance is visualized in 

Figure 4.2. 

From Figure 4.2, we see that 4 features stand out from the feature pool. They are 

‘nonTextArea’, ‘textArea’, ‘blue’ and ‘complexitymodel’. Among these features, 

‘nonTextArea’ and ‘textArea’ refer to the numbers of leaves that are recognized as non-

text or text by the algorithm. These two features have been shown to have a great impact 

on complexity (Reinecke et al., 2013). Interestingly, these two features also suggest an 

important aesthetic concept—white space. White space does not necessarily mean white 
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color, but refers to the blank space between web design elements. White space can give 

web design a decent, breathable sense of beauty and expression.  

 

 

Complexity (complexitymodel) is a feature that has been proven by researchers to 

be important to visual appeal (Reinecke et al., 2013). In the latter section of regression 

analysis of complexity, the visualization suggests that users prefer a moderate level of 

complexity. Thus, it is reasonable to use complexity as one of the most important features 

of aesthetics. 

The feature ‘blue’ estimates the percentage of pixels classified as blue in color by 

an algorithm using the W3C color system. Blue is the color of sky and water. Seeing blue 

usually means good weather and clean water. It gives a sense of spaciousness and 

calmness. It is one of the most popular colors around the world. Figure 4.3 shows the 

Figure 4.2. Important Features Selected by the Random Forest Model. 
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results of a worldwide survey about favorite colors (William 2015). It is found that blue 

is the favorite color in 10 countries across 4 continents. Some countries also favor colors 

such as red, green and purple. Blue is significantly more popular than these colors across 

different countries and cultures. Blue is also an important and safe choice of color in UI 

design. Many apps such as Facebook, Twitter, and Safari use blue in logos and the main 

color of their website design. Thus, it does make sense that the color feature ‘blue’ can be 

important to a visually appealing website. 

 

 

Figure 4.3. Most Popular Colors around the World (William, 2015). 

 

‘textArea’ and ‘nonTextArea’ are two interesting features we found that are 

important to webpage aesthetics. As a rule of thumb in web design area, websites with 

fewer texts are usually perceived to be more aesthetically appealing. One of the guesses 
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is that more text will increase the information entropy of the web page and increase the 

cognitive burden of readers. To further validate our thoughts, we created scatter plots to 

better understand the relationships. 

Figure 4.4 shows the linear regression plots of ‘nonTextArea’, ‘textArea’, ‘blue’ 

and ‘complexitymodel’. The dependent variable is the aesthetic rating. We can see that 

the feature ‘nonTextArea’ has a positive relationship with the aesthetic rating. The 

‘textArea’, ‘blue’ and ‘complexitymodel’ have negative relationships with the aesthetic 

rating. However, non-linear relationships could have existed between these features. 

These linear regression plots cannot directly detect non-linear relationships.  

 

  

To discover whether there are non-linear relationships between features and the 

aesthetic rating, Figure 4.5 was made. Figure 4.5 shows the regression plots with fitted 

regression lines, which can help detect non-linearity. From Figure 4.5, we can see that 

‘textArea’ and the aesthetic rating has a linear relationship. It can be inferred that the 

aesthetic rating decreases as ‘textArea’ increases. The ‘nonTextArea’, ‘blue’ and 

Figure 4.4. Linear Regression Plots of ‘nonTextArea’, ‘textArea’, ‘blue’ and 

‘complexitymodel’. 
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‘complexitymodel’ displayed different levels of non-linearity with the aesthetic rating. 

The aesthetic rating first increases and then stops increasing after ‘nonTextArea’ 

increases to an optimum point. The aesthetic rating increases rapidly and then begins to 

increase slowly when ‘blue’ increases to the value of around 0.2 (20%). The aesthetic 

rating first increases and then decreases as ‘complexitymodel’ increases. 

 

 

4.1.4. Model Performance on Selected Features (Based on Importance). 

 The table in Figure 4.6 shows the results of model performance after we selected features 

based on importance using the random forest model. The selected features are: 

‘nonTextArea’, ‘textArea’, ‘blue’ and ‘complexitymodel’. As we expected, the 

performance of the random forest model did not change much. The performance of 

gradient boosting regression has been reduced after feature selection. Also, some models 

that were not performing very well have been greatly improved by feature selection. For 

example, the neural networks have been greatly improved. For example, the R-squared 

score of a neural network of 3 layers (20, 15, 10) has significantly increased from -0.029 

Figure 4.5. Regression Plots of ‘nonTextArea’, ‘textArea’, ‘blue’ and ‘complexitymodel’ 

with Fitted Regression Lines. 



 

 

58 

to 0.305. The other models such as decision tree, neural network (20,15,10,5) and neural 

network (25,20,15,10,5) have also been improved. And we found that the neural network 

with only 3 layers perform better than the neural networks with 4 and 5 layers. To predict 

aesthetics with fewer features, neural networks with a simple structure are more 

appropriate. Hence, using fewer features can help models become more robust and 

achieve better performance.  

 

Figure 4.6. Performance of the Models Using Features Selected by Random Forest 

Model. 

 

In theory, more features would help machine learning become more accurate and 

powerful. But in practice, we need to consider more factors, such as effective data 

volume, data noise, overfitting problems and so on. Sometimes, a few key features can 

make a good prediction. But it doesn't mean that most of the features that researchers 

have crafted are useless. The more aesthetic features we crafted, the more likely we are 

able to reveal the secret of aesthetics and make better predictions. Research should be 
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done to compare more aesthetic features using the same standard and setting and with a 

larger dataset. More aesthetic features should be crafted to help people explore and 

understand the mechanism of aesthetics. 

4.2. MODEL PERFORMANCE (DEEP LEARNING MODELS) 

We formulate the aesthetic rating prediction as a regression problem. Webpage 

screenshots were used as inputs for the convolutional models and the averaged aesthetic 

ratings were used as the target variable for the model. We made 4 shallow convolutional 

neural networks by adding up the convolutional layers from 2 to 5.  

 

 

We later used the transfer learning technique to make up for the data 

insufficiency. Several pre-trained deep learning models including NasNet, MobileNet and 

Inception-ResNet were used. The performance of the deep learning models is shown in 

Figure 4.7. From Figure 4.7, we see that most of the deep learning models have very 

Figure 4.7. Performance of Deep Learning Models. 



 

 

60 

similar performance. On the one hand, they all have pretty good scores on mean absolute 

error, mean squared error and root mean squared error. On the other hand, they also have 

unfavorable R-squared scores that are either negative or close to zero. More details about 

the setting of these deep learning models and how they were trained can be found in the 

following sections.  

4.2.1. Convolutional Neural Network with 2 Conv2D Layers. Figure 4.8 show 

the summary information of the architecture of the CNN with two convolutional layers. 

The two Con2D layers were used to abstract features from the screenshots. The relu 

function was used as the activation function for the convolutional layers. After 

convolutional layers, we flattened the abstracted data and attached two fully connected 

layers. The last layer used 1 single neuron and the linear function as the activation 

function to produce a numerical aesthetic rating prediction.  

 

Figure 4.8. Summary Information of the Convolutional Neural Network with 2 Conv2D 

Layers. 
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The Stochastic Gradient Descent method was used as the optimizer since it is 

appropriate for tasks with enough computation resources. We have a small dataset and a 

shallow CNN, which only requires a very small amount of computation resources.  The 

mean absolute error is used as the loss function because we model predicting aesthetics as 

a regression problem and we want our model to directly predict aesthetics. The mean 

squared error is used to assess the performance of the model. The configuration details 

can be found in Table 4.3. 

 

Table 4.3. Configuration of Compiler for the CNN Model with Two Conv2D Layers. 

Compiler Configuration 

Optimizer           stochastic gradient descent 

Loss function         mean absolute error 

Metrics           mean squared error 

Optimizer Configuration 

Learning Rate         1.00E-06 

Decay           1.00E-06 

Momentum         0.9 

Nesterov           TRUE 

 

 

 

After compiling our model, we started training the model. The training process is 

shown in Figure 4.9.  
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As we can see in Figure 4.9, with the increase in epoch (iterations of the training 

process), the model loss (mean absolute error) and mean squared error kept decreasing. 

The decreasing loss and errors are usually a good thing, which means the model is 

Figure 4.9. Learning Curves of a CNN Model with 2 Conv2D Layers. Mean 

Squared Error Curve (Upper). Model Loss (Mean Absolute Error) Curve 

(Lower). 



 

 

63 

becoming better and better at the task of predicting webpage aesthetics. After around 6 

epochs, the error almost stopped decreasing. The loss (mean absolute error) decreased to 

a value of around 0.8. There is no evident separation between the training line and the 

testing line, which means the model performs equally well on both the training dataset 

and the testing dataset.   

After training our model, we evaluated the model. The results of the evaluation 

are shown in Table 4.4. The model has a good mean absolute error, a moderate mean 

squared error and a root mean squared error that is not as good. It has a negative R-

squared score of -0.0389, which is close to zero. The results are not as good as the 

performance of models using the full set of aesthetic features. We suspect that our model 

may not be deep enough to catch the pattern of aesthetics. Thus, we decided to increase 

the depth of the model by adding more convolutional layers. 

 

Table 4.4. Evaluation Result of the CNN Model with Two Conv2D Layers. 

Evaluation Result 

Mean Absolute Error         0.754711 

R-squared         -0.038906 

Mean Squared Error         0.937045 

Root Mean Squared Error       0.968011 

 

 

 

4.2.2. Convolutional Neural Network with 3 Conv2D Layers. Figure 4.10 

shows the summary information on the architecture and parameters of the CNN with 3 

convolutional layers. As shown in Figure 4.10, 3 Con2D layers were used to abstract 
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features from the screenshots. The activation functions were kept the same. After 

convolutional layers, we flattened the abstracted data and attached 2 fully connected 

layers. The last layer used 1 single neuron and the linear function as the activation 

function to produce a numerical aesthetic rating prediction.  

 

 

The Stochastic Gradient Descent was used as the optimizer since we have the 

computation resources for a small dataset and a shallow CNN. Even though an additional 

convolutional layer was added, the increase in computation is not significant considering 

Figure 4.10. Summary Information of the Convolutional Neural Network with 3 Conv2D 

Layers. 
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that Google colab provided sufficient computation resources for users. The mean absolute 

error is used as the loss function and the mean squared error is used to assess the 

performance of the model. The configuration is presented in Table 4.5. 

 

Table 4.5. Configuration of Compiler for the CNN Model with Three Conv2D Layers. 

Compiler Configuration 

Optimizer           stochastic gradient descent 

Loss function         mean absolute error 

Metrics           mean squared error 

Optimizer Configuration 

Learning Rate         1.00E-06 

Decay           1.00E-06 

Momentum         0.9 

Nesterov           TRUE 

 

 

The training process is shown in Figure 4.11. As we can see in Figure 4.11, with 

the increase in epoch (iterations of training process), our model loss (mean absolute error) 

kept decreasing. It means the model got better and better at fitting the data given. The 

model loss and mean squared error nearly stopped decreasing after around 15 epochs, 

which took longer than the CNN with only 2 Conv2D layers. It makes sense because 

CNN with more layers is more sophisticated to catch more complex patterns, which 
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would also require more time to train. After 15 epochs, the model loss and mean squared 

error barely changed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11. Learning Curves of the CNN Model with 3 Conv2D Layers. 

Mean Squared Error Curve (Upper). Model Loss (Mean Absolute Error) Curve 

(Lower). 
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After training the model, we evaluated the model with 3 convolutional layers. The 

result is shown in Table 4.6. Compared to the model with 2 Conv2D layers, the model 

performance is a little bit worse but not that much. The R-squared score is a negative 

value close to zero. Overall, the model gives predictions with an error of less than 1 (the 

mean absolute error is less than 1), but these predictions do not have much to do with the 

true score (R-squared is negative). The results are not as favorable as the models using all 

the aesthetic features. Thus, we decided to increase the depth of the model to 4 Conv2D 

layers and see if the performance would improve. 

 

Table 4.6. Evaluation Results of the CNN Model with Three Conv2D Layers. 

Evaluation Result 

Mean Absolute Error         0.840768 

R-squared         -0.180009 

Mean Squared Error         1.064314 

Root Mean Squared Error       1.031656 

 

 

4.2.3. Convolutional Neural Network with 4 Conv2D Layers. The table in 

Figure 4.12 shows the summary information on the architecture and parameters of the 

CNN with 4 convolutional layers. As shown in Figure 4.12, 4 Con2D layers were used to 

abstract features from the screenshots. The activation functions were kept the same. After 

convolutional layers, we flattened the abstracted data and attached 2 fully connected 

layers. The last layer used 1 single neuron and the linear function as the activation 

function to produce a numerical aesthetic rating prediction.  
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The Stochastic Gradient Descent was used as the optimizer since we have enough 

computation resources for a small dataset and a shallow CNN. The mean absolute error is 

used as the loss function and mean squared error is used to measure the performance of 

the model. The configuration is shown in Table 4.7. 

The training process is shown in Figure 4.13. As we can see in Figure 4.13, with 

the increase in epoch (iterations of training process), our model loss (mean absolute error) 

kept decreasing. The model loss and mean squared error nearly stopped decreasing after 

around 35 epochs. After 35 epochs, the model loss and mean squared error barely 

Figure 4.12. Summary Information of the Convolutional Neural Network with 4 Conv2D 

Layers. 
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changed. It took a long time for the model to converge. One possible reason is that we 

have a deeper model and the complexity is high, which requires a longer time to learn. 

 

Table 4.7. Configuration of Compiler for the CNN Model with Four Conv2D Layers. 

Compiler Configuration 

Optimizer           stochastic gradient descent 

Loss function         mean absolute error 

Metrics           mean squared error 

Optimizer Configuration 

Learning Rate         1.00E-06 

Decay           1.00E-06 

Momentum         0.9 

Nesterov           TRUE 

 

 

After training our model, we evaluated the model with 4 convolutional layers. The 

results are shown in Table 4.8.  

Compared to the model with 3 Conv2D layers, the model performance scores are 

a little bit better but not that much. The R-squared score is still a negative value close to 

zero. Overall, the model gives predictions with an error of less than 1 (mean absolute 

error is 0.747), but these predictions cannot match the true scores very well (R-squared is 

still negative). The results are still not as favorable as the models using all the aesthetics 
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features. Thus, we decided to increase the depth of the model to 5 conv2D layers as the 

final trial of increasing the depth of the model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13. Learning Curves of the CNN Model with 4 Conv2D Layers. Mean 

Squared Error Curve (Upper). Model Loss (Mean Absolute Error) Curve 

(Lower). 
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Table 4.8. Evaluation Result of Model CNN Model with Four Conv2D Layers. 

Evaluation Result 

Mean Absolute Error         0.747266 

R-squared         -0.005201 

Mean Squared Error         0.906645 

Root Mean Squared Error       0.952179 

 

 

4.2.4. Convolutional Neural Network with 5 Conv2D Layers. Figure 4.14 

shows the summary information on the architecture and parameters of the CNN with 5 

convolutional layers.  

As shown in Figure 4.14, 5 Con2D layers were used to abstract features from the 

screenshots. The activation functions were kept the same as the relu function. After 

convolutional layers, we flattened the abstracted data and attached 2 fully connected 

layers. The last layer used 1 single neuron and the linear function as the activation 

function to produce a numerical aesthetic rating prediction.  

The Stochastic Gradient Descent was used as the optimizer since we have enough 

computation resources for a small dataset and a shallow CNN. The mean absolute error is 

used as the loss function and mean squared error is used to measure the performance of 

the model. The configuration is set as in Table 4.9. 

The training process is as in Figure 4.15. As we can see in Figure 4.15, with the 

increase in epoch (iterations of training process), our model loss (mean absolute error) 

kept decreasing. The model loss and mean squared error nearly stopped decreasing after 
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around 18 epochs. After 18 epochs, the model loss and mean squared error barely 

changed.  

 

 

After training our model, we evaluated the model with 5 convolutional layers. The 

results are shown in Table 4.10. Compared to the model with 4 Conv2D layers, the model 

performance scores are a little bit worse but not that much. The R-squared score is a 

negative value close to 0. The model gives predictions with an error of less than 1 (the 

mean absolute error is 0.742), but these predictions do not match the true score very well 

Figure 4.14. Summary Information of Convolutional Neural Network with 5 Conv2D 

Layers. 
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(R-squared is still negative). The results are still not as favorable as the models using all 

the aesthetic features.  

 

Table 4.9. Configuration of Compiler for the CNN Model with Five Conv2D Layers. 

Compiler Configuration 

Optimizer           stochastic gradient descent 

Loss function         mean absolute error 

Metrics           mean squared error 

Optimizer Configuration 

Learning Rate         1.00E-06 

Decay           1.00E-06 

Momentum         0.9 

Nesterov           TRUE 

 

 

Over the trials of increasing the number of convolutional layers of CNN models, 

it is found that the models did achieve good performance on mean absolute error, mean 

squared error and root mean squared error. However, the predictions are rather irrelevant 

to the true user ratings. Overall, using a shallow convolutional neural network trained on 

the screenshots of webpages could not achieve performance as good as normal machine 

learning models using aesthetic features. This shortcoming of deep learning models is 

especially obvious by looking at the R-squared scores. 
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Since the increase in performance brought about by adding convolutional layers is 

negligible or not significant, I decided to use the transfer learning technique with the 

Figure 4.15. Learning Curves of the CNN Model with 5 Conv2D Layers. Mean 

Squared Error Curve (Upper). Model Loss (Mean Absolute Error) Curve (Lower). 
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objective of achieving better performance. The details of transfer learning will be 

discussed in following sections.  

 

Table 4.10. Evaluation Result of the CNN Model with Five Conv2D Layers. 

Evaluation Result 

Mean Absolute Error         0.742178 

R-squared         -0.004758 

Mean Squared Error         0.906245 

Root Mean Squared Error       0.951969 

 

 

4.2.5. NIMA NasNet Model. Since deep learning can give full play to its 

performance only when the amount of data is adequate, we believe that the insufficient 

amount of data may be the reason for the poor performance of the previous models. Since 

we only have screenshots of 398 websites, the objective prediction of aesthetics is a 

challenging task for computers. Transfer learning is a deep learning technology that 

allows models to transfer knowledge from a dataset to another similar one. The advantage 

of transfer learning is that one does not need large amounts of data to apply a trained 

model to a new task, which might be exactly what we need for this webpage aesthetic 

rating task. 

We decided to use a NasNet neural network, which is a type of CNN architecture. 

The NasNet that we used is from Google`s NIMA (Neural Image Assessment) research 

(Talebi & Milanfar, 2018) about predicting image aesthetics using CNN. The networks 
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were trained on both ImageNet and Aesthetic Visual Analysis (AVA) datasets. ImageNet 

is a very large database designed for visual recognition tasks and research. There are over 

14 million images of different classes of objects. The AVA dataset is a large-scale 

database designed for photography competitions. Each photo was rated by an average of 

200 users based on the aesthetic quality of the images.  

As a first attempt at using the NasNet Model, we tried to use the model to directly 

predict the aesthetic quality of webpage screenshots without any training on our webpage 

aesthetics dataset. The results of the evaluation are listed in Table 4.11. 

 

Table 4.11. Evaluation Results of NIMA NasNet without Fine-tuning. 

Evaluation Results 

Mean Absolute Error         0.957529 

R-squared         -0.673707 

Mean Squared Error         1.509606 

Root Mean Squared Error       1.228660 

Pearson Correlation         0.238258 

2 Tailed P-value         0.0181522 

 

 

 

We found that the ratings given by the NIMA NasNet model and the ground 

truths are correlated to some degree. The Pearson correlation is around 23.8% and the 2 

tailed p-value is 0.018 <0.05, which means the two sets of data are correlated. It also has 

a pretty good performance on mean absolute error, mean squared error and root mean 
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squared error. However, the predictions did not fit well with the ground truths as the R-

squared is around -0.67.  

 

 

 

 

 

 

 

 

NIMA NasNet Score: 4.959                                         NIMA NasNet Score: 5.275  

User Average Rating: 4.926                                       User Average Rating:  2.408 

 

 

 

 

 

 

 

 

NIMA NasNet Score: 4.907     NIMA NasNet Score: 4.718  

User Average Rating: 4.818                User Average Rating: 1.487  

 

We selected some webpage screenshots from the testing dataset that the NIMA 

NasNet model predicts the best and the worst. Figure 4.16 shows part of the webpage 

Figure 4.16. Examples of NIMA NasNet Predicting Aesthetics of Webpage. 
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screenshots with corresponding aesthetic predictions by NIMA NasNet (without any 

training on the webpages) and user average ratings. More screenshots and scores can be 

found in the appendix section. 

Figure 4.16 presented some prediction examples of the NIMA NasNet model. The 

predictions on the left are more accurate while the ones of the right are less accurate. We 

can see that the screenshots of the left column are less complex and colorful than the ones 

on the right column. The NIMA NasNet model (without fine-tuning) seemed to do a good 

job in predicting these screenshots. However, these screenshots are just a few samples. 

To get concrete conclusions or insights, more research is needed to assess why the NIMA 

NasNet predicted well on some screenshots and bad on others. It might lead to the clue to 

discover the difference between predicting image aesthetics and predicting webpage 

aesthetics. 

To fine-tune the NasNet, we decided to train the NasNet with replaced fully 

connected layers. First, we replaced a few top layers. We removed the top layer, which is 

a classification layer using softmax as the activation function. The softmax function is a 

frequently used activation function for classification problems. Since we formulate the 

aesthetic prediction as a regression problem, we decided to remove this classification’s 

top layer. We added a regression layer as the top layer using the linear function as the 

activation function. We added a fully connected layer with 128 neurons, a dropout layer 

and a regression layer with only 1 neuron, then we trained the top layers. The training 

process is plotted in Figure 4.17, the configurations are listed in Table 4.12 and the 

evaluation results are in Table 4.13. 
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Table 4.12. Compiler Configuration for the NasNet Model Fine-tuned on Fully 

Connected Layers. 

Compiler Configuration 

Optimizer           stochastic gradient descent 

Loss function         mean absolute error 

Metrics           mean squared error 

Optimizer Configuration 

Learning Rate         1.00E-04 

Decay           1.00E-06 

Momentum         0.9 

Nesterov           TRUE 

 

 

From Table 4.13 of evaluation results, we can see that the NasNet with its fully 

connected layers trained on the webpage screenshot dataset was improved by the training. 

But the improvement is not as good as expected.  From the learning curve in Figure 4.17, 

we can see that the errors and losses were decreasing as the epoch increased. It can be 

inferred that the model’s error in predicting aesthetics is decreasing. However, the R-

squared score of the trained model is still negative.  

To further improve the model, I decided to unfreeze part of the convolutional 

layers inside of the NasNet (unfreeze layers higher than the 761th layer). After training 

the convolutional layers of NasNet, a performance evaluation was conducted, and the 

results are shown in Table 4.13.  
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From the evaluation results, we can see that the mean absolute errors, mean 

squared errors and root mean squared errors are further improved but the R-squared score 

is still negative. One possible guess is that the results of training did help the model 

Figure 4.17. Learning Curves of NasNet Model Fine-tuned on Fully Connected  

Layers. Mean Squared Error Curve (Upper). Model Loss (Mean Absolute Error) 

Curve (Lower). 
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improve to some point, but the true pattern of webpage aesthetics was not caught. The 

model is probably predicting values around the mean value of average user ratings. 

However, this guess is based on the rule of thumb. More data are required to verify this 

point and to help deep learning models capture the patterns. 

 

Table 4.13. Comparison of Evaluation Results of the NasNet Fine-tuned on Fully 

Connected Layers and Part of the Convolutional Layers. 

Evaluation Results 

 Before Unfreezing After Unfreezing 

Mean Absolute Error 0.794741 0.760792 

R-squared -0.164904 -0.048134 

Mean Squared Error 1.050690 0.945369 

Root Mean Squared Error 1.025032 0.972301 

 

 

 

4.2.6. NIMA MobileNet Model. Similar to the NasNet neural network, 

MobileNet is also a type of CNN architecture that has the feature of being lightweight. 

The MobileNet is very appropriate to be applied to mobile phones, drones or other 

devices which lack computation power. The MobileNet we use also comes from 

Google’s NIMA (Neural Image Assessment) research (Talebi & Milanfar, 2018) that 

predicts image aesthetics using CNN. In this section, we will fine-tune the MobileNet and 

observe its performance. 

As the primary stage of fine-tuning the MobileNet, we decided to first replace a 

few top layers. We removed the top layer, which is a classification layer using softmax as 
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the activation function. We added a fully connected layer with 128 neurons, a dropout 

layer and a regression layer with only 1 neuron, then we trained the top layers. The 

learning curves are shown in Figure 4.18. The configurations are listed in Table 4.14 and 

the evaluation results are in Table 4.15. 

 

Table 4.14. Compiler Configuration of MobileNet Fine-tuned on Fully Connected 

Layers. 

Compiler Configuration 

Optimizer           stochastic gradient descent 

Loss function         mean absolute error 

Metrics           mean squared error 

Optimizer Configuration 

Learning Rate         1.00E-03 

Decay           1.00E-06 

Momentum         0.9 

Nesterov           TRUE 

 

 

From the learning curves in Figure 4.18, we can see that the error and loss kept 

decreasing as learning epochs increased. The MobileNet fine-tuned on fully connected 

layers achieved good scores on most of the error metrics such as mean absolute error, 

root mean squared error, etc. However, the R-squared score is negative, which suggests 

that even though the model might give a prediction with a small error, the predictions 

were not associated with the true user ratings. 
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We decided to further the MobileNet by unfreezing part of the convolutional 

layers within the original MobileNet architecture (unfreeze layers higher than the 59th 

layer). For the details of the fine-tuning, please refer to the Jupyter notebook. The 

Figure 4.18. Learning Curves of MobileNet Model Fine-tuned on Fully Connected 

Layers. Mean Squared Error Curve (Upper). Model Loss (Mean Absolute Error) 

Curve (Lower). 
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evaluation results are shown in Table 4.15. The mean absolute error, mean squared error 

and root mean squared error are slightly better after training on convolutional layers but 

the difference is not significant. The R-squared score is still negative. 

 

Table 4.15. Comparison of Evaluation Results of the MobileNet Fine-tuned on Fully 

Connected Layers and Part of the Convolutional Layers. 

Evaluation Results 

 Before Unfreezing After Unfreezing 

Mean Absolute Error 0.885259 0.821984 

R-squared -0.304059 -0.109418 

Mean Squared Error 1.176201 1.000644 

Root Mean Squared Error 1.084528 1.000322 

 

 

4.2.7. NIMA Inception-ResNet-v2 Model. Inception-ResNet-v2 is an 

architecture of the CNN. The Inception-ResNet-v2 model we used is employed from 

Google`s NIMA (Neural Image Assessment) research (Talebi & Milanfar, 2018). This 

neural network was pre-trained on both ImageNet and AVA datasets. This neural 

network learned rich features from a wide range of images. Thus, we decided to fine-tune 

the Inception-ResNet-v2 for our task. The pre-trained weights are provided by 

Somshubra Majumdar (2019) on GitHub at https://github.com/titu1994/neural-image-

assessment. 

From previous experience of training NasNet and MobileNet, we also trained the 

Inception-ResNet-v2 network on the webpage screenshots. The configurations are shown 

https://github.com/titu1994/neural-image-assessment
https://github.com/titu1994/neural-image-assessment
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in Table 4.16. As the initial stage of fine-tuning, I first trained the fully connected layers. 

The learning curves are shown in Figure 4.19. It shows the same pattern as the previous 

deep learning models. The loss and error of the model are decreasing to a certain level.  

 

Table 4.16. Compiler Configuration of the Inception-ResNet-v2.  

Compiler Configuration 

Optimizer           stochastic gradient descent 

Loss function         mean absolute error 

Metrics           mean squared error 

Optimizer Configuration 

Learning Rate         1.00E-03 

Decay           1.00E-06 

Momentum         0.9 

Nesterov           TRUE 

 

 

 

As mentioned earlier, the evaluation results are shown in Table 4.17. I unfroze 

part of the inner architecture (layers higher than the 765th layer) of the Inception-ResNet-

v2 model. A comparison of their evaluations is shown in Table 4.17 where the 

performance has improved. The evaluations show that the Inception-ResNet-v2 network 

has a good performance on mean absolute error, mean squared error and root mean 

squared error. Before unfreezing part of the convolutional layers, the R-squared score 

was negative. After unfreezing part of the convolutional layers, the R-squared score 
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improved to a positive value. However, the positive score is still too small to be regarded 

as a good R-squared score. One possible guess is that the model is fitting the scores 

instead of learning the webpage screenshots.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19. Learning Curves of the Inception-ResNet-v2 Training on Fully Connected 

Layers. Mean Squared Error Curve (Upper). Model Loss (Mean Absolute Error) Curve 

(Lower). 
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Table 4.17. Comparison of Evaluation Results of the Inception-ResNet-v2 Fine-tuned on 

Fully Connected Layers and Part of the Convolutional Layers. 

Evaluation Results 

 Before Unfreezing After Unfreezing 

Mean Absolute Error 0.793607 0.744601 

R-squared -0.117993 0.009567 

Mean Squared Error 1.008378 0.893324 

Root Mean Squared Error 1.004180 0.945158 

 

4.3. REGRESSION ANALYSIS 

We know that complexity and colorfulness are important indicators of aesthetic 

ratings provided by previous studies (Reinecke & Gajos, 2014; Reinecke et al., 2013). 

They are expected to be important estimators of aesthetic ratings. Let`s explore their 

relationships below. 

4.3.1. Analysis of Complexity. We examine the relationship between webpage 

complexity and aesthetics next. 

4.3.1.1. Linear regression. Figure 4.20 shows the scatter plot reflecting the 

relationship between complexity and aesthetic rating. This figure shows that aesthetic 

rating tends to decrease with an increase in complexity. The feature ‘complexity’ has a 

negative relationship with the target variable ‘mean_response’, which is the averaged 

aesthetic ratings given by the participants. We can also see that the data points are 

clustered in the center of the figure, which has the ‘complexitymodel’ value around 5 and 

‘mean_response’ value around 4.5. Further, we can see that there are few points existing 
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in the upper-right part of the figure. The upper-right part is an area for webpages with 

very high complexity and very high aesthetics. It may suggests that it is quite rare for 

webpages with both very high complexity rare and high aesthetics. To verify this, we 

need more data of webpages with high aesthetics. Future research should be noted about 

this. 

 

 

 

 

 

 

 

 

 

 

 

4.3.1.2. Locally weighted average scatterplot smoothing (lowess). Figure 4.21 

shows a scatter plot with lowess smooth of complexity and aesthetic rating 

(mean_response). It shows that aesthetic ratings are decreasing rapidly at a high level of 

complexity. We also observed that there is a slight decrease in aesthetic ratings at a low 

level of complexity. 

Locally weighted average scatterplot smoothing method (lowess) is a non-

parametric technique that can create a fit using a smooth curve through points in a scatter 

Figure 4.20. Scatter Plot with a Linear Regression Line of 

Complexity and Aesthetic Rating. 
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plot by utilizing locally weighted regression. Regression usually can handle most of the 

problems. However, for data with periodicity and fluctuation, it cannot be simply fitted 

linearly. Otherwise, the model will have a large error from the truth. Locally weighted 

regression (lowess) can better deal with this problem. The calculated locally weighted 

average range moving from left to right, and a continuous curve is fitted. 

 

 

 

 

 

 

 

 

 

 

 

4.3.2. Analysis of Colorfulness. 

We examine the relationship between webpage colorfulness and aesthetics next. 

4.3.2.1. Linear regression. Figure 4.22 shows the scatter plot reflecting the 

relationship between colorfulness and aesthetic rating. This figure shows that aesthetic 

rating is increasing with an increase in colorfulness. We observed that the data points are 

scattered around the figure. In the center of the figure, though, the data points are more 

clustered. The ‘colorfulness’ is around 5.5 in this clustered area. 

Figure 4.21. Scatter Plot of Complexity and Aesthetic 

Rating using Lowess Smooth Function 
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4.3.2.2. Locally weighted average scatterplot smoothing (lowess). Figure 4.23 

shows a scatter plot with a lowess smooth of colorfulness (colofulnessmodelnewest) and 

aesthetic rating (mean_response).  

 

 

 

 

 

 

 

 

Figure 4.22. Scatter Plot with A Linear Regression Line of 

Colorfulness (colofulnessmodelnewest) and Aesthetic Rating 

(mean_response). 

Figure 4.23. Scatter Plot of Colorfulness (colofulnessmodelnewest) and Aesthetic 

Rating (mean_response) using Lowess Smooth Function 
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Figure 4.23 shows that aesthetic ratings are slightly increasing when colorfulness 

increases from a low level to a medium level. And we also observed that there is barely 

any increase in aesthetic ratings when colorfulness increases from medium level to the 

high level.  

4.3.3. Why Some Models Have Better Performance. It is found that the best 

(gradient boosting regression) and second-best model (random forest regression) are both 

tree-models. The third belongs to a neural network with 4 layers (20, 15, 10, 5). The three 

models have much better performance by having a smaller mean absolute error, mean 

squared error, root mean squared error and larger R squared value. Generally speaking, 

these three models are superior to the rest of the algorithms. However, the performance 

difference in this problem is so great that it is worth considering the reasons behind it. 

4.3.3.1. Non-linear relationship.   The top 2 models for this webpage aesthetics 

prediction problem are both tree models. Tree models have a reasonably good ability for 

fitting nonlinear relationships. Through the lowess method we conducted, we found that 

some features might have non-linear relationships with the aesthetic rating. The 

relationship between complexity and aesthetic rating is a good example. The lowess 

method showed that aesthetic ratings first increase then decrease with increasing levels of 

complexity. The non-linear relationships between independent variables and dependent 

variables could be the reason that makes tree-models superior to other models. 

Compared to tree models and neural networks, multiple linear regression is weak 

in fitting non-linear relationships. For a single decision tree, its capability of capturing the 

pattern is too weak. Although neural networks have the ability of fitting nonlinear 

relationships, its interpretability is not strong, and its parameters are not easy to be tuned. 
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Multiple linear regression models cannot simply fit the non-linear relationships without 

adding terms with higher orders.    

4.3.3.2. Data noise. Data noise usually refers to corrupted data such as useless 

information or erroneous information, which is hard for models to interpret. Our dataset 

is quite small, and hence, any erroneous data can have a significant impact on our 

predictive models. Noisy data can also lead to poor performance of the models and 

increase prediction errors such as bias and variance.  

Data noise is a common problem for datasets from the real world. Our cleaned 

dataset has 46 features and the probability of noise could be substantial. In this thesis, we 

used feature selection to select the important features to reduce data noise problem. 

4.3.3.3. Over-fitting problem. Over-fitting problems can happen when the model 

fits too well on training data to predict well on testing data. High dimensionality and low 

data volume are two common causes of over-fitting problems. Our dataset has 46 features 

with 398 rows of data. It is easy for most of the machine learning models to overfit due to 

the high dimensions and low data volume. For deep learning models, 398 screenshots are 

far from being enough to learn. Aesthetics is an abstract concept, which can be perceived 

but very hard to be objectively described or codified. Thus, it can be extremely hard for 

deep learning models to learn the features of webpages that contribute to or predict 

aesthetic quality with such a small dataset. 
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5. DISCUSSIONS 

The results of our study validated the conclusions of previous research and 

provide further evidence that aesthetics can be predicted to a certain extent. We have 

demonstrated that complexity and colorfulness are associated with website aesthetic 

quality. We found that aesthetic quality is highest when complexity is at a moderate level. 

Lower complexity and higher complexity can decrease aesthetic quality. This finding is 

consistent with previous works (Tuch et al., 2012; Reinecke et al., 2013). We also found 

that the enhancement of colorfulness can improve aesthetic evaluations, but excessive 

colorfulness barely has any effect on aesthetic evaluations. By using the random forest 

model to select important features, we found that aesthetics has a strong relationship with 

some less-noticed features. These key features include non-text area, text area, blue and 

complexity. Some other features also influence the aesthetic ratings given by users. We 

found that some color features, such as blue, olive, maroon and so on, influence 

perceived aesthetic quality. Some features that are correlated with complexity such as 

‘numOfLeaves’ and ‘percentageOfLeafArea’ are important to webpage aesthetics as well. 

However, these conclusions need to be confirmed and verified systematically, and more 

data needs to be collected to increase the credibility of the conclusions. 

We also used the deep learning method to predict the aesthetic scores solely based 

on the screenshots of webpages. However, the results obtained are not better than those 

predicted by statistical models using aesthetic features. We then used the transfer learning 

method. However, the prediction given by the deep learning model is not highly 

correlated with the average user ratings. We speculate that the main reason that the deep 
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learning approach did not achieve the desired results was that our dataset was too small, 

with only 398 screenshots of websites. The deep learning method works best when the 

amount of data is large. Second, webpage screenshots and photos are quite different, with 

some web elements and text having a lot of complex patterns (e.g., images embedded in 

webpages, text styles, and buttons). Therefore, it is difficult for deep learning models to 

learn which of the various and complex features have a real impact on aesthetics. Another 

reason is that the deep learning model can effectively learn various edges, but it is not 

sensitive to color information. But color is often very important to web page aesthetics. 

However, this does not mean that the deep learning method is not suitable for the 

prediction of aesthetic evaluation. Deep learning research has shown that the aesthetics of 

photographs are predictable (Talebi & Milanfar, 2018). Moreover, when we use the 

model that has been pre-trained on photography dataset to directly predict the aesthetic 

quality of webpages, the predictions given by the model showed a certain level of 

correlation with the webpage aesthetic ratings. The Pearson correlation was 23.8% and 

the two-tailed p-value is 0.182. Through this discovery, I suspect that there may be some 

connection between picture aesthetics and web aesthetics. However, this statement must 

be verified by collecting more data for systematic investigation. Therefore, future 

research should collect more picture data to provide a dataset that is big enough for the 

deep learning method. Different methods can be used to reduce the difficulty of learning, 

such as blurring the edge of the text content. 

 



 

 

95 

6. LIMITATIONS AND FUTURE RESEARCH 

There are several limitations of this research, which can be addressed by future 

research. 

First, more data needs to be collected. Our dataset consists of just around 400 

rows of valid data and 398 screenshots of webpages, which is far from enough for our 

task. Too little data not only limits the capability of machine learning methods but also 

makes it easier to obtain biased conclusions. In this study, the amount of data seriously 

limits the capability of deep learning methods. At present, there is a lack of good data 

resources on webpage aesthetics. If future research can collect more data of webpage 

aesthetic quality, it will be a great contribution to research in this direction. 

Second, we can look into combining the aesthetic feature method and the deep-

learning method. This thesis studies and compares the aesthetic feature method and the 

deep-learning method. However, data on aesthetic features are limited and fail to cover 

every aspect of a webpage. Researchers need to explore more aesthetic features using 

different methods. The deep learning method may require more data and is insensitive to 

color information, which is something that aesthetic feature methods can make up for. If 

the two methods can be combined well, a more powerful prediction model can be 

developed. 

Third, there is a need to explore and discover more aesthetic features. In the case 

of the Reinecke & Gajos’ (2014) dataset, higher precision can be achieved by using the 

aesthetic features with the general models (random forest, Gradient boosting, etc.) than 

using the deep learning models (NasNet, MobileNet, etc.). However, this conclusion may 
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change with a large dataset. Discovering and studying more design features and their 

effects on aesthetics can not only help improve the models but also help provide more 

comprehensive design guidelines for web designers.  
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7. CONCLUSIONS 

In this thesis, we used a variety of machine learning techniques including feature 

selection, deep learning, and transfer learning to build models that can automatically 

evaluate the aesthetic quality of webpages. We trained predictive models that can 

evaluate the aesthetics of a webpage based on the aesthetic features, and ones that can 

predict the aesthetic score by directly reading the screenshots of a webpage. We also 

made an exploratory analysis of the effects of complexity and colorfulness on the 

webpage aesthetics and found that the relationships between them are non-linear. We 

used the random forest model to find out features that have an important influence on the 

aesthetics of webpages but are often overlooked by researchers and practitioners. These 

features include non-text area, text area, blue color and so on. We built models based on 

these key features and found that using a few but important features can lead to a more 

accurate and robust model. By doing the feature selection, the risk of data problems is 

also reduced and the applicability of the models in real world is increased. We also 

compared the performance of the general models and the deep learning models using 

various evaluation metrics that are commonly used in the machine learning area. In our 

case, it is suggested that general models such as random forest and gradient boosting 

regressor that use aesthetic features are more accurate than the deep learning models. 

By selecting important features that are suggested by previous research, I 

validated the findings of previous literature on the impact of complexity and colorfulness 

on aesthetic ratings. The relationships from complexity and colorfulness to webpage 

aesthetics are non-linear. By documenting the findings of this study and providing a 
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review of the interdisciplinary research area of webpage aesthetics and machine learning, 

this thesis summarizes the basic knowledge needed to study machine learning methods 

and aesthetics. It provides an introductory foundation for researchers who are new to this 

research area and are interested in this research direction. By providing details on the data 

processing and analysis involving aesthetic features, the thesis also introduces data 

science techniques such as feature scaling and visualization to the research. By 

summarizing the standard process of analyzing problems using predictive models, the 

thesis can also be used as an example for analyzing research questions using a machine 

learning approach. The thesis also examines the use of a variety of predictive models to 

automatically evaluate the aesthetics of webpages, which should be interesting for 

researchers and practitioners who are interested in applying them to answer specific 

questions. By comparing the difference in model performance and through discussions 

based on the author’s experience in applying machine learning methods, knowledge can 

be learned or acquired on how to choose an appropriate model and compare the 

efficiency of models. Although the accuracy and reliability of the models (especially the 

deep learning models) still need to be further improved, they can be enhanced with more 

data in the future.  These models can be applied to industry practice with large datasets. 
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APPENDIX 

NIMA NASNET PREDICTIONS ON WEBPAGE SCREENSHOTS 

 

Evaluating:  ../content/drive/My Drive/webthetics/Webthetics-

master/data/togethe/english_90.png 

NIMA Score: 4.667 +- (1.089) 

True Score:  4.505313496280553 

Difference between NIMA and Ground Truth:0.162 
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Evaluating:  ../content/drive/My Drive/webthetics/Webthetics-

master/data/togethe/english_336.png 

NIMA Score: 4.959 +- (0.941) 

True Score:  4.926940639269406 

Difference between NIMA and Ground Truth:0.032 
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Evaluating:  ../content/drive/My Drive/webthetics/Webthetics-

master/data/togethe/foreign_12.png 

NIMA Score: 4.907 +- (0.951) 

True Score:  4.818141592920354 

Difference between NIMA and Ground Truth:0.089 
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Evaluating:  ../content/drive/My Drive/webthetics/Webthetics-

master/data/togethe/english_100.png 

NIMA Score: 4.939 +- (0.917) 

True Score:  4.953846153846154 

Difference between NIMA and Ground Truth: -0.015 
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Evaluating:  ../content/drive/My Drive/webthetics/Webthetics-

master/data/togethe/english_87.png 

NIMA Score: 4.722 +- (1.062) 

True Score:  2.1668404588112615 

Difference between NIMA and Ground Truth:2.556 
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Evaluating:  ../content/drive/My Drive/webthetics/Webthetics-

master/data/togethe/english_314.png 

NIMA Score: 5.454 +- (0.498) 

True Score:  2.9968421052631578 

Difference between NIMA and Ground Truth:2.458 
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Evaluating:  ../content/drive/My Drive/webthetics/Webthetics-

master/data/togethe/english_38.png 

NIMA Score: 5.275 +- (0.607) 

True Score:  2.4079915878023135 

Difference between NIMA and Ground Truth:2.867 
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Evaluating:  ../content/drive/My Drive/webthetics/Webthetics-

master/data/togethe/english_309.png 

NIMA Score: 4.718 +- (1.039) 

True Score:  1.4869281045751634 

Difference between NIMA and Ground Truth:3.231 
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Evaluating:  ../content/drive/My Drive/webthetics/Webthetics-

master/data/togethe/foreign_33.png 

NIMA Score: 5.155 +- (0.699) 

True Score:  2.416454622561493 

Difference between NIMA and Ground Truth:2.739 
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