
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Engineering Management and Systems 
Engineering Faculty Research & Creative Works 

Engineering Management and Systems 
Engineering 

4-1-2019 

System Architecting Approach for Designing Deep Learning System Architecting Approach for Designing Deep Learning 

Models Models 

Ram Deepak Gottapu 

Cihan H. Dagli 
Missouri University of Science and Technology, dagli@mst.edu 

Follow this and additional works at: https://scholarsmine.mst.edu/engman_syseng_facwork 

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons 

Recommended Citation Recommended Citation 
R. D. Gottapu and C. H. Dagli, "System Architecting Approach for Designing Deep Learning Models," 
Procedia Computer Science, vol. 153, pp. 37-44, Elsevier B.V., Apr 2019. 
The definitive version is available at https://doi.org/10.1016/j.procs.2019.05.053 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. 

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been 
accepted for inclusion in Engineering Management and Systems Engineering Faculty Research & Creative Works by 
an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use 
including reproduction for redistribution requires the permission of the copyright holder. For more information, 
please contact scholarsmine@mst.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/287210143?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/engman_syseng_facwork
https://scholarsmine.mst.edu/engman_syseng_facwork
https://scholarsmine.mst.edu/engman_syseng
https://scholarsmine.mst.edu/engman_syseng
https://scholarsmine.mst.edu/engman_syseng_facwork?utm_source=scholarsmine.mst.edu%2Fengman_syseng_facwork%2F779&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=scholarsmine.mst.edu%2Fengman_syseng_facwork%2F779&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1016/j.procs.2019.05.053
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:scholarsmine@mst.edu


ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 153 (2019) 37–44

1877-0509 © 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 17th Annual Conference on Systems Engineering Research 
(CSER).
10.1016/j.procs.2019.05.053

10.1016/j.procs.2019.05.053 1877-0509

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 17th Annual Conference on Systems Engineering Research (CSER).

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science 00 (2019) 000–000

www.elsevier.com/locate/procedia

1877-0509 © 2019 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 17th Annual Conference on Systems Engineering Research (CSER)

17th Annual Conference on Systems Engineering Research (CSER)

System Architecting Approach for Designing Deep Learning Models

Ram Deepak Gottapua*, Cihan H Daglib

aMissouri University of Science & Technology, Rolla, MO, 65409, USA

Abstract

Deep Learning (DL) models have proven to be very effective in solving many challenging problems, 
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assessment. The proposed framework is generic and targeted at all deep learning architectures that can be expressed 
by logical models with certain numeric properties. The implementation of the proposed approach is presented, along 
with the test results achieved on CIFAR-10 dataset using a convolutional neural network (CNN). We show that the 
architecture generated by our approach achieves 5.23% error rate with only 1.2M parameters, which shows the 
capability to design high performing architectures.
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1. Introduction

The exploration of neural network architecture has been an important part of research in the field of deep 
learning. For example, in case of computer vision architectures, starting with LeNet[1] in 2012, many architectures 
[2,3,4,5,6,7,8] were designed to improve the accuracy which resulted in gradual increase of the number of trainable 
parameters. This became significant especially after the architectures started crossing 100-layer barrier in 
Inception[9], ResNet[10] and highway networks[11] These architectures use hundreds of millions of trainable 
parameters and are computationally very expensive. As a result, the focus of research in designing CNN's became 
not just improving the accuracy but also to reduce the number of trainable parameters. In DenseNet[3], the authors 
presented an architecture which outperformed all the previous architectures while utilizing only 1M parameters 
which is significantly lower than any other architectures producing similar accuracy. Following that, the authors in 
NasNet[12,13], designed a search space and used evolutionary approaches to find architectures that further improved 
the accuracy with only 3M parameters. This shows that, by using innovative search spaces, it is possible to come up 
with efficient architectures that have high accuracy with minimum trainable parameters. It holds true for other deep 
learning models like long short-term memory (LSTMs) and recurrent neural networks (RNNs).  However, all these 
approaches use a search space that only resembles the inception model (increasing width of architecture) [9] while 
models like ResNet[10] show that deep architectures are also capable of providing high accuracies. 

Our approach is explicitly designed to explore architectures based on a search space that creates deep 
architectures rather than wide architectures. In addition to that, it also provides a framework that allows the user to 
modify the search space based on the available computation. The framework also allows the user to choose hyper-
parameters and layers that can be used within the search space. The implementation starts with the user choosing an 
overall objective function. Once the objective function is defined, categorical information is required to define the 
architecture with:    

• Capabilities: Functionality provided by the systems/layers in the architecture (Table 1). 
• Feasible interfaces: Stipulates which layer may interface with one another and are also represented as binary 

values.

Following the modeling of the objective function, we use a genetic algorithm to optimize the objective. Applying 
genetic algorithms or any other search approaches to design complete architectures is computationally expensive. 
Therefore, we use our modeling approach to design a block instead of complete architecture. Since it is already 
established that stacking up convolutional layers improves the accuracies [13], we can now stack the optimized 
blocks to generate architectures that can give state-of-the-art accuracies. This approach of learning only parts of 
architecture was proved to be successful in [12,13].

Our experiments were mainly focused on CIFAR-10 dataset where we achieved multiple top performing blocks. 
The architectures are then generated from these blocks by stacking them on top of each other using a transition 
block. Our typical model achieved an error rate of 5.23 on CIFAR-10 dataset. Throughout our experiments, the 
evolution happens on the hyper-parameters of convolutional layers such as filter height, filter width, number of 
filters, length of the block, and connections. Since these values are limited to only a few choices, the goal is to find 
the best combination of choices that give the best accuracy on the block.

2. Literature Review

System architecting approaches, applied in design, analysis, and optimization have flourished in various domain-
specific disciplines [20,21,22]. Our approach aims to use these capabilities in the field of deep learning to reduce the 
human effort required to design the architectures by considering each layer as a system and finding optimal 
connectivity between input and output.
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The idea of using evolution to learn neural networks dates back to 2001[23]. Attempts were made to design or 
optimize neural networks using evolutionary algorithms, reinforcement learning and other machine learning 
approaches [24,25]. In recent years, these approaches resurfaced as the deep learning architectures became deeper 
thereby increasing the search space significantly. Initial approaches include the design architectures that can 
overcome the man-made models [26,27,28]. The prominent feature of these attempts is to design complete 
architectures and optimize them based on the validation accuracies. Since it included the design of complete 
architecture, they are computationally expensive and also, they did not have much success when compared to the 
state-of-the-art models except for [29,28].  

In order to reduce the computational complexity and be able to search for optimized architectures in the design 
space, it is more advantageous to build a novel search space that has the capability to do both. In [13], the authors 
showed that by using a small and efficient search space, we can build highly efficient architectures. Our approach 
takes inspiration from [13] and [29] to develop a search space that is capable of designing very deep architectures. 
By using a system architecting approach, we can have the desired search space for multiple objectives [18,19] which 
is more generic.

3. Method

In this section, we first discuss the process of defining the problem and then the process of optimizing the defined 
problem.

3.1. Modelling the architecture:

The first step of our approach involves defining the architecture in a structured format using system engineering 
principles which can later be optimized using a genetic algorithm. It follows the same modeling approach defined in 
[18]. Any deep neural network consists of different layers which have their own role in the architecture. Therefore, 
we first need to identify the capabilities provided by each type of layer. Table 1 shows the layers and their 
corresponding capabilities.

     Table 1. Table showing layers and their capabilities.

System/Layer Linear 
Transformation

Non-linear 
Transformation

Regularization Parameter 
Scaling

Convolutional layer X - - -

Pooling layer X - - -

Activation layer - X - -

Dropout - - X -

Batch-Normalization - - X X

Each architecture generated during evolution will be assessed using accuracy. However, based on the platform 
where the architecture is running, an additional objective can also be added such as computational cost and time. In 

Figure 1: Pre-Determined architecture designs. The top model was used for evolution and the bottom model was used to train complete 
architecture.
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this paper, we only used accuracy as the performance metric to focus on architecture design instead of computation. 
By fixing the number of systems (say 12), we can now optimize the objectives by finding optimal connectivity using 
different systems and their capabilities.

3.2. Evolution of designed model

After defining the properties of the model in the framework, our method makes use of evolutionary search to find 
an optimized architecture for a given dataset of interest. The approach starts with a random population whose fitness 
(objective) values are calculated. The top-n accuracies are then used to generate offspring using cross-over and 
mutation operations. The approach is repeated for iterations until the objectives are stabilized.

The general structure for any deep convolutional neural networks (CNN) is a sequential repetition of identical 
motifs. The accuracy of the overall architecture depends not only on just the depth but also the configuration of these 
motifs and the connectivity among them. This has been proven in the architectures generated so far [13]. In addition 
to that, the inclusion of transition layers at regular intervals provides a necessary hierarchy that is useful for learning 
in the architecture [3]. These observations suggest that it is possible for an evolutionary algorithm to design a generic 
motif which can outperform the humanly designed motifs. 

In our approach, the overall architecture of the deep CNN is pre-determined (see fig1) where the evolution model 
uses only a part of the final model. This follows the same argument of general CNN i.e. the accuracy of the model 
improves by replicating the basic structure. In this case, instead of replicating a simple convolution layer we do it 
with a more complex section of complete architecture. The complete architecture consists of an input layer followed 
a block repeated multiple times. Since these blocks are designed using evolutionary algorithms, we name these 
blocks as evolved blocks (e-blocks). Each e-block has layers and any two e-blocks in the architecture are separated 
by a transition layer. The transition layers provide the necessary hierarchy required in the architecture. The transition 
layer, initial layer, and the final layer are manually designed thereby making the total length of architecture: 

where is the number of e-blocks used. Each hidden layer inside the e-block has the option of 
choosing its own input size, filter size, number of filers and strides. During the course of evolution, the algorithm 
tries to find the best choices for each layer in order to maximize the accuracy of the overall architecture.

     Table 2. Table showing the measurement type for each KPP

System Choices Encoding

Conv (1,3,5,7) [(0,0),(0,1),(1,0),(1,1)]

Number of filters (12,24,36,48) [(0,0),(0,1),(1,0),(1,1)]

Compression (0.5,0.65,0.75,1 [(0,0),(0,1),(1,0),(1,1)]

stride (1,2) (0,1)

To be able to evolve the e-block using the genetic algorithm, we encoded the complete e-block into a binary 
chromosome. The chromosome for an e-block has the structure shown in fig 2. With each e-block having layers, 
the total length of the chromosome is given as where is the number of bits required to 
encode each choice. The first half of the equation defines the number of bits required to choose the layer 
configuration details while the second half of the equation defines the inputs. The inputs to each layer can be any 
number of inputs from previous layers concatenated along the dimensional axis. Therefore, all the skip connections 
will be covered in this layer. During the course of evolution, the following steps are performed for each layer in the 
e-block:

• Select number of filters: number of filters used for the conv layer.
• Select filter size: dimensions of each filter. 
• Select stride: number of jumps performed while sliding the filters over the input. 



 Ram Deepak Gottapu  et al. / Procedia Computer Science 153 (2019) 37–44 41
Ram Deepak Gottapu/ Procedia Computer Science 00 (2019) 000–000 5

• Select compression: The residual connections increase the number of features after each layer. Compression 
defines the percentage of features to be kept for the next layer. 

• Select inputs between first layer to which will be concatenated to give input

The algorithm finds the best performing architectures during each iteration and tries to improve them using 
crossover and mutation. Table 2 shows the choices for each layer (chosen based on popular literature). with their 
corresponding encoding. The first three choices require 2 bits to represent their 4 unique choices while the last 
choice requires only one bit (0/1). Therefore =2+2+2+1 = 7. For layers (say =12) the total length of 
chromosome will be = 162. If the first 7 bits have an encoding sequence are: 
[0,1,0,0,1,1,0] then the first layer will have the following configuration: 3x3 conv, 12 filters, compression of 1 from 
previous filters and stride of 1. More details on the concept of compression can be found in [3].

The choices for each layer are chosen based on the popular literature: conv: (1,3,5,7), number of filters: 
(12,24,48,36), compression: (0.5,0.65,0.75,1) and stride: (1,2). Finally, in order to prevent training repeated 
architectures, we kept a log of all the chromosomes generated from the beginning and assigned previous fitness 
values to repeated architectures. We also added some randomness in the crossover to generate a few random 
chromosomes in each generation to prevent the algorithm being stuck in local minima. Also, in order to show the 
efficiency of our approach, we also used random search and compared the results with those generated using 
evolutions. Even though the difference is not much, we observed that the results from using evolution are slightly 
better. The implementation details can be found in section 4.

4. Experiments and results

In this section, we describe the experiments conducted to learn e-blocks using the method mentioned above. We 
used CIFAR-10 dataset to learn multiple top performing e-blocks. All our experiments were performed using an 
NVIDIA TITAN X GPU. 

The search process took over 2 weeks using a single GPU and covered 500 architectures. We ran our approach for 
50 generations with a population size of 10. The crossover and mutation operations are performed in such a way that 
repeated architectures are not generated.

Training conditions: Throughout the evolution process, we train each architecture using stochastic gradient 
descent (SGD) with a learning rate of 0.1 and batch size of 64. We also observed that running each architecture of 25 
epochs gave optimal results. Data augmentation was applied on the dataset so that each architecture will learn on 
noisy data.

4.1. Datasets

CIFAR: The CIFAR datasets consist of colored natural images with 32×32 pixels. CIFAR-10 (C10) consists of
images drawn from 10 classes.  The training and test sets contain 50,000 and 10,000 images respectively, and we 
hold out 5,000 training images as a validation set.  We adopt a standard data augmentation scheme 
(mirroring/shifting) that is widely used for this dataset [1,2,3,4,5,6,7,8]. For preprocessing, we normalize the data 
using the channel means and standard deviations. During evolution, each new architecture was trained on 45,000 

Figure 2: Chromosome for a sample architecture
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images and validation accuracy was calculated on remaining 5000 images. The validation accuracy is used a fitness 
values to evolve the architectures. For the final run, we use all 10,000 test images and report the final test error at the 
end of training.

4.2. Results on CIFAR-10 dataset

For the task of image classification on CIFAR datasets, we used three e-blocks separated by a transition layer (see 
Fig2). Accuracies of the best architectures are reported in Table 1 along with other state-of-the-art models.  As can 
be seen from the Table, an architecture using e-block@1 and e-block@2 with data augmentation achieves a 
performance that is similar to state-of-the-art models. 

     Table :3 Results showing the performance of our approach with respect to state of the art models

Method Depth Params (M) CIFAR-10 error 
percentage 

Network in Network [6] - - 8.81

All CNN [7] - - 7.25

Deeply Supervised Net [5] - - 7.97

Fractal Net [4] 21 38.6 5.22

ResNet [10] 110 1.7 6.61

Wide ResNet [8] 16 11 4.81

ResNet (pre-activation) [2] 164 1.7 5.46

DenseNet [3] 100 0.8 4.51

e-block@1 100 1.2 5.23

e-block@2 100 2.8 4.61

5. Discussion

5.1. Feasible Architectures

During the search process (evolution), there is a possibility to end up with architectures that are not feasible. For 
example, the dimension of output became less than 1 due to too many pooling layers. Such architectures are 
allocated a fitness value of -1 by default to prevent the generation of such architectures.

5.2. Limitations

Even though our approach is capable of producing deep and efficient architectures, the size of each e-block is pre-
determined. In our experiments, we used the size of 12, however, if we need to experiment with different size e-
block after each transition layer, the entire search process has to be repeated.

6. Conclusion

In this paper, we showed the possibility of using system architecting methodologies for designing deep learning 
models. The approach allows the user to define their own objectives and find the best suitable deep learning model 
using a pre-determined structure. Note that we did not use the latest approaches for the architecture search as our 
main intention is not to improve the accuracy but to show the possibility of using system architecting for deep 
learning.
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