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Abstract

Reading and understanding code is an inherent requirement for many
maintenance and evolution tasks. Developers continuously read the code and
they make an effort to understand it before being able to perform any task.
Without a thorough understanding of source code, developers would not be able
to fix bugs or add new features timely.

Automatically assessing code readability and understandability can help in
estimating the effort required to modify code components. Besides, having an
objective metric for such aspects could be important to improve the quality of

automatically generated test cases.

In this thesis, we improve the accuracy of existing readability models by
introducing textual features. Besides, we try to go further, and we use a large
number of new and state-of-the-art metrics to automatically assess code
understandability. However, our results show that it is still not possible to
automatically assess the understandability of source code.

In the context of software testing, we introduce a new metric, namely Coverage
Entropy, which is aimed at estimating the understandability of a test case. We
use Coverage Entropy in TERMITE, a novel test case generation technique
aimed at improving the understandability of generated tests. Our results show
that TERMITE generates a lower number of eager tests compared to the

state-of-the-art and it also improves other quality aspects, such as test cohesion.
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CHAPTER 1

Introduction

Software developers read code all the time. The very first step in each software
evolution and maintenance task is carefully reading and understanding code, even
when the maintainer is the original author. Developers spend much time reading
code, far more than writing it from scratch [46, 102].

Furthermore, incremental change [17, 120, 118|, which requires to perform
concept location, impact analysis, and the corresponding change implementa-
tion/propagation, needs a prior code reading step before it can take place.

Reading, however, is just what developers do aiming to understand the code.
Despite they are highly entangled, reading and understanding are two different
concepts, and so are readability and understandability: on one hand, readability
regards the form of the code, i.e., how the code is able to convey information
about the concepts implemented in it to the reader; understandability, instead,
regards the substance, i.e., the very nature of those concepts. If the code is
readable it is easier to acquire the information necessary to understand it, while
if the code is understandable it is easier to process such information. Modifying

unreadable code is like assembling a piece of furniture using a manual written in a
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foreign language: the task is not impossible, but more difficult, and a few screws
still may remain unused. Trying to modify not understandable code, instead, is
like being a kid willing to fix a car: even using a good (readable) manual, there
are few chances to succeed.

Focusing on code, to better get the difference between the two concepts, con-
sider the snippet below:

AsyncHttpClient client = new AsyncHttpClient();
String cookies = CookieManager.getInstance().getCookie(url);

Log.e(TAG, cookies);

client.addHeader (SM.COOKIE, cookies);

Any developer would consider such code as readable, since it is concise and it
uses meaningful identifier names. Nevertheless, this snippet of code is not neces-
sarily easy to understand for any given developer, because the used APIs could
be unknown to her and even poorly documented. For example, the developer
may not understand the implications of the getCookie(url) method call with-
out prior experience using the API or without reading the documentation, e.g.,
she might not know whether getCookie(url) could throw an exception, return
a null value, or produce some other side effects.

Several facets, like complexity, usage of design concepts, formatting, source
code vocabulary, and visual aspects (e.g., syntax highlighting) have been widely
recognized as elements that impact program understanding [96, 105, 15]. Only
recently, automatic code readability estimation techniques started to be devel-
oped and used in the research community [21, 119, 43]. Such models provide a
binary classification (readable or unreadable) for a given piece of code. On the
other hand, there is no empirical foundation suggesting how to objectively assess
the understandability of a given piece of code. Indeed, our knowledge of factors
affecting (positively or negatively) code understandability is basically tied to com-
mon beliefs or it is focused on the cognitive process adopted when understanding
code [136, 137]. For example, we commonly assume that code complexity can be
used to assess the effort required to understand a given piece of code. However,
there is no empirical evidence that this is actually the case.

Improving the performance of the existing code readability models would be
important to help planning code cleaning activities, focusing only on the code

that actually needs it with a higher confidence. More importantly, having a model



that estimates the effort required to understand a given piece of code would have
a strong impact on several software engineering tasks. For example, it would be
possible to use such a model to (i) improve the estimation of the time needed to
fix a bug (the lower the understandability, the higher the time to comprehend the
code and thus to fix the bug); (ii) create search-based refactoring recommender
systems using the predicted code understandability as a fitness function; or (iii)

assess the quality of code changes during code reviews.

As previously mentioned, the importance of both code readability and, above
all, code understandability is undisputed for maintenance-related activities [3,
141, 24, 121, 135, 31]. However, developers tend to neglect such aspects for test
code [61], even if software testing is one of the most important and expensive
software development activities [16]. The poor quality of test cases represents a
threat to their evolution. Indeed, test cases are not written in stone; they need to
change over time along with the source code they exercise [114, 103]. A change
in a feature might break some tests. In some cases, a new feature changes the
behavior of the code and some tests are not valid anymore. On the other hand,
changes might introduce bugs that are revealed by tests. Therefore, developers
need to detect the cause of a failure and either fix the code or update the test
[114]. In both the cases, understanding the failing test is the first step to perform

any kind of maintenance task.

In the last years, automated generation of test data and test cases have been
widely investigated [99, 98]. The proposed approaches aim at reducing the costs
of testing. In particular, search-based test case generation techniques proved
to be effective to achieve this goal [99]. Such approaches use meta-heuristics to
select the most effective tests in a search space composed by all the possible tests.
Most of the effort of the research community has been devoted to improve the
effectiveness of automatically generated tests (e.g., code coverage and mutation
score) [55, 98, 111, 25]. However, the generated tests generally suffer from poor
quality: they are even less readable than manually written ones [61, 113] and they
contain a larger number of test smells [107]). Improving the understandability
and, in general, the quality of generated tests would be of primary importance

to promote the usage of such test case generation techniques.
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In this thesis, we introduce approaches and tools aimed at measuring and
improving readability and understandability of both source code and test code.
In Part I we provide a literature review on the topic. Specifically, in Chapter 2 we
report the work about code readability and understandability, while in Chapter 3
we first provide background information about search-based test case generation
and, then, we report the related work on the quality of generated tests.

In Part IT we report our work on automatically assessing and improving source
code readability and understandability. Specifically, in Chapter 4 we introduce
textual features for improving the accuracy of readability prediction models.
Then, in Chapter 5 we describe our study about the correlation between code
readability and the presence of FindBugs warnings, showing that an improved
readability estimation results in a higher correlation. Given the importance of
textual features and, specifically, of identifiers for code readability, in Chapter 6
we introduce an approach that suggests identifier renaming operations aimed at
improving the naming consistency in a given project. Finally, in Chapter 7 we
make the first step to go beyond code readability assessment and we try, for the
first time, to automatically assess code understandability.

In Part III we report our work on automatically assessing and improving the
understandability of generated test cases. Specifically, in Chapter 8 we introduce
a metric, namely Coverage Entropy, aimed at estimating the focus of a given test
case and, thus, its understandability. Then, in Chapter 9 we introduce TER-
MITE, a novel approach to automatically improve the focus of tests generated
using search-based approaches.

Finally, in Chapter 10 we conclude this thesis, providing a summary of the

contributions and the achieved results.



Part 1

Background






If I have seen further it is by standing on the shoulders of Giants.

Isaac Newton, letter to Robert Hooke (1675)



CHAPTER 2

Readability and Understandability of Source Code

Contents
2.1 Source Code Readability . . ... ... ........ 8
2.1.1 Software Quality and Source Code Vocabulary . ... 9
2.1.2  Source Code Readability Models . . . . ... ... .. 10
2.2 Source Code Understandability . . .. ... ... .. 14

2.1 Source Code Readability

In the next sub-sections we highlight the importance of source code vocabulary
for software quality; in addition, we describe state-of-the-art code readability
models. To the best of our knowledge, three different models have beed defined
in the literature for measuring the readability of source code [21, 119, 43|. Besides
estimating the readability of source code, readability models have been also used
for defect prediction [21, 43].
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2.1.1 Software Quality and Source Code Vocabulary

Given a source code snippet s, the vocabulary of s is the set of terms used in it;
such a set contains words from both identifiers and comments. The source code
vocabulary play a crucial role in program comprehension and software quality
since developers express domain knowledge through the names they assign to the
identifiers of a program (e.g., variables and methods) and through the comments
they add to make it more clear to future readers [86, 85, 29, 83, 45]. For example,
Lawrie et al. [83] showed that identifiers containing full words are more under-
standable than identifiers composed of abbreviations. From the analysis of source
code identifiers and comments it is also possible to glean the “semantics” of the
source code. Consequently, identifiers and comments can be used to measure the
conceptual cohesion and coupling of classes [95, 117], and to recover traceability
links between documentation artifacts (e.g., requirements) and source code [6].
Butler et al. [23] showed that there is a relationship between the quality of names
chosen for identifiers and the source code quality. Moreover, given the importance
of linguistic elements in source code, Arnaoudova et al. [8, 7| defined the concept
of linguistic antipatterns. Linguistic antipatterns are poor solutions to recurring
problems that developers adopt when defining identifiers, such as method names,
or when commenting the code. For example, the antipattern “Get method does
not return” occurs when the name of a method without return type starts with
“get”, conventionally used to acquire pieces of information about an instance of a
class.

Although the importance of meaningful identifiers for program comprehen-
sion is widely accepted, there is no agreement on the importance of the presence
of comments for increasing code readability and understandability. Also, while
previous studies have pointed out that comments make source code more read-
able [44, 139, 134], the more recent study by Buse and Weimer [21] showed that
the number of commented lines is not necessarily an important factor in their
readability model. However, the consistency between comments and source code
has been shown to be more important than the presence of comments, for code
quality. Binkley et al. [19] proposed the QALP tool for computing the tex-
tual similarity between code and its related comments. The QALP score has

been shown to correlate with human judgements of software quality and is useful



10 Chapter 2. Readability and Understandability of Source Code

FEATURE Avc MAX

Line length (characters) v v
N. of identifiers \/
Indentation (preceding whitespace)

N. of keywords v
Identifiers length (characters)
N. of numbers

. of parentheses

. of periods

. of blank lines

of comments

of commas

of spaces

of assignments

. of branches (if)

. of loops (for, while)

. of arithmetic operators
of comparison operators

44|44«
<«

4> 49444«

. of occurrences of any character
. of occurrences of any identifier

22| 222222 22 227,

Table 2.1: Features used by Buse and Weimer’s readability model.

for predicting faults in modules. Specifically, the lower the consistency between
identifiers and comments in a software component (e.g., a class), the higher its
fault-proneness [19]. Such a result has been confirmed by Ibrahim et al. [71]; the
authors mined the history of three large open source systems observing that when
a function and its comment are updated inconsistently (e.g., the code is modified,
whereas the related comment is not updated), the defect proneness of the func-
tion increases. Unfortunately, such a practice is quite common since developers

often do not update comments when they maintain code [51, 93, 88, 94, 92, 37].

2.1.2 Source Code Readability Models

Buse and Weimer [21] proposed the first model of code readability and pro-

vided evidence that a subjective aspect like readability can be actually captured
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and predicted automatically. The model operates as a binary classifier, which was
trained and tested on code snippets manually annotated (based on their read-
ability). Specifically, the authors asked 120 human annotators to evaluate the
readability of 100 small snippets. In total, their dataset is composed by 12,000
human judgements. The features used by Buse and Weimer to predict the read-
ability of a snippet are reported in Table 2.1: the triangles indicate if the feature
is positively (up) or negatively (down) correlated with high readability, while the
color indicates the predictive power (green = “high”, yellow = “medium”, red =
“low”). It is worth noting that the features consider only structural aspects of
source code. The model succeeded in classifying snippets as “readable” or “not
readable” in more than 80% of the cases. From the 25 features, average num-
ber of identifiers, average line length, and average number of parentheses were
reported to be the most useful features for differentiating between readable and
non-readable code. Table 2.1 also indicates, for each feature, the predictive power
and the direction of correlation (positive or negative).

Posnett et al. [119] defined a simpler model of code readability as compared
to the one proposed by Buse and Weimer [21]. The approach by Posnett et al.
uses only three features: lines of code, entropy, and Halstead’s Volume metric.
Using the same dataset from Buse and Weimer [21], and considering the Area
Under the Curve (AUC) as the effectiveness metric, Posnett et al.’s model was
shown to be more accurate than the one by Buse and Weimer.

Dorn introduced a “general” model, which relies on a larger set of features for
code readability. Such features are organized into four categories: wvisual, spa-
tial, alignment, and linguistic [43]. The rationale behind the four categories is
that a better readability model should focus on how the code is read by humans
on screens. Therefore, aspects such as syntax highlighting, variable naming stan-
dards, and operators alignment are considered by Dorn [43] as important for code
readability, in addition to structural features that have been previously shown
to be useful for measuring code readability. Table 2.2 reports all the features
introduced by Dorn [43] and it maps categories to individual features. The four

categories of features used in Dorn’s model are described as follows:

e Visual features: In order to capture the visual perception of the source

code, two types of features are extracted from the source code (including
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FEATURE

VISUAL

SPATIAL

ALIGNMENT TEXTUAL

Line length
Indentation length
Assignments
Commas
Comparisons
Loops

Parentheses
Periods

Spaces

Comments
Keywords
Identifiers
Numbers
Operators

Strings
Literals

Expressions

Table 2.2: Features defined by Dorn.
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syntax highlighting and formatting provided by an IDE) when represented
as an image: (i) a ratio of characters by color and colored region (e.g.,
comments), and (ii) an average bandwidth of a single feature (e.g., inden-
tation) in the frequency domain for the vertical and horizontal dimensions.
For the latter, the Discrete Fourier Transform (DFT) is computed on a
line-indexed series (one for each feature). For instance, the DFT is applied

to the function of indentation space per line number.

e Spatial features: Given a snippet S, for each feature A marked in Table
2.2 as “Spatial”, it is defined as a matrix M4 € {0,1}X*W where W is the
length of the longest line in S and L is the number of lines in S. Each cell
MZAJ of the matrix assumes the value 1 if the character in line ¢ and column
j of S plays the role relative to the feature A. For example, if we consider
the feature “comments”, the cell Mg will have the value “1” if the character
in line ¢ and column j belongs to a comment; otherwise, MZCJ will be “0”.

The matrices are used to build three kind of features:

— Absolute area (AA): it represents the percentage of characters with

the role A. It i ted as: AA — i Mi .
e role . 1S computed as: = —xw o

— Relative area (RA): for each couple of features Aj, A, it represents

the quantity of characters with role A; with respect to characters with
Suy M

A
Zi,j Mi,j

— Regularity: it simulates “zooming-out” the code “until the individual

role As. It is computed as: RA =

letters are not visible but the blocks of colors are, and then measur-
ing the relative noise or regularity of the resulting view”[43]. Such
a measure is computed using the two-dimensional Discrete Fourier

Transform on each matrix M4.

G

e Alignment features: Aligning syntactic elements (such as symbol) is
very common, and it is considered a good practice in order to improve the
readability of source code. Two features, namely operator alignment and
expression alignment, are introduced in order to measure, respectively, how
many times the operators and entire expressions are repeated on the same

column /columns.



14 Chapter 2. Readability and Understandability of Source Code

e Natural-language features: For the first time, Dorn introduces a textual-
based factor, which simply counts the relative number of identifiers com-

posed by words present in an English dictionary.

The model was evaluated by conducting a survey with 5K+ human annotators
judging the readability of 360 code snippets written in three different program-
ming languages (i.e., Java, Python and CUDA). The results achieved on this
dataset showed that the model proposed by Dorn achieves a higher accuracy as
compared to the Buse and Weimer’s model re-trained on the new dataset [43].

Summarizing, existing models for code readability mostly rely on structural
properties of source code. Source code vocabulary, while representing a valuable
source of information for program comprehension, has been generally ignored for
estimating source code readability. Some structural features, such as the ones that
measure the number of identifiers, indirectly measure lexical properties of code,
such as the vocabulary size. However, only Dorn provides an initial attempt to
explicitly use such valuable source of information [43] by considering the number

of identifiers composed of words present in a dictionary.

2.2 Source Code Understandability

Previous studies focused on understanding the factors affecting program com-
prehension and the process used by developers. Lawrance et al. [79, 81, 80]
showed that information foraging models are able to explain the paths walked
by developers during code comprehension for maintenance and debugging tasks.
Avidan et al. [10] showed that the identifiers used for the parameter names in-
fluence comprehension more than the ones used for local variables.

Other previous studies introduced metrics for measuring understandability
(at system level) as a single quality attribute and as part of a quality model.

While readable code might directly impact program comprehension, code
readability metrics are not sufficient to measure to what extent the code al-
lows developers to understand its purpose, relationships between code entities,
and the latent semantics at the low-level (e.g., statements, beacons, motifs) and
high-level structures (e.g., packages, classes). Program understanding is a non-

trivial mental process that requires building high-level abstractions from code
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statements or visualizations/models [137, 24]. There have been several metrics
designed to evaluate software understandability by focusing on complexity as well

as source-level metrics.

Lin et al. [24] proposed a model for assessing understandability by building an
understandability matrix from fuzzy maximum membership estimation for pop-
ulation of fog index, comment ratio, the number of components, CFS, Halstead
Complexity, and DMSP. The authors then used PCA and factor analysis to get
the weights for the column vectors, which can be multiplied by the matrix to
get the Synthesis Vector of Understandability. Finally, the understandability is
calculated by using the fuzzy integral. The authors did not empirically evaluate

the proposed metric.

Misra and Akman [104] performed a comparative study between existing cog-
nitive complexity measures and their proposed measure: cognitive weight com-
plexity measure (CWCM), which assigns weights to software components by an-
alyzing their control structures. The authors performed a theoretical validation
of these metrics based on the properties proposed by Weyuker [148]. They found
that only one metric, Cognitive Information Complexity Measure (CICM), satis-

fied all nine properties, while the others satisfied seven of the nine.

Thongmak et al. [141] considered aspect-oriented software dependence graphs
to assess understandability of aspect-oriented software, while Srinivasulu et al.
[135] used rough sets and rough entropy (to filter outliers) when considering
the following metrics: fog index, comment ration, the number of components,
CFS, Halstead Complexity, and DMSC. These metrics are computed at system
level for nine projects, and subsequently the rough entropy outlier factor was
calculated for the metrics to identify the outliers, which correspond to either

highly understandable or not understandable software based on the metric values.

Capiluppi et al. [28] proposed a measure of understandability that can be
evaluated in an automated manner. The proposed measure considers: (i) the
percentage of micro-modules (i.e., the numbers of files) that are within the macro-
modules (i.e., the directories), and (ii) the relative size of the micro-modules.
The authors calculated the proposed measure on the history of 19 open source
projects, finding that understandability typically increased during the life-cycle

of the systems. Yet, no evaluation is provided for such a measure.
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Understandability has also been a factor in quality models to assess software
maintainability. Aggarwal et al. [3]| investigated the maintainability of software
and proposed a fuzzy model, which is composed of three parts: (i) readability
of code, (ii) documentation quality, and (iii) understandability of the software.
To quantify understandability, the authors utilize a prior work that defines lan-
guage of software as the symbols used, excluding reserved words. The authors
constructed rules based on the ranges of the three factors to determine maintain-
ability.

Similarly, Chen et al. [31] investigated the COCOMO II Software Under-
standability factors by conducting a study with six graduate students asked to
accomplish 44 maintenance tasks, and found that higher quality structure, higher
quality organization, and more self-descriptive code were all correlated with less

effort spent on the tasks, which leads to high maintainability.

Bansiya and Davis [12] proposed a model where metrics are related to several
quality attributes, including understandability. In terms of understandability,
the model considers encapsulation and cohesion to have positive influences, while
abstraction, coupling, polymorphism, complexity, and design size have a negative
influence. The authors validated the model by analyzing several versions of two
applications and found that understandability decreases as a system evolves with
many new features. Additionally, 13 evaluators analyzed 14 versions of a project
and the authors found a correlation between the evaluators’ overall assessment

of quality and the models assessment for 11 out of 13 evaluators.

Kasto and Whalley [74] analyzed the performance of 93 students in their final
examination for the Java programming course and they correlated their results
with five metrics. They show that such metrics can be used to automatically

assess the difficulty of examination questions.

Several studies have explored software understandability and program com-
prehension with either students or practitioners. Shima et al. considered the
understandability of a software system by assessing the probability that a system
can be correctly reconstructed from its components [132]. The authors asked
eight students to reconstruct a system and the results suggest that faults tend to
occur in hard to understand files or very simple files. Roehm et al. performed an

observational study with 28 developers to identify the steps developers perform
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when understanding software and the artifacts they investigate [121]. The au-
thors found that developers are more inclined towards relying upon source code as
well as discussing with colleagues over utilizing the documentation. The authors
also identified some behaviors that improve comprehension, such as consistent
naming conventions or meaningful names.

Understandability has been mostly analyzed from the perspective of (i) the
quality attribute at the software level, i.e., understandability as the “ The capabil-
ity of the software product to enable the user to understand whether the software
is suitable, and how it can be used for particular tasks and conditions of use" [72];
and (ii) the theories, challenges, and models for program understanding at cogni-
tive levels [137, 136]. However, as of today, we still lack models for assessing code
understandability at snippet-level, similarly to code readability. The only work
we found that relates to a code understandability model is based on complexity

and size source code level metrics [24, 91].
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Source code and test code are different. The former is more abstract, it aims
at solving a problem in general, not just one of its instances. The latter, instead,
should be very concrete: a test case is aimed at providing evidence that the
source code does not work, and this can be done only specifying precise input
data. Previous work, indeed, tend to distinguish quality problems affecting source
code and test code. For example, test smells [146] were defined as code smells
[52] that can affect test code. In general, test code can be affected by different
problems regarding program comprehension with respect to source code. For this
reason, previous work introduced techniques specifically aimed at improving the
understandability of test code [39].

Quality problems are particularly present in automatically generated test

cases [107, 61]. For this reason, in this chapter we first introduce search-based

18
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test case generation and then we provide details about the the related work on

test case quality.

3.1 Search-Based Test Case Generation

Many tools have been proposed to automate the generation of test cases in
last decade [106, 53, 125]. Among them, EVOSUITE [53], a tool that automat-
ically generates test suites for Java classes, has been exploited in a plethora of
studies [56, 57, 54]. EVOSUITE implements several search-based test generation
strategies, such as whole suite generation [55], MOSA [111], and LIPS [125] More-
over, it also implements other techniques, such as dynamic symbolic execution
[127, 59].

EVOSUITE uses genetic algorithms (GA) [60] to evolve populations of test
cases. During the evolutionary process, the population of candidate solutions
(i.e., test cases) is evolved using operators imitating natural evolution: first, a
selection operator is used to select the best test cases as for their fitness value;
then, it is used a crossover operator to mix couples of test cases from the resulting
population; finally, random mutations are performed to the test cases to add

diversity to the population.

The fitness value of a test case depends on the test generation strategy used
and on the chosen coverage goals. For branch coverage, it is usually defined in
terms of a combination of branch distance and/or approach level [98] computed
on one or multiple branches of the class under test. Besides, EVOSUITE can be
used to generate tests that satisfy other coverage criteria, such as exception and

method coverage [53].

EVOSUITE is able to evolve either entire test suites or single test cases. A
test case is represented as sequences of statements containing (i) variable dec-
larations/definitions and (ii) method calls, using the chromosome representation
defined by Tonella [142]. Therefore, each statement of a test case can define
new variables and use variables defined in previous statements. For example, the
statement a.push(x) uses the variable a and x, and defines no variables (i.e., the

method push does not have a return value). Test cases can have arbitrary length.
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Some statements can be inserted to exercise the class under test, while others are

needed to set up complex objects.

Test cases evolved by EVOSUITE do not contain oracles. However, the tool
allows one to automatically add them at the end of the generation process: it
captures the status of the objects in the tests and it adds assertions based on
such values. Such assertions are particularly useful for regression testing, i.e., to
find variations in the behavior of the class under test (CUT) from a version to
another [149]. Given a generated unit test, a large number of potential assertions
can be generated. The choice of such assertions is very important: presenting
all the assertions to the developer is problematic, as there might be too many
of them, and many of them would be irrelevant [146]. In order to determine
the important and effective assertions, EVOSUITE applies mutation testing [53]:
After the test case generation process, EVOSUITE runs each test case on the
unmodified software as well as all mutants that are covered by the test case,
while recording information on which mutants are detected by which assertions.
Then, it calculates a reduced set of assertions that is sufficient to detect all the

mutants of the unit under test that the given test case may reveal.

Whole Suite Generation (WS) is a test case generation strategy defined by
Fraser and Arcuri [55]. Such a strategy consists in evolving entire test suites to
optimize the total coverage of the test suite. More specifically, the fitness function

is defined as:
fitness(T) = |M| — |Mr| + Z d(b,T)
beB
where M is the set of all the methods of the class under test, My is the set of
executed methods, B is the set of branches in the class under test and d(b, T) is

defined as follows:

0, if b was covered
d(b,T) = S v(dpmin(b,T)), if the predicate has been executed
1, otherwise

In such a formula, d,,;, computes the minimum branch distance, which is useful

when the predicate is executed more than once, while v is a normalization func-

x

w—ﬂ) The genetic algorithm aims to find the test suite 7" with minimum

tion (
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fitness(T') in order to cover the highest number of branches in the class under
test.

Many Objective Sorting Algorithm (MOSA) is a test generation strategy de-
fined by Panichella et al. [111]. Test cases evolved by MOSA are evaluated using
the branch distance and approach level for each branch in the CUT. The fitness
function used is represented as a vector f of n objectives, where n is the number
of branches of the CUT. Each element f; of the fitness function is the sum of
branch distance and approach level of branch b;. MOSA tries to find solutions
(i.e., test cases) that separately cover the target branches, i.e., tests T' having a

fitness score f;(T) = 0 for at least one uncovered branch b;.

MOSA works as follows. It randomly generates a starting population of test
cases and evolves them to find the set of test cases that are able to cover the largest
number of branches. At the beginning of each generation, MOSA generates new
offsprings using crossover and mutation operators on the current population.
Then, it creates the population for the next generation by selecting tests among
the union of parents and offsprings as follows: it builds a first front Fj of test
cases using the preference criterion. Formally, a test case T, is preferred over
another test T, for a given branch b; if f;(T,) < f;(Tp). This is called main
criterion. In addition, if the two test cases are equally good in terms of branch
distance and approach level for the branch b; (i.e., f;(T,) = fi(Tp)), the shorter
test is preferred. This is called secondary criterion. Then, the remaining tests
are grouped in subsequent fronts Fi,..., Fy using the non-dominated sorting
algorithm [111]. MOSA composes the population used in the next generation
picking tests in order of fronts (i.e., first from Fj, than from F7, and so on) until
it reaches a fixed population size M. MOSA relies on the crowding distance as a
secondary selection criterion to increase the diversity of the population. MOSA
uses an archive to store test cases that cover previously uncovered branches.
When a new test that covers an already covered branch is found, MOSA uses the
secondary criterion to chose which one to keep between the one in the archive

and the new one.



22 Chapter 3. Readability and Understandability of Generated Test Code

3.2 Test Code Quality

Few studies directly focus on test case readability and understandability.
While it could be argued that code readability is not related to the type of
code, since it regards the form of the code (e.g., long lines of code negatively
affect readability in both source and test code), the same is not true for code
understandability. Indeed, previous studies specifically addressed the problem of
the quality of test cases such as test smells. In general, code smells are indicators
for design flaws with respect to the maintainability of a software system [52],
while test smells are code smells that regard test cases [146]. Test smells are not
desirable because they reduce the maintainability of the test cases and, thus, their
understandability. Test code has a distinct set of smells that relate to the ways
in which test cases are organized, how they are implemented, and how they in-
teract with each other. Van Deursen et al. [146] identified eleven static test code
smells. Such smells refer to tests making inappropriate assumptions on the avail-
ability of external resources (Mystery Guest and Resource Optimism), tests that
are long and complex (General Fizture, Eager Test, Lazy Test, Indirect Testing),
tests containing bad programming decisions (Assertion Roulette and Sensitive

Equality), and tests exposing signs of redundancy (Test Code Duplication).

Palomba et al. [107] conducted an empirical investigation on the diffuseness
of tests smells in test cases automatically generated by EVOSUITE [53]. They
found the 83% of the tests to be affected by at least one smell: among the others,
Eager Test was present in about a third of the generated classes. This smell
occurs when a test case exercises more than a single functionality [146]. Best
practices suggest that maintainable tests should not verify many functionalities
at once, in order to avoid test obfuscation [100]. Instead, test suites should be
structured following the Single-Condition Tests principle, as this provides better

defect localization [100] and, thus, understandability.

Besides being affected by a higher number of test smells, generated test cases
are also affected by other quality issues. Grano et al. [61] reported that automat-
ically generated test cases are significantly less readable than manually written

ones. Also, Shamshiri et al. [129] conducted a large empirical study in which they
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showed that developer take longer to understand automatically generated tests
compared to manually written ones.

Some steps were taken to tackle the problem of the low quality of automati-
cally generated tests. Daka et al. [38] proposed a domain-specific model of test
readability and an algorithm for producing more readable tests. They found that:
(i) their model outperforms previous work in terms of agreement with humans
on test case readability; (ii) their approach generates tests that were 2% more
readable, on average; (iii) humans prefer their optimized tests 69% of the times
and they can answer questions about tests 14% faster. However, they also report
that improved tests did not result in higher understandability. Specifically, the
correctness of the answers given by the developers about test cases with improved
readability was not significantly higher. This suggests that other factor should
also be considered to assess and improve the understandability of test cases.

Palomba et al. [108] defined two textual-based test code metrics, i.e., the
Coupling Between Test Methods (CBTM) and the Lack of Cohesion of a Test
Method (LCTM), and they use them as a proxy for test case quality. Their
findings show that using their metrics as a secondary criterion for MOSA allows
them to improve test quality.

Finally, Daka et al. [39] introduced an automated approach to generate de-
scriptive names for automatically generated unit tests by summarizing API-level
coverage goals to provide the benefits of well-named tests also to automated unit

test generation. They show that developers find generated names meaningful.
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“I seem, then, in just this little thing, to be wiser than this man at any rate, that
what I do not know I do not think I know either.”

Plato (quoting Socrates), Apology of Socrates.
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4.1 Introduction

Three models for source code readability prediction have been proposed in the
literature [21, 119, 43|, as previously discussed in Chapter 2.1. Such models aim at
capturing how the source code has been constructed and how developers perceive
it. The process cousists of (i) measuring specific aspects of source code, e.g., line
length and number of white lines, and (ii) using these metrics to train a binary
classifier that is able to tell if a code snippet is “readable” or “unreadable”. State-
of-the-art readability models define more than 80 features which can be mostly
divided in two categories: structural and visual features. The metrics belonging
to the former category aim at capturing bad practices such as lines too long and
good practices such as the presence of white lines; the ones belonging to the latter
category are designed to capture bad practices such as code indentation issues
and good practices such as alignment of characters. However, despite a plethora
of research that has demonstrated the impact of the source code vocabulary on
program understanding [86, 85, 29, 41, 83, 45, 138], the code readability models
from the literature are still syntactic in nature. The textual features that reflect
the quality of the source code vocabulary are very limited: only two features from
the previous models take are based on text, but they only take into account the
size of the vocabulary.

In this chapter we introduce a set of textual features that can be extracted
from source code to improve the accuracy of state-of-the-art code readability
models. Indeed, we hypothesize that source code readability should be captured
using both syntactic and textual aspects of source code. Unstructured informa-
tion embedded in the source code reflects, to a reasonable degree, the concepts of
the problem and solution domains, as well as the computational logic of the source
code. Therefore, textual features capture the domain semantics and add a new
layer of semantic information to the source code, in addition to the programming

language semantics. To validate the hypothesis and measure the effectiveness of
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the proposed features, we performed a two-fold empirical study: (i) we measured
to what extent the proposed textual features complement the ones proposed in
the literature for predicting code readability; and (ii) we computed the accuracy
of a readability model based on structural, visual, and textual features as com-
pared to the state-of-the-art readability models. Both parts of the study were
performed on a set of more than 600 code snippets that were previously evaluated,
in terms of readability, by more than 5,000 participants.

This chapter is organized as follows. Section 4.2 presents in detail the textual
features defined for the estimation of the source code readability. Section 4.3
describes the empirical study we conducted to evaluate the accuracy of a read-
ability model based on structural, visual and textual features. Finally, Section
4.5 concludes the chapter after a discussion of the threats that could affect the

validity of the results achieved in our empirical study (Section 4.3.4).

4.2 Text-based Code Readability Features

Well-commented source code and high-quality identifiers, carefully chosen and
consistently used in their contexts, are likely to improve program comprehension
and support developers in building consistent and coherent conceptual models of
the code [86, 85, 138, 41, 65, 18]. Our claim is that the analysis of the source
code vocabulary cannot be ignored when assessing code readability. Therefore,
we propose seven textual properties of source code that can help in characterizing
its readability. In the next subsections we describe the textual features introduced
to measure code readability.

The proposed textual properties are based on the syntactical analysis of the
source code by looking mainly for terms in source code and comments (i.e., the
source code vocabulary). Note that we use the word term to refer to any word
extracted from source code. To this, before computing the textual properties,
the terms were extracted form source code by following a standard pre-processing

procedure:

1. Remove non-textual tokens from the corpora, e.g., operators, special sym-

bols, and programming language keywords;
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2. Split the remaining tokens into separate words by using the under score or

camel case separators; e.g., getText is split into get and text;
3. Remove words belonging to a stop-word list (e.g., articles, adverbs) [11].

4. Extract stems from words by using the Porter algorithm [116].

4.2.1 Comments and Identifiers Consistency (CIC)

This feature is inspired by the QALP model proposed by Binkley et al. [19] and
aims at analyzing the consistency between identifiers and comments. Specifically,
we compute the Comments and Identifiers Consistency (CIC) by measuring the
overlap between the terms used in a method comment and the terms used in the

method body:
| Comments(m) N Ids(m)]

CIC(m) = | Comments(m) U Ids(m)|

where Comments and Ids are the sets of terms extracted from the comments and
identifiers in a method m, respectively. The measure has a value between [0, 1],
and we expect that a higher value of CIC is correlated with a higher readability
level of the code.

Note that we chose to compute the simple overlap between terms instead of
using more sophisticated approaches such as Information Retrieval (IR) tech-
niques (as done in the QALP model), since the two pieces of text compared here
(i.e., the method body and its comment) are expected to have a very limited
verbosity, thus making the application of IR techniques challenging [40]. Indeed,
the QALP model measures the consistency at file level, thus focusing on code
components having a much higher verbosity.

One limitation of CIC (but also of the QALP model) is that it does not
take into account the use of synonyms in source code comments and identifiers.
In other words, if the method comment and its code contain two words that are
synonyms (e.g., car and automobile), they should be considered consistent. Thus,

we introduce a variant of CIC aimed at considering such cases:

CIC(m). = | Comments(m) N (Ids(m) U Syn([ds(m))f

syn | Comments(m) U Ids(m) U Syn(Ids(m))
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where Syn(Ids(m)) is the set of all the synonyms of the terms in Ids(m). With
such a variant the use of synonyms between comments and identifiers contributes
to improving the value of CIC. We use WordNet [101] to determine the set of

synonyms of a given word.

4.2.2 Identifier Terms in Dictionary (ITID)

Empirical studies have indicated that full-word identifiers ease source code
comprehension [86]. Thus, we conjecture that the higher the number of terms
in source code identifiers that are also present in a dictionary, the higher the
readability of the code. Thus, given a line of code I, we measure the feature

Identifier terms in dictionary (ITID) as follows:

| Terms (1) N Dictionary|
| Terms(1)|

ITID(1) =

where Terms(l) is the set of terms extracted from a line { of a method and
Dictionary is the set of words in a dictionary (e.g., English dictionary). As for
the CIC, the higher the value of ITID, the higher the readability of the line of
code [. In order to compute the feature Identifier terms in dictionary for an entire
snippet S, it is possible to aggregate the ITID(l) for all the | € S —computed
for each line of code of the snippet— by considering the min, the max or the
average of such values. Note that the defined ITID is inspired by the Natural
Language Features introduced by Dorn [43].

4.2.3 Narrow Meaning Identifiers (NMI)

Terms referring to different concepts may increase the program comprehension
burden by creating a mismatch between the developers’ cognitive model and
the intended meaning of the term [41, 9]. Thus, we conjecture that a readable
code should contain more hyponyms, i.e., terms with a specific meaning, than
hypernyms, i.e., generic terms that might be misleading. Thus, given a line of

code [, we measure the feature Narrow meaning identifiers (NMI) as follows:

NMI() = Z particularity(t)
tel
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entity

abstraction
Hypernyms

attribute

state

v v
condition | feeling

Hyponyms

Figure 4.1: Example of hypernyms and hyponyms of the word “state”.

where ¢ is a term extracted from the line of code I and particularity(t) is com-
puted as the number of hops from the node containing ¢ to the root node in
the hypernym tree of ¢. Specifically, we use hypernym /hyponym trees for En-
glish language defined in WordNet [101]. Thus, the higher the NMI, the higher
the particularity of the terms in [, i.e., the terms in the line of code [ have a
specific meaning allowing a better readability. Figure 4.1 shows an example of
hypernyms/hyponyms tree: considering the word “state”, the distance between
the node that contains such a term from the root node, which contains the term
“entity”, is 3, so the particularity of “state” is 3. In order to compute the NMI for
an entire snippet 5, it is possible to aggregate the NMI(1),V; € S, by considering

the min, the max or the average of such values.

4.2.4 Comments Readability (CR)

While many comments could surely help to understand the code, they could
have the opposite effect if their quality is low. Indeed, a maintainer could start
reading the comments, which should ease the understanding phase. If such com-
ments are poorly written, the maintainer will waste time before starting to read
the code. Thus, we introduced a feature that calculates the readability of com-
ments (CR) using the Flesch-Kincaid [49] index, commonly used to assess read-
ability of natural language texts. Such an index considers three types of elements:

words, syllables, and phrases. A word is a series of alphabetical characters sepa-



4.2. Text-based Code Readability Features 33

rated by a space or a punctuation symbol; a syllable is “a word or part of a word
pronounced with a single, uninterrupted sounding of the voice |[...] consisting of a
single sound of great sonority (usually a vowel) and generally one or more sounds
of lesser sonority (usually consonants)” [1]; a phrase is a series of words that ends
with a new-line symbol, or a strong punctuation point (e.g., a full-stop). The

Flesch-Kincaid (FK) index of a snippet S is empirically defined as:

words(S) 84.600 syllables(S)

FK = 206. - 1.015——
($) = 206.835 0 5phmses(5’) words(.S)

While word segmentation and phrase segmentation are easy tasks, it is a bit
harder to correctly segment the syllables of a word. Since such features do not
need the exact syllables, but just the number of syllables, relying on the definition,
we assume that there is a syllable where we can find a group of consecutive vowels.
For example, the number of syllables of the word “definition” is 4 (definition).
Such an estimation may not be completely valid for all the languages.

We calculate the CR by (i) putting together all commented lines from the
snippet S; (ii) joining the comments with a “.” character, in order to be sure that
different comments are not joined creating a single phrase; (iii) calculating the

Flesch-Kincaid index on such a text.

4.2.5 Number of Meanings (NM)

All the natural languages contain polysemous words, i.e., terms which could
have many meanings. In many cases the context helps to understand the specific
meaning of a polysemous word, but, if many terms have many meanings it is
more likely that the whole text (or code, in this case) is ambiguous. For this
reason, we introduce a feature which measures the number of meanings (NM), or
the level or polysemy, of a snippet. For each term in the source code, we measure
its number of meanings derived from WordNet [101]. In order to compute the
feature Number of Meanings for an entire snippet .S, it is possible to aggregate
the NI(1) values—computed for each line of code [ of the snippet—considering
the max or the average of such values. We do not consider the minimum but
still consider the maximum, because while it is very likely that a term with few

meanings is present, and such a fact does not help in distinguishing readable
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public void buildModel () {
if (getTarget() != null) {

Object target = getTarget();

Object kind = Model.getFacade().getAggregation(target);

if (kind == null

|| kind.equals(Model.getAggregationKind().getNone())) {

setSelected(ActionSetAssociationEndAggregation. NONE_COMMAND) ;

} else {
setSelected(ActionSetAssociationEndAggregation. AGGREGATE_COMMAND) ;

Figure 4.2: Example of computing textual coherence for a code snippet.

snippets from not-readable ones, the presence of a term with too many meanings

could be crucial in identifying unreadable snippets.

4.2.6 Textual Coherence (TC)

The lack of cohesion of classes negatively impacts the source code quality and
correlates with the number of defects [95, 145]. Based on this observation, our
conjecture is that when a snippet has a low cohesion (i.e., it implements several
concepts), it is harder to comprehend than a snippet implementing just one “con-
cept”’. The textual coherence of the snippet can be used to estimate the number
of “concepts” implemented by a source code snippet. Specifically, we considered
the syntactic blocks of a specific snippet as documents. We parse the source code
and we build the Abstract Syntax Tree (AST) in order to detect syntactic blocks,
which are the bodies of every control statement (e.g., if statements). We com-
pute (as done for Comments and Identifiers Consistency) the vocabulary overlap
between all the possible pairs of distinct syntactic blocks. The Textual coherence
(TC) of a snippet can be computed as the max, the min or the average overlap
between each pairs of syntactic blocks. For instance, the method in Figure 4.2 has
three blocks: Bj (lines 2-11), By (lines 5-8), and Bs (lines 8-10); for computing
TC, first, the vocabulary overlap is computed for each pair of blocks, (B; and
By, By and Bs, By and Bs); then the three values can be aggregated by using

the average, the min, or the max.
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4.2.7 Number of Concepts (NOC)

Textual Coherence tries to capture the number of implemented topics in a
snippet at block level. However, its applicability may be limited when there
are few syntactic blocks. Indeed, if a snippet contains just a single block, such a
feature is not computable at all. Besides, Textual Coherence is a coarse-grain fea-
ture, and it works under the assumption that syntactic blocks are self-consistent.
Therefore, we introduced a measurement which is able to directly capture the
Number of Concepts implemented in a snippet at line-level. It is worth noting
that such features can be computed also on snippets that may not be syntacti-
cally correct. In order to measure the Number of Concepts, as a first step, we
create a document for each line of a given snippet. All the empty documents, re-
sulting from empty lines or lines containing only non-alphabetical characters, are
deleted. Then, we use a density-based clustering technique, DBSCAN [47, 123],
in order to create clusters of similar documents (i.e., lines). We measure the dis-
tance between two documents (represented as sets of terms) as using the Jaccard

index:
|d1 N da|

NOCyist(di, d2) = [ U da)|

Finally, we compute the “Number of Concepts” (NOC) of a snippet m as the

number of clusters (Clusters(m)) resulting from the previous step:
NOC (m) = |Clusters(m)|

We also compute an additional feature NOC,, o, which results from normalizing

NOC with the number of documents extracted from a snippet m:

| Clusters(m)]
| Documents(m)]

NOChrorm (m) =

It is worth noting that NOC and NOC,,,, measure something that has an
opposite meaning with respect to Textual Coherence. While Textual Coherence
is higher if different blocks contain many similar words, Number of Concepts is

lower if different lines contain many similar words. This happens because when
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public boolean isPlaying(TGMeasure measure) {
// thread safe
TGMeasure playMeasure = this.playMeasure;

return (isPlaying() && playMeasure != null && measure.equals(playMeasure));

Figure 4.3: Example of a small method.

several lines contain similar words, they are put in the same cluster and, thus, the
number of clusters is lower, as well as the whole NOC' and NOC,,,, features.

Figure 4.3 shows an example of a method with just a block. In this case, TC
can not be computed. On the other hand, NOC and NOC,,,., are computed
as follows. As a first step, 4 documents are extracted from the snippet in Figure
4.3, namely: “public boolean is playing TG measure measure”, “thread safe”, “TG
measure play measure this play measure”, “return is playing play measure null
measure equals play measure”. Assuming that such documents are clustered all
together, except for “thread safe”, which constitutes a cluster on its own, we have
that NOC(isPlaying) = 2 and NOC,,, (isPlaying) = % =0.5.

DBSCAN does not need to know the number of clusters, which is, actually,
the result of the computation that we use to define NOC' and NOC,, . Instead,
this algorithm needs the parameter €, which represents the maximum distance at
which two documents need to be in order to be grouped in the same cluster. We
did not choose € arbitrarily; instead we tuned such a parameter, by choosing the
value that allows the features NOC and NOC,,,., to achieve, alone, the highest
readability prediction accuracy. In order to achieve this goal, we considered
all the snippets and the oracles from the three data sets described in Section
4.3 and we trained and tested nine classifiers, each of which contained just a
feature, NOC*®, where NOC* is NOC' computed using a specific ¢ parameter
for DBSCAN. Since the distance measure we use ranges between 0 and 1, also €
can range between such values and, thus, the values we used as candidate e for
the nine NOC*® features are {0.1,0.2,...,0.9}; we discarded the extreme values,
0 and 1, because in these cases each document would have been in a separate
cluster or all documents would have been in the same cluster, respectively. We

use each classifier containing a single NOC* feature to predict readability, and we
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-+ NOC*
—# NOC¥orm

Accurac
o
S
!

Figure 4.4: Accuracy of different classifiers based only on NOC*® (blue) and
NOCS (red).

norm

pick the value of € that leads to the best classification accuracy with 10-fold cross-
validation. The classification technique used for tuning € was Logistic Regression,
also used in Section 4.3. We repeated the same procedure for NOC,, .. Figure
4.4 shows the accuracy achieved by each classifier containing different NOC*® (in
blue) or NOC*, (in red). The best € value for NOC' is 0.1, while for NOC, o,

norm
it is 0.3, as the chart shows.

4.2.8 Readability vs Understandability

Posnett et al. [119] compared the difference between readability and under-
standability to the difference between syntactic and semantic analysis. Readabil-
ity measures the effort of the developer to access the information contained in
the code, while understandability measures the complexity of such information.
We defined a set of textual features that still capture aspects of code related to
the difficulty of accessing the information contained in a snippet. For example,
NOC estimates the number of concepts implemented in a snippet. A snippet
with a few concepts, potentially more readable, can still be hard to understand

if a few concepts are not easy to understand. In our opinion, textual features,
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which do not take into account semantics, like the ones we defined, can be used

to measure readability.

4.3 Evaluation

The goal of this study is to analyze the role played by textual features in
assessing code readability, with the purpose of improving the accuracy of state-
of-the-art readability models. The quality focus is the prediction of source code
readability, while the perspective of the study is of a researcher, who is interested
in analyzing to what extent structural, visual, and textual information can be
used to characterize code readability.

We formulated the following research questions (RQs):

e RQ: To what extent the proposed textual features complement the ones
proposed in the literature for predicting code readability? With this prelim-
inary question we are interested in verifying whether the proposed textual
features complement the ones from the state-of-the-art when used to mea-
sure code readability. This represents a crucial prerequisite for building an

effective comprehensive model considering both families of features.

e RQ,: What is the accuracy of a readability model based on structural,
visual, and textual features as compared to the state-of-the-art readability
models? This research question aims at verifying to what extent a read-
ability model based on structural, visual, and textual features overcomes
readability models mainly based on structural features, such as the model
proposed by Buse and Weimer [21]|, the one presented by Posnett et al.
[119], and the most recent one introduced by Dorn [43].

4.3.1 Data Collection

An important prerequisite for evaluating a code readability model is repre-
sented by the availability of a reliable oracle, i.e., a set of code snippets for which
the readability has been manually assessed by humans. This allows measuring to
what extent a readability model is able to approximate human judgment of source

code readability. All the datasets used in the study are composed of code snippets
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for which the readability has been assessed via human judgement. In particular,
each snippet in the data sets is accompanied by a flag indicating whether it was
considered readable by humans (i.e.,, binary classification). The first dataset (in
the following Dpg.q,) was provided by Buse and Weimer [21] and it is composed
of 100 Java code snippets having a mean size of seven lines of code. The read-
ability of these snippets was evaluated by 120 student annotators. The second
dataset (in the following Dg,r,) was provided by Dorn [43] and represents the
largest dataset available for evaluating readability models. It is composed of 360
code snippets, including 120 snippets written in CUDA, 120 in Java, and 120 in
Python. The code snippets are also diverse in terms of size including for each
programming language the same number of small- (~10 LOC), medium- (~30
LOC) and large- (~50 LOC) sized snippets. In D g4, the snippets’ readability
was assessed by 5,468 humans, including 1,800 industrial developers.

The main drawback of the aforementioned datasets (Dpg., and Do) is that
some of the snippets are not complete code entities (e.g., methods); therefore,
some of the data instances in Dyg,, and Dy, datasets are code fragments that
only represent a partial implementation (and thus they may not be syntactically
correct) of a code entity. This is an impediment for computing one of the new
textual features introduced in this chapter: textual coherence (TC); it is impos-
sible to extract code blocks from a snippet if an opening or closing bracket is
missing. For this reason, we built an additional dataset (D), by following
an approach similar to the one used in the previous work to collect Dpg., and
D gorn [21, 43]. Firstly, we extracted all the methods from four open source Java
projects, namely jUnit, Hibernate, jFreeChart and ArgoUML, having a size be-
tween 10 and 50 lines of code (including comments). We focused on methods

because they represent syntactically correct and complete code entities of code.

Initially, we identified 13,044 methods for D,,.,, that satisfied our constraint on
the size. However, the human assessment of all the 13K+ methods is practically
impossible, since it would require a significant human effort. For this reason,
we evaluated the readability of only 200 sampled methods from D,.,. The
sampling was not random, but rather aimed at identifying the most representative
methods for the features used by all the readability models defined and studied
in this chapter. Specifically, for each of the 13,044 methods we calculated all
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Snippet 2 of 200

as the moon sets over the early morning Merlin, Oregon
ountains, our intrepid adventurers type

static public Test createTest(Class<?> theClass, String name) {
onstructor<?> constructor;

try (
nstructor = getTestConstructor (theClass);
} cateh (NoSuchethodException ¢)
return warning("Class * + theClass.getName() + * has no public constructor TestCase(String name) or TestCase()");

Object test;
try {
if (constructor.getParameterTypes().length == 0) {
st = constructor.newInstance (new Object[0]);
if (test instanceof TestCase) {
({TestCase) tast) . sethane (nane) ;

} etde {
test = constructor.newInstance (new Object[]{name});
} catch (InstantiationException e) {
return (warning("Cannot instantiate test case: " + name + " (" + exceptionToString(e) + ")"));
} catch (InvocationTargetException e) {
return (warning("Exception in constructor: " + name + " (" + exceptionToString(e.getTargetException()) + ")"));
} catch (IllegalAccessException e)
return (warning("Cannot access test case: " + name + " (" + exceptionToString(e) + ")"));

Y
return (Test) test;

LmmmEe

1 (very unreadable) - 5 (very readable)

Logout

Figure 4.5: Web application used to collect the code readability evaluation for
our new dataset D, qqp-

the features (i.e., all the features proposed in the literature and textual ones
proposed in this chapter) aiming at associating each method with a feature vector
containing the values for each feature. Then, we used a greedy algorithm for
center selection [77] to find the 200 most representative methods in Dye,,. The
distance function used in the implementation of such algorithm is represented by
the Euclidean distance between the feature vector of two snippets. The adopted
selection strategy allowed us (i) to enrich the diversity of the selected methods
avoiding the presence of similar methods in terms of the features considered by the
different experimented readability models, and (ii) to increase the generalizability
of our findings.

After selecting the 200 methods in D,,, we asked 30 Computer Science
students from the College of William and Mary to evaluate the readability r of
each of them. The participants were asked to evaluate each method using a five-
point Likert scale ranging between 1 (very unreadable) and 5 (very readable). We
collected the rankings through a web application (Figure 4.5) where participants
were able to (i) read the method (with syntax highlighting); (ii) evaluate its
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readability; and (iii) write comments about the method. The participants were
also allowed to complete the evaluation in multiple rounds (e.g., evaluate the first
100 methods in one day and the remaining after one week). Among the 30 invited
participants, only nine completed the assessment of all the 200 methods. This
was mostly due to the large number of methods to be evaluated; the minimum
time spent to complete this task was about two hours. In summary, given the 200
methods in m; € Dye, and nine human taggers t; € T', we collected readability
rankings r(m;,t;),V; ;,% € [1,200],7 € [1,9].

After having collected all the evaluations, we computed, for each method m €
D e, the mean score that represents the final readability value of the snippet,

9. .
i.e., 7(m) = w

. We obtained a high agreement among the participants with
Cronbach-a=0.98, which is comparable to the one achieved in Djyg,=0.96. This
confirms the results reported by Buse and Weimer in terms of humans agreement
when evaluating/ranking code readability: “humans agree significantly on what
readable code looks like, but not to an overwhelming extent” [21]. Note that code
readability evaluation by using crisp categories (e.g.,, readable, non-readable) is
required to build a readability model over the collected snippets; therefore, for
the methods in D¢, we used the mean of the readability score among all the
snippets as a cut-off value. Specifically, methods having a score below 3.6 were
classified as non-readable, while the remaining methods (i.e., 7(m) > 3.6 ) as
readable. A similar approach was also used by Buse and Weimer [21]. Figure 4.6
shows the distribution of the average readability scores for the snippets in the

new dataset.

4.3.2 Analysis Method

In order to answer RQ; and RQs, we built readability models (i.e., binary
classifiers) for each dataset (i.e., Dpgrw, Ddorn, and Dyey) by using different sets
of state-of-the-art and our textual features: Buse and Weimer’'s (BWF) [21],
Posnett’s (PF) [119], Dorn’s (DF) [43], our textual features (TF), and all the
features (All-Features= BWF U PF U DF UTF). With notational purposes, we
will use R{Features) to denote a specific readability model R we built using a set
of Features. For instance, R(T'F) denotes the textual features-based readability

model. It is worth noting that with our experiments we are not running the same
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Figure 4.6: Estimated probability density of the average readability scores (band-
width: 0.05).

models proposed in the prior works, but, we are using the same features proposed

by previous works.

As for the classifier used with the models, we relied on logistic regression be-
cause it has been shown to be very effective in binary-classification and it was
used by Buse and Weimer for their readability model [21]. Besides, such a tech-
nique does not require parameter tuning. To avoid over-fitting, we performed
feature selection by using linear forward selection with a wrapper strategy [64]
available in the Weka machine learning toolbox. In the wrapper selection strat-
egy each candidate subset of features is evaluated through the accuracy of the
classifier trained and tested using only such features. The final result is the sub-
set of features which obtained the maximum accuracy. We used 10 as “search
termination” parameter: such a parameter indicates the amount of backtracking

of the algorithm.

In the case of RQ; we analyzed the complementarity of the textual features-
based model with the models trained with state-of-the-art features, by computing

overlap metrics between R(TF) and each of the three competitive models (i.e.,
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R(BWF), R(PF), R(DF)). Specifically, given two readability models under
analysis, R(T'F) a model based on textual features, and R{SF) a model based on
state-of-the-art features (i.e., SF € {BWF, PF,DF}) !, the metrics are defined

as in the following;:

E(R(TF)) NE(R(SF))|
§(R(TF)NR(SF)) = €(R(TF)) Ug(R<5F>)\%
_ [E(R(TF)) \ §(R(SF)))|
§(R(TF)\ R(SF)) = €(R(TF)) Ug(R(SF>)|%
_ |6(R{SF)) \§(R(TF))|
§(R(SF)\ R(TF)) = €(R(TF)) U £(R<SF>)I%

where £(R(TF)) and £(R(SF)) represent the sets of code snippets correctly
classified as readable/non-readable by R(T'F') and the competitive model R(SF)
(SF € {BWF, PF,DF}), respectively. {(R(T'F)NR(SF)) measures the overlap
between code snippets correctly classified by both techniques, {(R(SF)\ R(TF))
measures the snippets correctly classified by R(TF) only and wrongly classified
by R(SF), and {(R(T'F) \ R(SF)) measures the snippets correctly classified by
R(SF) only and wrongly classified by R(TF).

Turning to the second research question (RQs2), we compared the accuracy of
a readability model based on both all the structural, visual, and textual features
(R{ All-Features )) with the accuracy of the three baselines, i.e., R(BWF),
R(PF) and R(DF). To further show the importance of the new textual features,
we also compared R( All-Features ) to an additional baseline, namely a model
based on all the state-of-the-art features (R(SVF) = R(BWF + PF + DF)). In

order to compute the accuracy, we fist compute:

e True Positives (T'P): number of snippets correctly classified as readable;
e True Negatives (T'N): number of snippets correctly classified as non-readable;

e False Positives (F'P): number of snippets incorrectly classified as readable;

INote that later in this chapter we will replace R{(SF) with R(BW F), R(PF), or R{(DF).
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e False Negatives (F'N): number of snippets incorrectly classified as non-

readable;

TP+TN
then, we compute accuracy as TBT

TPITNTFPIFN " € the rate of snippets correctly

classified.

In addition, we report the accuracy achieved by the readability model only
exploiting textual features (i.e., R(T'F)). In particular, we measured the per-
centage of code snippets correctly classified as readable/non-readable by each
technique on each of the three datasets. We also report the AUC achieved by all
the models, in order to compare them taking into account an additional metric,
widely used for evaluating the performance of a classifier.

Each readability model was trained on each dataset individually and a 10-
fold cross-validation was performed. The process for the 10-fold cross-validation
is composed of five steps: (i) randomly divide the set of snippets for a dataset
into 10 approximately equal subsets, regardless of the projects they come from;
(ii) set aside one snippet subset as a test set, and build the readability model with
the snippets in the remaining subsets (i.e., the training set); (iii) classify each
snippet in the test set using the readability model built on the snippet training
set and store the accuracy of the classification; (iv) repeat this process, setting
aside each snippet subset in turn; (v) compute the overall average accuracy of
the model.

Finally, we used statistical tests to assess the significance of the achieved
results. In particular, since we used 10-fold cross validation, we considered the
accuracy achieved on each fold by all the models. We used the Wilcoxon test [42]
(with & = 0.05) in order to estimate whether there are statistically significant
differences between the classification accuracy obtained by R(T'F') and the other
models. Our decision for using the Wilcoxon test, is a consequence of the usage
of the 10-fold cross validation to gather the accuracy measurements. During the
cross-validation, each fold is selected randomly, but we used the same seed to
have the same folds for all the experiments. For example, the 5" testing fold
used for R(BWF) is equal to the 5 testing fold used with R(All-Features).
Consequently, pairwise comparisons are performed between related samples.

Because we performed multiple pairwise comparisons (i.e., All-features vs.

the rest), we adjusted our p-values using the Holm’s correction procedure [70].
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Dataset R(TF)NR(BWF) R(TF)\ R(BWF) R(BWF)\ R(TF)

Dygow 2% 10% 18%
Dgorn 69% 15% 16%
Diew 64% 20% 16%
Overall 68% 15% 17%

R(TF)NR(PF)  R(TF)\R(PF) _ R(PF)\R(TF)
Dipgew 71% 12% 17%
Daorn 66% 20% 14%
Dew 2% 20% 8%
Overall 70% 17% 13%

RTF)NR(DF) _ R(TF)\R(DF) _ R(DF)\ R(TF)
Dypgew 70% 11% 19%
Dgorn 78% 10% 12%
Dyew 76% 12% 12%
Overall 75% 11% 14%

Table 4.1: RQq: Overlap between R(TF) and R(BWF), R(PF), and R(DF).

In addition, we estimated the magnitude of the observed differences by using
the Cliff’s Delta (d), a non-parametric effect size measure for ordinal data [62].
Cliff’s d is considered negligible for d < 0.148 (positive as well as negative values),
small for 0.148 < d < 0.33, medium for 0.33 < d < 0.474, and large for d > 0.474
[62].

4.3.3 RQ1: Complementarity of the Readability Features

Table 4.1 reports the overlap metrics computed between the results of the
readability models using textual, structural, and visual features. Across the three
datasets, the R(TF) model exhibits an overlap of code snippets correctly classified
as readable/non-readable included between 68% (R(T'F) N R(BWF)) and 75%
(R{TF) N R(DF)). This means that, despite the competitive model considered,
about 30% of the code snippets are differently assessed as readable/non-readable
when only relying on textual features. Indeed, (i) between 11% (R(T'F)\ R(DF))
and 17% (R(T'F)\R(PF)) of code snippets are correctly classified only by R(T'F)
and (ii) between 13% (R(PF)\R(T'F')) and 17% (R(BW F)\R(T'F')) are correctly
classified only by the competitive models.

These results highlight a high complementarity between state-of-the-art and

textual features when used for readability assessment. An example of a snippet
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/x*

* 1. Recreate the collection key -> collection map
* 2. rebuild the collection entries

* 3. call Interceptor.postFlush()

*/

protected void postFlush(SessionImplementor session) throws HibernateException {
LOG.trace( "Post flush” );

final PersistenceContext persistenceContext = session.getPersistenceContext();
persistenceContext.getCollectionsByKey ().clear();

// the database has changed now, so the subselect results need to be invalidated

// the batch fetching queues should also be cleared - especially the collection
batch fetching one

persistenceContext.getBatchFetchQueue().clear();

for ( Map.Entry<PersistentCollection, CollectionEntry> me : IdentityMap.
concurrentEntries( persistenceContext.getCollectionEntries() ) ) {
CollectionEntry collectionEntry = me.getValue();

PersistentCollection persistentCollection = me.getKey();
collectionEntry.postFlush(persistentCollection);
if ( collectionEntry.getlLoadedPersister() == null ) {

//if the collection is dereferenced, remove from the session cache
//iter.remove(); //does not work, since the entrySet is not backed by the
set
persistenceContext.getCollectionEntries ()
.remove (persistentCollection);

else {

//otherwise recreate the mapping between the collection and its key

CollectionKey collectionKey = new CollectionKey (
collectionEntry.getlLoadedPersister (),
collectionEntry.getLoadedKey ()

);

persistenceContext.getCollectionsByKey () .put(collectionKey,

persistentCollection);

}

Figure 4.7: Code snippet from the new dataset correctly classified as “non-
readable” only when relying on state-of-the-art features and missed when
using textual features.
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protected void scanAnnotatedMembers (Map<Class<? extends Annotation>, List<
FrameworkMethod>> methodsForAnnotations, Map<Class<? extends Annotation>, List<
FrameworkField>> fieldsForAnnotations) {
for (Class<?> eachClass : getSuperClasses(fClass)) {
for (Method eachMethod : MethodSorter.getDeclaredMethods (eachClass)) {
addToAnnotationLists(new FrameworkMethod(eachMethod), methodsForAnnotations)

}

// ensuring fields are sorted to make sure that entries are inserted

// and read from fieldForAnnotations in a deterministic order

for (Field eachField : getSortedDeclaredFields(eachClass)) {
addToAnnotationLists(new FrameworkField(eachField), fieldsForAnnotations);

}

Figure 4.8: Code snippet from the new dataset correctly classified as “readable”
only when relying on textual features and missed by the competitive tech-
niques.

for which the textual features are not able to provide a correct assessment of its
readability is reported in Figure 4.7. Such a method (considered “unreadable”
by human annotators) has a pretty high average textual coherence (0.58), but,
above all, it has a high comment readability and comment-identifiers consistency,
i.e., many terms co-occur in identifiers and comments (e.g., “batch” and “fetch”).
Nevertheless, some lines are too long, resulting in a high maximum and average
line length (146 and 57.3, respectively), both impacting negatively the perceived
readability [21].

Figure 4.8 reports, instead, a code snippet correctly classified as “readable”
only when exploiting textual features. The snippet has suboptimal structural
characteristics, such as a high average/maximum line length (65.4 and 193, re-
spectively) and a high average number of identifiers (2.7), both negatively cor-
related with readability. Nevertheless, the method has high average textual co-
herence (~ 0.73) and high comments readability (100.0). The source code can
be read almost as natural language text and the semantic of each line is pretty

clear, but such an aspect is completely ignored by the state-of-the-art features.



48 Chapter 4. Using Textual Information to Measure Code Readability

Dataset Snippets R(BWF) R(PF) R(DF) R(T'F) R(SVF) R( All-features)
Dypgens 100 81.0% 78.0% 81.0%  74.0% 83.0% 87.0%
D gorn 360 78.6% 72.8% 80.0%  78.1% 80.6% 83.9%
Diew 200 72.5%  66.0% 75.5%  76.5% 77.0% 84.0%
Overall,,,, 660 771% 71.5% 78.8% T77.0% 79.9% 84.4%
Overall,,, 660 77.4% 72.3% 78.8% 76.2% 80.2% 85.0%

Table 4.2: RQ2: Average accuracy achieved by the readability models in the
three datasets.

Summary for RQ;. A code readability model solely relying on textual
features exhibits complementarity with models mainly exploiting structural
and visual feature. On average, the readability of 11%-17% code snippets
is correctly assessed only when using textual features. Similarly, 13-17% of
code snippets are correctly assessed only when using structural and visual

features.

4.3.4 RQ2: Accuracy of the Readability Model

Table 4.2 shows the accuracy achieved by (i) the comprehensive readability
model, namely the model which exploits structural, visual, and textual features
(All-Features), (ii) the model solely exploiting textual features (TF), (iii) the
three state-of-the-art models mainly based on structural features (BWF, PF, and
DF) and (iv) the model based on all the state-of-the-art features. We report the
overall accuracy achieved by each model using two different proxies: overall,,,
and overall,,,. Overall,,, is computed as the weighted mean of the accuracy
values for each dataset, where the weights are the number of snippets in each
dataset. Overall,,, is computed as the arithmetic mean of the accuracy values
for each dataset.

When comparing all the models, it is clear that textual features achieve an
accuracy comparable and, on average, higher than the one achieved by the model
proposed by Posnett et al. (R{PF)). Nevertheless, as previously pointed out,
textual-based features alone are not sufficient to measure readability: indeed, the
models R(BWF) and R(DF) always achieve a higher accuracy than R{TF).
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Dataset Snippets R(BWF) R(PF) R(DF) R(TF) R(SVF) R( All-features)
Dy 100 0.874 0.880 0.828 0.762 0.850 0.867
D iorn 360 0.828 0.781 0.826 0.830 0.842 0.874
Dhrew 200 0.791 0.746 0.792 0.800 0.782 0.853
Overall,,,,, 660 0.824 0.785 0.816 0.811 0.825 0.867
Overall,,, 660 0.831 0.802 0.815 0.797 0.825 0.865

Table 4.3: RQ2: Average AUC achieved by the readability models in the three
datasets.

On the other hand, if we use a model which combines all the features, the
combined model achieves an accuracy higher than the other models when analyz-
ing each dataset individually. In addition, we obtained an overall accuracy (i.e.,
using all the accuracy samples as a single dataset) higher than all the compared
models for both the proxies, i.e., overall,, (from 6.2% with respect to R(DF) to
12.7% with respect to R(PF')) and overall,,, (from 5.6% with respect to R{DF’)
to 12.9% with respect to R{PF)). It is also worth noting that R{ All-features )
achieves an higher accuracy also compared to a model containing all the state-
of-the-art features together. This further shows that textual features have an
important role.

Since the results in terms of accuracy may depend on a specific threshold, we
also report in Table 4.3 the Area Under the Curve (AUC) achieved by all the
readability models. Also in this case, we report the overall accuracy achieved by
each model using the two proxies previously defined, i.e., overall,,, (weighted
average) and overall,,, (arithmetic average). The AUC values, overall, confirm
that the combined model outperforms the other models. Nevertheless, we can
see that the overall,,, AUC achieved by R(TF) is comparable to the overall,,,
AUC achieved by R(DF'), and slightly minor than the one achieved by R(BWF).
While in terms of accuracy R(DF') seems to be slightly better than R(BWF'),
in terms of AUC, the opposite is true. Furthermore, there is a high difference
in terms of accuracy between R( All-features ) and all the other models on the
dataset by Buse and Weimer, but in terms of AUC this difference is less evident
and, instead, other models achieve higher AUC (e.g., R(PF)).

Table 4.4 shows the p-values after correction and the Cliff’s delta for the pair-

wise comparisons performed between the model that combines structural, visual,
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Dataset R(BWF) R(PF) R(DF) R(TF) R(SVF)
Dygw ~ 0.70(d=0.27) 0.70(d = 0.44) 0.70(d = 0.31)  0.21(d = 0.65)  0.70(d = 0.21)
Diorn  0.10(d =0.53) 0.03(d=0.85) 0.22(d=0.31) 0.22(d = 0.49)  0.22(d = 0.30)
Do 0.09(d = 0.55) 0.04(d=0.77) 0.15(d=045) 0.09(d=0.43) 0.15(d = 0.39)
Do 0.01(d =0.43) 0.00(d =0.64) 0.01(d=0.33) 0.00(d=0.51) 0.01(d = 0.28)

Table 4.4: RQ2: Comparisons between the accuracy of R{All-features) and each
one of state-of-the-art models.

ALL — —e——

SVF — —e——
§ TF —e——
p=}
]
ﬁ'f DF — ——e———

PF ——e———
BWF - I I I I I I
0.65 0.70 0.75 0.80 0.85 0.90

Accuracy (mean and Cls)

Figure 4.9: Mean accuracy and confidence intervals (CIs) of the compared models.

and textual features and the other models (in bold statistically significant values).
When analyzing the results at dataset granularity, we did not find significant dif-
ferences between All-Features and the other models. However, the effect size is
medium-large (i.e., d > 0.33) in most of the comparisons. This issue of no sta-
tistical significance with large effect size is an artifact of the size of the samples
used with the test, which has been reported previously by Cohen [33] and Harlow
et al. [67]; in fact, the size of the samples used in our tests for each dataset is 10
measurements (note that we performed 10-fold cross validation). In that sense,
we prefer to draw conclusions (conservatively) from the tests performed on the
set Dy, which has a larger sample (30 measurements). When using the datasets
as a single one (i.e., Dgyy), there is significant difference in the accuracy when
comparing R({All-features) to the other models; the results are confirmed with
the Clift’s d that suggest a medium-large difference (i.e., d > 0.33) in all the cases
except for R(SV F'), for which the difference is, overall, small (0.28). It is worth
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Dygew Daorn Daew

Rank Feature ‘Weight Rank Feature ‘Weight Rank Feature ‘Weight

= 5  #identifiers,,, 0.07 3 #comments,, 0.05 19 Indentation length,,, 0.02
= 8  #identifiers,,g 0.06 8  #identifiers,,ax 0.03 27 Identifiers length,, .. 0.02
« 11 Line length,qq 0.05 14 #foperatorsgy, 0.02 31 #commentsgy, 0.02
10 Volume 0.05 9  Entropy 0.03 8 Lines 0.02

) 26 Entropy 0.03 18  Volume 0.02 10 Volume 0.02
36 Lines 0.02 50 Lines 0.01 58  Entropy 0.01

R 2 Area (Strings/Comments) 0.08 2 #comments (Visual Y) 0.05 1 #comments (Visual Y) 0.04
= 3 Arca (Operators/Comments)  0.08 5 #numbers (Visual Y)  0.03 3 #conditionals (DFT)  0.04
4 Area (Identifiers/Comments)  0.08 6 #comments (Visual X) 0.03 5 #numbers (DFT) 0.03

. 1 CR 0.09 1 CR 0.09 2 TCrin 0.04
: 38 TCauy 0.02 4 ITID 4y 0.03 4 CR 0.04
39 NOC 0.02 12 TChaw 0.02 7 NOC 0.02

Table 4.5: RQ2: Evaluation of the single features using ReliefF.

noting that we considered the union of the results obtained on the three datasets
rather than running a new 10-fold cross validation on a dataset containing all the
data points from the three dataset. We did this because such datasets are very
different from one another as for number of evaluators, number of snippets, and
data collection procedure.

Figure 4.9 illustrates the difference in the accuracy achieved with each model
by using the mean accuracy and confidence intervals (CIs) on D,;;. There is a 95%
of confidence that the mean accuracy of R{All-features) is larger than R(BWF),
R(PF), and R(TF) (i.e., there is no overlap between the ClIs). Although the
mean accuracy of R{All-features) is the largest one in the study, there is an over-
lap with the CIs for R(DF) and R(SVF). Combining R(BWF), R(PF), and
R(DF), improves the accuracy on average when compared to R(TF). There-
fore, including the proposed textual features in state-of-the-art models, overall,
improves the accuracy of the readability model, with significant difference when
compared to the other models. The statistical tests also confirm that using only
textual features is not the best choice for a code readability model.

Regarding individual features, we investigated the most relevant ones for each
combination dataset-model. Table 4.5 reports the importance (i.e., weight) of sin-
gle features, using the ReliefF attribute selection algorithm [76, 78]. Specifically,
we report the three best features for each pair dataset-model, specifying also their
ranking in the complete list of features for the same dataset and their importance
weight. We use ReliefF instead of the feature selection technique we used to build
and test our model because it provides a weight for each feature and it allows

us to make a ranking. The textual features that, overall, show the best ReliefF
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Figure 4.10: Average importance weights of all the textual features.

values (i.e., weight and ranking) are Comments Readability, Textual Coherence
and Number of Concepts, since they are in the top-three positions for the three
datasets. Besides, the ranking values confirm what Table 4.2 previously hinted,

e., that textual features are useful in Dorn’s dataset and in the new dataset,
but they are less useful in Buse and Weimer’s dataset; indeed, besides CR, the
other features have a low ReliefF value. Finally, Figure 4.10 shows the average
attribute importance weight of all the textual features: it is clear that Comments
Readability is the best predictor of code readability among the textual features,
achieving an average ReliefF which is higher than the double of the second best
predictor (i.e., TC nin)-

Summary for R@Q>. A comprehensive model of code readability that com-
bines structural, visual, and textual features is able to achieve a higher ac-
curacy than all the state-of-the-art models. The magnitude of the difference,
in terms of accuracy, is mostly medium-to large when considering structural,
visual, and textual models. The minimum improvement is of 6.2% and, the
difference is statistically significant when compared to the other models (i.e.,

Buse and Weimer, Postnet et al., Dorn, and Textual features).
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ML Technique BWF PF DF TF  All-Features
BayesNet 76.0% 76.0% 68.0% 52.0% 74.0%
§ ML Perceptron 76.0% 77.0% 78.0% 72.0% 83.0%
Q SMO 82.0% 78.0% 79.0% T74.0% 77.0%
RandomForest  78.0% 78.0% 73.0% 70.0% 75.0%
N BayesNet 75.0% 68.1% 74.7% 68.1% 75.8%
§ ML Perceptron 74.2% 70.3% 72.5% 69.4% 76.9%
Q SMO 79.7% 71.9% 76.7% T1.7% 83.6%
RandomForest 75.8% 68.9% T1.7% 74.2% 76.4%
BayesNet 63.5% 70.5% 64.0% 69.5% 71.5%
§ ML Perceptron 67.5% 67.0% 68.5% 71.5% 74.0%
Q SMO 65.5% 66.0% 72.5% 73.0% 82.0%
RandomForest  65.5% 60.0% 63.0% 65.5% 74.5%

Table 4.6: Accuracy achieved by All-Features, TF, BWF, PF, and DF in the
three data sets with different machine learning techniques.

4.4 Threats to Validity

Possible threats to validity are related to the methodology in the construction
of the new dataset, to the machine learning technique used and to the feature
selection technique adopted. In this section we discuss such threats, grouping

them into construct, internal and external validity.

Construct Validity. The results could depend on the machine learning
technique used for computing the accuracy of each model. Table 4.6 shows the
accuracy achieved by each model using different machine learning techniques.
While different techniques achieve different levels of accuracy, some results are
still valid when using other classifiers, e.g., the combined model achieves a better
accuracy than any other model on all the data sets, except for the dataset by

Buse and Weimer when using BayesNet and RandomForest.

Internal validity. To mitigate the over-fitting problem of machine learning
techniques, we used 10-fold cross-validation, and we performed statistical analysis
(Wilcoxon test, effect size, and confidence intervals) in order to measure the
significance of the differences among the accuracies of different models. Also,
feature selection could affect the final results on each model. Finding the best
set of features in terms of achieved accuracy is infeasible when the number of

features is large. Indeed, the number of subsets of a set of n elements is 2"; while
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an exhaustive search is possible for models with a limited number of features, like
BWEF, PF and TF, it is unacceptable for DF and All-Features. Such a search

034 subset evaluations. Thus,

would require, respectively, 1.2 x 10'® and 3.2 x 1
we used a linear forward selection technique [64] in order to reduce the number

of evaluations and to obtain a good subset in a reasonable time.

Comparing models obtained with exhaustive search to models obtained with
a sub-optimal search technique could lead to biased results; therefore, we use the
same feature selection technique for all the models to perform a fairer comparison.
It is worth noting that the likelihood of finding the best subset remains higher

for models with less features.

Another threat to internal validity is the use of datasets of different sizes:
Buse and Weimer involved 120 participants and they collected 12,000 evaluations;
Dorn involved over 5,000 participants and he collected 76,741 evaluations (each
snippet was evaluated, on average, by about 200 participants); we involved nine
participants and we collected 1,800 evaluations. Besides, each data set implies
also its own risks. The main problem of the data set by Buse and Weimer is that it
contains also not compilable snippets; one of the textual features we introduced,
Textual Coherence, can only be computed on syntactically correct snippets. In
the data set by Dorn, each participant evaluated a small subset of snippets,
14/360 on average; in this case, there could be the risk that the difference in
rating is a matter of the difference among evaluators more than the difference
among snippets. Finally, the main threat to validity related to our data set is
the small number of evaluators. Therefore, since each data set complements the
others, to reduce the risks we report the results on all of them. However, since
the number of evaluators are different, we compare the models on the three data

sets separately.

External validity. In order to build the new data set, we had to select
a set of snippets that human annotators would evaluate. The set of snippets
selected may not be representative enough and, thus, could not help to build a
generic model. We limited the impact of such a threat by selecting the set of
the most distant snippets as for the features used in this study through a greedy
center selection technique. Other threats regarding the human evaluation of the

readability of snippets, also pointed out by Buse and Weimer [21], are related
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to the experience of human evaluators and to the lack of a rigorous definition of
readability. However, the human annotators for D, showed a high agreement

on the readability of snippets.

4.5 Final Remarks

State-of-the-art code readability models mostly rely on syntactic metrics, and
as of today they consider the impact of textual aspects on code readability in a
very limited way. In this chapter we present a set of textual features that are
based on the source code vocabulary analysis and aim at improving the accuracy
of code readability models. The proposed textual features measure the consis-
tency between source code and comments, specificity of the identifiers, usage
of complete identifiers, among the others. To validate our hypothesis, stating
that combining structural, visual, and textual features improves the accuracy of
readability models, we used the features proposed by the state-of-the art mod-
els as a baseline, and measured (i) to what extent the proposed textual-based
features complement the features proposed in the literature for predicting code
readability, and (ii) the accuracy achieved when including textual features into
the state-of-the-art models.

In summary, the lessons learned from this chapter are the following:

e textual feature complement structural and visual features in capturing code

readability;

o textual features help increasing the accuracy of readability assessment mod-

els.
However, there are still some open issues:

e all the readability prediction models are based on datasets in which read-
ability is measured asking developers to rate snippets on a Likert scale.
This subjective evaluation could be biased in some ways (e.g., by the skills
with some APIs used in the code). Future work should be aimed at trying
to define proper ways of determining if a snippet is readable or unreadable

for a given developer.
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e all the models from the state-of-the-art introduce some features. However,
it is not completely clear what developers should do to make their code
readable. Future work should address such an issue by using the collected

data to define some code readability guidelines.



CHAPTER D

Using Code Readability to Predict Quality Issues

Contents
5.1 Introduction . ...................... 57
5.2 Empirical Study ... .. ... ... 00000 58
5.2.1 Empirical Study Design . . . . ... ... ... .. .. 59
5.2.2 FEmpirical Study Results . . . . . .. ... ... .. .. 62
5.3 Threats to Validity . ... ... ... ......... 69
54 FinalRemarks . ..................... 70

5.1 Introduction

Buse and Weimer [21] conducted a study in which they tried to correlate code
readability with a different measure of code quality. Specifically, they chose to
use the number of warnings reported by FindBugs, a static code analysis tool, as
an indicator of code quality: the higher the number of warnings, the lower the

quality. They showed that readability is negatively correlated with the number

57
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of warnings raised by FindBugs. Such a correlation shows that unreadable code
usually also presents other quality issues. However, FindBugs performs many
different analyses and it raises different types of warnings. It is still unclear
which categories of warnings appear more frequently in unreadable code.

In this chapter we present a replication of the study performed by Buse and
Weimer [21]. Our hypothesis is that, if readability is actually correlated with
FindBugs warnings, an improvement in the accuracy of readability prediction
should imply an improvement of such a correlation. We analyzed 20 open-source
Java software systems, totaling in 3M lines of codes and 7K methods and we
show that using the readability predicted by a model which uses structural, visual
and textual features (i.e., the one which achieves the best readability prediction
accuracy, as shown in Chapter 4) we have a higher correlation with the presence
of FindBugs warnings. We also try to explain why such a correlation is present,
providing examples and a more in-depth analysis. Specifically, we perform such
an analysis considering (i) all the warnings and (ii) warnings divided by category.
We show that code readability is correlated with the presence of some categories
of FindBugs warnings (e.g., Dodgy code) but not with others (e.g., Malicious
code).

This chapter is organized as follows. Section 5.2 describes the empirical study
in which we computed the correlation between code readability and quality warn-
ings as captured by FindBugs; Section 5.3 describes the threats to validity of such
a study; Section 5.4 concludes this chapter.

5.2 Empirical Study

This study is a replication of the study performed by Buse and Weimer [21],
in which the authors used readability as a proxy for quality, in particular, using
warnings reported by the FindBugs tool ! as an indicator of quality. Specifically,
the goal of the study is to understand if the model which achieves the best accu-
racy in readability prediction (i.e., the All-features model) can predict FindBugs
warnings with a higher accuracy compared to the model originally proposed by

Buse and Weimer [21]. It is worth noting that we are not directly using the met-

Ihttp://findbugs.sourceforge.net/
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Warning prediction I
Readability prediction I

|-> Metric 1
: readability (R) ’ ’ warning-proness (W)
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I-) Metric n

Figure 5.1: Workflow followed to predict readability by relying on FindBugs
warnings.

rics defined in Section 4.2 as predictors of FindBugs warnings: instead, we first
use some of the features previously defined to predict readability, and then we
use readability to predict warnings. It is not the goal of this study to assess the
FindBugs warnings prediction power of the metrics used to predict readability.
The quality focus is to improve the prediction of quality warnings by considering
readability metrics, while the perspective of the study is of a researcher inter-
ested in analyzing whether the proposed approach can be used for the prediction

of quality problems in source code.

5.2.1 Empirical Study Design

This study was steered by the following research question:

o RQ;: Is the combined readability model able to improve the prediction ac-
curacy of quality warnings? With this question we want to understand if
a higher accuracy in readability prediction helps to improve the correlation
between FindBugs warnings and readability. In other words, we want to

re-assess the FindBugs warnings prediction power of readability models.
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The context of this study is comprised of 20 Java programs: 11 of the 15 systems
analyzed by Buse and Weimer [21] and nine systems introduced in study. We
did not include four of the 15 system cited in the study by Buse and Weimer
[21] (i.e., Gantt Project, SoapUI, Data Crow and Risk) because the snapshots
of the specific versions of those systems were not available at the time when this
study was performed. In order to select the nine new systems, we first randomly
chose from SourceForge some software categories which were not represented by
the other systems and, for each of them, we chose one of the most downloaded
ones. We started from the most downloaded project, and we selected the first

one which had the following characteristics:

e developed in Java: this was necessary because FindBugs is only able to
analyze bytecode binaries, resulting from the compilation of Java and few

other languages;

e source code was available, i.e., there was a public repository or it was
released as a zip file: this was necessary in order to compute the readability

score of the methods;

e cither a build automation tool was used, such as Ant, Maven or Gradle,
or it was available as a compiled jar file of the exact same version of the
source code: this was necessary to have a reasonably easy way to provide

FindBugs with compiled programs to analyze.

Table 5.1 depicts the selected systems, which accounts for 103,000 methods and
about 3 million lines of code. The star symbol indicates software systems added
in this study. “Methods with warnings” indicates the number of methods with at
least a warning.

In order to answer RQ;, we followed the process depicted in Figure 5.1.
First, we trained a Logistic classifier on the dataset defined in the previous chap-
ter and we computed the readability score of all the methods of all the systems
using our combined model. The readability score is defined as the probabil-
ity that a method belongs to the class “readable” according to the classifier.
Such a value ranges between 0 (surely unreadable) and 1 (surely readable). For

each method, we also computed the unreadability score, which is the probability
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that a snippet belongs to the class “unreadable”. Such a score is computed as
unreadability(M) = 1 — readability(M). As a second step, we ran the FindBugs
tool on all the compiled versions of the analyzed systems. Then, we extracted
from the FindBugs report only the warnings reported at method level: indeed,
FindBugs warnings can also concern lines of code which belong to other parts of
a class (e.g., field declarations). We discarded such warnings, so that we have a

readability score (computed at method level) for each warning.

Given a system S having a set X of methods, we split X in two sub-sets:
X3, methods with at least a warning, and X., warning-free methods. In order
to avoid the bias derived from the different size of the sets, we sub-sample X,
and X.: we consider m = min(|X,|,|X.|) and we randomly pick, from each set,
m elements. At the end, we have two sets X C X and X.s C X, so that
| Xps| = |Xes|. This sub-sampling procedure was the same applied by Buse and
Weimer [21].

Finally, we used the unreadability score (unreadability(M)) to predict Find-
Bugs warnings. In order to evaluate how accurate is the unreadability score to
predict FindBugs warnings we first plotted the Receiving Operating Curve (ROC)
obtained using unreadability as a continuous predictor of warning/no warning:
such a curve shows the true-positive rate (TFP) against the false-positive rate
(FPR) considering different thresholds for the predictor (unreadability). Then,
we computed the area under such a curve (Area Under the Curve - AUC). We
preferred AUC over F-measure, originally used by Buse and Weimer [21], be-
cause AUC does not require the choice of a threshold, which may not be the
same for all the models. To answer RQ1, we compared three readability models:
(i) the original model proposed by Buse and Weimer trained on their dataset (
R{(BWF)oBW )!; (ii) the model by Buse and Weimer trained on the new dataset
( R(BWF) o New); (iii) our model containing all the features trained on the new
dataset ( R{ All-features ) o New). We included the first model as a sanity check
and we used the tool provided by the authors to compute the readability score;
then we trained both R(BWF) and R{ All-features ) on the same dataset, so

that there is no bias caused by the different training set.

I1We use the operator o to denotate that a model M is trained with dataset X: M o X
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Project name LOC Methods analyzed Methods with warnings SourceForge category
Azureus: Vuze 4.0.0.4 651k 30,161 2,508 Internet file sharing
JasperReports 2.04 269k 11,256 367 Dynamic content
StatSVN 0.7.0 * 244k 441 21  Documentation
aTunes 3.1.2 * 216k 11,777 501  Sound

Hibernate 2.1.8 189k 4,954 192 Database
jFreeChart 1.0.9 181k 7,517 410  Data representation
FreeCol 0.7.3 167k 4,270 283 Game

TV Browser 2.7.2 162k 7,517 862 TV guide

Neuroph 2.92 * 160k 2,067 179  Frameworks

jEdit 4.2 140k 5,192 518  Text editor

Logisim 2.7.1 * 137k 5,771 232 Education

JUNG 2.1.1 * 74k 3,559 156  Visualization
Xholon 0.7 61k 3,489 338 Simulation
DavMail 4.7.2 * 52k 1,793 80 Calendar

Portecle 1.9 * 27k 532 37  Cryptography
Rachota 2.4 * 23k 791 112 Time tracking

JSch 0.1.37 18k 603 170  Security
srt-translator 6.2 * 8k 103 26 Speech

jUnit 4.4 5k 660 18 Software development
jMencode 0.64 3k 253 80  Video encoding
Total 3M 103k 7k

Table 5.1: Software systems analyzed for the study.

5.2.2 Empirical Study Results

Figure 5.2 shows the AUC achieved by the three readability models on all the
analyzed systems. R( All-features ) o New is able to predict FindBugs warnings
more accurately than the baselines on 12 systems out of 20. The AUC achieved
by such a model ranges between 0.573 (Neuroph) and 0.900 (aTunes). Figure
5.3 shows three box plots which indicate, for each model, the AUC achieved on
the 20 systems analyzed. Here it is clear that R({ All-features ) o New generally
achieves a higher AUC as compared to the other models. Specifically, the mean
AUC achieved by R(BW F)oBW is 0.717, the AUC achieved by R(BW F)o New
is 0.724 while the AUC achieved by R( All-features ) o New is 0.770. We also
report in Figure 5.4 the box plot relative only to the 11 projects also considered
in the original experiment by Buse and Weimer [21].

Furthermore, we checked if the difference is statistically significant (p=0.05)
performing a paired Wilcoxon test [42] with p-values adjusted using the Holm’s
correction procedure for multiple pairwise comparisons [70]: the adjusted p-values
resulting from such a test are 0.006 (comparison with R(BW F') o BW) and 0.004
(comparison with R(BWF') o New) with a medium effect size (0.375 and 0.360
correspondingly), which suggest that R({ All-features ) o New has a significantly
higher AUC compared to the two baselines. Figure 5.5 illustrates the difference
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Figure 5.2: AUC achieved using readability models to predict FindBugs warnings
(by system).
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Figure 5.3: AUC achieved using readability models to predict FindBugs warnings
(overall).
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Figure 5.4: AUC achieved using readability models to predict FindBugs warnings
(projects from the original study).
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Figure 5.5: Mean accuracy and confidence intervals (CIs).

in the AUC achieved with each model by using the mean AUC and confidence
intervals (CIs). The CIs show how there is overlap between the three models,
however there is a region of the CI of R{ All-features ) o New that is higher than
the other ClIs, which confirms the medium effect size of the significant difference
between R({ All-features ) o New and the other two models. There is a 95% of
confidence that the mean AUC achieved by R( All-features ) o New.

The results suggest that the answer to RQ; is positive: an improvement in

the prediction accuracy of readability results in a better prediction of FindBugs
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warnings. Such a result further corroborates the findings by Buse and Weimer
[21] about the correlation between readability and FindBugs warnings.

Furthermore, we wanted to understand which categories of FindBugs warn-
ings correlated with readability the most. We selected a set of six categories
of FindBugs warnings, i.e., “Performance”, “Correctness”, “Bad Practices”, “Mali-
cious code”, “Dodgy code” and “Internationalization”. Categories described on the
official FindBugs website?, which are not represented for many of the analyzed
systems, such as “Security”, were excluded.

Figure 5.7 shows the AUC achieved by the best model (the R{ All-features
) o New) on different categories of FindBugs warnings. “Dodgy code” is the
best predicted category for seven systems out of 20, “Correctness” is the best
one for seven systems out of 20, while the others are the best predicted more
rarely (“Internationalization” and “Performance” for 5 systems and “Bad practice”
for four systems). “Malicious code” is the category with the lowest prediction
accuracy. It is worth noting that any of those categories is directly related to
code readability.

Analyzing the results more in depth, Figure 5.8 shows the box plots of the
AUC achieved by R( All-features ) o New on the analyzed categories of FindBugs
warnings. Except for “Malicious code”, for which the mean AUC is 0.470, the
warning belonging to all the other categories are predicted with a mean AUC
above 0.7. The main reason why “Malicious code” is not correlated with read-
ability is that the most frequent warnings belonging to such a category can be
found in very simple and short snippets. Figure 5.6 shows an example class with
a method (getKey) with the warning “May expose internal representation by re-
turning reference to mutable object”. Such a warning is raised when “Returning
a reference to a mutable object value stored in one of the object’s fields exposes
the internal representation of the object.”. In many cases this warning can be
found in “getter” methods, such as the one in the example, which have, obviously,
a higher level of readability.

Therefore, the first finding is that possible malicious/vulnerable code, but
specifically code which involve the exposure of internal representation, is not

correlated with readability and, on the other hand, all other kind of possible

2http://findbugs. sourceforge.net/bugDescriptions.html
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public class KeyParameter
implements CipherParameters

private bytel[]l key;
[...]

public byte[] getKey()
{

return key;

Figure 5.6: Example of code that FindBugs classifies as “Malicious code”.

= Bad Practice

= 118n

1.2 | mm Dodgy c.
mm Performance

== Malicious c.

{ | m Correctness

Figure 5.7: AUC achieved using readability models to predict FindBugs warnings
(by warning category and system).

programming mistakes detected by FindBugs, like stylistic issues or performance
problems, could be predicted reasonably well with readability. The differences
between the means of the AUC achieved on all the categories is not significant.
Nevertheless, if we take into account the minimum AUC achieved for each cat-
egory, “Dodgy code” is the category more reliably predicted by readability. The
minimum AUC achieved for such a category is 0.667 (the only case in which it is
less than 0.7) on jUnit, but, on the same system, all other categories are predicted
with a very low AUC.

While the correlation between unreadability and FindBugs warnings is strong
and the former can be used to predict the latter, it is not trivial to understand
why FindBugs warnings are more frequent in methods with lower readability.
Indeed, it is worth noting that, in some cases, it is possible to rearrange the code

so that it is more readable and it still has the same FindBugs warning.
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Figure 5.8: AUC achieved using readability models to predict FindBugs warnings
(by warning category).

The cause of the correlation could be that unreadable code is more likely to
have hidden mistakes, which may not be fixed until the system fails or a tool
warns the developers about it. Consider the snippet in Figure 5.9. FindBugs
shows a warning belonging to the category “Dodgy code”, specifically “Useless
object created”. According to the official documentation, this warning is reported
when an object is “created and modified, but its value never go outside of the
method or produce any side-effect.”. In this case, the variable declared in line 6 is
used in lines 13, 26, 38 and 49, but it has no effect on the outside of the method, so
it can be removed, together with the lines in which it is used. Noticing this kind
of issues on an unreadable method such as the one proposed in the example could
be very hard, and this may be the reason why it is introduced and it remains in
the code. In readable code, instead, such warnings may be less frequent because
they would be clearly visible either to the developer who writes it or to any other

developer who maintains the source code.

Summary for RQ;. Our study confirms that the correlation between warn-
ings and readability is high and it suggests that a model which predicts
readability with a higher accuracy is also able to predict FindBugs warnings
better. Specifically, all the categories of warnings taken into account are well-
predicted, except for “Malicious code”, which is more frequent in small and

readable methods, like “getter” methods.
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static protected LocaleUtilDecoderCandidate[] getTorrentCandidates(TOTorrent torrent)
throws TOTorrentException, UnsupportedEncodingException {
long 1MinCandidates;
byte[] minCandidatesArray;

Set cand_set = new HashSet();
LocaleUtil localeUtil = LocaleUtil.getSingleton();

List candidateDecoders = localeUtil.getCandidateDecoders(torrent.getName());
1MinCandidates = candidateDecoders.size();
minCandidatesArray = torrent.getName();

cand_set.addAll (candidateDecoders);
TOTorrentFile[] files = torrent.getFiles();

for (int i = @0; i < files.length; i++) {
TOTorrentFile file = files[il];
byte[J[] comps = file.getPathComponents();

for (int j = @; j < comps.length; j++) {
candidateDecoders = localeUtil.getCandidateDecoders(comps[jl);
if (candidateDecoders.size() < 1MinCandidates) {
IMinCandidates = candidateDecoders.size();
minCandidatesArray = comps[j];

cand_set.retainAll(candidateDecoders);

}

byte[] comment = torrent.getComment();

if (comment != null) {
candidateDecoders = localeUtil.getCandidateDecoders(comment);
if (candidateDecoders.size() < 1MinCandidates) {
IMinCandidates = candidateDecoders.size();
minCandidatesArray = comment;
3

cand_set.retainAll (candidateDecoders);

byte[] created = torrent.getCreatedBy();

if (created != null) {
candidateDecoders = localeUtil.getCandidateDecoders(created);
if (candidateDecoders.size() < 1MinCandidates) {
1MinCandidates = candidateDecoders.size();
minCandidatesArray = created;

cand_set.retainAll (candidateDecoders);

List candidateslList = localeUtil.getCandidatesAsList(minCandidatesArray);
LocaleUtilDecoderCandidate[] candidates;

candidates = new LocaleUtilDecoderCandidate[candidatesList.size()];
candidatesList.toArray(candidates);

Arrays.sort(candidates, new Comparator () {
public int compare(Object o1, Object 02) {
LocaleUtilDecoderCandidate 1luc1t (LocaleUtilDecoderCandidate) o1;
LocaleUtilDecoderCandidate luc2 (LocaleUtilDecoderCandidate) o02;
return (lucl1.getDecoder().getIndex() - luc2.getDecoder().getIndex());

DN

return candidates;

Figure 5.9: Example of unreadable code with a “Dodgy code” warning.
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5.3 Threats to Validity

The threats to validity for our study are mainly related to the analyzed sys-
tems and to the metrics used to evaluate the correlation between readability and
FindBugs warnings. In this section we discuss such threats, grouping them into
internal and external validity.

Internal Validity. The results strongly depend on the actual implementa-
tion of the models. An error in the computation of the features introduced by
Buse and Weimer [21] may negatively affect the performance of their model. To
minimize such a risk, we used the original implementation of the metrics pro-
vided by the authors, and we used Weka to re-train the logistic classifier using
the larger dataset. We used AUC for evaluating the prediction power of readabil-
ity to predict warnings. We did this because other metrics would have implied
the use of a specific threshold, while we wanted to compute the inherent correla-
tion between a continuous metric (readability) and a discrete value (presence of
FindBugs warnings). Finally, it could be argued that the relationship between
unreadability and the presence of FindBugs warnings is caused by the size of
the methods: larger methods could more likely make FindBugs raise a warning
and they could be usually less readable than shorter ones. We used the Spear-
man’s rank correlation coefficient p to compute the correlation between number
of FindBugs warnings and number of lines of code. Such a correlation is ~ 0.240:
while larger methods are clearly more prone to cause FindBugs warnings, the
correlation is only weak.

External Validity. We had to select a set of systems for computing the
correlation between readability and FindBugs warnings. We selected a subset
of the systems analyzed in the previous study by Buse and Weimer [21] and we
introduced new systems for such a study. The main threats are that (i) the
systems may not be representative enough and (ii) some of the systems may use
FindBugs, and thus the use of such a tool may influence the natural correlation
with readability. We limited the first threat by selecting systems belonging to

different categories and having different sizes in terms of methods and lines of
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code. Besides, we limited the second threat by checking if the number of FindBugs

warnings was not too low (e.g., similar to 0) on each system.

5.4 Final Remarks

In this chapter we reported a replication of a study by Buse and Weimer [21]
on the correlation between readability and FindBugs warnings, in order to check
if an improvement in readability prediction achieved using the comprehensive
model introduced in Chapter 4 causes an improvement in the correlation with
FindBugs warnings.

In summary, the lessons learned from this chapter are the following:

e the model with the highest readability prediction accuracy also predicts

FindBugs warnings more accurately than the other models;

e unreadable code is more prone to having issues, which may become bugs,
and it is more likely that such problems would stay in the code, as it is
more difficult to notice and correct them; this finding confirms we what

Buse and Weimer observed in their original study [21]

e some categories of FindBugs warnings are more correlated with readability

than others; for example, Malicious Code shows a very low correlation.

There is also a main open issue: FindBugs warnings do not represent real bugs,
therefore it is still unclear if unreadable code is also more bug-prone. Future work
should fill this gap.
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6.1 Introduction

In programming languages, identifiers are used to name program entities; e.g.,

in Java, identifiers include names of packages, classes, interfaces, methods, and

variables. Identifiers account for ~30% of the tokens and ~70% of the characters

in the source code [41]. Naming identifiers in a careful, meaningful, and consistent

71
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manner likely eases program comprehension and supports developers in building
consistent and coherent conceptual models [41].

Instead, poorly chosen identifiers might create a mismatch between the de-
velopers’ cognitive model and the intended meaning of the identifiers, thus ulti-
mately increasing the risk of fault proneness. Indeed, several studies have shown
that bugs are more likely to reside in code with low quality identifiers [22, 2|.
Arnaoudova et al. [9] also found that methods containing identifiers with higher
physical and conceptual dispersion are more fault-prone. This suggests the impor-
tant role played by a specific class of identifiers, i.e., local variables and method
parameters, in determining the quality of methods. We showed in Chapter 4 that
identifiers quality have an important role in code readability.

Naming conventions can help to improve the quality of identifiers. However,
they are often too general, and cannot be automatically enforced to ensure con-
sistent and meaningful identifiers. For example, the Java Language Specification?
indicates three rules for naming local variables and parameter names: (i) “should
be short, yet meaningful”; (ii) “one-character identifiers should be avoided, except
for temporary and looping variables, or where a variable holds an undistinguished
value of a type”; (iil) “identifiers that consist of only two or three lowercase letters
should not conflict with the initial country codes and domain names that are the
first component of unique package names”.

All these requirements do not guarantee that developers will name variables in
a consistent way. For example, developers might use “localVar” and “varLocal”
in different source code locations even if these two names are used in the same
context and with the same meaning. Also, synonyms might be used to name the
same objects, such as “car” and “auto”. Finally, developers might not completely
adhere to the rules defined in project-specific naming conventions.

Researchers have presented tools to support developers in the consistent use
of identifiers. Thies and Roth [140] analyzed variable assignments to identify
pairs of variables likely referring to the same object but named with different
identifiers. Allamanis et al. [5] pioneered the use of NLP techniques to support
identifiers renaming. Their NATURALIZE tool exploits a language model to infer

from a code base the naming conventions and to spot unnatural identifiers (i.e.,

Ihttps://docs.oracle.com/javase/specs/jls/se7/html/jls-6.html
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unexpected identifiers used to name variables, parameters, and methods), that
should be renamed to promote consistency.

To obtain a reliable evaluation of approaches supporting automatic identifier
renaming, the original authors of the source code should be involved in assessing
the meaningfulness of the suggested refactorings. However, running such eval-
uations is expensive. Therefore, refactoring techniques are often evaluated in
“artificial scenarios” (e.g., injecting a meaningless identifier in the code and check
whether the tool is able to recommend a rename refactoring for it) and/or by
relying on the manual evaluation of a limited number of recommended rename
refactorings. For example, Thies and Roth [140] manually assessed the meaning-
fulness of 32 recommendations generated by their tool. Instead, Allamanis et al.
[5] firstly analyzed 33 rename recommendations generated by NATURALIZE, and
then opened pull requests in open source projects to evaluate, with the help of
the projects’ contributors, the meaningfulness of 18 renaming recommended by
NATURALIZE (for a total of 51 data points).

We aim at assessing the meaningfulness of the rename refactorings recom-
mended by state-of-the-art approaches on a larger scale (922 evaluations in total)
and by only relying on developers having a first-hand experience on the object
systems of our study.

Also, we directly compare the following techniques and study their comple-

mentarity:

e The approach proposed by Thies and Roth [140] is used as representative of
the techniques exploiting static code analysis to recommend rename refac-

toring;

e The NATURALIZE tool [5] is the only one in the literature using NLP tech-

niques to support identifier renaming;

e Finally, we propose a variation of the NATURALIZE tool, named LEAR (LEx-
icAl Renaming), exploiting a different concept of language model more fo-

cused on the lexical information present in the code.

This chapter is organized as follows: Section 6.2 illustrates LEAR; in Sec-

tion 6.3 we report the evaluation study and the comparison with the baseline
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approach; Section 6.4 discusses the threats to validity; Section 6.5 concludes this

chapter.

6.2 LEAR: LExicAl Renaming

LEAR takes as input a Java system for which the developer is interested in
receiving rename refactoring recommendations. Note that LEAR does only recom-
mend renaming operations related to (i) variables declared in methods, and (ii)
method parameters. The renaming of methods/classes as well as of instance/-
class variables is currently not supported. In the following we describe in detail
the main steps of LEAR.

Identifying methods and extracting the vocabulary. LEAR parses the
source code of the input system by relying on the srcML infrastructure [34]. The
goal of the parsing is to extract (i) the complete list of methods, and (ii) the
identifiers’ vocabulary, defined as the list of all the identifiers used to name pa-
rameters and variables (declared at both method and class level) in the whole
project. From now on we refer to the identifiers’ vocabulary simply as the vo-
cabulary. Once the vocabulary and the list of methods have been extracted, the
following steps are performed for each method m in the system. We use the
method in Listing 6.1 as a running example.

N-gram Extraction from m. We extract all textual tokens from the
method m under analysis, by removing (i) comments and string literals, (ii)
all non-textual content, i.e., punctuation and (iii) non-interesting words, such
as Java keywords and the name of method m itself. Basically, we only keep to-
kens referring to identifiers, excluding the name of m, and non-primitive types,
which are Java keywords. This is one of the main differences with respect to
NATURALIZE, the approach LEAR is inspired from.

Indeed, while NATURALIZE uses all textual tokens in the n-gram language
model (including, e.g., Java keywords), we only focus on tokens containing lexical
information. The reason is that we expect sequences of only lexical tokens to
better capture and characterize the context in which a given identifier is used.

From the printUser method in the example, the list of identifiers will include:

uid, String, q, uid, User, user, runQuery, q, System, out, println, user.
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Listing 6.1: Example of method analyzed

public void printUser(int uid) {
String q = "SELECT * WHERE user_id = " + uid;
User user = runQuery(q);
System.out.println(user);

3

Again, our conjecture is that such a list of tokens captures the context—referred
to method printUser—where an identifier (e.g., q) is used. Once obtained such
a list of tokens, we extract a set of n-grams from it that will be used by the
language model to estimate the probability that a specific identifier should be
used in a given context.

Lin et al. [89] found that the n-gram language model achieves the best accu-
racy in supporting code completion tasks when setting n = 3 (they experimented
with values of n going from 3 to 15 at steps of one). The same value has also
been used in the original work by Hindle et al. [69] proposing the usage of the
language model for code completion. For these reasons, we build 3-grams from
the extracted list of tokens. In our running example, this would result in the
extraction of ten 3-grams, including: (uid, String, q), (String, q, uid), (q, uid,
User), (uid, User, user), elc.

Generating candidate rename refactoring. For each variable/parameter
identifier in m (in the case of printUser: uid, q, and user), LEAR looks for its
possible renaming by exploiting the vocabulary built in the first step. Given an
identifier under analysis id, LEAR extracts from the vocabulary all the identifiers

ids which meet the following constraints:

e (: ids is used to name a variable/parameter of the same type as the one
referred by id. For example, if id is a parameter of type int, id; must be

used at least once as an int variable/parameter;

e (5 idg is not used in m to name any other variables/parameters. Indeed,
in such a circumstance, it would not be possible to rename id in ids in any

case;

e (3 id, is not used to name any attribute of the class C implementing m

nor in any class Cj, extends, for the same reason explained in Cs.
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The checking of these constraints represent another difference between LEAR and

NATURALIZE (i.e., they are not considered in NATURALIZE).

We refer to the list of valid identifiers fulfilling the above criteria as VI;,.
Then, LEAR uses a customized version of the 3-gram language model to compute
the probability that each identifier ids in VI;; appears, instead of id, in all the

3-grams of m including id.

Let TP;q be the set of 3-gram patterns containing at least once id, and
tPiq—sia, De a 3-gram obtained from a pattern tp;; € T P;q where the variable id
is replaced with a valid identifier ids € V I,4. We define the probability of a given

substitution to a variable as:

Count(tpid%ids)

yeViy count(tp id%y)

P(tpig—sia,) = 5

When the pattern is in the form of (id;, ids, id), the probability of a substitution
corresponds to the classic probability as computed by a 3-gram language model,
that is:

count((idy, ida, ids))
count({idy, ida))

P({idy, ida, id)iqg—ia,) = P(ids|idy, ida) =

To better understand this core step of LEAR, let us discuss what happens in our
running example when LEAR looks for possible renaming of the uid parameter
identifier. The 3-grams of printUser containing uid are: ( uid, String, q ), (
String, q, uid ), { q, uid, User ), and ( uid, User, user ).

Assume that the list of identifiers V1,4 (i.e., the list of valid alternative identi-
fiers for uid) includes userId and localCount. LEAR uses the language model to
compute the probability that userId occurs in each of the 3-grams of printUser
containing uid. For example, the probability of observing userId in the 3-gram
(q, uid, User) is:

count(q,userId,User)

I4,U =
p(q, userld, User) count(q, y, User)

where count(q,userId,User) is the number of occurrences of the 3-gram (q,

userId, User) in the system, and count(q,y,User) is the number of occurrences
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of the corresponding 3-gram, where y represents any possible identifier (including
userId itself). Note that the count function only considers n-grams where id,
has the same type as id. Also, it does not take into account n-grams extracted
from the method under analysis. This is done to avoid favoring the probability
of the current identifier name used in the method under analysis as compared to
the probability of other identifiers.

How the probability for a given identifier to appear in a n-gram is computed
also differentiates LEAR from NATURALIZE. In the example reported above, NAT-
URALIZE in fact computes the probability of observing User following (q, userId):

count(q,userId, User)

p(User|q, userld) = count(q,userId)

The two probabilities (i.e., the one computed by LEAR and by NATURALIZE),
while based on similar intuitions, could clearly differ. Our probability function is
adapted from the standard language model (i.e., the one used by NATURALIZE) in
an attempt to better capture the context in which an identifier is used. This can
be noticed in the way our denominator is defined: it keeps intact that identifiers’
context in which we are considering injecting userId instead of uid.

The average probability across all these 3-grams is considered as the proba-
bility of ids being used instead of id in m.

This process results in a ranked list of VI;; identifiers having on top the
identifier with the highest average probability of appearing in all the 3-grams of
m as a replacement (i.e., rename) of id. We refer to this top-ranked identifier as
Tiq-

Finally, LEAR uses the same procedure to compute the average probability
that the identifier id itself appears in the 3-grams where it currently is (i.e., that
no rename refactoring is needed). If the T;4 probability of appearing in the id
3-grams is higher than id probability, a candidate rename refactoring has been
found (i.e., rename id in T;;). Otherwise, no rename refactoring is needed.

Assessing the confidence and the reliability of the candidate rec-
ommendations. LEAR uses two indicators acting as proxies for the confidence
and the reliability of the recommended refactoring. Given a rename refactoring

recommendation id — T;4 in the method m, the confidence indicator is the av-
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erage probability of T;4 to occur instead of id in the tri-grams of m where id
appears, computed via the customized language model detailed in the previous
point. We refer to this indicator as Cp, and it is defined in the [0, 1] interval.
The higher C,,, the higher the confidence of the recommendation. We study how
the C, value influences the quality of the recommendations generated by LEAR

in the following.

The “reliability” indicator, named C., is the number of distinct 3-grams used
by the language model in the computation of C), for a given recommendation
td — T;q in the method m. Given (id1, ids, id) a 3-gram where id appears in m,
we count the number of 3-grams in the system in the form (id;, ids, z), where x
can be any possible identifier. This is done for all the 3-grams of m including
id, and the sum of all computed values is represented by C.. The conjecture is
that the higher C., the higher is the reliability of the C}, computation. Indeed,
the higher C¢, the higher the number of 3-grams from which the language model
learned that T;4 is a good substitution for id. C. is unbounded on top. We
study what is the minimum value of C, allowing reliable recommendations in the

following.

Note that while NATURALIZE does also provide a scoring function based on
the probability derived by the n-gram language model to indicate the confidence
of the recommendation (i.e., the equivalent of our (), indicator), it does not

implement a “reliability” indicator corresponding to C..

Tuning of the C. and (), indicators. To assess the influence of the C,
(confidence) and C. (reliability) indicators on the quality of the rename refac-
torings generated by LEAR, we conducted a study on one system, named SMOS.
We asked one of the SMOS developers (having nowadays six years of industrial
experience) to assess the meaningfulness of the LEAR recommendations. SMOS is
a Java Web-based application developed by a team of Master students (including
the participant), and composed by 121 classes for a total of ~23 KLOC. We used
the SMOS system only for the tuning of the indicators Cy, and C., i.e., to identify

for both of them minimum values needed to receive meaningful recommendations.

SMOS is not used in the actual evaluation of our approach, presented in
Section 6.3.
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Original name Rename C, C.
mg managerUser 1.00 146
e invalidValueException 0.90 356
buf searchBuffer 0.89 5
result classroom 0.87 15

managercourseOfStudy  managerCourseOfStudy 0.67 12

Table 6.1: Five rename refactoring tagged with a yes.

We ran LEAR on the whole system and asked the participant to analyze the
146 rename refactoring generated by LEAR and to answer, for each of them,
the question Would you apply the proposed refactoring?, assigning a score on a
three-point Likert scale: 1 (yes), 2 (maybe), and 3 (no). We clarified with the

participant the meaning of the three possible answers:

1 (yes) must be interpreted as “the recommended renaming is meaningful and
should be applied”, i.e., the recommended identifier name is better than the

one currently used;

2 (maybe) must be interpreted as “the recommended renaming is meaning-
ful, but should not be applied”, i.e., the recommended identifier is a valid

alternative to the one currently used, but is not a better choice;

3 (no) must be interpreted as “the recommended rename refactoring is not

meaningful”.

The participant answered yes to 18 (12%) of the recommended refactoring,
maybe to 15, and no to 113. This negative trend is something expected, consider-
ing the fact that we asked the participant to assess the quality of the recommended
refactoring independently from the values of the C, and the C. indicators. In
other words, given the goal of this study, also recommendations having very low
values for both indicators (e.g., C;, = 0.1 and C. = 1) were inspected, despite
we expect these recommendations to not be meaningful. Table 6.1 reports five
representative examples of rename refactoring tagged with a yes by the developer.

By inspecting the assessment performed by the participant, the first thing
we noticed is that recommendations having C. < 5 (i.e., less than five distinct

3-grams have been used by the language model to learn the recommended rename
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refactoring) are generally unreliable, and should not be considered. Indeed, out
of the 28 rename refactoring having C. < 5, one (3%) was accepted (answer
“yes”) by the developer and three (10%) were classified as maybe, despite the
fact that 22 of them had C, = 1.0 (i.e., the highest possible confidence for
the generated recommendation). Thus, when C. < 5 even recommendations
having a very high confidence are simply not reliable. When C. > 5, we noticed
that its influence on the quality of the recommended renames is limited. In
other words, there is no other clear trend in the quality of the recommended
refactoring that can be observed for different values of C.. Thus, we excluded
the 28 refactoring recommendations having C, < 5 and studied the role played

by C, in the remaining 118 recommendations (17 yes, 12 maybe, and 89 no).

Fig. 6.1 reports the recall and precision levels of our approach when excluding
the recommendations having C, < t, with ¢ varying between 1.0 and 0.1 at steps
of 0.1. Note that in the computation of the recall and precision we considered
the 29 recommendations accepted with a yes (17) or assessed as meaningful with
a maybe (12) as correct (i.e., the maybe answers are equated to the yes answers,
and considered correct). This choice was dictated by the fact that we see the
meaningful recommendations tagged with maybe as valuable for the developer,
since she can then decide whether the alternative identifier name provided by our
approach is valid or not. For a given value of ¢, the recall is computed as the
number of correct recommendations having C), > ¢ divided by 29 (the number of
correct recommendations). This is an “approximation” of the real recall since we
do not know the actual number of correct renamings that are needed in SMOS. In
other words, if a correct rename refactoring was not recommended by LEAR, it was
not evaluated by the participant and thus is not considered in the computation

of the recall.

The precision is computed as the number of correct recommendations having
Cp > t divided by the number of recommendations having C), > t. For example,
when considering recommendations having C, = 1.0, we only have three recom-
mended renames, two of which have been accepted by the developer. This results
in a recall of 0.07 (2/29) and a precision of 0.67 (2/3)—see Fig. 6.1.

Looking at Fig. 6.1, we can see that both recall and precision increase moving
from C, = 1.0 to C, = 0.8, reaching recall=0.42 (12/29) and precision=0.92
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Figure 6.1: Precision and recall of the LEAR recommendations when varying C,,.

(12/13). This means that only one among the top-13 recommendations ranked
by C} has been considered as not meaningful by the developer. Moving towards
lower values of (), the recall increases thanks to the additional recommenda-
tions considered, while the precision decreases, indicating that the quality of the
generated recommendations tend to decrease with lower C), values (i.e., there
are higher chances of receiving a meaningless recommendation for low values of
Cp). It is quite clear in Fig. 6.1 that the likelihood of receiving good rename
recommendations when C, < 0.5 is very low. On the other hand, using a C}, too
high (e.g., 0.8) results in a low recall, i.e., many good rename suggestions would
be excluded.

Based on the results of the performed tuning, we modified our tool in order
to generate refactoring recommendations only when C. > 5 and C, > 0.5. In
the evaluation reported in Section 6.3 we will further study the meaningfulness
of the generated recommendations of rename refactorings for different values of

Cp in the significant range, i.e., varying between 0.5 and 1.0.
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System Type LOCs ‘ Participants Experience (avg.) Occupation
Therio Web App 13k 1/2 T+ years Stud. (PhD)
LifeMipp Web App Tk 2/2 7+ years Pro./Stud. (PhD)
MyUnimolAndroid Android App 27k 1/4 5+ years Pro.
MyUnimolServices Web Services 8k 2/7 3+ years Stud. (BS)
OCELOT Desktop App 22k 1/2 7+ years Stud. (PhD)

Table 6.2: Context of the study (systems and participants).

6.3 Evaluation

This section presents the design and the results of the empirical study we
carried out to compare the three previously introduced approaches for rename

refactoring.

6.3.1 Study Design

The goal of the study is to assess the meaningfulness of the rename refactorings
recommended by CA-RENAMING, NATURALIZE, and LEAR.

The perspective of the study is of researchers who want to investigate the appli-
cability of approaches based on static code analysis (i.e., CA-RENAMING) and on
the n-gram language model (i.e., NATURALIZE and LEAR) to recommend rename
refactorings. The context is represented by objects, i.e., five software projects
on which we invoked the three experimented tools to generate recommendations
for rename refactorings, and subjects, i.e., seven developers of the object systems
assessing the meaningfulness of the recommended rename refactorings.

To limit the number of refactoring recommendations to be evaluated by the
developers, we applied the following “filtering policy” to the experimented tech-

niques:

e LEAR: Given the results of the tuning of the C, and the C. indicators, we
only consider the recommendations having C. > 5 and C, > 0.50.

e NATURALIZE: We used the original implementation made available by the
authors with the recommended n = 5 in the n-gram language model. To
limit the number of recommendations, and to apply a similar filter with

respect to the one used in LEAR, we excluded all recommendations having
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a probability lower than 0.5. Moreover, since NATURALIZE is also able to
recommend renamings for identifiers used for method names (as opposed to
the other two competitive approaches), we removed these recommendations,

in order to have a fair comparison.

e CA-RENAMING: No filtering of the recommendations was applied (i.e., all
of them were considered). This is due to the fact that, as it will be shown,
CA-RENAMING generates a much lower number of recommendations as com-

pared to the other two techniques.

Despite these filters, our study involves a total of 922 manual evaluations of

recommendations for rename refactoring.

Research Questions and Context
Our study is steered by the following research question:

e RQ; Are the rename refactoring recommendations generated by approaches
exploiting static analysis and NLP meaningful from a developer’s point of

view?

The object systems taken into account are five Java systems developed and
actively maintained in the University of Molise in the context of research projects
or as part of its IT infrastructure. As subjects, we involved seven of the developers
currently maintaining these systems. Table 6.2 shows size attributes (number of
classes and LOCs) of the five systems, the number of developers actively working
on them (column “Developers”), the number of developers we were able to involve
in our study (column “Participants”), the average experience of the involved par-
ticipants, and their occupation?.

As it can be seen we involved a mix of professional developers and Computer
Science students at different levels (Bachelor, Master, and PhD). All the par-
ticipants have at least three years of experience in Java and they are directly
involved in the development and maintenance of the object systems.

Therio is a Web application developed and maintained by Master and PhD

students. It is currently used for research purposes to collect data from re-

2Here “Professional” indicates a developer working in industry.
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# recomm. # yes # maybe # no

Approach Confidence Precyesumaybe  Precyes
overall mean overall mean overall mean overall mean

CA-RENAMING N/A 80 11.43 21 3.00 30 4.29 29 4.14 63.75%  26.25%
NATURALIZE >=0.5 459 65.57 76 10.86 99 14.14 284 40.57 38.13%  16.56%
NATURALIZE >=0.6 319  45.57 59 843 67  9.57 193 27.57 39.50%  18.50%
NATURALIZE >=0.7 185  26.43 35 5.00 43 6.14 107 15.29 42.16%  18.92%
NATURALIZE >=0.8 88 12.57 20 2.86 47 6.71 47 6.71 76.14%  22.73%
LEAR >=0.5 380 54.29 111 15.86 140 20.00 129 18.43 66.05%  29.21%
LEAR >=0.6 296 42.29 99 14.14 112 16.00 85 12.14 71.28%  33.45%
LEAR >=0.7 186 26.57 67  9.57 69  9.86 50 7.14 73.12%  36.02%
LEAR >=0.8 130 18.57 55  7.86 50 7.14 25  3.57 80.77%  42.31%

Table 6.3: Participants’ answers to the question Would you apply the proposed
rename refactoring?

searchers from all around the world. LifeMipp is a Web application developed
and maintained by a professional developer and a PhD student. LifeMipp has
been developed in the context of an European project and it is currently used by
a wide user base. MyUnimolAndroid is an Android application developed and
maintained by students and professional developers. Such an app is available on
the Google PlayStore, it has been downloaded more than 1,000 times, and it is
mostly used by students and faculties. MyUnimolServices is an open-source soft-
ware developed and maintained by students and professional developers. Such
a system is the back-end of the MyUnimolAndroid app. Finally, OCELOT is
a Java desktop application developed and maintained by PhD students. At the

moment, it is used by researchers in an academic context.

Data Collection and Analysis

We run the three experimented approaches (i.e., CA-RENAMING, NATURAL-
1ZE, and LEAR) on each of the five systems to recommend rename refactoring
operations. Given R the set of refactoring recommended by a given technique on
the P system, we asked the P’s developers involved in our study to assess the
meaningfulness of each of the recommended refactorings. We adopted the same
question/answers template previously presented for the tuning of the LEAR’s C.
and C, indicators. In particular, we asked the developers the question: Would
you apply the proposed refactoring? with possible answers on a three-point Lik-
ert scale: 1 (yes), 2 (maybe), and 3 (no). Again, we clarified the meaning of the

three possible answers as detailed in Section 6.2.
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Overall, participants assessed the meaningfulness of 725 rename refactorings,
66 recommended by CA-RENAMING, 357 by NATURALIZE, and 302 by LEAR across
the five systems. Considering the number of participants involved (e.g., two par-
ticipants evaluated independently the recommendations generated for LifeMipp),
this accounts for a total of 922 refactoring evaluations, making our study the
largest empirical evaluation of rename refactoring tools performed with develop-
ers having first-hand experience on the object systems.

To answer our research question we report, for the three experimented tech-
niques, the number of rename refactoring recommendations tagged with yes (i.e.,
the recommended rename refactoring is meaningful and should be applied), maybe
(i.e., the recommended rename refactoring is meaningful, but should not be ap-
plied) and no (i.e., the recommended rename refactoring is not meaningful). We
also report the precision of each technique computed in two different variants.
In particular, given R the set of refactorings recommended by an experimented

technique, we compute:

e Precy.,, computed as the number of recommendations in R tagged with a
yes divided by the total number of recommendations in R. This version of
the precision considers as meaningful only the recommendations that the

developers would actually implement.

® Precycsumaybe, computed as the number of recommendations in R tagged
with a yes or with a maybe divided by the total number of recommenda-
tions in R. This version of the precision considers as meaningful also the
recommendations indicated by the developers as a valid alternative to the

original variable name but not calling for a refactoring operation.

We discuss the results aggregated by technique (i.e., by looking at the overall

performance across all systems and as assessed by all participants).

Finally, we analyze the complementarity of the three techniques by computing,

for each pair of techniques (T3, T;), the following overlap metrics:

|correcty, N correctr, |

correctT,nT, =
"7 eorrectt, U correctr, |
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|correctr, \ correctr, |

correctp ., =
AT |correcty, U correctr,|

|correctr; \ correctr, |

correctp\r, =
i\ |correcty, U correctr, |

The formulas above use the following metrics:

e correctr, represents the set of meaningful refactoring operations recom-

mended by technique Tj;

e correctt,nr, measures the overlap between the set of meaningful refactor-

ings recommended by both techniques;

e correctr,\7; measures the meaningful refactoring operations recommended

by T; only and missed by Tj.

The latter metric provides an indication on how a rename refactoring tool
contributes to enrich the set of meaningful refactorings identified by another
tool. Such an analysis is particularly interesting for techniques relying on totally
different strategies (e.g., static code analysis vs NLP) to identify different rename
refactoring opportunities. We report the three overlap metrics when considering

both the recommendations tagged with yes and maybe as correct.

6.3.2 Results

Table 6.3 reports the answers provided by the developers to the question
“Would you apply the proposed rename refactoring?”. Results are presented by
approach, starting with the technique based on static code analysis (i.e., CA-
RENAMING [140]) followed by four different variations of NATURALIZE and of LEAR
using different thresholds for the confidence of the generated recommendations.
Table 6.3 does also report the Precyes and Precyesumaybe computed as described
in Section 6.3.1.

General Trends. Before discussing in detail the performance of the experi-
mented techniques, it is worthwhile to comment on some general trend reported
in Table 6.3. First of all, the approaches based on NLP generate more recom-

mendations than CA-RENAMING. This holds as well when considering the highest
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confidence threshold we experimented with (i.e., 0.8). Indeed, in this case LEAR
generates a total of 130 rename refactorings (on average 18.57 per system) and
NATURALIZE 88 (12.57 on average), as compared to the 80 recommended by CA-
RENAMING (11.43 on average).

Another consideration is that LEAR recommends a higher number of refac-
torings that are accepted by the developers with respect to NATURALIZE and to
CA-RENAMING. Overall, 111 rename refactorings recommended by LEAR have
been fully accepted with a yes, as compared to the 76 recommendations provided
by NATURALIZE, and the 21 suggested by CA-RENAMING.

Also, the higher number of accepted refactorings does not result in a lower
precision. Indeed, LEAR does also achieve a higher Precy., with respect to CA-
RENAMING (29.21% wvs 26.25%) and to NATURALIZE (16.56%). The precision of
NATURALIZE is negatively influenced by the extremely high number of recommen-
dations it generates when considering all those having confidence > 0.5 (i.e., 459

recommendations).

Finally, LEAR’s and NATURALIZE’s precision is strongly influenced by the cho-
sen confidence threshold. The values on Table 6.3 show an evident impact of the
confidence threshold on Precyes and Precyesumaybe for both the approaches. In-
deed, going to the least to the most conservative configuration for the confidence
level, Precyesumaybe increases by ~14% (from 66.05% to 80.77%) for LEAR and
by ~38% for NATURALIZE (from 38.13% to 76.14%), while Precy., increases by
~13% for LEAR (from 29.21% to 42.31%) and by ~6% for NATURALIZE (from
16.56% to 22.73%).

These results indicate one important possibility offered by these two ap-
proaches based on a similar underlying model: Depending on the time budget
developers want to invest in rename refactoring, they can decide whether to have
a higher or a lower number of recommendations, being informed of the fact that
the most restrictive threshold is likely to just generate very few false positives,

but also to potentially miss some good recommendations.

Per-project analysis. Table 6.4 reports examples of recommendations gen-

erated by the three approaches and tagged with yes, maybe, and no.
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System Original name Rename Conf. Tag
LifeMipp i insect N/A yes

£ Therio pk idCollection N/A yes
é MyUnimolAndroid data result N/A  maybe
¢ OCELOT hash md5final N/A  maybe
§ OCELOT navigator this N/A no
MyUnimolAndroid fullname fullnameOk N/A no
OCELOT callString macro 0.92 yes
g MyUnimolAndroid factory inflater 0.75 yes
g OCELOT declaration currentDeclaration 0.79  maybe
; MyUnimolServices moduleName name 0.69  maybe
= LifeMipp species t 0.64 no
MyUnimolServices username token 0.91 no
LifeMipp image photo 1.00 yes
MyUnimolServices careerId pCareerId 0.63 yes
£ OCELOT type realType 0.91  maybe
3 LifeMipp file fileFullName 0.67  maybe
Therio pUsername pName 0.59 no
MyUnimolAndroid info o 1.00 no

Table 6.4: Examples of rename refactorings generated by the experimented tools
and tagged with yes, maybe, and no.

Moving to the assessment performed by participants on each project, we found
that the accuracy of the recommendations generated by the three tools substan-

tially varies across the subject systems.

For example, on the LifeMipp project, CA-RENAMING is able to achieve very
high values of precision, substantially better than the ones achieved by the
approaches based on NLP. The refactoring recommendations for the LifeMipp
Both of them

agreed on the meaningfulness of all eight recommendations generated by CA-

project have been independently evaluated by two developers.

RENAMING. Indeed, the first developer would accept all of them, while the sec-
ond tagged five recommendations with yes and three with maybe. NATURALIZE
and LEAR, instead, while able to recommend a higher number of yes and maybe
recommendations as opposed to CA-RENAMING (on average 19 for NATURALIZE
and 22 for LEAR vs the 8 for CA-RENAMING), present a high price to pay in terms

of false positives to discard (0 false positives for CA-RENAMING as compared to
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49 for NATURALIZE and 19 for LEAR). Such a cost is strongly mitigated when
increasing the confidence threshold. Indeed, when only considering recommen-
dations having confidence > 0.8, the number of false positives drops to 1 (first
developer) or 0 (second developer) for LEAR and to 8 or 6 for NATURALIZE, while
still keeping an advantage in terms of number of yes and maybe generated recom-
mendations (13 and 14—depending on the developer—for LEAR, and 12, for both
developers, for NATURALIZE). A trend similar to the one discussed for LifeMipp

has also been observed for MyUnimolServices.

When run on MyUnimolAndroid, CA-RENAMING only recommends three re-
name refactorings, two tagged with a maybe and one discarded (n0). NATURALIZE
generates 65 recommendations, with nine yes, 14 maybe, and 42 no. Finally, LEAR

generates 35 suggestions, with six yes, twelve maybe, and 17 no.

This is the only system in which we did not observe a clear trend between
the quality of the refactoring recommended by LEAR and the value used for the
C)p threshold. Indeed, the precision of our approach is not increasing with the
increase of the C, value. This is due to the fact that the developer involved in
the evaluation of the refactoring for the MyUnimolAndroid rejected with a no

seven recommendations having C), > 0.8.

We asked further comments to the developer, i.e., to check what went “wrong”
for this specific system, and in particular we asked to comment on each of these
seven cases. Some of the explanations seemed to indicate more a maybe rec-
ommendation rather than the assigned mo. For example, our approach rec-
ommended with C, = 0.9 and C. = 54 the renaming activity — navigation-
Drawer. The developer explained that the activity identifier refers to an object
of FragmentActivity that is casted as a NavigationDrawer and, for this reason,
he prefers to keep the activity name rather than the recommended one. Another
false positive indicated by the developer was renaming info — o, where info is a
method parameter of type Object. LEAR learned from the MyUnimolAndroid’s
trigrams that the developers tend to name a parameter of type Object with o.
This is especially true in the implementation of equals methods. Thus, while
the renaming would have been consistent with what present in the system, the
developer preferred to keep the original name as being “more descriptive”, re-

jecting the recommendation. MyUnimolAndroid is also the only system in which
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NATURALIZE achieves a higher precision with respect to LEAR when considering
the most restrictive confidence (i.e., > 0.8).

Finally, on the Therio and on the OCELOT projects, LEAR substantially out-
performs the two competitive approaches. On Therio, CA-RENAMING achieves
Precyes = 0.33 and Precyesumaybe = 0.47, as compared to the Precyes = 0.37 and
Precyesumaybe = 0.74 achieved by LEAR when considering only recommendations
having C),, > 0.6. LEAR also generates a much higher number of yes (35 vs 5) and
maybe (13 vs 2) recommendations. Examples of recommendations generated by
LEAR and accepted by the developers include pk — idTaxon and o — occurrences,
while an example of rejected recommendation is pUsername — pName. NATU-
RALIZE also achieves its best performance on Therio when considering all recom-
mendations having confidence > 0.6 (Precyes = 0.35 and Precyesumayse = 0.74),
but with a lower number of yes (23) and maybe (8) recommendations with re-
spect to LEAR. A similar trend is also observed on OCELOT, where LEAR is able

to recommend 89 renamings with a Precyesumaybe = 0.93.

Overlap Metrics Analysis. Table 6.5 reports the three overlap metrics

between the experimented techniques, as described in Section 6.3.1.

T; T; ‘ correctT;nr; correctTi\Tj correctTj \T;
CA-RENAMING LEAR 1.00% 16.05% 82.94%
CA-RENAMING NATURALIZE 0.00% 22.57% 77.43%
LEAR NATURALIZE 4.16% 57.21% 38.63%

Table 6.5: Overlap metrics

The overlap in terms of meaningful recommendations provided by the differ-
ent tools is extremely low; 1% between CA-RENAMING and LEAR, 0% between
CA-RENAMING and NATURALIZE, and 4% between LEAR and NATURALIZE. While
the low overlap between the techniques using static code analysis and NLP is
somehow expected, the 4% overlap observed between LEAR and NATURALIZE is
surprising considering the fact that LEAR is inspired by the core idea behind NAT-
URALIZE. This means that the differences between the two techniques described
in Section 6.2 (e.g., only considering the lexical tokens in the language model as

opposed to use all tokens) have a strong impact on the generated recommenda-
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tions. While this was already clear by the different performance provided by the
two approaches (see Table 6.3), it is even more evident from Table 6.5.

LEAR is able to recommend 82.94% of meaningful renamings that are not iden-
tified by CA-RENAMING, and 57.21% that are not recommended by NATURALIZE.
However, there is also a high percentage of meaningful rename refactorings rec-
ommended by CA-RENAMING (16.05%) and by NATURALIZE (38.63%) but not
identified by LEAR. This confirms the extremely high complementarity of the dif-
ferent techniques, paving the way to novel rename refactoring approaches based
on their combination, that we plan to investigate as part of our future research

agenda.

6.4 Threats to Validity

Threats to construct validity are mainly related to how we assessed the
developers’ perception of the refactoring meaningfulness. We asked developers
to express on a three-point Likert scale the meaningfulness of each recommended
refactoring making sure to carefully explain the meaning of each possible answer
from a practical point of view.

Threats to internal validity are represented, first of all, by the calibration
of the LEAR confidence €}, and C. indicators. We performed the calibration of
these indicators on one project (SMOS) not used in the LEAR’s evaluation, by
computing the recall vs precision curve for different possible values of the C,
indicator. This was not really needed for the C. indicator, for which we just
observed the unreliability of the recommendations having C. < 5. Concerning
the other approaches, for the NATURALIZE’S n-gram model parameter we adopted
the one used by its authors (i.e., n = 5) and we relied on their implementation of
the approach. To limit the number of refactoring recommendations, we excluded
the ones having a probability lower than 0.5. This choice certainly does not
penalize NATURALIZE, since we are only considering the best recommendations it
generates. As for CA-RENAMING, we used our own implementation.

Another threat to internal validity is related to the participants involved in our
study. We just targeted original developers of the systems used in our evaluation,

without taking into account the possibility of involving people with no experience
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on the object systems. Still, we cannot ensure that the involved developers had
a good knowledge of the specific code components subject of the refactoring.

However, we are confident that the original developers had at least a very good
knowledge of the application domain and of the projects’ naming conventions.
Thus, we are confident that the selected developers were able to properly judge
the quality of the recommended refactoring.

Threats to external validity can be related to the size of the set of chosen
objects and to the pool of the participants to the study. Concerning the chosen
objects, we are aware that our study is based on rename refactorings recom-
mended on five Java systems only and that the considered systems, while not
trivial, are generally of small-medium size (between 7 and 27 KLOC). Also, we
were only able to involve in our study seven developers. Still, as previously said,
(i) we preferred to limit our study to developers having a first-hand experience
with the object systems, rather than inviting also external developers to take part
in our study, and (ii) despite the limited number of systems and developers, our
results are still based on a total of 922 manual inspections performed to assess

the quality of the recommended refactoring.

6.5 Final Remarks

We reported an empirical investigation assessing the meaningfulness of recom-
mendations generated by three approaches—two existing in the literature (i.e.,
CA-RENAMING [140] and NATURALIZE [5]) and one presented in this chapter (i.e.,
LEAR)—that aim to promote a consistent use of identifiers in source code. The
manual evaluation of 922 rename refactoring operations performed by seven orig-
inal developers of five software systems highlighted that:

In summary, the lessons learned from this chapter are the following;:

e overall, LEAR achieves a higher precision and it is able to recommend a
higher number of meaningful refactoring operations with respect to the

competitive techniques;

e while being the best performing approach, LEAR still generates a high num-

ber of false positives, especially when just considering as meaningful the
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recommendations tagged with a yes by the developers (i.e., the ones they
would actually implement). Indeed, in this scenario, ~ 58% of the renam-
ings generated by LEAR in its most precise configuration (C, > 0.8) are
discarded by developers. This means that there is large room for improve-

ment in state-of-the-art tools for rename refactoring;

e the experimented approaches have unstable performance across the differ-
ent systems. Indeed, even if LEAR is, overall, the approach providing the
most accurate recommendations, it is not the clear winner on all the object
systems. This indicates that there are peculiarities of the software systems

that can influence the performance of the three techniques.
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7.1 Introduction

In the previous chapters we presented code readability models and we showed
how introducing textual features can improve their accuracy. Even if readability
models have been shown to be quite accurate in distinguishing readable from
unreadable code, the literature lacks of a similar model for automatically assess-
ing code understandability. Indeed, previous attempts to define a code under-
standability model [24, 91, 135] have not been empirically evaluated, consider
understandability as a factor in a quality model [3, 13], or measure understand-
ability at the level of a whole software system [28]. As we previously mentioned,
reading and understanding are two related but different concepts. Therefore, we
argue that readability models are not necessarily sufficient to also assess code
understandability.

To fill this gap, in this chapter we investigate 121 metrics to determine
the extent to which they correlate with code understandability. These metrics
can be categorized into three types: (i) code-related metrics (105 metrics), (i)
documentation-related metrics (11), and (iii) developer-related metrics (5). The
code-related metrics are comprised of classic code metrics, like LOC and cyclo-
matic complexity, and readability metrics, like text coherence (see Chapter 4)
and code indentation [21]. A developer may be able to read some code snippet,
but it may use unknown code. Thus, we included existing documentation-related
metrics, like the availability of external documentation, and introduced nine new
documentation-related metrics. Finally, we included developer-related metrics to
understand the extent to which the developer’s experience and background might
influence code comprehension.

To run our investigation, we performed a study with 63 participants using
the 121 metrics to determine their correlation with the understandability of code
snippets. Each participant was required to understand up to eight code snippets,

leading to a total of 444 evaluations. We consider understandability from two
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perspectives: perceived and actual understandability of the code snippets. The
participants were presented a code snippet to understand and they were asked
whether they could understand it (perceived understandability). If their answer
was positive, they were asked to answer three verification questions (actual un-
derstandability). We also monitored the time spent understanding each snippet

to estimate the effort.

By performing an extensive statistical analysis, we obtained a negative em-
pirical result: none of the considered metrics exhibit a significant correlation
with either the perceived or the actual understandability. This result was quite
surprising to us, especially considering the involvement in our study of complexity

and readability metrics generally thought to influence code understandability.

Trockman et al. [143] re-analyzed part of the dataset presented in this chap-
ter (i.e., the one we released as part of our ASE’17 work [124] that this chap-
ter extends). They showed that it is possible to define classification models
with some discriminatory power by combining the 121 metrics considered in our
study. Specifically, they use LASSO regression [143] to classify evaluations as
understandable or not understandable. Inspired by such a work, we also took into
account combinations of metrics and, to do this, we exploited classification and
regression models. While these models represent a step ahead as compared to
the single metrics taken in isolation, their prediction accuracy is still too low to
make them useful in practice. Finally, we interviewed five developers to better
understand their perspective when it comes to understanding a code snippet and
to infer factors that could be exploited in future metrics to automatically assess

code understandability.

This chapter is organized as follows: Section 7.2 describes the 121 metrics used
in our empirical study, while Section 7.3 presents the proxies we used to assess
the developers’ understandability of a given code snippet. The design and results
of the study are presented in Sections 7.4 and 7.4.4, respectively. Section 7.5
discusses the threats that could affect our findings, while Section 7.6 concludes

the chapter.
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7.2 Candidate Predictors for Code Understand-
ability

Understandability is a multifaceted property of source code and, as well as
readability, is subjective in nature. In readability, the subjectivity is represented
by personal taste and habits, while in understandability it lies in the previous
knowledge of a developer and in her mental models [136]. Consider a method of
an Android activity in a mobile app; its understandability might be high for an
Android developer, while it could be low for a Java developer with no experience
in Android. In this section, we briefly discuss the 121 metrics considered in our
study aimed at assessing their ability to capture the understandability of a given
piece of code. Table 7.1 shows the complete list of metrics: rows contain the
basic metrics and columns indicate how the metrics are aggregated (e.g., the
Identifiers length for a given code snippet is computed, as suggested by previous
work [21], as the average and as the maximum length of the identifiers used in the
snippet). We report with “(C4]” the features introduced in this thesis (Chapter
4). We report in boldface the new metrics introduced in this chapter. It is worth
noting that the number of metrics shown in Table 7.1 does not add up to the
121 metrics considered in our study. This is due to the fact that some forms
of aggregation, e.g., “Visual” and “Area”, include multiple ways of aggregating
the same measure. For example, each metric aggregated as “Visual” should be
counted twice. Indeed, for these metrics, a “virtual” color to each character in the
code is assigned, based on the type of the token it belongs to (e.g., characters of
identifiers have color 1, while characters of keywords have color 2), thus creating
a matrix of colors for the snippet. Then, the variation of colors is computed both
on the X and on the Y axis of such a matrix [43], thus resulting in two different
forms of aggregation. In the following subsections, we discuss the considered

metrics grouped by their type.

7.2.1 Code-Related Metrics

Most of the metrics considered in our study assess source code properties. We

include the five metrics used by Kasto and Whalley [74]: cyclomatic complex-
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ity [97], which estimates the number of linear independent paths of the snippet
average number of nested blocks, which measures the average code-block nest-
ing in the snippet, number of parameters, number of statements and number of
operands, i.e., number of identifiers. It is worth noting that we do not include
some other understandability metrics from the literature discussed in Chapter 2
[24, 104, 141, 135, 28, 13, 12] since they are defined at system-level (i.e., they
provide an overall indication of the system understandability), while we are in-
terested in studying whether it is possible to measure the understandability of a

given code snippet, as already done in the literature for code readability.

We also include in this category all the code-related readability metrics defined
in the literature [21, 119, 43] and in Chapter 4. These include the ones by Buse
and Weimer [21], assessing properties for a single line of code (e.g., number of
identifiers or line length) and then aggregated (with the maximum and/or the

average) to work at the level of “code snippet”.

Lines of code (LOC), token entropy and Halstead’s volume are used by Pos-
nett et al. [119] in the context of readability prediction. Dorn [43] presents a
variation to the basic metrics introduced by Buse and Weimer [21], measuring the
bandwidth of the Discrete Fourier Transform (DFT) of the metrics, the absolute
and the relative area of characters belonging to different token categories (e.g.,
identifiers, keywords or comments), the alignment of characters through different
lines, and the number of identifiers containing words belonging to an English dic-
tionary. Note that the area-related metrics defined by Dorn are computed both
in an absolute way (e.g., total area of comments) and in a relative way (e.g., area

of comments divided by area of strings).

In Chapter 4, we introduced Narrow Meaning Identifiers (NMI), Number of
Meanings (NM), Identifiers Terms In Dictionary (ITID) and Textual Coherence
(TC) to capture the readability of a code snippet. Such metrics are computed line-
by-line (ITID), identifier-by-identifier (NMI and NM) or block-by-block (TC); the
authors aggregate the measures using minimum, average and maximum, in order
to have a single measure for the snippet. We also use code readability, using the
comprehensive model introduced in Chapter 4, as a separate metric, combining

together the previously listed metrics. Specifically, we defined the readability
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model by training a logistic classifier on the 420 Java snippets available in the

literature [21, 43] and provided by the new dataset presented in Chapter 4.

We also introduce a new code-related metric, the Invoked Methods Signature
Quality (IMSQ), which measures the quality of the signature of the internal
methods invoked by a given code snippet s (i.e., methods belonging to the same
system of s) in terms of readability and representativeness. We define the Method
Signature Quality (MSQ) of an invoked method m as:

1 .

where IS(m) is the set of identifiers used in the m’s signature (i.e., method name

and parameters) and /Q(id) is defined as:

10(id) = 3(Rd(id) + Rp(id)), id is a method name

Rd(id), id is a parameter name

IQ(id) captures the quality of an identifier in terms of its readability (Rd) and
its representativeness (Rp). The idea behind the readability is that an identifier
should be composed of a (possibly small) set of meaningful words. To measure
Rd for an identifier (id), we (i) split i¢d into the words composing it, (ii) expand
each word to bring it in its original form (e.g., ptr — pointer), (iii) create a

7

new identifier id.;, composed by the expanded words separated by a “_”, and
(iv) measure the Levenshtein distance between id and id.;,. The Levenshtein
distance between two strings a¢ and b measures the minimum number of single-
character changes needed to transform a into b. The conjecture behind IQ(id)
is that the higher the Levenshtein distance between id and id..,, the higher
the mental effort required for the developer to understand the meaning of the
identifier by mentally splitting and expanding it during program comprehension.
Note also that we separate the expanded terms in id .., by using “_” in order to
penalize, by increasing the Levenshtein distance, identifiers composed by several
words. For example, the identifier printOnStdOut is first split into print, on,

std, out; then, each word is expanded, which has no effect on the first two words,
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but expands std into standard and out into output. Therefore, printOnStdQut
is transformed in print on standard output.
To have Rd(id) defined in [0, 1], we normalize the Levenshtein distance (L)

between id and id.s;, as follows:

L(id, id egp)
max(|id|, |id ezp))

Rd(id) =1—

where max(|id|, |idcqp|) represents the longest identifier among the two. When
the distance equals zero, the readability of the identifier equals one, indicating
no need for expansion/splitting (i.e., id is composed by a single expanded word).

Note that in the implementation of Rd(id), we used a semi-automatic approach
to split/expand identifiers. We first used a naive automatic splitting technique,
based on camel case and underscores; then, we automatically checked the pres-
ence of each resulting word in an English dictionary. If the word was not found,
we manually expanded/further split the specific word. For example, for the word
“cmdline” there would not be automatic split. Since the word “cmdline” does
not exist in the dictionary, we manually convert it to “command” and “line”. We
save all the manual substitutions in order to minimize the human effort. In the
literature, there are many automatic approaches for identifier splitting/expan-
sion [84, 63, 82, 36|, but we preferred to implement a simpler and more effective
strategy at this stage, since the number of identifiers to split/expand was limited
and our goal was to assess the correlation of the defined metrics with the under-
standability effort. Thus, we wanted to be sure to avoid introducing imprecision
while computing the metrics.

When dealing with the identifier used to name a method, we also verify
whether it is representative of what the method does (Rp). We compute the
textual overlap between the terms used in the identifier and in the method body.
We tokenize the method body to define its dictionary. Then, we count the num-
ber of times each word from the identifier (expanded or not) is contained in the
dictionary extracted from the method body. We consider only names and verbs
from the identifiers, ignoring other parts of speech such as conjunctions, since
they do not carry semantic information. Following the printOnStdOut example,

we check whether the method body contains the words print, standard, std,
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output, and out. We measure the representativeness as the ratio between the
number of words from the identifier (i.e., method name) contained in the method
body, and the total number of words in the identifier. If all the words from the
identifier are used in m’s body, we assume that the method name is representative
of m and thus, should ease the understanding of methods invoking m. If, instead,
words are not found in the method body, this could hinder the understandability
of the methods invoking m.

In our study, we consider the minimum, the average, and the maximum values
of the MSQ metric for a given code snippet (e.g., the average MSQ of all methods
invoked in the code snippet).

7.2.2 Documentation-Related Metrics

In Chapter 4 we introduced three metrics to capture the quality of the in-
ternal documentation of a snippet: Comments Readability (CR) measures the
readability of the comments in a snippet using the Flesch reading-ease test [50];
Comments and Identifiers Consistency (CIC) measures the consistency between
comments and code; and CICyy,,, a variant of CIC which takes into account the
synonyms of the words in the identifiers.

We also introduce two new metrics aimed at capturing the quality of both the
internal (MIDQ) and external (AEDQ) documentation available for code com-
ponents used in a given snippet. The Methods Internal Documentation Quality
(MIDQ) for a snippet s acts as a proxy for the internal documentation (i.e.,
Javadoc) available for the internal methods (the ones belonging to the same
project as s) invoked in s. Given m an internal invoked method, we compute

MIDQ(m) using a variation of the approach proposed by Schreck et al. [126]:

MIDQ(m) = %(D]R(m) + readability p(m))

where DIR(m) is the Documented Items Ratio computed as the number of doc-
umented items in m divided by the number of documentable items in m. We
consider as documentable items for m (i) its parameters, (ii) the exceptions it
throws, and (iii) its return value. Such items are considered as documented if

there is an explicit reference to them in the Javadoc through the tags Qparam,
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@throws and Qreturns. readabilityp(m) represents, instead, the readability
of the Javadoc comments assessed using the Flesch reading-ease test [50]. The
higher MIDQ@ the higher the internal documentation quality for m. We consider
the minimum, the average, and the maximum values of the MSQ metric for a
given code snippet.

Concerning the API External Documentation Quality (AEDQ), it tries to
capture the amount of information about APIs used in the given snippet s that
can be acquired from external sources of documentation, such as Q&A websites.
The conjecture is that if external documentation is available, it is more likely that
developers are able to understand the usage of an API in a code snippet s. We
compute the availability of external documentation for each external class ¢ used
in s via the AEDQ(c) metric. First, we identify all Stack Overflow discussions

related to ¢ by running the following query:
title:"how to” <c> hasaccepted:yes [javal

In other words, we select all Stack Overflow discussions that (i) contain “how to”
and the class name in the title, (ii) have an accepted answer, and (iii) concern
Java (since our study has been performed on Java snippets). Then, we sum
the votes assigned by the Stack Overflow users to the question in each retrieved
discussion, in order to have a quantitative information about the interest of the
developers’ community in such a class. We assume that higher interest in a given
API class implies a higher availability of external sources of information (e.g.,
discussions, code examples, etc.). We consider in our study the minimum, the
average, and the maximum values of the AED(@ metric for the external classes

used in s.

7.2.3 Developer-Related Metrics

Since understandability is a very subjective feature of code, we introduced
three developer-related metrics. We measure the programming experience of the
developer who is required to understand a snippet (PE e, and PEp..) and the
popularity of the APT used in the snippet (FAP).

The common wisdom is that the higher the programming experience of de-

velopers, the higher their capability of understanding code. PE ., measures the
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programming experience (in years) of a developer in general (i.e., in any pro-
gramming language). PE,.. assesses instead the programming experience (in
years) of a developer in the programming language in which a given snippet s
is implemented. The higher PE,,.., the higher the developer’s knowledge about
the libraries available for such a programming language.

With External API Popularity (EAP), we aim at capturing the popularity of
the external APIs used in a given snippet. The assumption is that the lower the
popularity, the lower the probability that a typical developer knows the API. If
the developer is not aware of the APIs used in a snippet, it is likely that she has
to look for its documentation or to inspect its source code, thus spending more
effort in code understanding.

We rely on an external base of Java classes E to estimate the popularity of
an external class. We chose as E a 10% random sample of classes from Java/An-
droid projects hosted on GitHub in 2016, totaling ~2M classes from ~57K Java
projects. We used Google BigQuery to extract all the imports of all the classes
belonging to such projects using a regular expression. Then, we counted the num-
ber of times each class imported in F occurred in the import statements. Note
that in Java it is possible to import entire packages (e.g., import java.util.x).
In this case, it is difficult to identify the actual classes imported from the pack-
age. For this reason, we applied the following strategy. Let us assume that a
class, Foo, is imported only once with the statement import bar.Foo, but it is
part of a quite popular package, bar, that is imported 100 times in F through
the statement import bar.x. The class Foo2, belonging to the same package,
is imported 99 times with the statement import bar.Foo2. In this case, we in-
crease the number of occurrences of classes belonging to imported package in a
proportional way. In the presented example, we add 1 to the number of Foo’s
imports, and 99 to the number of Foo2 imports. We found that imports of entire
packages represent only 2.6% of all the imports and, therefore, their impact is
very low. EAP(c) is defined as the number of ¢ imports normalized over the
number of imports of ¢y,44, Where ¢y, is the most imported class we found in
E (i.e., javautil.List).
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Metric Non-aggregated Min Avg Max DFT Visual Area
Cyclomatic comp. [74]
#nested blocks [74]
#parameters [74]
#statements [74]
#assignments [21] [43]
#Dlank lines [21]
#characters [21]
#commas [21] [43]
#comments [21] [43] [43] [43]
#comparisons [21] [43]
#conditionals [21] [43]
Zidentifiers [74] [21] 211 [43]  [43]  [43]
#keywords [21] [21] [43] [43] [43]
#literals [43] [43]
#loops [21] [43]
#numbers [21] [21] [43] [43] [43]
2 #operators [21] [43] [43] [43]
3 #parenthesis [21] [43]
#periods [21] [43]
#spaces [21] [43]
#strings [43] [43]
#words [21]
Indentation length [21] [21] [43]
Identifiers length [21] [21]
Line length [21] [21] [43]
#aligned blocks [43]
Ext. of alig. blocks [43]
Entropy [119]
LOC [119]
Volume [119]
NMI [C4  [c4]  [c4)
NM [C4  [c4)
ITID [C4] [C4][43]
TC [C4] [C4] [C4]
Readability [C4]
IMSQ [c71  [c7 |c7)
CR [C4]
g cic [C4] [C4]
A CICgyn [C4] [C4]
MIDQ [CT7] [CT7] [CT7]
AEDQ [CT7] [CT7] [CT7]
z EAP [CT7] [CT7] [CT7]
& PE,., [C7]
PE,,.. [C7]

Table 7.1: Candidate predictors for code understandability.



7.3. Proxies for Code Understandability 105

7.3 Proxies for Code Understandability

Code understandability can affect two aspects of code understanding: the
correctness (i.e., how well the developer is able to understand a snippet), and
the time needed to understand the snippet. Moreover, developers might perceive
that they understand a given code without actually understanding it. Since
understandability is composed by several facets, we introduce six proxies of code
understandability. These proxies can be used to (i) study the correlation between
the candidate predictor variables introduced in Section 7.2, and (ii) as dependent

variables in techniques aimed at predicting code understandability:

1. Perceived Binary Understandability (PBU). This is a binary cate-
gorical variable that is true if a developer perceives that she understood a

given code, and false otherwise.

2. Time Needed for Perceived Understandability (TNPU). This is
a continuous variable in R, measuring the time spent by the developer
to comprehend a given code before having a clear idea on whether she

understood it or not.

3. Actual Understandability (AU). This is a continuous variable in [0, 1],
measuring the actual understanding of the inspected code. A possible way
of measuring actual understandability is through verification questions. For
example, the developer understanding the code could be required to answer

three questions, and the percentage of correct answers is used to assess AU.

4. Actual Binary Understandability (ABU,y). This is a binary cate-
gorical variable derived from AU. It is true if AU is greater than k, false
otherwise. ABUy, is basically a proxy to classify snippets of code as un-
derstandable or not based on the level of actual understanding developers

are able to achieve while inspecting it.

5. Timed Actual Understandability (T'AU). This is a continuous vari-
able in [0,1], derived from AU and TNPU. It gets a value of 0 if the

developer perceives that she did not understand the snippet. Otherwise, it
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is computed as:

max T NPU

where AU and TNPU are the variables previously defined. The higher

AU, the higher TAU, while the higher TNPU, the lower TAU. We take

TNPU
max TN PU

so that TAU gives the same importance to both the correctness achieved
(AU) and the time needed (TNPU). max TN PU is, indeed, the maximum
TNPU measured on the snippet.

TAU = AU(l __INPU )

into account the relative time ( ) instead of the absolute time,

Binary Deceptiveness (BD,y). This is a binary categorical variable
derived from PBU and ABU,y, which is true if PBU is true and ABUy,
is false, and false otherwise. BDyy indicates whether a developer can be
deceived by a method in terms of its understandability (i.e., she incorrectly
thinks she understood the method).

7.4 FEvaluation

The goal of our study is to assess the extent to which the considered 121 met-

rics are related to code understandability and what developers consider as un-

derstandable/not understandable. The perspective is of researchers interested in

(i) analyzing whether code-related, documentation-related, and developer-related

metrics can be used to assess the understandability level of a given piece of code,

and (ii) investigating characteristics of code considered as important for develop-

ers during program comprehension.

7.4.1 Empirical Study Design

This study aims at answering the following research questions:

RQ:

What s the correlation between the 121 considered metrics and the under-
standability level of a given developer for a specific code snippet? Given the

wide and heterogeneous set of considered metrics, answering this research
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System Java KLOC Category Description

ANTLR 178 Desktop Lexer-parser

Car-report 45 Mobile Car costs monitoring
Hibernate 948 Framework ORM framework

Jenkins 231 Web Continuous integration

K9 mail 121 Mobile Mail client

MyEzxpenses 101 Mobile Budget monitoring
OpenCMS 1059 Web Content Management System
Phoenix 352 Framework Relational database engine
Spring 197 Framework Generic application framework
Weka 657 Desktop Machine-learning toolkit

RQ,

RQs

Table 7.2: Systems used in our study.

question would allow us and, in general, the research community to under-
stand how far we are from defining a set of metrics capable of automatically

and objectively assessing code understandability;

Is it possible to define understandability models able to predict code un-
derstandability? Given a snippet of code, we want to determine whether
combining metrics in a model can effectively capture the level of under-
standability of that code;

How do developers determine the understandability of code? While the first
two questions relate to metrics to assess understandability, it is also impor-
tant to consider the perspective of developers when trying to understand
code. To this end, we aim to deepen our analysis by asking experienced
developers what makes a certain code snippet understandable or not un-

derstandable.

7.4.2 Data Collection

The context of the study consists of 50 Java/Android methods extracted from

ten popular systems listed in Table 7.2 (five methods from each system). We
first extracted all the methods having 50 £ 20 ELOCs (i.e., Effective Lines Of

Code, excluding blank and comment lines) from the systems. The choice of the
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methods’ size (i.e., 50 & 20 ELOCs) was driven by the decision of assessing the
understandability of mid-size code snippets.

Afterwards, we computed all the metrics described in Section 7.2 for the
selected methods!. Then, we used a greedy algorithm for center selection [77] to
select the 50 most representative methods based on the defined metrics. Given a
set of candidate methods M and a set of already selected centers C, the algorithm
chooses, in each iteration, argmax,,c,; dist(C,m), i.e., the candidate method
which is the farthest possible (in terms of considered metrics) from the already
selected centers of which the first center is randomly selected. In order to select
exactly five snippets from each system, we used the set of candidate methods from
a specific system as M until the five methods for such a system were selected;
then, we changed M with the set of candidate methods from another system, and
so on, until |C| = 50. Note that (i) we did not empty the C set when changing
the candidate methods (i.e., when moving from one system to another) to always
keep track of the methods selected up to that moment, thus avoiding the risk of
adding to C methods similar to the ones already in C; (ii) we did not run the
algorithm on the union of all candidate methods to ensure the selection of five
methods per system (thus increasing the heterogeneity of the final sample).

After selecting the 50 methods and computing the values of the metrics for
each of these 50 methods, we needed to define a ground-truth, which reports the
understandability of each method. To this aim, we invited 63 Java developers and
CS students to participate in a survey, where they were required to understand the
selected methods. The survey was implemented in a Web application and featured
the following steps. First, we collected demographic data about participants: (i)
years of experience in programming and more specifically in Java, and (ii) current
position (e.g., CS student, developer etc.). This information was used in part
to compute the developer-related metrics. We asked participants for consent to
anonymously use the gathered data. We do not report developers’ names and e-
mail addresses for privacy reasons. After this preliminary step, each participant
was required to understand a subset of eight methods randomly selected from
the 50 methods. The Web application was designed to automatically balance the

number of evaluations for each of the 50 methods (i.e., the number of participants

IExcluding the “Developer programming experience” and the “Developer Java experience”
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understanding each method was roughly the same). In total, we collected 444
evaluations across the 50 methods (~8.9 evaluations per method on average),
since not all participants completed the survey.

The eight methods were presented individually (i.e., each method on a dif-
ferent page) to participants, and the Web application allowed navigation of the
method and access to the methods/classes invoked /used by it. Also, participants
were allowed to browse the Web to collect information about types, APIs, data
structures, etc. used in the method. This was done to simulate the typical un-
derstanding process performed by developers. We asked participants to carefully
read and fully understand each method. Participants could, at any moment, click
on the button “I understood the method” or the button “I cannot understand the
method”. In both cases, the Web application stored the time spent, in seconds,
by the developer for the method’s understanding before clicking on one of the
two buttons. If the participant clicked on "I understood the method”, the method
was hidden and she was required to answer three verification questions about the
method she just inspected. The provided answers were stored for future analysis.

In particular, one of the questions we asked was about the identifiers used in
the method (e.g., what does “CMS” mean?); a second question was about the pur-
pose of a call to an internal method (e.g., What does the invoked method X do?);
and the third question was about the purpose of using an external component in
the snippet (e.g., JDBC APIs).

7.4.3 Analysis Method

In the context of our study, we measure the understandability level using the
previously defined proxies of code understandability (Section 7.3).

We measure Perceived Binary Understandability (PBU) using the ini-
tial declaration of the participants: if they clicked on “I cannot understand the
method” button, PBU is false, while it is true otherwise (i.e., the participant
clicked on “T understood the method”).

We measure Time Needed for Perceived Understandability (TNPU)
as time, in seconds, spent by the participant while inspecting the method before
clicking on “I understood the method”. This metric cannot be computed when

the participant clicked on “I cannot understand the method”.
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We measure Actual Understandability (AU) as the percentage of cor-
rect answers given by the participants to the three verification questions. If the
participant clicked on the “I cannot understand the method” button, AU is 0.

We measure Actual Binary Understandability (ABU,y), with k£ = 50.
Therefore, ABUsqy is true when participants correctly answer at least two of the

three verification questions, and false otherwise.

To measure Timed Actual Understandability (TAU), we use the previ-
ously defined formula, which combines AU and TNPU. TAU gets value 0 if the
participant clicked on the “I cannot understand the method” button. In this con-
text, we used a modified version of TNPU in which outliers (detected using the
Tukey’s test [144], with k = 3) are replaced with the maximum value of TNPU
which is not an outlier. We did this because the maximum value of TNPU in
our dataset is 1,649 seconds, much greater than the third quartile (164 seconds).

Using the real maximum value would have flattened down all the relative times.

Finally, we measure Binary Deceptiveness (BD,y), with k = 50, using

the previously defined formula which combines PBU and ABUsgy.

We computed these six variables for each of the 444 evaluations performed by
participants (i.e., for each method that each participant tried to understand). We
excluded 2 of the 121 considered metrics (i.e., NMI,,;, and ITID,,;,), because

the value of such metrics was 0 for all the snippets.

To answer R, we first verified which metrics strongly correlate among the
121. This was done to exclude redundant metrics, which capture the same in-
formation in different ways, from our analysis. We compute the Kendall rank
correlation coefficient (i.e., Kendall’s 7) [75] to determine whether there are pairs
exhibiting a strong correlation. We adopted the Kendall’s 7, since it does not
assume the data to be normally distributed nor the existence of a straight lin-
ear relationship between the analyzed pairs of metrics. Cohen [32] provided a
set of guidelines for the interpretation of the correlation coefficient. It is as-
sumed that there is no correlation when 0 < |7| < 0.1, small correlation when
0.1 < |7| < 0.3, medium correlation when 0.3 < |7| < 0.7, and strong correlation
when 0.7 < |7| < 1. For each pair of metrics exhibiting a strong correlation (i.e.,
with a Kendall’s |7| > 0.7), we excluded the ones which presented the highest
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number of missing values? or one at random, when the number of missing values
were equal. This allowed us to reduce the number of investigated metrics from
121 to 73. Finally, we computed the Kendall correlation between each of the re-
maining 73 metrics and PBU, TNPU, AU, BDsyy, and TAU to verify whether
some of them are able to capture the (actual and perceived) understandability
of code. We did not compute the correlation with ABUsqy, since, in this case,
it would have been redundant, because we already compute the correlation with
AU.

To answer RQ,, we tried to combine the metrics defined in Section 7.2 to
predict the six proxies of understandability previously defined. Since the num-
ber of metrics is high as compared to the number of instances, we performed
a preliminary phase of feature selection. First, we removed the features highly
correlated among each others (as previously done for RQ); then, we removed
Area Keywords/Comments, because of the high number of missing values (124,
more than 30% of the instances), which could be problematic for some of the

used machine learning techniques.

To build a model for predicting PBU, ABUsgy,, and BDsgy,, we use a broad
selection of classifiers defined in the literature, since such variables are nominal.
Specifically, we use (i) Logistic Regression [87], (ii) Bayes Networks (73], (iii)
Support Vector Machines (SMO algorithm [115]), (iv) Neural Networks (Multi-
layer Perceptron), (v) k-Nearest-Neighbors [4], and (vi) Random Forest [20]. As
the first step, we use 10% of each dataset to tune the hyper-parameters and we
removed such instances from the dataset used in the experiment. We focus on
the main parameters of each technique and, specifically, we tune: (i) number of
hidden layers, learning rate, and momentum for Multilayer Perceptron; (ii) k,
weighting method, and distance metric for kKNN; (iii) kernel, exponent, and com-
plexity for SMO; (iv) number of features for Random Forest. To do this, we use
an exhaustive search approach on a reduced search space, i.e., we defined discrete
values for each parameters (at most 10 values) and then we try all of the pos-
sible combinations. We search for the combination of parameters that achieves

the best AUC using leave-one-out cross-validation on the tuning set. Note we

2Some metrics cannot be computed in some cases. For example, “Area of comments/literals”
cannot be computed if the method does not contain literals.
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did not tune hyper-parameters for Logistic Regression and Bayes Networks, since

they do not rely on any particular parameter.

Both PBU and BDsgy were unbalanced: PBU presented a high number of
positive instances (~69%), while BDsge a high number of negative instances
(~80%). To have balanced models, we use the SMOTE filter [30] on the train-
ing sets to generate artificial instances for the minority classes. Moreover, while
Random Forest is designed to automatically select the best features, for the other
algorithms it is important to have an adequate number of features in relation to
the number of instances. To achieve this goal, for those techniques, we performed
a second round of feature selection using linear floating forward selection with a
wrapper strategy. We used Logistic Regression as the classifier for the wrapper
and AUC (Area Under the Curve) as the metric for the evaluation of the effec-
tiveness of each subset of features, computed with a 5-fold cross validation. We
report the average F-Measure of the classes of each variable and the AUC of all
the classifiers for the three variables to show the effectiveness of combinations of
metrics defined in the literature in the prediction of the nominal proxies of un-
derstandability. Additionally, we discuss the cases in which precision and recall

are very different (e.g., precision is much higher than recall).

For the other proxies, i.e., TNPU, AU and TAU, we use several regression
techniques defined in the literature, since such variables are numeric. Specifi-
cally, we use (i) Linear Regression, (ii) Support Vector Machines (SMOreg [131]),
(iii) Neural Networks (Multilayer Perceptron), (iv) k-Nearest-Neighbors[4] and
(v) Random Forest[20]. In this case, we report the correlation of the predicted
values with the actual values and the MAE (Mean Absolute Error) of the pre-
diction, computed as M We use the same approach that we used for
classification to tune the parameters of the regressors and to select the best fea-
tures. In this case, we look for the parameters and the features that minimize
the mean absolute error. We use linear regression as regressor in the wrapper

strategy.

Both classifiers and regression models need to be trained and tested on dif-
ferent datasets to avoid overfitting (i.e., the model would fit the specific data,
but not generalize). For this reason, we performed leave-one-out cross-validation

where we divided the dataset in 444 folds, i.e., each fold contains exactly one



7.4. Evaluation 113

instance. For each iteration, one of the folds was used as test set and the union
of the other folds as training set for our models. Therefore, for each evaluated
instance, we train our models on the whole dataset without the test instance.
This solution is ideal in this context for two reasons: (i) since our dataset may
be small for regression techniques to be effective, we cannot afford to reduce the
number of instances for the training phase; (ii) this type of validation allows us
to use all the evaluations of the same developer (except for the one that has to
be tested) in the training phase. This would allow machine learning techniques
to define rules specific for the developer itself. It is worth highlighting that we
do not aim at comparing different machine learning techniques. Instead, our goal
is to understand if any technique is able to effectively combine the considered

metrics to capture code understandability.

Finally, to answer RQ3, we conducted semi-structured interviews with five
experienced developers, listed in Table 7.4. The developers provided consent to
report their names in this thesis. We do not directly associate the names to the
performance in the tasks. To guide the interviews, we selected 4 methods among
the 50 that we used to answer our first two research questions. Such methods
where (i) the one with the highest mean TAU, i.e., the most understandable
one, (ii) the one with the lowest mean TAU, i.e., the least understandable one,
(iii) the one with the highest standard deviation in TAU, i.e., the one for which
the understandability seems to be most subjective, and (iv) the one that has the
highest TNPU and a number of BD5qq, = true greater than zero, i.e., the method
that, despite being analyzed for the longest time, still makes some developers

incorrectly believe that they understood it.

We use TAU as a proxy for understandability to select the first three snippets
as it takes into account both the actual understandability and the time taken to
understand the snippet. Table 7.3 shows the four methods we selected. For each
method, we asked the five developers to read and understand it, thinking aloud,
if they wanted. Before the participants started to read and understand the snip-
pet, we asked them how familiar they were with the system to which the snippet
belongs and with the APIs used in the snippet. For each snippet, after the partic-
ipants concluded the understanding phase, we asked precise questions: @Q1: “do

you think this snippet is understandable?”; Qo: “what makes this method under-
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System Class Method Type

OpenCMS CmsHoverbarContextMenuButton — createContextMenu  The most understandable (TAU = 0.74)

Phoenix MetaDataEndpointImpl doDropSchema The least understandable (TAU = 0.06)

Hibernate TimesTenDialect TimesTenDialect The most subjective (sd(T'AU) = 0.46)
MyExpenses LazyFontSelector processChar The most deceptive (I'NPU = 391.0, #BDsoy, = 2)

Table 7.3: Methods used during the interviews with developers.

Name Position Experience
Salvatore Geremia PhD Student @ Unimol 8 years
Giovanni Grano PhD Student @ Uzh 8 years
Stefano Dalla Palma  Android developer @ Datasound 5 years
Carlo Branca Front-end developer @ Gatelab 8 years
Matteo Merola Back-end developer @ Bunq 8 years

Table 7.4: Position and experience of the interviewed developers.

standable/not understandable to you?”; Qs: “is it possible to modify the method
to make it more understandable? If yes, how?”. If the participants understood
the snippet, we asked the purpose of the snippet to ensure they actually under-
stood it, unless they explained it while they thought aloud during the interview.
Finally, we registered the time the participants took to understand the snippets.
We report the answers of the participants to each question and, above all, we

report interesting insights that we could catch during the interviews.

7.4.4 Empirical Study Results

In this section, we present the results of our empirical study. Fig. 7.1 provides
information about the participants involved in RQ); (same dataset is used for
RQ) as well). The majority of them (~ 60%) are CS bachelor’s students—mixed
in terms of years of programming experience. The sample of participants also
includes nine master’s students, three Ph.D. students, and thirteen professional

developers.

7.4.5 R(@):: Correlation With Single Metrics

Fig. 7.2 reports a heatmap representing the correlation between metrics and

our six proxies for code understandability. It is clear that very few metrics
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Position

Ph.D. students

Master's students
. Professional developers
. Bachelor's students

Figure 7.1: Participants to the study.

have a correlation with understandability higher than |0.1|. Specifically,
8 metrics have a weak correlation with PBU, only one with TNPU, 13 with
AU, 13 with TAU, and 2 with BDsqy. Note that, since we only observed weak
correlations, these metrics are very unlikely to be appropriate proxies for code
understandability. 51 out of the 73 metrics considered showed no correlation at

all with any of the proxies.

The metric which has the highest correlation with PBU are two: (i) mawi-
mum line length (7 = —0.13), which is one of the metrics introduced by Buse and
Weimer [21] for readability prediction; (ii) PEgpe. (7 =~ 0.13), which measures
the Java experience of the developer. Note that Buse and Weimer also found
that Mazimum line length is the most important one for readability prediction
in their model [21]. Therefore, this reinforces the fact that, generally, develop-
ers tend to perceive code with long lines as less pleasant. The correlation with
PE 4pe., instead, shows that developers with more experience in the specific pro-
gramming language tend to have a slightly higher confidence and they tend to
perceive snippets of code as understandable more frequently than developers with
less experience. Finally, we observed other low correlations with PBU: NM 4,
(-0.12), i.e., when words used for identifiers have many meanings, they make de-
velopers perceive the snippet as slightly less understandable; M1DQ ., (0.12),

i.e., the higher the minimum quality of the internal documentation, the higher
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the perceived understandability; average identifiers’ length (-0.12), i.e., shorter
identifiers slightly help perceiving the code as more understandable.

It is worth noting that only a single metric has a slight correlation with TNPU
i.e., DF'T of conditionals (0.11).

The metric that has the highest correlation with AU is average Textual Co-
herence (7 = —0.16). The fact that such a correlation is negative is surprising,
because we expected a higher Textual Coherence to imply a higher understand-
ability. Also, we found that number of parameters negatively correlates with
AU (1 = —0.13) (i.e., the larger the number of parameters, the lower the ac-
tual understandability of the method). We found a similar result also in RQs
when interviewing developers. Other examples of metrics correlated with AU are
PE gpec (1 = 0.13) and DFT of conditionals (T = —0.13).

The metric with the highest correlation with TAU is DFT of conditionals
(7 = —0.16). This suggests that high complexity reduces the understandability
of a snippet. It should be noted that for TAU, which is expression of actual
understandability, we observe only a slight correlation with the programming

experience (7 = 0.11 for PEp..).

Finally, only two metrics, i.e., number of literals (visual X) and DFT of
conditionals, are slightly correlated with BDsgy (7 & 0.11 and 0.1, respectively).

All the other metrics show a negligible correlation.

Summary of R(Q;. None of the metrics we considered achieve a medi-
um/strong correlation with any of the proxies of code understandability we
defined.

7.4.6 R(Q),: Performance of Multi-Metrics Models

We report the performance of models that combine metrics dividing them as
classification, for PBU, ABUsgy, and BDsgy, and regression, for TNPU, AU and
TAU.
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. PBU AB U50% BD50%
Classifier F-Measure AUC F-Measure AUC F-Measure AUC
Logistic 0.68 0.71 0.63 0.71 0.72 0.71
kNN 0.62 0.63 0.59 0.66 0.74 0.66
SMO 0.64 0.63 0.63 0.63 0.71 0.63
Naive Bayes 0.60 0.65 0.66 0.68 0.63 0.66
Random Forest 0.65 0.63 0.67 0.72 0.77 0.64
ML Perceptron  0.66 0.69 0.63 0.70  0.70 0.70

Table 7.5: Classification results of PBU, ABUsqgy, and BDsgy,.

Classification

Table 7.5 shows the F-Measure and AUC of the classification of PBU, ABUsgy,,
and BDsqg. Since we use Logistic Regression for feature selection, we do not in-
clude it directly in the comparison among the techniques. It is worth noting that
the AUC achieved by Random Forest and Multilayer Perceptron for the classifi-
cation of ABUygy seems to suggest that it is possible to classify with a good level
of confidence snippets as actually understandable or actually not understandable.
Looking at the F-Measure, however, it is clear that we are quite far from having a
practical classifier for actual understandability. Also, looking at the classification

accuracy, 33% of the instances are wrongly classified by the best model.

Such results are even more negative for PBU and, above all, BD5qy,. For PBU
the maximum F-Measure is ~0.66. On the other hand, the best F-measure for
BDggy, is 0.77, achieved by Random Forest. However, this positive result hides
the fact that such a classifier has good results only on negative instances. Both
precision and recall for the positive class are, indeed, very low (mean 0.31 and 0.51
for precision and recall, respectively). In general, looking at the F-Measure of the
minority classes, which are perceived as not understandable and deceptive, such
values are much lower (i.e., 0.48 and 0.37, respectively), despite the fact that we
used SMOTE to balance the training sets. We can conclude that the combination
of the considered metrics shows a slight discriminatory power for actual binary
understandability (ABUsgy ); however, we are quite far from a practically useful

prediction model of actual/perceived understandability and deceptiveness.
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R TNPU AU TAU
egressor Correlation MAE  Correlation MAE  Correlation MAE
Linear Regression  0.14 1329 0.35 0.30 0.36 0.27
kNN 0.11 137.1  0.26 0.31 0.21 0.28
SMOreg 0.17 114.4 0.36 0.29 0.29 0.27
Random Forest 0.09 147.0 0.34 0.29 0.29 0.28
ML Perceptron 0.18 124.8  0.37 0.30 0.36 0.27

Table 7.6: Regression results of TNPU, AU, and TAU.

Regression

In Table 7.6, we report the performance of the regression models for TNPU,
AU and TAU. The first thing that is very clear is that our models are not able
to predict TNPU (Time Needed for Perceived Understandability). The highest
correlation for TNPU is only 0.18, higher than the correlation achieved by single
metrics, but still very low. The Mean Absolute Error is also very high. On
average, we can expect a prediction of TNPU to be wrong by about 2 minutes.
Considering that the average TNPU is 143.4 seconds, without excluding outliers,
it is clear that any prediction of TNPU made with the state of the art metrics is

practically useless.

On the other hand, it can be seen that there is a good improvement in the
correlation for both AU and TAU, when using combinations of metrics rather
than single metrics. The maximum correlations are 0.37 and 0.36, respectively,
leading to a medium correlation. However, it is worth noticing that the Mean
Absolute Error is quite high. In our context, the MAE of 0.29 for AU means that
we should expect our model to be wrong by one answer, on average (0.29 ~ 0.33).
If our model predicts that AU is 0.66 (the participant gives two correct answers
out of three), it may be that she gives one or three correct answers, thus making
this prediction poorly actionable except for corner cases (predicted AU very low

or very high).
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Summary of R@;. Combining the state-of-the-art metrics can result in
models that show some discriminatory power in the prediction of some prox-
ies of code understandability (i.e., ABUsgy, AU and TAU). However, such

predictions are not sufficiently good yet to be used in practice.

7.4.7 R(Q3: Structured Interviews with Developers

We report the results of the interviews by presenting the developer responses
grouped by each type of code snippet. The interviews lasted roughly between

one and two hours each.

The Most Understandable Method

All the developers correctly described the functionality implemented in the
method, and all of them answered positively to Q1 (i.e., they think the method is
understandable). The average time needed to understand the method was about
2.5 minutes. As expected, this was the method understood most quickly.

The single aspect that makes this method highly understandable, according to
the developers, is the easy/clear task it implements. Other positive aspects of the
method as for understandability (Q2) are that it is very tidy (good readability,
in general) and it implements a single task. Carlo highlighed that the names are
very well chosen. However, both Salvatore and Giovanni put emphasis on the
many repetitions in the code. Salvatore said that, to some extent, repetition and
alignment are positive, because they help the brain ignoring part of the code that
is not useful to read. On the other hand, Giovanni thinks that repetitions make
the method “poorly maintainable and less elegant”; however, he does not think
that repetitions hinder understandability.

Three developers agreed that there is no negative aspect in terms of under-
standability, and it would not be possible to have a more understandable version
of the method (@Q3). On the other hand, Salvatore thinks that the repetition of
the actual parameter “hoverbar” for all the constructors and the lack of align-
ment forces the reader to check if it is actually true that all the constructors are

called with such an actual parameter, and this slightly increases the time needed
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//Actual code

result.add(new CmsGotoMenuEntry (hoverbar));
result.add(new CmsGotoExplorerMenuEntry(hoverbar));
//Desired code

result.add(new CmsGotoMenuEntry (hoverbar));
result.add(new CmsGotoExplorerMenuEntry(hoverbar));

Figure 7.3: Actual code vs aligned code (first snippet).

to understand the method. He would have aligned all the actual parameters of
the constructors in the list (Fig. 7.3). Matteo thinks that the name “hoverbar”
is not very clear, and documentation is lacking for it. He also thinks that the
abstract return type makes the method slightly less understandable, because it is
necessary to understand what kinds of concrete types can be returned. He said
that, from his experience, there is often a trade-off between understandability
and maintainability. In this case, using abstract types is necessary to make the
method more maintainable (e.g., all the classes that implement the same inter-
face have the same signature, and it is easier to extend this system). However,
this makes the implemented mechanism (and the system) harder to understand.

While reading and understanding the method, the developers used different
approaches. Some of the developers looked at class and internal dependencies
of the method (i.e., the context in which such method exists); some looked as
well at some of the classes used in the method and they inferred that they are
very similar, which was helped by the names; some focused on the method itself.
One of them searched on the internet for “hoverbar” to understand its meaning
in this context. One of the developers also looked for information about the
entire system and the repository (e.g., number of developers) and he looked at
the documentation of the implemented interface to get information about the

method to understand.

The Least Understandable Method

Four developers out of five did not understand the second method. They
admitted that fully understanding the method would have required much longer,
and they asked to stop after about 5 minutes. One of them, on the other hand,

took some extra time to analyze the classes used in the method (about 8 minutes,
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in total). In the end, he said he understood the method and he was able to
describe what the method did. Three developers said that the method is not
understandable (Q1), while the other two, surprisingly, said that the method is
understandable. The developer, who did not fully understand the method but
perceived it as understandable, explained that he roughly understood the method,
but the lack of knowledge about the system made him say that it would take more

time to properly understand it.

Two developers highlighted that the positive aspects of the method (Q2) are
that it implements just one task. One of them also generally liked the names used
for the identifiers. On the other hand, all the developers listed many negative
aspects. The most negative aspect highlighted is the complete lack of comments
and internal documentation (all the developers). Also, the fact that the method
belongs to a big and untidy class makes the method itself less understandable
(2 out of 5 developers). The developers also generally complained about the low
readability of the method (4 out of 5 developers). Matteo and Carlo pointed out
that another negative aspect is that the method is highly dependent on some
internal classes/methods that are hard to understand. Stefano, Salvatore and
Matteo did not like the presence of many exit points for the method; Salvatore
and Matteo also said that the high number of parameters strongly reduces its
understandability (confirming what we found answering RQ1), and Matteo pre-
cised that some of the parameters are not used at all. Stefano and Matteo did not
like some identifiers names (e.g., areTablesIdentifiers), which they considered
potentially misleading. Matteo thinks that this method has too many responsi-
bilities. For example, the first thing the method does is to load a schema, based
on the value of one of the parameters, but he thinks that it would be better
to directly have a parameter with the loaded schema. Also, he thinks that the

application domain is quite complex.

All the developers answered (3 saying that they would improve the under-
standability of the method by adding comments and improving its readability.
Matteo said that he would (i) change the order of the parameters (e.g., putting the
schema as the first parameter), (ii) use exceptions instead of SCHEMA_NOT_FOUND
instances, and (iii) start with a check for exceptional behaviors (that lead to
SCHEMA_NOT_FOUND) and the normal behavior after that.
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Also, in this case, the developers used different approaches to read and under-
stand the snippet. One developer tried to look for the internal documentation of
the used classes (which is lacking); two developers looked at the code of the used
classes; one developer strongly relied on the names of the identifiers. Finally, one
developer said that he would have used the debugger to understand the snippet
(i.e., he would have analyzed the dynamic behavior of the code). He explained

that understanding this snippet only looking at code statically would take longer.

The Most Controversial Method

Four out of five developers were able to understand the method with a low
effort (~2 minutes). One of the developers took longer (5 minutes). He explained
that he had no experience with SQL dialects. However, in the end, all of them
were able to understand the method. Three of the developers were familiar with
SQL dialects and Hibernate, and they took shorter than the average to under-
stand the snippet. All the developers agreed that the method is understandable
(Q1). However, three out of five developers explicitly said that a good knowl-
edge of SQL dialects and, partially, of Hibernate is necessary to understand this
method; conversely, one developer said that the lack of knowledge on SQL di-
alects would have just increased the time needed to understand, but the method

would have been easy to understand anyway.

All the developers appreciated the good names and the good quality of com-
ments and Javadoc (Q2) and four out of five developers said that there are no
negative aspects of this method in terms of understandability and that they would
not change it (Q3). Matteo, on the other hand, said that, in general, he would
have divided the method in three private methods: one for the columns, one for
the SQL properties, and one for the functions. However, he said that it is not
strictly necessary in this specific case, because the dialect is easy.

The interviews suggest that this method was the most controversial in our
study due to differences in background among the developers. Such subjectivity
may have strongly influenced the time needed to understand the snippet. While
the subjectivity of this method emerged from the survey we conducted, on the

other hand the five developers we interviewed seemed to agree that the method is
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understandable. This is most likely due to the fact that they are all professional
and experienced developers.

The Most Deceiving Method

Three out of five developers said that they understood the method and that
they found the method understandable (Q1). Two developers said that it would
take longer to fully understand it. On average, the developers took about 5 min-
utes to understand the method. Interestingly, when we asked them to precisely
describe what the method does, one of the developers noticed that he actually
did not understand the reason why a for loop was in the method. Therefore, in

the end, only two developers actually understood the method.

Differently from the other methods for which developers often highlighted
more or less the same positive/negative aspects in terms of its understandabil-
ity (Q2), for this method, each of them talked about a different positive aspect.
Salvatore said that, despite the nesting, the conditions are quite simple and the
blocks of the conditions are short. According to him, this facilitates the under-
standing of causes and effects in the code. Conversely, Matteo said that he did
not like the many nested if controls, which make it hard to understand, according
to him. Giovanni liked the names used, and he found them quite clear. Carlo,
instead, did not like them, but he said that the fact that all the internal methods
called in this snippet were in the same class improved the understandability of
the method. Stefano did not find any positive aspects about this method. On
the other hand, the developers said that some names, such as “surrogate”, are un-
common and abstract, and they may hinder the understandability of the method
(2 out of 5 developers); Matteo points out that the name of the method itself
(processChar) is too generic and ambiguous. The redundancy in some parts of
the method is definitely a negative aspect. The method contains two very similar
blocks of code (4 out of 5 developers). They all suggest to remove this repetition
(@s3).

To understand this snippet, three developers looked only at the code of the
method, while two of them found it useful to look at the only method in the class

that calls the snippet’s method.
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Table 7.7: Factors mentioned by the participants.

Factor MM SG GG SD CB ‘ Study
Quality of Identifiers x X X X x | v
Code Readability X X X X v
Presence of Comments X X X X v
# Exit Points X X X
Documentation Quality X X X v
# Responsibilities X X X

Quality of the Class X X X

# Parameters X X v
Nesting X X v
Quality of Dependencies X X
Application Domain X X

Code repetitions X X

Broken Lines X X

Control Flow X X

Factors Mentioned by the Developers

Table 7.7 provides a summary of the factors that the developers mentioned at
least once during the interview and it shows the ones that we used as potential
predictors to answer RQ); and RQ3. The quality of the identifiers is mentioned
by all of them, but also code readability and comments seem to be valuable,
according to most of them. We took into account all the factors that at least four
out of five interviewed developers agreed on: quality of identifiers is captured by
some of the textual features we introduced to improve the readability assessment,
such as ITID and CIC; we estimated code readability using the comprehensive
model introduced in Chapter 4; documentation quality is captured by two new
metrics we introduced in this chapter, i.e., MIDQ and AEDQ); finally, we measure
number of parameters of a method and the average number of nested blocks, both

mentioned by two developers out of five.
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Summary of RQs. There is a diverse set of aspects considered by developers
during code understanding. The interviewed developers (mostly) agree on a
subset of aspects that are desirable (e.g., good identifiers, readability, and
presence of comments) or undesirable (e.g., too many exit points) for hav-
ing understandable code. However, we found no agreement on many other

aspects and, above all, on the adopted understanding process.

7.4.8 Discussion

Our results show that no single metric has a non-weak correlation with any
proxy of understandability.

We also tried to combine these metrics in classification and regression models
to predict different aspects of code understandability. In a previous study, Trock-
man et al. [143] used LASSO regression to classify ABUsgy, and they achieved an
AUC of 0.64. We achieved a higher AUC for the classification of ABUsqy, (0.72)
and a comparable AUC for PBU (0.69) and BDsgg (0.70). However, looking at
the F-Measure, it is clear that the prediction model would not be useful in prac-
tice. Compared to the readability models, understandability models are much
less effective and practically unusable. Combining metrics in regression models
to predict TNPU, AU and TAU also shows the limits of the metrics, which can
achieve a maximum correlation of 0.37 (with AU). Therefore, we have a clear
negative result: the metrics we investigated are not enough to capture
code understandability. However, as previously hinted by Trockman et al.
[143], combining metrics helps to achieve better results as compared to single
metrics for most of the understandability proxies.

In the interviews that we conducted, we found that developers perceive read-
ability as an aspect that highly influences code understandability. However, this
contradicts our quantitative results. It is possible that we did not capture any
correlation between readability and understandability because we measured the
understandability effort only by using the time spent to understand a snippet
as a proxy. A factor that we ignore here is the mental effort actually needed to
understand a snippet. It could be that unreadable code makes developers more

tired in the long run, but when focusing on a single snippet this does not result
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in noticeable differences in terms of comprehension time and it does not affect
the correctness of the understandability process. FExperienced developers, who
had the chance of working both with readable and unreadable code for longer
periods, consider this as an important aspect because they feel it affects their
overall performance. The same may be true for other aspects associated to code
readability (such as the quality of identifiers, as previously seen in Chapter 4).
Most importantly, our interviews with developers show that each developer uses
her own understanding process. When code is harder to understand, some look
at the related classes, while others say they would run the code and use the de-
bugger to understand it. One of the most surprising facts is that some developers
found the least understandable snippet to be understandable. Finally, we found
that the personal background of developers plays a crucial role in understanding;:
when the knowledge of a concept is lacking, it takes time to acquire such a knowl-
edge. This may be the main limit of the metrics we introduced: We measure the
“knowledge” contained in a snippet (e.g., with MIDQ and AEDQ), but we do
not measure the knowledge that the developer already has. Our metrics may be
valid for the “average” developer, but when we try to measure understandability

at a personal level, they are not enough.

To further confirm this, we tried to check how the values of our proxies for
code understandability vary among different evaluators (for the same snippet)
and different snippets (for the same evaluator). For each proxy P, we computed
the mean variance of P among different evaluators (for the same snippet) using
the formula Vi(P) = M, where n is the number of snippets in our
dataset and P; is the vector containing the values of P for the snippet i. The
higher Vj, the larger the differences in terms of understandability among different
evaluators for the same snippets. Similarly, we computed the variations among

" wvar(P; .
M, where n is

different snippets for the same evaluator as Vy(P) =
the number of developers and P; is the vector containing the evaluations of the
developer 7. Again, the higher Vj;, the higher the differences in understandability

among different snippets for the same evaluator.

We report in Table 7.8 both V; and V, for TNPU, AU, and TAU, i.e., the
numeric proxies we previously defined. We also report the values of V; for the

different categories of participants. The table shows that Vj is slightly higher than
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AU TNPU TAU

Vi (BsC) 0.11 61,683 0.08

5, (MsC) 0.06 4,209  0.03
V3 (PhD) 0.09 24,924 0.10
Vp (Professional)  0.07 42,425 0.07
Vi 0.13 34,294 0.10
vg 0.12 26,109  0.09

Table 7.8: Mean variance of the proxies among snippets and developers (lower
values imply more similar scores).

Vy for all the proxies. This shows that the understandability depends more on
the developer than on the snippet he/she is evaluating, even if such a difference
is not very high. Also, it is worth noting that V;(AU) decreases if we divide
the developers in categories based on their professional position. This means
that different categories of developers achieve more similar levels of correctness.
Specifically, professional developers and Master’s students seem to be the most
cohesive groups in terms of correctness (i.e., the groups that exhibit the lowest
variance). The same happens (but with lower differences) for Vi (T'AU). On the
other hand, for V(TN PU) there are categories with lower inter-group variations
(i.e., Master’s students and PhD students), while others have higher variations
(i.e., Bachelor’s students and professional developers).

Finally, because of this result, we tried to use the professional position of the
developer as an additional feature in our combined models (RQ2). We observed
a slight improvement in the regression performance of TAU (Correlation: +0.07;
MAE: -0.02) and AU (Correlation: +0.02; MAE: +0.00), while we achieved
lower classification performance for BDsgy, (F-measure: -0.06; AUC: -0.02), and
comparable regression and classification performance for PBU (F-measure: -0.02;
AUC: +0.01), ABU(y F-measure: +0.07; AUC: -0.02), and TNPU (Correlation:
+0.03; MAE: +7.5). However, the improvement relates only to the maximum
scores achieved: not all the machine learning techniques achieve better results.

Therefore, we can conclude that the effort in the prediction of code under-
standability should be directed in capturing subjective aspects of developers —
their background knowledge and their experience — not only in quantitative terms
(i.e., years of experience) but also in qualitative terms: the interviews suggest

that when developers are not familiar with the topics in the code that they need to
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understand, they need to spend some time to search for information about them.
Introducing new developer-related metrics considering their experience with spe-
cific topics (e.g., JDBC APIs) or design patterns (e.g., bridge design-pattern)

could be useful to capture such aspects.

7.5 Threats to Validity

Threats to construct validity, concerning the relation between theory and
observation, are mainly due to the measurements we performed, both in terms
of the 121 metrics that we studied as well as when defining the six dependent
variables for the understandability level. Concerning the 121 metrics, we tested
our implementation and, when needed (e.g., for the IMSQ metric during the
identifiers splitting/expansion), relied on manual intervention to ensure the cor-
rectness of the computed metrics. We measured the developers’ experience using
the years of experience: this is only a facet of the actual experience of a devel-
oper and it may not always represent the actual experience [48, 133]. As for the
dependent variables, we tried to capture both the perceived and the actual code
understandability in many ways. However, different results might be achieved
combining correctness and time in different ways.

Threats to internal validity concern external factors that we did not consider
that could affect the variables and the relations being investigated. Since two of
the understandability proxies are time-related (i.e., they are based on the time
participants spent while understanding the code), it is possible that some partic-
ipants were interrupted by external events while performing the comprehension
task. For this reason, we replaced outliers for TNPU in the computation of TAU
with the maximum TNPU that was not an outlier. An outlier was a participant
requiring more than Qs+ (3 x IQR) seconds to understand a code snippet, where
Q3 is the third quartile and IQR is the Inter Quartile Range. We used leave-one-
out cross-validation to evaluate all the models used to answer R@s. This means
that some of the evaluations of the same developer were used in the training set.
This could allow the models to learn some peculiarities about the preferences
of the developer. It is worth noting that such evaluations represent a large mi-

nority of the training instances (< 2%) and they are unlikely to heavily affect
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the trained model. Also, our assumption is that, in a real use-case scenario, de-
velopers might contribute understandability evaluations to the training set. We
acknowledge that this assumption may not hold in all the contexts. Finally, as
for RQs, the think-aloud strategy we used to get qualitative data could have
affected the performance of the developers. We did not ask questions while the

developers were reading and understanding the code to minimize such a threat.

Threats to conclusion validity concern the relation between the treatment
and the outcome. The results of RQ)2 may depend on the used machine learn-
ing techniques. To limit this threat, we used the most common and widespread
machine learning techniques, being careful to choose them from different fami-
lies, such as tree-based, bayesian, and neural networks. Also, such results may
depend on the parameters used for the machine learning techniques. We always
used the standard parameters provided by Weka [66] for all the machine learning

techniques.

Threats to external validity concern the generalizability of our findings. Our
study has been performed on a large, but limited, set of metrics and by involving
63 participants comprehending a subset of 50 methods extracted from 10 Java
systems. All of the results hold for the considered population of participants
and for Java code. Larger studies involving more participants and code snippets
written in other languages should be performed to corroborate or contradict
our results. The same is true for the developers involved in RQs (i.e., they
were from Italy with a similar background). We tried to select developers with
diverse specializations: The three professional developers work in different areas
(Android, front-end, back-end); one of the two PhD students had a previous
experience in industry, while the other one did not. It is worth noting that it is
very hard involving developers in such a long interview (more than an hour each).
Since we observed differences in their evaluation of code understandability, a
more comprehensive study with a more diverse set of developers would be needed
to generalize our results, and it may highlight other factors that underline the

subjectivity of code understandability.
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7.6 Final Remarks

We presented an empirical study investigating the correlation between code
understandability and 121 metrics related to the code itself, to the available doc-
umentation, and to the developer who is understanding the code. We asked 63
developers to understand 50 Java snippets, and we gathered a total of 444 evalua-
tions. We assessed the participants’ perceived and actual understanding for each
snippet they inspected and the time they needed for the comprehension process.
Our results demonstrate that, in most of the cases, there is no correlation between
the considered metrics and code understandability. In the few cases, where we
observed a correlation, its magnitude was very small. Combining metrics gener-
ally results in models with some discriminatory power (classification) and with a
higher correlation, compared to single metrics (regression). However, such models
are still far from being usable in practice for the prediction of understandability.
Finally, we reported interviews with software developers, which provide useful
insights about what makes code understandable or not understandable. We no-
ticed that each developer puts emphasis on some aspects of understandability,
and they give a different level of importance to each aspect. Note that we used
shallow /classic models in our study. Deep learning models should be used as part
of future work, because of their power to abstract complex relationships between
input and output data, similarly to the cognitive processes in the human brain.
As suggested by the interviews, developers exhibited some commonalities but
also many differences in the understandability process that might not be cap-
tured by classic models, thus, shallow models are not the best choice to assess
understandability.

Our study lays the foundations for future research on new metrics actually
able to capture facets of code understandability.

In summary, the lessons learned from this chapter are the following:

e no single state-of-the-art metric (including readability, LOCs and Cyclo-

matic Complexity) is able to capture code understandability;

e combining state-of-the-art metric helps achieving relatively good perfor-
mances, but we are still far from automatically assessing code understand-

ability for practical usage;
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e developers use different processes to understand code and different devel-

opers care about different aspects of source code.

Finally, there is still a main open issue: understandability seems to depend
equally on code and developers, but most of the state-of-the-art metrics are about
code. Future work should be aimed at defining new developer-related metrics to

successfully assess code understandability.
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8.1 Introduction

The quality problems present in test cases have been defined as test smells [146,
109]. Eager Test is one of the smells that affects the most automatically gener-
ated tests [107] and that hinders the most their understandability [146]. A test

is eager if it exercises more than a behavior of a specific class [146]. However,

136
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the effort that developers make to understand a test does not simply depend on
the number of called methods, but rather on the number of possible paths a de-
veloper can go down while debugging. Lawrance et al. [80] explained debugging
using information foraging: when they are required to find a bug, developers tend
to behave like predators searching for a prey, i.e., they follow the path with the
strongest “scent”. When there are many paths and the scent is not strong enough,

however, it is more likely that predators get lost.

Motivational Example. In Listing 8.1 we give an example of a class under test

(CUT) that implements a simple parser for arithmetic expressions.

public class ArithmeticParser {
public double add(Expression a, Expression b) {
return evaluate(a) + evaluate(b);

public double sub(Expression a, Expression b) {
return evaluate(a) - evaluate(b);
3}

public double evaluate(Expression x) {
if (x.isSubtract())
return sub(x.left, x.right);
else if (x.isAdd())
return add(x.left, x.right);
else
return x.value;

Listing 8.1: ArithmeticParser class under test

The method evaluate dispatches the operations add and sub of the corre-
spondent left and right sub expression. Thus, the method evaluate is recursively
called to evaluate sub expressions until they are reduced to simple numbers. As-
sume a test that calls evaluate(new Expression("10+5-100+2+23+43-2+32")):
by definition, it would not be eager because it tests a single method. However, if
such a test fails, the developer may need to manually simulate the execution of
the test until she finds the problem. If the path that she needs to follow is long
and twisted, like in the example, the effort is higher, regardless of the number of
methods called by the original test.

Conversely, a focused test—a test that covers only branches belonging to few

methods (possibly one)—presents a lower number of potential paths a developer
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can walk and, therefore, it reduces the potential debugging effort. In the example,
the perfect test suite including focused tests would be composed of three tests that
call evaluate: one with a simple subtraction (e.g., new Expression(”12-3")), one
with a simple sum (e.g., new Expression(”7+2")), and one with a simple number
(e.g., new Expression("9")). The lack of focus in tests, i.e., the coverage of code
from different methods, increases the number of context-switch operations that
developers make to analyze the code. As a result, the effort needed to find a bug
or to update a test is higher. Test focus is, therefore, an important property of

understandable tests: unfocused tests are, inevitably, less understandable.

In this chapter we introduce coverage entropy, a metric that measures the fo-
cus of test cases: tests with low entropy are more focused, while entropic tests are
less focused. Coverage entropy aims at capturing more accurately the potential
effort that developers will make to understand a test case.

We conducted an empirical study to investigate the relationship between cov-
erage entropy and eager test, to understand whether entropy and test eagerness
capture two different aspects of quality. Our results show that eager tests are
significantly more entropic compared to non-eager tests. However, the two met-
rics are only moderately correlated. Thus, we conclude that they capture two
different shades of test quality.

This chapter is organized as follows: Section 8.2 defines coverage entropys;
in Section 8.3 we report the comparison between coverage entropy and test ea-
gerness; Section 8.4 discusses the threats to validity; Section 8.5 concludes this

chapter.

8.2 Measuring Test Focus with Coverage Entropy

A test case is focused when it covers only branches belonging to few methods
(possibly one) and thus follows the Single-Condition Tests principle [100]. To
capture such a characteristic of test cases, we define a novel metric, coverage en-
tropy, based on the classical concept of information entropy proposed by Shannon
[130] and already used in SE studies [68, 27].

Let’s suppose that a test case t covers a set of branches cov(t,C) = {b1,...,b,}

of a component C. Each branch b; belongs to a method m,; € methods(C'). Using
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the concept of information entropy we calculate coverage entropy as:

where cov(t,m;) = {ba,...,b,} represents the covered branches of m;.

Coverage entropy measures the entropy of the relative percentage of covered
branches of the CUT. If a test is focused, i.e., it covers branches belonging to
a single method, its coverage entropy is 0. On the other hand, when many
methods are called and the test covers the exact same amount of branches for
all of them, the entropy is maximum (i.e., 1). Counsidering only branches related
to conditional statements in the code would make coverage entropy blind as for
the call to branchless methods. Therefore, we take into account the virtual call
branches that connect the invoker to the invoked method and we consider them
as part of the called method. Such a branch is covered when the method is called.
Consider the ArithmeticParser class in Listing 8.1 and the following test case:
ArithmeticParser parser = new ArithmeticParser();
int result = parser.evaluate(new Expression(”3+11-5"))
assertEquals(9, result);
Such a test covers all the branches of the class. To compute coverage entropy, we
first compute the total number of branches: in this case we have a virtual call
branch for each method, i.e., 4 (including the constructor), plus two branches for
each if statement in the evaluate method (i.e., 4). In total, we have 8 branches.
Then, for each method, we compute the relative coverage: evaluate will have as
relative coverage %, while all the other three methods will have relative coverage
of % each. We compute the information entropy of such values, which results
to be ~1.07. If we use "3+6" as the expression in the previous test, instead, we
cover just the 3 branches of evaluate (excluding the true branch of the first if)
and 3 virtual call branches of the 3 called methods (excluding sub). In this case,
the total number of covered branches is 6, the relative coverage would be % for
evaluate and é for the two others. The entropy, in this case, would be ~0.88,
lower than the other.

Coverage entropy depends not only on the test, but also on the CUT: for
example, the optimal coverage entropy for the tests of a CUT containing a set of

utility functions could be 0, while for CUTs with many methods that call each
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other, such as the one previously analyzed, could be higher (i.e., 0.88, in the

example).

Coverage entropy has two interesting properties that make it a good metric

to measure the effort that developers would devote to understand and maintain

a test:

8.3

Setup-Methods Awareness: If a test t contains many method calls, but most
of the covered branches are from a single method, the entropy is still low,
because the test is focused on that method. This property is useful because
it gives a lower importance to methods used to setup the status of the class

(e.g., setters).

Eager-Test Awareness: like entropy in general, coverage entropy is lower-
bounded, but it is not upper-bounded. In other words, the higher the
number of called methods with the same number of covered branches, the
higher the coverage entropy. Therefore, if a test calls many different meth-
ods the entropy very likely is high. We show the presence of this effect in
Section 8.3.

Evaluation

The goal of our first exploratory study is to investigate the relationship be-

tween coverage entropy and the presence of a conceptually similar test smell, i.e.,

eager test.

8.3.1 Empirical Study Design

Such a study is steered by the following research question:

RQo

What is the relationship between coverage entropy and eager tests?

Context of the Study

The context of this study consists of a random selection of classes from the
SF110 corpus [56]. The SF110 benchmark is a set of Java classes extracted from

the SourceForge repository that have been widely exploited in literature [111,
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122, 128], consisting of 23,886 testable classes from 110 different projects. From
such a set, we randomly select 100 Java classes. As suggested by previous work
[112], we discard the trivial classes, i.e., the ones having cyclomatic complexity
lower than 5, for which generated test may be not useful.

We run EVOSUITE [53] and we automatically generate test suites for the
selected classes. In total, we generated 2,708 test cases. TEST SMELL DETECTOR,
a heuristic-based automatic test-smell detection tool introduced by Bavota et al.
[14] was then used to detect eager tests. TEST SMELL DETECTOR classifies tests
as eager if they call more than a method of the class under test, and as non-eager
otherwise. Such a tool is able to detect all the instances of eager tests (i.e., 100%
of recall), but it sometimes classifies as eager also non-eager tests (i.e., precision
of 88%) [14]. This happens when the call is done to setup the state of the class
rather than to test a specific behavior. For this reason, we considered as non-
eager all the negative instances reported by TEST SMELL DETECTOR (i.e., the
test cases classified as non-eager by such a tool); we also manually analyzed a
significant sample (99% confidence level with 5% confidence interval) of positive
instances (i.e., tests classified as eager by the tool). Three evaluators (the author,
a PhD student, and a professional developer) manually labeled 336 tests as eager
or not eager. In the first phase, each evaluator independently labeled about two
thirds of the test cases each, so that each instance had exactly two evaluations. A
third evaluation was added by another evaluator when there was no agreement.
The evaluators performed a total of 710 manual evaluations; 61% of the evaluated
tests were actually eager, while 39% of them where false-positives. In total, our
dataset is composed by 206 eager tests and 1,411 non-eager tests, totaling 1,614

test cases.

Experimental Procedure

To answer RQq, we check if there is a significant difference between eager and
non-eager tests in terms of coverage entropy. We use a non-parametric two-tailed
Mann-Whitney U test to check if the difference of coverage entropy between eager
and non-eager tests is significant. We reject the null hypothesis (i.e., there is no
difference) if the p-value is lower than 0.05. We also use the Vargha-Delaney

(A12) [147] test to measure the magnitude of such a difference. Such a test
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has the following interpretation: when Ays > 0.50 the values for a given metric
achieved by one of the baselines are higher than the ones achieved by TERMITE,
while Alg < 0.50 indicates the opposite. Vargha-Delaney (12112) test also classifies
the effect size into four different levels, i.e., negligible, small, medium and large
[147].

Finally, we compute the correlation between coverage entropy and test eager-
ness (0 for non-eager tests and 1 for eager tests). We rely on the Kendall rank

correlation coefficient (i.e., Kendall’s 7) [75].

8.3.2 Empirical Study Results

As expected, we find that eager tests are significantly more entropic than non-
cager tests (p-value < 0.001). The Vargha-Delaney A;, is 0.84 (large). However,
the correlation between coverage entropy and test eagerness is ~0.33, which is
only moderate. This shows that, even if there is a clear relationship between eager
tests and coverage entropy, the two concepts are different, and coverage entropy
captures a new dimension of test quality.

Listing 8.2 shows an example of eager test with low entropy. Such a test
exercises two distinct methods of the CUT, i.e., isAzStyle and decodeMnemonic.
However, since the coverage is unbalanced among the two methods, the resulting
coverage entropy is still quite low. On the other hand, we report in Listing 8.3
an example of non-eager test with very high coverage entropy: in this case, the
test just calls a single method, but such a method indirectly calls plenty of other
methods. If the behavior of such a method changes, i.e., a check for null is added
in a specific method to avoid the exception, developers not aware of the change
may still struggle finding the cause of the problem and adapting such a test to

the new behavior.

Listing 8.2: Fager Test with low entropy (0.45)

BTPeerIDByteDecoderDefinitions.VER_AZ_LAST_THREE_DIGITS = "1.2";
BTPeerIDByteDecoderDefinitions.VER_AZ_THREE_DIGITS = "1.2(34)";
BTPeerIDByteDecoderUtils.isAzStyle("RM");
BTPeerIDByteDecoderUtils.decodeMnemonic(’x’);
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Listing 8.3: Non-eager test with high entropy (3.43)

try {
Attribute.main((String[]) null);
fail("Expecting exception: NoSuchElementException”);
} catch(NoSuchElementException e) {
verifyException(”java.util.LinkedList"”, e);

3

Summary of RQy. Eager tests generally suffer from higher coverage en-
tropy; However, eager tests are not always focused, and focused tests are not
always non-eager. Therefore, coverage entropy needs to be used as a distinct

quality indicator.

8.4 Threats to Validity

Construct Validity. The results of our study mostly depend on the classi-
fication of a set of test cases as eager or non-eager. We automatically performed
part of such classification using a tool. Since such a tool achieves 100% of recall
[14], we focused our manual validation on a sample of the tests classified as eager,
while we assumed that the other tests were non-eager. The manual labeling we
performed could depend on the evaluator. To reduce the possibility of human
errors, we made sure that at least two of the evaluators labeled each test cases,
and, in case of disagreement, the third evaluator helped in the final decision. We
observed disagreement in 38 cases, but full consensus was reached after a brief
discussion.

Internal Validity. In our study we have an unbalanced set of eager/non-
eager tests (~13% eager and ~87% non-eager tests). This was due to the unbal-
anced effort required to classify tests as non-eager (fully automated) and eager
(partially manual). Statistical tests show that such a sample is sufficient to con-
clude that the difference in terms of coverage entropy among the two population
is significant. We tried to replicate the results with 1,000 random subsamples of
the non-eager tests of the same size of the sample of eager tests we considered.
We observed no relevant difference compared to what we observed in our study as
for the significance of the comparison. However, we observed a higher correlation

(on average ~ 0.48), probably due to the fact that the sample is smaller.
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External Validity. It is possible that the conclusion of our empirical study
is not valid for all the Java classes. We generated test cases for 100 Java classes
using MOSA. In total, our study took into account 1,614 test cases. Since we
randomly selected the 100 subject classes, we believe that there is no bias in such

a sample.

8.5 Final Remarks

A test case is focused when it covers only branches belonging to few methods
(possibly one). We introduced coverage entropy, a metric that captures the focus
of test cases and we conducted an empirical study in which we compare coverage
entropy with another similar concept, i.e., test eagerness.

The lesson learned from this chapter is that coverage entropy is only mod-
erately correlated with the presence of eager tests. Besides, we show that, as
expected, eager tests are significantly more entropic than non-eager tests.

There is still a main open issue: we conclude that test focus and test under-
standability are related; test cases are less abstract than source code, i.e., they
provide specific inputs and they result in the coverage of specific paths in the
source code. Our conjecture is that code coverage focused on few methods helps
reducing the number of potential “travels” the developers do in the source code
and, therefore, increases its understandability. However, we still lack evidence
that developers find tests with lower coverage entropy more understandable. Fu-

ture work should be aimed at empirically proving this conjecture.
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9.1 Introduction

The lack of quality of automatically generated tests is well known in the
literature [61, 107]. Previous work tried to tackle this problem: Daka et al.

[38] defined an approach to improve the readability of generated tests; however,
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they conclude that tests improved by using their approach are not significantly
more understandable than other generated tests. More recently, Palomba et al.
[108] proposed QUALITY-BASED MOSA, an approach that optimizes cohesion
and coupling as a secondary criterion of the evolutionary search to improve test
quality. However, the quality of generated test cases could still suffer from other
types of problems, such as the presence of eager tests and low understandability.

In this chapter we introduce TERMITE, an approach that integrates coverage
entropy optimization in the test case generation process to produce more focused
test cases. TERMITE exploits program slicing to break generated tests into
simpler (potentially less entropic) tests. Then, it uses coverage entropy (intro-
duced in Chapter 8) as a preference criterion to give an evolutionary advantage
to focused test cases.

We conducted an empirical study to evaluate the quality of the tests gen-
erated with TERMITE. We used QUALITY-BASED MOSA as a baseline and
we compared coverage entropy, cohesion, and coupling (along with the achieved
branch coverage) of the tests generated by QUALITY-BASED MOSA and TER-
MiTE. The results achieved show that TERMITE generates test cases with a
significantly higher quality as for coverage entropy (for ~88% of the classes)
and cohesion (for ~78% of the classes), while QUALITY-BASED MOSA generates
slightly less coupled test cases. Finally, we show that TERMITE is significantly
more efficient (it takes 57% less time) and effective (it achieves higher branch
coverage for about 73% of the classes).

This chapter is organized as follows: Section 9.2 introduces TERMITE; in Sec-
tion 9.3 we report the evaluation of TERMITE and its comparison with QUALITY-
BASED MOSA; Section 9.4 discusses the threats to validity; Section 9.5 concludes
this chapter.

9.2 TERMITE: Focused Test Case Generation

In order to improve the focus of automatically generated test cases, we intro-
duce TERMITE (Test Entropy Reduction for MOSA), a novel test case generation
strategy outlined in Algorithm 1. The core part of the algorithm is the same as
MOSA [111]. We introduce a new step with the SLICING routine (line 12 of
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Algorithm 1 Test Entropy Reduction for MOSA (TERMITE)

Input: B = {b1,...,b,} set of branches of a program
Result: A test suite T

1: t«0 > current generation
2: P, + RANDOM-POPULATION(M)

3: archive « UPDATE-ARCHIVE(P;, B)

4: E«~ 0

5: while not stop_ condition() do

6: Q¢ < GENERATE-OFFSPRING(P;, B)

7 Ry + Py UQ:

8 Ag < E— COVERAGE-ENTROPY(R:)

9 if Ag > 0 then

10: E < COVERAGE-ENTROPY(R,)
11: R¢ « R¢U SLICING(R;)
12: end if

13: F < PREFERENCE-SORTING(R:)
14: Py« 0

15: d<+0

16: while | Piyq | + ‘ Fy ‘S M do

17: CROWDING-DISTANCE-ASSIGNMENT (Fq)

18: Pt+1 — Pt+1 U Fy

19: d«d+1

20: end while

21: Sort(Fq) > according to the crowding distance

22: Piy1 Pt+1 U Fy [1 : (M* ‘ P D]

23: archive < UPDATE-ARCHIVE(archive U Pyy1, B)
24: t+—t+1

25: end while

26: T <« archive

Algorithm 1), in which the individuals in the population are divided in simpler
pieces in case high coverage entropy is detected. Then, we use coverage entropy
as the secondary criterion—instead of test size, as MOSA [111]—to prefer low-
entropy test cases when the same level of branch coverage is achieved. When

coverage entropy is equal, we prefer shorter tests.

The slicing procedure takes place on each test case belonging to Ry, that is,
the union of the current population and offspring population. The output S of
the slicing procedure is combined with R; and the PREFERENCE-SORTING
function is executed on R, itself (line 13 of Algorithm 1). Therefore, TERMITE
keeps in the population the original test cases. In fact, it might happen that a
larger test case has some side effects (e.g., set of a static variable) that can result
in the coverage of specific branches that cannot be covered with simpler tests. In
these cases, complete tests are more useful and, therefore, they are preferred by
the genetic algorithm. In the opposite case, small pieces may be preferred, since

they contain a lower number of method calls, i.e., tend to be less entropic.
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Algorithm 2 SLICING procedure in TERMITE

Input: A test case tc, the CUT C
Result: A set S of slices

1: Sc« 0 > complete sequence (CS) slices
2: S, «0 > partial sequence (PS) slices
3: Seup < 0 > support slices
4: M+ 0 > slice seeds
5: for all st € statements(tc) do

6: d<+ 0

7 for all v € use(st) do

8 d <+ {s € (5cUSqyp) s.t. v E defs(s) } > dependencies of st
9: end for

10: s™ < merge(d, st)

11: if def(st) is of type C then

12: Se + ScU{s"} > s™ is a CS slice
13: M + M U { def(st) }

14: else

15: if | use(st) NM| > 0 then

16: Sp — SpU(dnS,) > CS slices become PS slices
17: Se+ ScU{s*}—(dNnS,) > s* added to CS slices
18: else

19: Seup = Ssup U {s™} — (d N Ssup) > s* is a support slice
20: end if
21: end if
22: end for

23: S+ S, U8,

9.2.1 Test Slicing

When using coverage entropy as a secondary criterion, still the average en-
tropy of the population may increase during the evolutionary process. For ex-
ample, it may happen that complex tests that cover some branches are found
and kept in the population. At each iteration, TERMITE checks whether the
coverage entropy is increased from the previous generation (line 10 of Algorithm
1). Whether the entropy has increased, the approach tries to reduce the overall
entropy of the population by performing slicing on all the test cases. The aim of
this step is to introduce simpler individuals, i.e., less entropic ones, in the current
population. Especially, two types of slices are generated: complete sequence (CS)
slices and partial sequence (PS) slices.

If a test contains more than an instance of the CUT, we want to divide such
instances into different tests. For example, if the CUT is the class Stack and a test
T contains two independent instances of such a class, we want to separate the lines
involving the first instance from the lines involving the second one (i.e., perform
a complete sequence slices). On the other hand, if T invokes several methods on a

single instance, e.g., push and pop, we want to keep slices of T" in which only parts
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of the methods are invoked (i.e., perform a partial sequence slices). Since the test
case representation used for object-oriented code in evolutionary algorithms does
not contain control statements [142], slicing them is much simpler than slicing

normal programs.

The pseudo-code of the algorithm TERMITE that extracts all the slices from
a candidate test case is outlined in Algorithm 2. For each statement st in a given
test, TERMITE considers all the slices (d) on which such a statement depend,
i.e., the slices in which the variables used by st are defined (lines 7-9 of Algorithm
2). Thus, a new slice, s* is created, merging all such slices d together with st
(line 10 of Algorithm 2). If st does not depend on any other variable, s* contains
only such a statement. Then, three scenarios are possible: (i) st defines a new
instance of the CUT: in this case, s* becomes a new complete sequence slice (lines
11-13 of Algorithm 2); (ii) st uses at least an instance of the CUT: s* becomes
an complete sequence slice (line 17 of Algorithm 2); the complete sequence slices
in which the instances of the CUT used in the statement st were defined are
added to the set of partial sequence slices (line 16 of Algorithm 2); thus, these
slices are deleted from the set of the complete sequence slices; (iii) no instances
of the CUT are used: in this case, s* is a support slice, i.e., a slice in which other
variables are defined (line 19 of Algorithm 2). At the end, the final set of slices
is composed by the union of the complete sequence and partial sequence slides
(line 23 of Algorithm 2): they are the only ones that contain at least a call to a
method in the CUT.

Listing 9.1 shows an example of a test case generated for the class Stack. To
clarify the slicing process, we report both complete sequence slices (reported in
Listing 9.2) and partial sequence slices (reported in Listing 9.3) extracted from
such a class. In the original test case there are several method calls on different
instances of Stack in a completely chaotic way. Using slicing it is possible to
drastically reduce the complexity of the test. In this case, we extract only three
complete sequence slices (since there are three independent instances of Stack);
besides, we extract several partial sequence slices (we report only the first 5 of

them). Note that partial sequence slices may help to introduce in the population
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Stack<Object> stack® = new Stack<Object>();
stacko.isEmpty();

Stack<String> stackl = new Stack<String>();
stack1.pop();

Stack<Integer> stack2 = new Stack<Integer>();
int int@ = 1;

Integer integer® = new Integer(int@);
stack2.push(integero);

int int1 = 205;

Integer integerl = new Integer(intl);
stack2.push(integer1);

stack@.pop();

stack1.pop();

Object object® = new Object();
stack®.push(object0);

String string@ = "f5d24r:";
stack1.push(string0);

Listing 9.1: Test Case generated by EVOSUITE

// Complete Sequence Slice 1

Stack<Object> stack® = new Stack<Object>();
stack@.isEmpty ();

stack@.pop();

Object object® = new Object();
stack®.push(objectd);

// Complete Sequence Slice 2

Stack<String> stackl = new Stack<String>();
stack1.pop();

stack1.pop();

String string@ = "f5d24r:";
stack1.push(string0);

// Complete Sequence Slice 3

Stack<Integer> stack2 = new Stack<Integer>();
int inte = 1;

Integer integer® = new Integer(int@);
stack2.push(integero);

int int1 = 205;

Integer integer1 = new Integer(intl);
stack2.push(integer1);

Listing 9.2: Complete Sequence (CS) Slices

tests that exercise a single behavior of the production code (i.e., less

ones). A typical example is Partial Sequence Slice 1.2 of Listing 9.3.

entropic
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// Partial Sequence Slice 1.1
Stack<Object> stack® = new Stack<Object>();

// Partial Sequence Slice 1.2
Stack<Object> stack® = new Stack<Object>();
stack0.isEmpty();

// Partial Sequence Slice 1.3

Stack<Object> stack® = new Stack<Object>();
stacko.isEmpty();

stack@.pop();

// Partial Sequence Slice 2.1
Stack<String> stackl = new Stack<String>();

// Partial Sequence Slice 2.2
Stack<String> stackl = new Stack<String>();
stack1.pop();

Listing 9.3: Some of the Partial Sequence Slices

9.3 Evaluation

The goal of this empirical study is to evaluate the quality of the tests generated
by TERMITE and their effectiveness (i.e., branch coverage).

9.3.1 Empirical Study Design

We formalize our research questions as follow:

RQ1 Does entropy optimization produce more focused test cases?. With this first
research question we investigate whether the proposed approach produces
higher quality test cases as for focus (measured with coverage entropy),
cohesion, and coupling compared to QUALITY-BASED MOSA [108].

RQ> Does entropy optimization affect the effectiveness of test generation?. In
our second research question we check what is the impact of our approach

on branch coverage.

Prototype Tool

We implemented TERMITE in a prototype tool extending the EVOSUITE
test-data generation tool (version 1.0.6). The delta of our implementation is
explained in Section 9.2. We also implemented QUALITY-BASED MOSA [108] in

our version of EVOSUITE to evaluate our approach. Especially, the authors of the
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original paper kindly provided us with the APIs needed to compute the metrics
of cohesion and coupling used in their work [108]. All the experimental results

reported in this chapter are obtained by using such a prototype tool.

Context of the Study

The context of the second study is again a random selection of classes from
the SF110 corpus [56]. The subject classes have been selected as follows: (i) we
take 43 classes used in the work by Palomba et al. [108]; and (ii) we randomly
select 17 additional subjects from the SF110 benchmark. Also in this study, we
did not take into account any trivial class [112]. We end up with 60 classes in
total. There is no overlap between subject classes we use for the first and the

second study.

Experimental Procedure

We compare TERMITE using QUALITY-BASED MOSA as a baseline to answer
both our research questions. Indeed QUALITY-BASED MOSA has been demon-
strated to produce test cases of better quality with slightly higher coverage, com-
pared to MOSA [108]. These results have driven the adoption of QUALITY-BASED
MOSA as a baseline for the evaluation of TERMITE.

We run the two test generation strategies for each class in our dataset 30 times
each [26], to deal with the non-deterministic nature of the employed genetic al-
gorithms. In this step, we collect (i) the coverage entropy, and (ii) the resulting
branch coverage. We use as stop criterion for the evolutionary process the total
number of generations instead of the execution time. We do this to avoid biases
due to the efficiency of the implementation. A generation in the genetic algorithm
may take a few seconds for some classes and even minutes for other classes. For
this reason, we use different number of generations for different classes. Specifi-
cally, we preliminary run MOSA on all the classes with a fixed time budget of 3
minutes [26]. Then, we check how many generations were evolved for each class
and we use such values for our experiment. We used MOSA instead of one of the
two concurrent approaches in this phase to avoid possible biases. Finally, we set

a global timeout of 10 minutes for each class.
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As for the other parameters related to the genetic algorithm configuration
(e.g., population size or mutation score) we adopt the default parameters used
by EVOSUITE, since such values provide good results [58].

We compare coverage entropy, cohesion and coupling of the generated test
cases among the three approaches to answer RQ);. Instead, we compare branch
coverage and the time needed by EVOSUITE to evolve the selected classes for
the number of generations previously determined to answer RQ)s. We compute
coverage entropy on the generated test cases in EVOSUITE right at the end of the
evolutionary process. Indeed, such a metric can only be computed using runtime
information (e.g., executed methods). On the other hand, we statically compute
cohesion and coupling on the resulting test suites by using the the APIs provided
by Palomba et al. [108].

We adopt the non-parametric Wilcoxon Rank Sum Test [35] with significance
level a = 0.05 to compare both quality metrics and effectiveness metrics. Signif-
icant p-values indicate that the corresponding null hypothesis can be rejected in
favor of the alternative one, i.e., one of the approaches is able to generate signif-
icantly better test cases as for their quality (RQ1) or their effectiveness (RQ2).
Moreover, we use the Vargha-Delaney (Ajs) [147] test to measure the magni-
tude of the differences between the results achieved by the two experimented

approaches.

9.3.2 Empirical Study Results

This section presents and discusses the results of the second study answering
the RQs formulated in Section 9.3.

RQ1: Quality of Entropy Optimized Tests In Table 9.1 we report the mean
coverage entropy, lack of cohesion and coupling achieved by both TERMITE and
QUALITY-BASED MOSA. In all the cases, lower is better. We show in boldface
the cases in which one of the approaches is significantly better than the other
(p < 0.05); for those cases, we also report the magnitude of the difference (Large,
Medium, Small, or Negligible). In such cases, TERMITE achieves better results
when A1 is lower than 0.5, while the opposite happens otherwise. As for coverage

entropy, amongst the 60 classes we analyze, we obtain significant differences for
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Branch Coverage Coverage Entropy Lack of Cohesion Coupling
Class #Branches | QMOSA TERMITE A;; | QMOSA TERMITE A;; | QMOSA TERMITE A, | QMOSA TERMITE Ajp
Product 30 0.10 0.10 0.65 0.64 S 0.50 0.50 0.05 0.04 S
FileUtil 124 0.42 0.55 L 2.40 1.15 L 0.52 L 0.26 0.27 N
MessageFormatter 38 0.85 0.88 L 1.26 0.85 L 0.49 L 0.44 0.37 S
ArchiveScanner 44 0.65 0.87 L 101 0.88 L 0.51 S 0.43 0.49 M
OutputFormat 38 0.98 0.99 L 2.04 1.42 L 0.72 S 0.30 0.37 M
SAXReader 60 0.87 0.98 L 2.10 1.49 L 0.56 S 0.33 0.31 N
S¢ S 8 0.73 0.73 2.01 0.60 L 0.14 L 0.15 0.09
EncodingFactory 194 0.79 0.96 L L18 0.16 L 0.50 L 0.15 0.18 S
AbstractJavaGDSTImpl 998 0.19 0.30 L 114 0.76 L NaN NaN NaN
FBCachedFetcher 108 0.50 0.60 L 1.95 1.17 L 0.49 L 0.41 0.36 S
FBProcedureCall 90 0.81 0.91 L 1.83 0.95 L 0.55 M 0.42 0.42 N
Library 32 0.55 0.60 L15 0.81 L 0.51 L 0.32 0.45 L
JDayChooser 170 0.67 0.84 L 2.94 2.84 L 0.64 M 0.28 0.26 S
Controller 298 0.03 0.04 L 0.70 0.60 L 0.25 0.41 0.29 M
Player 14 0.99 0.98 M 2.24 1.62 L 0.71 L 0.30 0.31 N
OracleldentiteDao T4 0.47 0.47 1.37 0.94 L NaN NaN NaN
ClientMsgReceiver 12 0.46 0.47 N 0.84 0.79 L 0.50 N 0.47 0.53 S
PhdBuilder 22 0.85 0.99 L 0.67 0.58 L 0.32 0.39 0.39
Range 322 0.53 0.84 L 3.27 2.81 L 0.62 0.25 0.17 M
DefaultNucleotideCodec 60 0.98 0.99 M 2.27 1.75 L 0.00 0.38 0.33 S
Filelterator 36 0.97 0.99 L 2.71 2.37 L 0.55 N 0.29 0.29
SQLUtil 174 0.86. 0.98 L 1.33 0.60 L 0.53 L 0.13 0.08 M
MethodWriter 816 0.19 0.53 L 0.82 113 L 0.56 N 0.33 0.30 s
JavaCharStream 198 0.71 0.95 L 0.97 0.64 L 0.55 S 0.34 0.32
JavaParser TokenManager 1,696 0.26 0.67 L 1.56 1.83 L 0.55 S 0.35 0.37 s
SimpleNode 58 0.86. 0.97 L 1.26 0.87 L 0.59 M 0.28 0.30 S
UsernameP: vordToken 14 0.92 0.92 1.86 1.49 L 0.65 S 0.27 0.30 S
Default WebSecurityManager 52 0.73 0.74 S 1.64 1.46 L 0.51 S 0.37 0.36
LagoonCLI 64 0.30 0.35 L 0.07 L 0.45 N 0.31 0.34 S
SupportingDocument 20 0.98 1.00 S 2.19 L 0.74 S 0.41 0.39 N
Variable 96 0.76 0.99 L 1.94 L 0.70 L 0.25 0.27 S
Base64Decoder 58 0.38 0.55 M 0.49 0.50 0.38 0.48 M
ExpressionMatrixImpl 54 0.96 0.99 S 1.66 0.68 S 0.35 0.37 S
ConnectionFactories 72 0.99 0.99 0.92 L 0.53 S 0.49 0.48
VisualListModel 138 0.73 0.85 L 0.77 L 0.52 L 0.36 0.39 S
TheClient 2 0.98 0.96 1.49 L 0.70 N 0.33 0.36 S
AdvancedSettings 24 0.99 0.99 2.19 L 0.78 M 0.50 0.50
RIFClassLoader 0 1.00 1.00 0.69 L 0.55 0.50 L 0.21 0.38 L
XPathLexer 458 0.55 0.88 L 1.57 L 0.46 0.49 S 0.25 0.37 L
ForeignKeyConstraint 62 0.82 0.83 0.89 L 0.64 0.49 L 0.25 0.35 L
JSJshop 104 0.39 0.38 0.73 L 0.51 0.43 M 0.25 0.23 N
JSPredicateForm 84 0.67 0.91 L 0.61 L 0.42 0.39 N 0.36 0.32 S
JSTerm 182 0.64 0.83 L 1.04 L 0.59 0.50 S 0.37 0.40 S
Session 158 0.00 0.00 0.00 0.47 0.00 L 0.00 0.00
DBUtil 448 0.18 0.28 L 0.06 L 0.57 0.50 L 0.27 0.28 N
HomeEnvironment, 52 0.94 0.93 2.25 0.86 L 0.78 0.57 L 0.24 0.41 L
EWrapperMsgGenerator 34 0.94 0.99 L 1.22 0.10 L 0.69 0.51 L 0.12 0.19 M
Evaluation 778 0.34 0.49 L 1.84 1.46 L 0.74 0.68 M 0.22 0.21
NaiveBayesMultinomial Text 154 0.64 0.93 L 2.30 1.64 L 0.81 0.71 L 0.20 0.29 L
JRip 362 0.24 0.32 L 1.72 1.12 L 0.64 0.55 S 0.26 0.30 S
Optimization 434 0.08 0.08 0.72 0.33 L 0.36 0.28 S 0.30 0.24 M
LovinsStemmer 422 0.45 0.70 L 1.09 1.28 L 0.79 0.67 L 0.23 0.27 S
ResultMatrix 374 0.74 0.98 L 3.52 3.36 L 0.75 0.73 S 0.12 0.14 S
Discretize 212 0.35 0.62 L 2.09 1.84 L 0.71 0.63 M 0.32 S
FieldWriter 56 0.97 0.97 101 0.82 L 0.63 0.55 M 0.36

Frame 686 0.37 0.78 L 0.76 0.82 M 0.52 0.52 0.57 0.59 N
Component 310 0.28 0.80 L 2.19 1.73 L 0.59 0.65 N 0.31 0.36 M
JSONObject 270 0.58 0.88 L 1.96 1.13 L 0.56 0.53 S 0.26 0.17 M
DynamicSelectModel 24 0.73 0.96 L 1.62 1.01 L 0.64 0.54 L 0.40 0.42
RecordTypeMessage 44 0.54 0.54 1.82 1.08 L 0.55 0.50 L 0.35 0.45 L

Table 9.1: Mean Branch Coverage and Quality Metrics Comparison.

57 subjects. In detail, the test suites generated by TERMITE have lower entropy
for 53 out of those 57 cases—with 37 large effect sizes— while the contrary only
happens in 4 cases. The distribution of the coverage entropy is shown in Figure
9.1a, plotted (like the others in this chapter) with the DistDiff R package [90].

The vertical lines represent the median of the distributions, i.e., 1.6 and 1.0 for
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(d) Distribution of the Test-Eager severity.

Figure 9.1: Distribution of four quality metrics. The vertical bars indicate the
median of the distribution.

QUALITY-BASED MOSA and TERMITE, respectively. On average, the entropy
of the test cases generated by TERMITE is about 29% lower; the maximum

reduction is about 70% for the class Services.

The results show also that TERMITE generates significantly more cohesive
tests, even if slightly more coupled, compared to QUALITY-BASED MOSA. The
median lack of cohesion of generated tests is 0.53 for TERMITE and 0.64 for
QUALITY-BASED MOSA. We show that in 47 classes out of 60 TERMITE achieves
a significantly lower lack of cohesion (i.e., higher cohesion). Such a big difference
is surprising: while QUALITY-BASED MOSA explicitly tries to minimize such
an attribute, TERMITE does not take it into account. The reason why this
happens may be that TERMITE uses slicing to reduce entropy, and this also
affects the number of test methods and, therefore, the cohesion. On the other
hand, we observe that there are more cases in which QUALITY-BASED MOSA
generates less coupled test cases (32 classes) than the opposite (16 classes). This
is probably due to the fact that TERMITE tends to generate plenty of tests,
much more than QUALITY-BASED MOSA (21.7 vs 49.7, i.e., ~128% more), since
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each test case is smaller, on average. Considering the higher number of test
cases, the difference in terms of coupling is rather small: the average coupling for
TERMITE is 0.32, while it is 0.30 for QUALITY-BASED MOSA. Therefore, such
a difference is a price to pay for having more focused and cohesive tests.

We also investigated more in depth the difference among the approaches in
terms of the quality of the generated test cases. Specifically, we report the eager
test smell intensity [110], calculated for a test case T'C' as the ratio between
the number of CUT methods called by T'C' and the total number of methods
in the CUT; the intensity is 0 if TC' calls only 1 CUT method. It lies in the
interval [0,1): 0 means that the test is not smelly, while other values indicate the
smell severity. Figure 9.1d shows the distribution of eager test intensity for both
QUALITY-BASED MOSA and TERMITE. We observe that the test generated by
TERMITE have lower values of severity: the median of the distribution is 0.13
and 0.04 for QUALITY-BASED MOSA and TERMITE, respectively. Such results
strengthen the findings we observed for coverage entropy and quality metrics:
despite the metrics are not strongly correlated, the generation of more cohesive
and less entropic tests is also beneficial in addressing the eager test smell.

In Listings 9.4 and 9.5 we report two test cases generated by QUALITY-BASED
MOSA and TERMITE, respectively. It is clear that the latter is able to generate

tests that are much easier to understand, just using a single method, in this case.

Services.SIMPLE_Result sr@ = new Services.SIMPLE_Result();
sro.time = (-784L);

Services.HTTP_Result hr@ = Services.testHTTPS((String) null, 0);
hro.toString();

hro.reset();

hro.reset();

sro.toString();

sr@.works = false;

hro.page_weight = 3000;

hro.works = false;

Services.SIMPLE_Result sr1 = new Services.SIMPLE_Result();
hro.reset();

hro.toString();

Services.testPOP3("", 0);
String string@ = hro.toString();
assertEquals(”...", string0);

Listing 9.4: Test generated by QUALITY-BASED MOSA.
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Services.HTTP_Result sr@ = new Services.HTTP_Result();
String string@ = sr@.toString();
assertEquals(”...", string0);

Listing 9.5: Test generated by TERMITE.

Summary for RQ;: TERMITE generates higher quality tests compared to
QUALITY-BASED MOSA. Specifically, we observe an improvement in coverage
entropy, cohesion, and eager test severity. On the other hand, QUALITY-
BASED MOSA generates slightly less coupled tests.

RQ2: Branch Coverage of TERMITE We report the comparison of branch
coverage in Table 9.1, similarly as we do for the quality attributes analyzed
in RQ;. Since in this case higher is better, TERMITE achieves better results
when Ay, is higher than 0.5, while the opposite happens otherwise. In this
analysis, we observe statistically significant differences in 44 out of 60 subjects
(73%). In particular, in 43 cases out of 60 (about 72%), the test suite generated
by TERMITE has higher coverage than the one generated by QUALITY-BASED
MOSA. This improvement ranges from 1% in branch coverage (for the class
DefaultNucleotideCodec) up to +52% (for the class Component). Indeed, the
average branch coverage for the 60 subjects is 62% and 74%, respectively for
TERMITE and QUALITY-BASED MOSA. In the majority of the statistically sig-
nificant cases, i.e., for 32 out of 43 subjects, the effect size of the difference is
large, while medium for other 2 subjects. QUALITY-BASED MOSA is significantly
better than TERMITE in 1 subjects, with a medium effect size.

Summary for RQ,: TERMITE achieves a higher branch coverage compared
t0 QUALITY-BASED MOSA for 72% of the classes we investigated.

9.4 Threats to Validity

Internal Validity. The main threat to internal validity of our study is

that search-based test case generation is intrinsically random. To reduce the
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effects of randomness, we run all the approaches 30 times. We used Wilcoxon
Rank Sum test to check the significance of the differences and Vargha-Delaney
12112 to measure the magnitude of such differences. Some studies compare test
generation approaches using time as the stop criterion. Indeed, in a real usage
scenario, developers specify the time they want to spend generating test cases.
Despite this, we chose to use the number of generations of the genetic algorithm
as the stop criterion. Using time would have not been fair, since the approaches
that optimize quality aspects require extra computation compared to normal
approaches (such as MOSA). This could have resulted in a difference in terms of
branch coverage due to how the approaches use their time. Moreover, sub-optimal
implementations of some algorithms or metrics may impact the whole efficiency
of the approaches. Therefore, we prefer to analyze effectiveness and efficiency as
two separate aspects: if we used time as the stop criterion, we would have mixed
the two aspects.

External Validity. It is possible that the conclusion of our study does not
generalize to all the Java classes. We focused on 60 randomly selected non-trivial
Java classes. Similar work that compare test generation approaches use similar
number of classes in their experiments [111, 108]. The conclusion of such a study
may be only valid for non-trivial classes. However, we think that automated test

case generation benefits developers the most for big and complex classes [112].

9.5 Final Remarks

In this chapter we presented TERMITE, an approach aimed at automatically
generating focused test cases. We conducted a study to evaluate the effectiveness
and the efficiency of our tool. The results show that TERMITE generates higher-
quality test cases compared to QUALITY-BASED MOSA both in terms of coverage
entropy and cohesion of the tests, at the expense of slightly more coupled tests. In
addition, the severity of eager tests is significantly lower in the tests generated by
TERMITE. We also show that TERMITE does not affect the branch coverage,
but it slightly affects the time needed to generate tests. QUALITY-BASED MOSA,
the baseline that tries to optimize test cases for their quality, takes longer to

optimize test case.
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In summary, the lessons learned from this chapter are the following:

e optimizing the coverage entropy of generated tests with TERMITE results

in higher cohesion and lower prevalence of eager tests;

e computing cohesion and coupling of tests is a more time-consuming task
compared to computing coverage entropy. We found that integrating the
latter in test case generation (TERMITE) allows to achieve higher branch
coverage compared to the former (QUALITY-BASED MOSA).

Finally, there is a main open issue: it is still unclear if test cases generated with
TERMITE are significantly more understandable compared to the ones generated
with QUALITY-BASED MOSA. Future work should be aimed at verifying this

conjecture.
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Conclusion

Readability and understandability are key aspects of source code. Readable
and understandable code is more maintainable and, therefore, it is desirable.
While readability regards the form, i.e., how code conveys information to the
developer, understandability regards its substance, i.e., the information itself that
the developer has to process. Measuring such aspects is the first step needed in
order to improve them. Previous work introduced code readability models able to
automatically distinguish readable from unreadable code. However, such models
are mainly focused on structural and visual features and they mostly ignore
the textual aspects: since code is largely composed by text, it is reasonable to
think that such aspects are important for automtic code readability assessment.
As for code understandability, previous studies tried to measure it at system-
level. However, the literature lacks approaches for automatically assessing the
understandability of smaller components, such as classes or methods.

In this thesis we presented approaches and tools to automatically assess and
improve code readability and understandability. We did this focusing both on

source code and test code.
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The contributions made to automatically assess and improve source code read-

ability and understandability are the following:

e we defined textual features to improve the accuracy of readability models,

and we used them to automatically assess code readability;

e we conducted a study in which we tried to correlate code readability with

the presence of FindBugs warnings;

e we defined an approach that suggests renaming operations in order to im-

prove the quality of the identifiers in the source code;
e we tried, for the first time, to automatically assess code understandability.

We also made the following contributions to automatically assess and improve

the understandability of automatically generated tests:

e we introduced a new metric, namely Coverage Entropy, to estimate the

focus and, thus, the understandability of test cases;

e we integrated Coverage Entropy and slicing in search-based test case gen-

eration to improve the focus of automatically generated tests.

The first lesson learned is that textual features are important to automat-
ically assess code readability. Such features, indeed, help to improve by 6.2%
the accuracy of readability models. Also, we showed that readability is strongly
correlated with the presence of FindBugs warnings, confirming the findings by
Buse and Weimer [21]. We performed a more in-depth analysis, and we showed
that only some categories of FindBugs warnings show a high correlation (e.g.,
Dodgy Code), while others do not (e.g., Malicious Code).

The second lesson learned is that, at the moment, we cannot automatically
assess source code understandability. Specifically, we showed that (i) single state-
of-the-art metrics exhibit a low or not-existing correlation with understandability,
and (ii) combining such metrics using machine learning allows to achieve inter-
esting results, but not practically useful yet. We conclude that it is necessary to
define new developer-related metrics.

The third lesson learned is that the focus of test cases (measured with Cover-

age Entropy) is an important quality attribute: eager tests are significantly more
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entropic than non-eager tests. Test focus, however, exhibits only a moderate
correlation with test eagerness: this shows that it captures a different dimension
of test quality.

The fourth lesson learned is that it is possible to generate more focused test
cases by (i) using Coverage Entropy as a secondary objective in MOSA and
(ii) introducing slicing in the evolutionary process. Specifically, we showed that
TERMITE, our approach, achieves higher focus, higher coherence and lower test-
eager severity compared to the state of the art, without sacrificing the achieved

branch coverage.
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