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ABSTRACT

Variable selection is one of the standard ways of selecting models in large scale datasets. 

It has applications in many fields of research study, especially in large multi-center clini-

cal trials. One of the prominent methods in variable selection is the penalized likelihood, 

which is both consistent and efficient. H owever, t he p enalized s election i s significantly 

challenging under the influence of random (frailty) covariates. It is even more complicated 

when there is involvement of censoring as it may not have a closed-form solution for the 

marginal log-likelihood. Therefore, we applied the penalized quasi-likelihood (PQL) ap-

proach that approximates the solution for such a likelihood. In addition, we introduce an 

adaptive penalty function that makes the selection on both fixed a nd f railty e ffects i n a 

left-censored dataset for a parametric AFT frailty model. We also compared our penalty 

function with other established procedures via their performance on accurately choosing 

the significant coefficients and shrinking the non-significant coefficients to zero.

INDEX WORDS: AFT models, Survival analysis, Variable selection, Frailty models
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CHAPTER 1

INTRODUCTION

Survival analysis is a set of methods for analyzing data where the outcome vari-

able is the time until the occurrence of an event of interest. For example, time to death,

time to sales or time to presence of a disease. Therefore, these time to event values or

commonly called survival time could be measured in days, weeks, or years. For instance, if

the event of interest is a heart attack, then the survival time can be the time in years until a

person develops a heart attack (Despa, 2010). Unlike continuous and categorical data-sets,

survival data cannot be modeled using traditional methods of generalized linear models

(GLM) primarily because the GLM method is not able to account for censoring (Despa,

2010). Censoring occurs when the survival time is incomplete. Typically, censoring arises

when people drop out of the study because of loss of follow-ups or the study ends before

the event of interest. There are different types of censoring mechanisms, and most of the

prominent censoring mechanisms include right censoring and left censoring. Right censor-

ing occurs when a subject leaves the study before an event occurs, or the study ends before

the event has occurred. Left censoring is when the event of interest has already happened

before enrollment (Hosmer Jr, Lemeshow, & May, 2011). This study will be focusing pri-

marily on left-censored data-sets.

There are two models often used in Survival Analysis, Cox’s model and the

AFT model. The more popular Cox’s model or the Cox proportional hazards model pro-

duces estimates of covariates along with the baseline hazard to predict the hazard/risk on

a particular event time. The Accelerated Failure Time model (AFT), on the other hand,

linearly estimates the log of the failure time event using the covariates in the model di-

rectly, making it more easier to interpret. However, in both the survival models, predicting

survival time is the main objective and this requires several covariates that can explain it’s
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variation. However, there could be many different types of potential risk factors that could

play a role in one’s survival. Furthermore, in large scale multi-center studies, there is a high

potential of study samples being randomly clustered and correlated with each other. For ex-

ample, patients within each center could be correlated, thus making the center a variable for

random effect. Such effects usually occur due to the impact of unobserved heterogeneous

effects (frailty), and these may be in single or multiple levels. For instance, a common

problem of left censoring comes in the lower detection limit of an assay, especially in the

detection of the human immunodeficiency virus (HIV) viral load in plasma. The detection

threshold for the assay ranges from 10,000 copies/mL to 20 or fewer copies/mL. However,

when the viral load is below this detection limit, the observations are incomplete, and this

leads to left censoring. Another issue may arise when HIV strains that circulate in a given

individual present chance of mutations associated with antiretroviral treatment failure (de-

tectable HIV viral load), also called HIV drug resistance. For considering such effects,

researchers are required to study the association between the presence of HIV mutations

and the response to antiretroviral therapy, which is measured by HIV viral load. Often in

such cases, the number of predictors is a vast sequence, and all of them may not have a

significant influence on the outcome variable. Additionally, if the patients are getting treat-

ments in different centers, then there may be center effects (frailty effects). These kinds of

data sets are censored and have a presence of extensive covariates that may have minimal

influence in the model as well as frailty effects (Soret, Avalos, Wittkop, Commenges, &

Thiébaut, 2018). Modeling such data sets presents a very high level of challenges as it may

create a strong chance of overfitting that may result in a complicated inference. Further-

more, such a complex model will not be easy to interpret.

The penalized inference of model selection is a popular method to address

the issue of large number of covariates in the model. It can continuously shrink the co-
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efficients of less influential predictors in the model towards zero, leaving only the most

influential predictors in the model. The result from such a process ensures simplicity in

the model that prevents overfitting and easier interpretation. Some of the famous penalty

functions include: least absolute shrinkage and selection operator (LASSO) by Tibshirani

(R. Tibshirani, 1996), Elastic Net penalty (Wu, 2012) and adaptive LASSO (H. H. Zhang

& Lu, 2007). However, these methods are used extensively in the right-censored data sets

and only work with the simple fixed effects model and do not include the frailty covariates.

Therefore, in this dissertation, we explore and address the penalty function

in left-censored data sets that can select variables for both fixed and frailty effects.
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CHAPTER 2

LITERATURE REVIEW

The Cox model produces estimates of covariates along with the baseline hazard

to predict the hazard/risk on particular event time. The previously mentioned heterogene-

ity (clustered effects) for the Cox model, have been addressed via several approaches like

the intensity process of a multivariate counting process (Andersen & Gill, 1982; Pren-

tice, Williams, & Peterson, 1981); and marginal proportional hazards models (Wei, Lin,

& Weissfeld, 1989; J. Cai & Prentice, 1995). Another simplified approach is the addition

of the frailty covariates in the model (Hougaard, 2012). For instance, Klein (Klein, 1992)

modeled a semi-parametric Cox model with gamma-distributed frailty using the EM al-

gorithm. Then (Nielsen, Gill, Andersen, & Sørensen, 1992) used the counting process to

estimate frailty. (Ripatti & Palmgren, 2000) used the penalized quasi-likelihood approach

and (Therneau, Grambsch, & Pankratz, 2003) used the penalized partial likelihood to esti-

mate the Cox models with frailty.

In the presence of large covariates and frailty effects in the data sets, there is

a challenge of producing a model that is simple and easy to interpret. There are numerous

solutions for such this scenario:

1) Have a selection of only the significant variables, which is called subset selection or

forward selection;

2) Eliminate the variables that are non-significant in the model, which is backward elimi-

nation;

3) Do both the selection of significant variables and the removal of non-significant vari-

ables which is stepwise selection (J. Pan, 2016).

These approaches are simple and easy to interpret, but they have a lack of
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stability in terms of selection when there are minute changes in the model (Breiman et al.,

1996; Fan & Li, 2001; Harrell, 2001). Therefore, penalized selection has become an ex-

cellent alternative option for model selection without losing stability. It can continuously

shrink the coefficients of less influential predictors in the model towards zero and have

good computational feasibility along with statistical precision. The most prominently used

penalized approach is the least absolute shrinkage and selection operator (LASSO) by Tib-

shirani in 1996 (R. Tibshirani, 1996). He later modified this penalty function to work in

censored data sets using the Cox model (R. Tibshirani, 1997). (Wu, 2012) used the Elastic

Net penalty that combines the LASSO and ridge regression procedure for the Cox model,

while (H. H. Zhang & Lu, 2007) used the adaptive LASSO. However, these methods are

used extensively in the right-censored data sets and only work with the simple fixed effects

model and do not include the frailty covariates.

However, the Cox model needs the satisfaction of the proportionality as-

sumption. In this case, the interpretation of failure time is a little complicated in the Cox

model as it is not directly modeling the failure time. It uses the proportional hazards to

derive failure time interpretation (Hutton & Monaghan, 2002; Orbe, Ferreira, & Núñez-

Antón, 2002; Pourhoseingholi et al., 2007). So, to model the survival data when it does

not meet the condition of proportionality, the accelerated failure time (AFT) model is a

viable alternative. The AFT model produces estimates of the coefficients that can predict

the log of the failure time event directly (Wei, 1992). In addition, frailty covariates have

been modeled in AFT by (Keiding, Andersen, & Klein, 1997), (W. Pan, 2001), (Lambert,

Collett, Kimber, & Johnson, 2004) and (J. Zhang & Peng, 2007).
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VARIABLE SELECTION IN SURVIVAL DATA WITH ACCELERATED FAILURE TIME

MODELS

AFT is an alternative to Cox models because of its ability to model survival time

directly. It can use parametric or semiparametric estimation depending on a specified or an

unspecified error distribution. There are generally two approaches of estimation in AFT.

One method is the Buckley-James estimator, which adjusts for censored observations using

the Kaplan–Meier estimator while the other is the rank-based estimator, which is motivated

by the score function of the partial likelihood. In a high dimensional setting, these ap-

proaches are very challenging and computational even complex to solve (Huang, Ma, &

Xie, 2006).

Therefore, to solve the problems of models selection in a high dimensional

setting, there have been a good amount of studies in the AFT models penalization. One

of the first studies came in 2006 where (Huang et al., 2006) used the threshold gradient

descent to conduct model selection in semi-parametric AFT models . For this, they used

Stute’s weighted least squares (LS) estimator (Stute, Wang, et al., 1993) in the AFT model

with multiple covariates, which uses the Kaplan Meier to account for censoring for the

Least Square criterion. The aforementioned approach is more amenable than the previ-

ously mentioned Buckley and James estimator and the ranked based approaches. Huang

et al. used the LASSO penalty and the threshold-gradient-directed regularization method

(Friedman & Popescu, 2003) on these estimates to conduct models selection. Later in 2010,

(Huang & Ma, 2010) again used the Stute’s weighted least squares (LS) estimator to cre-

ate a new penalization approach called the bridge method. The new method was designed

mainly to address the variable selection issues in censored survival data with microarray

gene expression measurements . Furthermore, (Khan & Shaw, 2016) also used Stute’s

weighted least squares (LS) estimator to create the adaptive elastic net penalty .
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(S. Wang, Nan, Zhu, & Beer, 2008) in 2008 extended the elastic net penalty

on semi-parametric AFT models using the traditional Buckley and James estimator. They

applied the new penalty in a high-dimensional genome data called the Michigan squamous

cell lung carcinoma. Then in 2009, (Engler & Li, 2009) also used the elastic net penalty

in AFT models. However, in their paper, they replaced the censored values of the outcome

variable with mean imputation, which is the conditional expectation of the event time.

(Engler & Li, 2009) showed that in a high dimensional and low sample size data set, this

approach to predict AFT models under elastic net penalty outperforms the Buckley and

James estimator used by (S. Wang et al., 2008). A similar approach was taken by Datta

et al. in 2007 to show that mean imputation can outperform the re-weighting and multiple

imputation procedure under LASSO penalization (Datta, Le-Rademacher, & Datta, 2007).

These studies assume some specification in conditional censoring distribu-

tion which is difficult in practice. Also, there is an assumption that the support of cen-

soring time can contain the support of the entire failure time which is usually challenging

to achieve in practice. The Buckley and James estimators are also not stable that cause

multiple limiting values. Therefore, to address these issues, (T. Cai, Huang, & Tian, 2009)

in 2009 introduced the rank-based estimation called the Gehan’s estimator (Tsiatis et al.,

1990) under the LASSO penalty for semi-parametric AFT models. Here the censoring is

independent of the event time and conditional on covariates. It doesn’t require any assump-

tion in censoring and the resulting estimator from this approach is solved using a linear

programming procedure even if the AFT model fails to hold. A similar approach (Gehan’s

estimator) was used in (Xu, Leng, & Ying, 2010) in 2010 where marginal probability was

used to calculate the survival time by accounting for correlation in multiple failure time .
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Recently, (Park & Do Ha, 2018) used the LASSO, SCAD and adaptive

LASSO penalty function to conduct model selection in parametric AFT model. The fail-

ure time was assumed to have lognormal and Weibull distributions (Park & Do Ha, 2018).

(Sha, Tadesse, & Vannucci, 2006) used the Bayesian variable selection approach on para-

metric AFT models using the lognormal and log-t-distributions. They use a conjugate prior

for model parameters and derive a marginalized likelihood with the regression parameters

being integrated out. The Markov chain Monte Carlo (MCMC) algorithm is used for com-

pleting the variable selection procedure (Sha et al., 2006). Later, (Z. Zhang, Sinha, Maiti,

& Shipp, 2018) used a nonparametric Bayesian method for regularized estimation of the

regression parameters on the AFT models. To ensure, nonparametric measures in error,

they use the Dirichlet mixture of normal densities to model it. It gives great flexibility for

the given model and allows for an infinite number of mixing components in the prior .

VARIABLE SELECTION IN MODELS WITH FRAILTY

There has been significant literature in linear mixed models when it comes to

variable selection procedure. However, there are only a handful of studies when it comes

to the joint selection of the fixed and the random effects model. (Bondell, Krishna, &

Ghosh, 2010) and (Ibrahim, Zhu, Garcia, & Guo, 2011) performed joint selection using the

penalized maximization likelihood methods and they used the Cholesky decomposition to

factorize the variance-covariance matrix of the random effects, that is to it’s lower triangular

matrix and it’s conjugate transpose. They then used the EM algorithm to get the param-

eter estimations. (Bondell et al., 2010) used one tuning parameter whereas Ibrahim used

two tuning parameters. Later, (B. Lin, Pang, & Jiang, 2013) used the restricted maximum

likelihood approach with Newton Raphson algorithm to estimate the random parameters.

They use the pathwise coordinate optimization to conduct variable selection (B. Lin et al.,
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2013). (Groll & Tutz, 2014) used Breslow and Clayton’s penalized quasi-likelihood ap-

proach (Breslow & Clayton, 1993) to derive the marginal likelihood of the model. They

used the gradient descent algorithm for variable selection. (Hui, Müller, & Welsh, 2017)

later used the same penalized quasi-likelihood approach to develop their joint selection in

fixed and random effects for adaptive model selection.

For survival analysis, there has been little advancement in joint selection ap-

proach to mixed models. In the Cox model, there has been a significant progress in model

selection when it comes to the fixed effects. However, the literature is limited in terms of

joint selection. Generally in survival analysis, the random effects are treated as frailty that

has certain distribution (Gamma, inverse Gaussian, Lognormal, etc.). Variable selection is

done for the likelihood conditioned on the frailty factor. (Fan & Li, 2002) were the first to

perform variable selection with the LASSO and the SCAD penalty under the presence of

frailty following Gamma distribution. They had extended their penalty mechanism that they

introduced in the linear model (Fan & Li, 2001) to the survival data. Later (Androulakis,

Koukouvinos, & Vonta, 2012) extended the same penalty mechanisms for inverse Gaussian

distributed frailty factors. Then again, (Groll, Hastie, & Tutz, 2017) extended it to include

the frailty distribution following Normal distribution. They also made this penalty include

functions that could address the presence of time-varying covariates in the model. For this,

they included the B-splines algorithms in their model that uses the spline function to ac-

count for time-varying covariates. They uses an extra penalty function to smooth out this

spline coefficient. Overall, there are two tuning parameters in this penalty that addresses

the fixed effects, the random effects as well as the time-varying effects. Similar to the their

model selection in the linear model (Groll & Tutz, 2014), they used the same approximated

marginal likelihood algorithm using the penalized quasi likelihood approach developed by

(Breslow & Clayton, 1993).
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Unlike the Cox model and the linear model, there has been very little progress

in variable selection in AFT models under the presence of random effects. The previous

subsection gave a thorough extension of the amount of variable selection procedures when

it comes to the fixed effects but comparatively extremely little advancements have been

made when it comes to the random effects in this model. As mentioned in the introduc-

tion, (Komarek, 2006; Komárek & Lesaffre, 2008) and (Y. Wang, 2006) were some of

the earliest authors to introduce variable selection in the AFT model under frailty factors.

However, these papers were not designed for selection of fixed or random effects. They

were used to smooth out the error estimates of the model. Recently, (Park & Ha, 2018)

used the parametric AFT models with random effects to conduct variable selection in Log-

normally distributed failure time models. The H-likelihood has an ability to give a closed

form solution while integrating the marginal likelihood. Then the penalty function could

be added to the h-likelihood to conduct variable selection. However all these models used

the right censored mechanisms and there is no study in left censored survival data in AFT

frailty model for variable selection.
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CHAPTER 3

METHODS

In this chapter, we review the estimation procedures of fixed and random effects

models used in generalized linear models as well as the survival models. We then proceed

towards the different methods for variable selection and highlight the procedures that have

been applied for linear models with random effects and survival models with frailty effects.

Some of the general criterion used to select a penalty parameter for shrinkage are intro-

duced. Lastly, we will summarize the development of these methods in the AFT models.

THE MIXED MODELS

A typical mixed model contains a fixed effects and random effects. Fixed effects

remain constant throughout the population whereas random effects may vary in individuals

or groups. Typical models of mixed effects in linear regression and survival analysis are

described below:

3.1.1 Linear Mixed Models

Linear mixed models are an extension of simple linear models that allows

both fixed and random effects. They are particularly applied when there is non indepen-

dence in the data. For example, students could be sampled from within classrooms, or

patients from within doctors. The variance of patients from same doctors may be simi-

lar and it may be different if the patients are from different doctors. These variances are

termed as within variance and between variance. Mixed models are created to address these

variances via the fixed effects for within subject variance and random effects for between

subject variance (for Digital Research & Education, n.d.).
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The underlying linear mixed effects models started with the assumption of

unobserved heterogeneity across individuals in a given study population including any un-

observed or unmeasured variation across the individuals of the given study. This condi-

tion is considered as a subset of regression coefficients (e.g. random intercepts or random

slope) varying randomly across study individuals or study groups. These varied effects are

termed as the random effects and the subjects with these effects are assumed to have their

own subject-specific mean response trajectories over the time period. In mixed models,

the fixed effects are separated by the mean response from the whole study population and

therefore are fixed among all individual in that population. This is generally denoted by β.

The random effects on the other hand are effects that are unique to a particular individual

or particular group in the study (Fitzmaurice, Laird, & Ware, 2012).

Let yijyijyij be the response of the jth individual at the ith cluster, where i =

1, 2, ..., n and j = 1, 2, ..., Ni so that Ni is the cluster size. Let xijxijxij be a vector of pf fixed

effects covariates and zikzikzik be a vector of pr random effects covariates with intercept as their

first element respectively. Then yijyijyij’s mixed model equation can be written as:

yij = xTijβ + zTijbiyij = xTijβ + zTijbiyij = xTijβ + zTijbi + εij (3.1)

where, xijxijxij = (1, xij1, xij2, ..., xij(pf−1))
T and βββ = (β0, β1, β2, ..., β(pf−1))

T are vector of

pf × 1 where as zijzijzij = (1, zij1, zij2, ..., xij(pr−1))
T and bbb = (bi0, bi1, bi2, ..., bi(pr−1))T are

vector of pr × 1 Alternatively, this effect is written in matrix form in the following way:

Yi = ηi = XT
i β + ZT

i bi + εiYi = ηi = XT
i β + ZT

i bi + εiYi = ηi = XT
i β + ZT

i bi + εi (3.2)

where,
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XiXiXi =



1 Xi11 Xi12 Xi13 ... Xi1(pf−1)

1 Xi21 Xi22 Xi23 ... Xi2(pf−1)

. . . ... .

. . . ... .

. . . ... .

1 XiNi1 XiNi2 XiNi3 ... XnNi(pf−1)



T

; βββ =

[
β0 β1 β2 ... β(pf−1)

]T
;

ZiZiZi =



1 Zi11 Zi12 Zi13 ... Zi1(pf−1)

1 Zi21 Zi22 Zi23 ... Zi2(pf−1)

. . . ... .

. . . ... .

. . . ... .

1 ZiNi1 ZiNi2 ZiNi3 ... ZnNi(pf−1)



T

; bibibi =

[
bi0 bi1 bi2 ... bi(pr−1)

]T
.

and εiεiεi =

[
εi0 εi1 εi2 ... εiNi

]T
.

The error term εiεiεi ∼ N(0, σ2IiIiIi) and bibibi ∼ N(0, σ2QQQ) and the matrix QQQ is positive definite.

Thus, for a linear mixed model, YiYiYi ∼ N(XiβXiβXiβ, σ
2Di)Di)Di) whereDi = Ii +QDi = Ii +QDi = Ii +Q .

For the given model in 3.2, the log-likelihood function is given as:

l(βββ, σ) = −1

2

n∑
i=1

log|σ2DiDiDi| −
1

2
σ2

n∑
i=1

(Yi −Xiβ)TD−1
i (Yi −Xiβ)(Yi −Xiβ)TD−1
i (Yi −Xiβ)(Yi −Xiβ)TD−1
i (Yi −Xiβ) (3.3)

Therefore, the corresponding maximum likelihood estimate is given as:

β̃ = (
n∑
i=1

XT
i D

−1
i Xi)

−1(
n∑
i=1

XT
i D

−1
i Yi)β̃ = (

n∑
i=1

XT
i D

−1
i Xi)

−1(
n∑
i=1

XT
i D

−1
i Yi)β̃ = (

n∑
i=1

XT
i D

−1
i Xi)

−1(
n∑
i=1

XT
i D

−1
i Yi) (3.4)

In practice, this equation does not have a closed form solution and therefore
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various numerical methods such as the EM algorithm and the Newton Raphson procedures

are used in the calculation of the MLE.

3.1.2 Frailty Models in Survival Analysis

Typically, the random effects of mixed models that are used to model hetero-

geneity are done via frailty in survival data. Typical examples of the frailty factors include:

genetic predisposition, economic capability and family history of diseases (Liu, 2012). For

the Cox’s proportional hazard frailty model or also called mixed proportional hazard model,

the hazard rate of subject j belonging to cluster i, conditionally on the covariates xijxijxij and

the frailty parameter bibibi is given by the following:

λ(t|β, biβ, biβ, bi) = λ0(t)exp(xTijβ + zTijbixTijβ + zTijbixTijβ + zTijbi) (3.5)

where, λ(t|β, biβ, biβ, bi) is the hazard for observation i at time t, conditioned on the fixed covari-

ates xTijx
T
ijx
T
ij = (1, xi1, ..., xi(pf−1)) and the random covariate zTijz

T
ijz
T
ij = (1, zi1, ..., zi(pr−1)). The

fixed effect coefficient is given as βββ = (β0, β1, ..., β(pf−1)) while the frailty effect coefficent

is bibibi = (bi0, bi1, ..., bi(pr−1)). λ0(t) is the baseline hazard (Groll et al., 2017).

The accelerated failure time (AFT) model, which is the log transformation

of the survival time has a similar equation to the Linear Mixed Models. It is given by the

following:

Log(Tij) = xTijβ + zTijbixTijβ + zTijbixTijβ + zTijbi + εij (3.6)

where Tij is the failure time event for the jth individual at the ith cluster (Do Ha, Jeong, &

Lee, 2018).
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VARIABLE SELECTION

Variable selection are the focus of many researches in areas involving data-sets

with tens or hundreds of thousands of covariates. These areas include text processing of

internet documents, gene expression array analysis, multi-centered clinical trails, combina-

torial chemistry, etc. The objective of variable selection is typically three-folds: to improve

the prediction performance of the chosen model, to provide faster and more cost-effective

predictors, and to give a better understanding of the underlying process of the given data

(Guyon & Elisseeff, 2003). In this section, we will review some of the most prominent

variable selection procedures and describe the typical criterion values used to choose the

ideal model.

3.2.1 Least Squares and Maximum Likelihood Estimates

For a typical simple general linear model, the maximum likelihood estimate

and the least squares estimate have been the cornerstone for prediction. These can be

calculated by the following: Let for a sample of observations, xixixi = (xi1, xi2, ..., xip)
T with

i = 1, 2, ..., n be the number of covariates and yi be their responses. Then, the linear

regression model can be written as:

yi = β1xi1 + β2xi2 + ...+ βpxip + εi

Alternatively,

Y = Xβ + εY = Xβ + εY = Xβ + ε (3.7)

where,
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YYY =

[
Y1 Y2 Y3 ... Yn

]T
;XXX =



X11 X12 X13 ... X1p

X21 X22 X23 ... X2p

. . . ... .

Xn1 Xn2 Xn3 ... Xnp


;βββ =

[
β1 β2 ... βp

]T
;

and εεε =

[
ε1 ε2 ... εn

]T
.

Here, εεε is the error term and follows a normal distribution with mean zero and constant

variance, N(0, σ2).

Then, the residual sums of squares is given as:

RSS = (Y −Xβ)T (Y −Xβ)(Y −Xβ)T (Y −Xβ)(Y −Xβ)T (Y −Xβ) (3.8)

The least square estimate, β̂LSEβ̂LSEβ̂LSE is chosen such that it minimizes the RSS. The log-

likelihood from the above equation is:

l(βββ) ∝−(Y −Xβ)T (Y −Xβ)−(Y −Xβ)T (Y −Xβ)−(Y −Xβ)T (Y −Xβ) (3.9)

By maximizing the l(βββ), one can estimate the maximum likelihood estimate (MLE), β̂̂β̂βMLE

for the model. It can be demonstrated that, maximizing the likelihood is equivalent to min-

imizing the RSS and under a normal error assumption, the two estimates are equivalent.

β̂ = (X ′X)−1(XTY )β̂ = (X ′X)−1(XTY )β̂ = (X ′X)−1(XTY ) (3.10)

For building models, the MLE and LSE techniques are popular typically for their easy

implementation and interpretation. However, when there is a large set of covariates with

multiple correlations, both the MLE and LSE suffer from large variance resulting in poor

predictions and heavy unreliability. Additionally, they do not address model selection. As

a result, alternatives have been proposed to gain prediction accuracy and to achieve simpler
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models via model selection.

3.2.2 Subset Selection

The process of selecting a subset of significant predictors for building a

model is termed as subset selection. Commonly used procedures for this type of variable

selection include the following:

3.2.2.1 Forward Selection:

Forward selection is a process of subset selection where at first no predic-

tors are in the model, then predictors are added one by one, and with the adding of each

predictor, it is tested for significance (p-value) in the model. Only the most significant pre-

dictor is included in the model. This procedure is repeated until we finish adding only the

significant predictors at the end (J. Pan, 2016).

3.2.2.2 Backward Elimination

Backward elimination is a complete opposite of the forward selection pro-

cess. In backward elimination, all predictors in the model are added in the model first, and

then the non-significant useful predictor is removed one after the other at a time. In the end,

only the significant covariates are in the model. It is to be noted that models selected from

forward selection and backward elimination may not always be the same (J. Pan, 2016).
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3.2.2.3 Step-wise Selection

The step-wise selection uses the combination of forward selection and back-

ward elimination procedures. At first, similar to the forward selection the significant pre-

dictors are sequentially added to the model however predictors would be removed if they

are not significant at some point in time. This is a hybrid approach of the two and can

imitate best subset selection while maintaining the same computational advantage (J. Pan,

2016).

3.2.2.4 Best Subset Selection

The best subset selection is to fit a separate global score chi-square statis-

tic for each possible combination of the predictors. That is, all models are fitted with all

the combinations of predictors. The criterion to choose the best set depends on the global

Chi-square test statistics. The model with the highest score has the best rank. Though it

is a good way of choosing models, this procedure becomes a problematic computational

burden when the number of predictors grows. If there are i number of predictors, then

there is 2i number of candidate models. So as the predictors grow, the candidate number

is growing very rapidly, and in general, the best subset selection becomes unfeasible when

these predictors are greater than thirty (J. Pan, 2016).

From the information above, it can be seen that subset selection are very

simple and computational feasible. However, they are not always stable and vary highly as

the predictors are either retained or discarded from the model even with a small change in

the data. This inhibits prediction accuracy of the subset selection procedure (Breiman et

al., 1996; Fan & Li, 2001). Also, when there are correlated predictors or a large number of
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predictors (or both), the lack of stability of the subset selection is then even more magnified

(Harrell, 2001).

3.2.3 Penalized Selection

The penalized selection was created to address the issues in subset selection

procedures and to develop a stable set of predictors. This selection process uses penalty

function in the likelihood function of the regression coefficients and then maximizes it.

Also, in turn, this approach helps in shrinking some of the coefficient estimates that have

minimal impact in the model to go towards zero. This is why penalized estimates are often

related to shrinking estimates. It can be seen that penalized selection can achieve the same

purpose of subset selection but in a slightly more stable, continuous, and computationally

efficient way. The penalized likelihood function is generally written in the following way:

argmaxβ

{
l(βββ)− λP (βββ)

}
where, l(βββ) is the log-likelihood function, P (βββ) is the penalized function and λ is the tuning

parameter. The value of the tuning parameter ( λ ≥ 0) determines the amount of shrinkage

for the given model. That is, the greater the value of the tuning parameter, the higher the

shrinkage. The procedures to select the optimal tuning parameter value is described in the

later section. Based on the above equation, the different types of penalized function can be

described by the following:

3.2.3.1 Ridge Regression

Ridge regression was started in the 1970s by (Hoerl & Kennard, 1970). It

was originally introduced to address the problem of having high correlated covariates in

the linear regression models and was one of the first of its kind to induce the concept of
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shrinkage estimations.

That is, in a given likelihood approach, the ridge penalty is:

β̂̂β̂βRIDGE = argmaxβ

{
l(βββ)− λ

p∑
j=1

(β2
jβ
2
jβ
2
j )

}
(3.11)

Based on this equation, the ridge estimate can be solved as:

β̂̂β̂βRIDGE = (X ′X(X ′X(X ′X + λIII)−1(XTYXTYXTY ) (3.12)

The above equation is a closed form solution which makes ridge regression a unique ad-

vantage over most other procedures. It can be seen that as the value of λ increases, the

minimal influential elements (values closer to zero) of βββ shrinks. The ridge regression has

several distinct benefits in its usage. First, it uses a continuous process to shrink noise co-

efficients and it can also shrink even in substantial collinearity. Therefore it can produce a

stable model at the end. Second, there is a big chance that it may have a smaller prediction

error than the regular least squares and maximum likelihood estimates. However, there is a

significant disadvantage in this type of penalized function. This approach does not always

shrink the coefficients to precisely zero. Therefore, the final model is usually not simple

enough for a more straightforward interpretation (Yu, 2007; J. Pan, 2016).

3.2.3.2 LASSO

(R. Tibshirani, 1996), introduced the Least Absolute Shrinkage and Selec-

tion Operator (LASSO). It became a widely popular method because of its ability to shrink

the coefficients directly to zero. This estimate is given by the following:

β̂̂β̂βLASSO = argmaxβ

{
l(βββ)− λ

p∑
j=1

(|βjβjβj|)
}

(3.13)
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The LASSO penalty uses the L1-norm (|.|), absolute value or
∑p

j=1(|βjβjβj|), that is different

from the Ridge penalty which uses the L2-norm (|.|2) or (||.||), square of the given value

or
∑p

j=1(βjβjβj
2). A suitable way to describe the difference between the LASSO and Ridge

penalty can be summarized by Figure 1.

Figure 3.1: Ridge regression (left) and LASSO (right) estimation procedure

As seen in the above figure, the likelihood function from the covariates has

an elliptical outline with the center having the maximum likelihood estimate. The con-

straint region is a disk-shaped structure for ridge regression whereas it is a diamond for the

LASSO. Both methods find the first point where the elliptical outline hit the constraint re-

gion. It is intuitive that if the coefficients are near the corner of the diamond shaped region

of the LASSO type penalty, then the coefficient easily shrinks to zero faster as compared

to the round shaped area of the ridge regression. This ability to shrink coefficients leads

to the formation of sparse models. This feature gives LASSO a significant advantage over

traditional model selection procedures.
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Although LASSO has a lot of great features in its application unlike ridge

regression, it does not have a closed form solution because the objective function is not dif-

ferential (J. Pan, 2016). Moreover, LASSO equation is assumed to have a strictly convex

structure, but in data sets where covariates number is larger than the sample size number,

the LASSO structure may not be purely convex, so there may not be a unique solution

(R. J. Tibshirani et al., 2013).

Therefore, there has been significant literature conducted to solve the LASSO

solution problem. Some of the traditional methods include coordinate descent, first-order

methods, and quadratic programming approaches. However, these methods are not consis-

tently producing an active set of solutions that satisfy the LASSO lemma (R. J. Tibshirani

et al., 2013). One, of the most famous algorithm to solve the LASSO problem, is the Least

Angle Regression (LARS) (Efron, Hastie, Johnstone, Tibshirani, et al., 2004). It is a more

democratic version of the forward stage-wise solution using the least squares. Additionally,

there are more studies to solve the LASSO optimization problem. They will be discussed

later in the chapter.

3.2.3.3 SCAD

The Smoothly Clipped Absolute Deviation (SCAD) penalty was developed

by Fan and Li in 2001 to minimize the shortcomings in the LASSO procedure (Fan &

Li, 2001). The idea is to put a substantial penalty on the smaller coefficients and a light

penalty on the more significant factors. This approach helps in preserving the essential

effects while shrinking the less influential covariates (J. Pan, 2016). The function of SCAD

is symmetric, non-concave on (0,∞) and has singularities at the origin to produce sparse

solutions. The SCAD penalty function is given by the following:
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PSCAD(λ)(βββ) = λ

{
I(βββ ≤ λ) +

(aλ− βββ)+

(a− 1)λ
I(βββ > λ)

}
(3.14)

where a > 0 and λ > 0. Then the solutions for β can be given as:

β̂̂β̂β =


sgn(z)(|z| − λ)+ if |z| ≤ 2λ

{(a−1)z−sgn(Z)aλ}
(a−2)

if 2λ < |z| ≤ aλ

z if |z| > aλ

(3.15)

where z = xTyz = xTyz = xTy. One of the best advantage of SCAD penalty is its ability to satisfy the

oracle property. This property states that for a good selection procedure δ, the estimator

β̂̂β̂β(δ) should satisfy the following two conditions:

1. It is able to identify the right model, {j : β̂̂β̂β(δ)j 6= 0} = {j : βββj 6= 0}

2. Has the optimal estimate rate,
√
n(β̂̂β̂β(δ) − βββ) →d N(0,Σ), where Σ is the variance-

covariance matrix of knowing the true subset model. It means that the covariates with

nonzero coefficients can be identified with probability tending to one, and the estimates of

nonzero coefficients have the same asymptotic distribution as the true model.

Although SCAD has such excellent properties, it is computationally chal-

lenging due to its complex form. Furthermore, since the optimization is non-concave, there

is no certainty that the local-maximum of the given penalized likelihood can be the global

maximum (J. Pan, 2016).

3.2.3.4 Elastic Net

The elastic net penalty was proposed in 2005 where Zou and Hastie intro-

duced the Elastic Net penalty which linearly combines the LASSO and ridge regression

procedure (Zou & Hastie, 2005). This penalty is given by the following:
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β̂̂β̂βELASTIC = argmaxβ

{
l(βββ)− λ1

p∑
j=1

|βjβjβj| − λ2

p∑
j=1

(βjβjβj)
2

}
(3.16)

The above equation shows that elastic net penalty has two tuning parameters. One for the

LASSO type penalty to achieve sparsity and the other for the ridge type penalty function

to have group selection and stabilization. Therefore, by including both these function, the

elastic net penalty can have good features from both sides and is a useful alternative when

there is a group of predictors with high pairwise correlation. However, it may be computa-

tionally challenging to estimate the ideal values for the two different tuning parameters.

3.2.3.5 Group LASSO

The group lasso penalty was proposed in 2006 by Yuan and Lin (Yuan &

Lin, 2006). This penalization works like a LASSO, but at a group wise level that is an

entire group of predictors may be dropped out of the model. Thus, if the given data has all

of its groups sizes as one then this penalty function changes into a regular LASSO penalty.

The proposed penalty is given by the following:

β̂̂β̂βgroupLASSO = argmaxβ

{
l(βββ)− λ

p∑
j=1

βjβjβj
2
√
Ni

}
(3.17)

where, Ni accounts for the group size of the ith cluster.

This penalty has an attractive property where the group level variable se-

lection is invariant under (group-wise) orthogonal transformations like ridge regression.

This leads to closed form solution like ridge regression especially in large scale application

studies (Yuan & Lin, 2006). However, this penalty can only yield solutions to sparsity at

the group level. Hence, we need some modifications in this type of penalty to achieve the

individual sparsity in a given model.
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3.2.3.6 Adaptive LASSO

(Zou, 2006) proposed the adaptive LASSO to address the inconsistency of

the LASSO penalty . He modified the original LASSO function to include adaptive weight

vector that can be adapted by the data-set. The following equation gives the penalty func-

tion:

β̂̂β̂βALASSO = argmaxβ

{
l(βββ)− λ

p∑
j=1

wj|βj|wj|βj|wj|βj|
}

(3.18)

where wjwjwj = (w1, ..., wp) is the given weight vector. Therefore, the choice of this weight is

significant to have consistency. Usually, the weights are calculated by this equation:

w =
1

β̂
w =

1

β̂
w =

1

β̂
(3.19)

where β̂̂β̂β is the maximum likelihood estimate of βββ. These weights help to incorporate sub-

stantial penalties for insignificant covariates and small penalties for significant covariates.

It improves model accuracy and reduces estimated bias and variance.

The adaptive LASSO has a great many useful features that are consistent

with the penalty functions as mentioned earlier. Therefore, it is an excellent alternative to

SCAD.

3.2.4 Selection Criteria for Model Selection

The penalty functions described in previous section showed that there are

a set of one or more tuning parameters that determine the amount of penalty for a given

model. The choice for the ideal values for these tuning parameters requires a thorough in-

vestigation from a sequence of assigned values. Such examination involves the appropriate
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model selection criterion that can score each fitted models from the given series of tuning

parameters. These scores assist in choosing the suitable tuning parameter for the given

model. Some of the most popular criteria are as follows:

3.2.4.1 Akaike Information Criterion (AIC)

Discovered in the early 1970s, the Akaike information criterion (AIC) re-

mains one of the most influential and popular tool for model selection (Akaike, 1973,

1974). It is an estimator to determined the expected Kullback discrepancy between the

given fitted model and the truth model. AIC is a likelihood-based measure for model fit,

and in general, it is written as:

AIC = −2l(β̂̂β̂β) + 2 ∗ p (3.20)

For mixed models, Sugiuria (Sugiura, 1978) proposed the marginal AIC derived from the

marginal form of the linear mixed models and is given as:

AIC = −2l(β̂̂β̂β) + aN(2pf + 2pr) (3.21)

where l(β̂̂β̂β) is the log-likelihood function, β̂̂β̂β is the required estimate, pf is the number of

estimated fixed parameters and pr is the number of estimated random effects. The value of

aN is usually 1 or N
N−pf−pr−1

. For model selection, the optimal value for the given model

is equal to the minimum value of the AIC. This property to identify a suitable fitted model

has a significant role in various fields, especially when the data-sets are large. But, for

small sample size, AIC may select over-fitting models which means that it may not be an

effective option for selection criterion in low sample size. Therefore, to address this gap in

AIC, the corrected AIC (AICc) was proposed. AICc of a fixed effects only model can be

given by the following equation:

AICc = AIC +
2pf (pf + 1)

N − pf − 1
(3.22)
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3.2.4.2 Bayesian Information Criterion (BIC)

Developed by Schwarz in 1978, the Bayesian information criterion (BIC)

is an asymptotic approximation to a transformation of the Bayesian posterior probability

of a candidate model (Schwarz et al., 1978). Like the AIC, this is also a likelihood base

measure for model fitting. The model with the corresponding minimum value of BIC is the

candidate model with the highest Bayesian posterior probability. The following equation

represents the BIC information criterion:

BIC = −2l(β̂̂β̂β) + p ∗ log(N) (3.23)

For mixed models, the marginal BIC is similar to the marginal AIC and is written as:

BIC = −2l(β̂̂β̂β) + log(N)(pf + pr) (3.24)

In the above equation, for N ≥ 8, log(N)(pf + pr) exceeds the AIC’s 2 ∗ (pf + pr). There-

fore, BIC has more strict penalty than AIC, and thus it tends to choose smaller models than

the AIC especially when there is a large sample application. BIC is also an asymptotically

consistent tool in choosing a correct model with a probability of one.

However, BIC is not asymptotically efficient and thus the chosen model via

BIC may not be able to minimize the mean squared error of prediction (Weakliem, 1999).

Therefore, it may not be a primary tool for predictive model selection procedures.

3.2.4.3 ICs

(Hui et al., 2017), developed their ICs information criterion for model se-

lection in . Here they consider a range of tuning parameters, λmin, λmax where λmin is the

full model containing all the candidate fixed and random effects and λmax is the value that
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leads to the null model. The ICs criterion selects an ideal value for λ that can have the

minimal value for the following equation:

IC(λ) = − 2

N
l(β̂, b̂β̂, b̂β̂, b̂) +

log(ni)

N
dim(β̂̂β̂β) +

2

N
dim(̂b̂b̂b) (3.25)

where dim(β̂ββ) and dim(b̂bb) are the number of nonzero estimated fixed and random effects

coefficients respectively andN is the total sample size where as ni is cluster size for a given

cluster i.

This criterion combines the features of BIC and AIC for fixed and random

effects respectively. The main advantage of this type of criterion is its ability to prevent

over-fitting on random effects via group sparsity (Hui et al., 2017).

3.2.4.4 Cross-Validation

Cross-validation (CV) is a widely popular strategy for model evaluation and

selection. It randomly divides the data into K groups, or folds, of approximately equal size.

That is, for k = 1, 2, ..., K the validation set be the kth fold of the data. It is termed as the

test data.

The remaining K − 1 folds are set to be the training data and model is fitted

in this training set. Then, the prediction error of the fitted model with the validation set can

thus be computed. For each model, this process is repeated for K times. That way, each

fold is used to be in the validation set which gives K estimates of the prediction error, and

thus the CV is computed by averaging these values. Under this criterion, the best model is

the one with the smallest value. Usually, five or ten-fold cross-validation is recommended

(Breiman, 1995).
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For a sample to be divided into K folds, it has to be large enough. Therefore,

in a small sample size, it may cause unstable estimates. Furthermore, the computational

time for evaluating and producing K estimates is very long. Therefore, to reduce this com-

putational burden, bias correction cross-validation have been proposed (Bernau, Augustin,

& Boulesteix, 2013).
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CHAPTER 4

PROPOSED METHOD

The primary purpose of this study is to extend the works of Breslow and Clayton

(Breslow & Clayton, 1993), (Hui et al., 2017) and (Groll et al., 2017) in variable selection

by applying the Penalized Quasi-Likelihood (PQL) procedure to the parametric AFT mod-

els. We will investigate the variable selection in a model that has a dependent variable that

follows different survival distributions under the assumption of left censoring, with several

of fixed effects covariates X along with several random effects covariates Z.

BASIC NOTATIONS AND FORMULAS

Let f(t) be the probability density function (pdf) of a given continuous time

variable T . Then the cumulative distribution function of the random variable T with a

probability that an event occurs within a given time interval (0,t) is given by:

F (t) = Pr(T ≤ t) =

∫ t

0

f(u)du (4.1)

The survival function S(t) is the complement of this given cumulative density function

which means, it is the probability that the individual will survive beyond a given time

which can be prseneted by the following:

S(t) = Pr(T > t) = 1− Pr(T ≤ t) = 1− F (t). (4.2)

Note that, S(0) = 1 and S(∞) = 0 . The probability density function f(t) can also be

written in terms of the survival function as

f(t) = −dS(t)

dt
. (4.3)
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The hazard function h(t) is the instantaneous rate of failure at time t .

h(t) = lim
∆t→0

Pr[T ∈ (t, t+ ∆t)|T ≥ t]

∆t
, (4.4)

or equivalently,

h(t) =
f(t)

S(t)
= − 1

S(t)

dS(t)

dt
=
−dlogS(t)

dt
. (4.5)

The above equations show that the three functions, namely f(t), S(t) and h(t) are inti-

mately related to each other. Thus, if one of these functions is available, then the other

two can be easily calculated. For example, S(t) can be written as an inverse function of

equation (3.5) as:

S(t) = exp(−
∫ t

0

h(u)du) = exp[−H(t)], (4.6)

whereH(t) is the integration of all hazard rates up to time t and is known as the cumulative

hazard function at time t. Alternatively, H(t) can also be written in terms of S(t) as:

H(t) = −logS(t). (4.7)

Furthermore, the probability density function can also be written in the following form,

from equations (3.5) and (3.6):

f(t) = h(t) exp(−
∫ t

0

h(u)du). (4.8)

ACCELERATED FAILURE TIME (AFT) WITH FRAILTY EFFECTS

Let TiTiTi be the failure time and the dependent variable yiyiyi = log(TiTiTi) is linearly

associated with the fixed covariate vector xTijx
T
ijx
T
ij and the random covariate (frailty) vector zijzijzij ,

where i = 1, 2, ..., n is the number of clusters and j = 1, 2, 3, ...., Ni is the number of

measurements within the ith cluster. Let pf be the number of covariates associated with
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fixed effects xTijx
T
ijx
T
ij and pr be the number of covariates associated with frailty effects zTijz

T
ijz
T
ij . Then

AFT frailty model with a log-linear link can be given as:

yi = β0 + xTi β + zTijbiyi = β0 + xTi β + zTijbiyi = β0 + xTi β + zTijbi + εi, (4.9)

Here, βββ is the fixed effect coefficient and bibibi is the random effect coefficient. For this study,

it is assumed that bibibi ∼ N(0,QQQ), where QQQ is the variance-covariance matrix. The term εi

represents the random error whose distribution is determined by the survival function of

time, S(t), the cumulative distribution function, F (t), and the probability density function,

f(t).

From equation 4.9, for a specific observation i, the lifetime process can be

described by three factors. They are:

1. Random variable of the event time Ti and censoring time Ci,

2. Observed survival time ti from an independent and identically distribution with left

censored mechanism.

3. Random variable indicating the status of surviving or left censoring for a given ti. This

implies that:

δij = 0 if Ti = ti, (4.10)

δij = 1 if Ti < ti. (4.11)

Then with δij denotes the censoring indicator, consequently ti is a lifetime (δij = 0) or a

left censored time (δij = 1).
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STATISTICAL INFERENCE ON AFT MODELS WITH FRAILTY

Statistical inference in survival analysis is different and unique as the censoring

mechanism plays an essential role in the determination of likelihood functions. From equa-

tion (4.9), it can be deduced that the survival function for an individual at ij at time ti can

be written as:

S(ti) = P (εij ≥ logti − β0 − xTijβxTijβxTijβ − zTijbizTijbizTijbi). (4.12)

Let ηij = xTijβ + zTijbixTijβ + zTijbixTijβ + zTijbi, Then in AFT models, the effect of covariates is such that if exp(ηij) >

1, a deceleration of the survival (time) process ensues and if exp(ηij) < 1 , then an accel-

eration of the survival (time) process ensues.

Given the covariate vector xixixi, random vector zijzijzij and parameter vector βββ, bbb,

the likelihood function for a left censored mechanism is given by

L(β, bβ, bβ, b) =
n∏
i=1

Ni∏
j=1

f(tij|β, biβ, biβ, bi)
1−δij(F (tij|β, biβ, biβ, bi))

δij . (4.13)

From equation (4.13), when δij = 0 the likelihood function takes on the value of the

probability density function for the occurrence of an event. When δij = 1, the likelihood

function takes on the complement value of the probability of survival beyond censoring

time t, which is the cumulative distribution function. The same likelihood function in

terms of a parametric regression model with a hazard function and a vector of coefficients

βββ is defined by.

L(β, bβ, bβ, b) =
n∏
i=1

Ni∏
j=1

[h(tij)S(tij)]
1−δij(1− S(tij))]

δij . (4.14)

However, for this study, we will use equation (4.13). Taking the log values on both sides of

equation (4.13):
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l(β, bβ, bβ, b) =
n∑
i=1

Ni∑
j=1

{
(1− δij)logf(tij|β, biβ, biβ, bi) + δij(logF (tij|β, biβ, biβ, bi))

}
. (4.15)

The given full log-likelihood in equation (4.15) does not have a closed form solution to

derive the estimation of the maximum likelihood. An alternative way to estimate the maxi-

mum value of this likelihood is to integrate out the random effects and maximize the even-

tual marginal likelihood. To approximate this marginal likelihood, the penalized quasi-

likelihood (PQL) approach developed by Breslow and Clayton (Breslow & Clayton, 1993)

could be used here. Therefore, let φ = (β, vech(Q))φ = (β, vech(Q))φ = (β, vech(Q)) where vech(.) is the half vectorization

operator of the variance-covariance matrix QQQ, the vector of the lower triangular matrix of

QQQ as given by (Hui et al., 2017). Following Ripatti and Palmgren (Ripatti & Palmgren,

2000), the marginal likelihood can have the following integral form:

Lmar(φ, bφ, bφ, b) =
n∏
i=1

{∫
Li(β, bβ, bβ, b)f(bi;Qbi;Qbi;Q)dbidbidbi

}
. (4.16)

where Li(β, bβ, bβ, b) is given by
∏Ni

j=1 f(tij|β, biβ, biβ, bi)
1−δij(F (tij|β, biβ, biβ, bi))

δij and f(bi;Qbi;Qbi;Q) is represented

by the density function for the random effects. It is assumed that the frailty effects follows

the normal distribution, f(bi;Qbi;Qbi;Q) ∼ N(0,QQQ). Thus, equation (4.16) can be approximated

by the following :

Lmar(φ, bφ, bφ, b) ∝
n∏
i=1

{
|QQQ|−

1
2

∫
exp

{
logLi(β, bβ, bβ, b)− 1

2
b̃Ti Q

−1b̃idbib̃Ti Q
−1b̃idbib̃Ti Q
−1b̃idbi

}
. (4.17)

The given equation leads to an intractable integration such that it does not have a closed

form solution. However, since it has the form c|QQQ|− 1
2

∫
e−k(bbb), we can approximate the

solution using the Laplace approximation. Thus, along the lines of (Breslow & Clayton,

1993), (Ripatti & Palmgren, 2000) and (Groll et al., 2017), the marginal log-likelihood

from equation (4.17) can be approximated by the following form:

lLA(φ, bφ, bφ, b) =
1

2
log|QQQ| − 1

2
log|k′′(̃b̃b̃b)| − k(̃b̃b̃b). (4.18)
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where the terms inside |.| are the determinants of the matrix. In addition, from equation

(4.15)

k(̃b̃b̃b) = −
n∑
i=1

Ni∑
j=1

{
(1− δi)logf(tij|β, biβ, biβ, bi) + δi(logF (tij|β, biβ, biβ, bi))−

1

2
b̃Ti Q

−1b̃ib̃Ti Q
−1b̃ib̃Ti Q
−1b̃i

}
. (4.19)

where 1
2
bTi Q

−1bibTi Q
−1bibTi Q
−1bi is the ridge penalty. This penalty function is also able to penalize the

extreme values of bbb. Alternatively, equation (4.19) can also be written as:

k(̃b̃b̃b) = −
n∑
i=1

{
logLi(β, bβ, bβ, b)− 1

2
b̃Ti Q

−1b̃ib̃Ti Q
−1b̃ib̃Ti Q
−1b̃i

}
. (4.20)

Now, by taking the derivative of k(̃b̃b̃b) with respect to b̃̃b̃b in equation (4.19), we get the first

derivative, k′(̃b̃b̃b) as:

k′(̃b̃b̃b) = −
n∑
i=1

Ni∑
j=1

{
(1− δi)

∂logf(tij|β, biβ, biβ, bi)

∂bibibi
+ δi

∂(logF (tij|β, biβ, biβ, bi))

∂bibibi

−Q−1b̃iQ−1b̃iQ−1b̃i

}
.

⇒ k′(̃b̃b̃b) = −
n∑
i=1

Ni∑
j=1

{
(1− δi)

∂logf(tij|β, biβ, biβ, bi)

∂εiεiεi

∂εiεiεi
∂bibibi

+ δi
∂(logF (tij|β, biβ, biβ, bi))

∂εiεiεi

∂εiεiεi
∂bibibi

−Q−1b̃iQ−1b̃iQ−1b̃i

}
.

⇒ k′(̃b̃b̃b) = −
n∑
i=1

Ni∑
j=1

{
(1− δi)

∂logf(tij|β, bi)β, bi)β, bi)

∂εiεiεi

∂[yi − xTi β − zTijbiyi − xTi β − zTijbiyi − xTi β − zTijbi]
∂bibibi

+δi
∂(logF (tij|β, biβ, biβ, bi))

∂εiεiεi

∂[yi − xTi β − zTijbiyi − xTi β − zTijbiyi − xTi β − zTijbi]
∂bibibi

−Q−1b̃iQ−1b̃iQ−1b̃i

}
.
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⇒ k′(̃b̃b̃b) = −
n∑
i=1

Ni∑
j=1

{
(1− δi)

∂logf(tij|β, biβ, biβ, bi)

∂εiεiεi
(−zTijz

T
ijz
T
ij) + δi

∂(logF (tij|β, biβ, biβ, bi))

∂εiεiεi
(−zTijz

T
ijz
T
ij)−Q−1b̃iQ−1b̃iQ−1b̃i

}
.

⇒ k′(̃b̃b̃b) = −
n∑
i=1

Ni∑
j=1

{
(−zTijz

T
ijz
T
ij)

{
(1− δi)

∂logf(tij|β, biβ, biβ, bi)

∂εiεiεi
+ δi

∂(logF (tij|β, biβ, biβ, bi))

∂εiεiεi

}
−Q−1b̃iQ−1b̃iQ−1b̃i

}
.

⇒ k′(̃b̃b̃b) =
n∑
i=1

Ni∑
j=1

{
zTijz
T
ijz
T
ij

∂

∂εiεiεi

{
(1− δi)logf(tij|β, biβ, biβ, bi) + δi(logF (tij|β, biβ, biβ, bi))

}
−Q−1b̃iQ−1b̃iQ−1b̃i

}
.

Taking derivative of this resulting k′(̃b̃b̃b) again with respect to b̃̃b̃b, we get the second derivative

of k(̃b̃b̃b), k′′(̃b̃b̃b), given by the following:

k′′(̃b̃b̃b) =
n∑
i=1

Ni∑
j=1

{
zTijz
T
ijz
T
ij

∂

∂εiεiεi

{
(1− δi)

∂logf(tij|β, biβ, biβ, bi)

∂bibibi
+ δi

∂(logF (tij|β, biβ, biβ, bi))

∂bibibi

}
−Q−1Q−1Q−1

}
.

⇒ k′′(̃b̃b̃b) =
n∑
i=1

Ni∑
j=1

{
zTijz
T
ijz
T
ij

∂

∂εiεiεi

{
(1− δi)

∂logf(tij|β, biβ, biβ, bi)

∂εiεiεi

∂εiεiεi
∂bibibi

+ δi
∂(logF (tij|β, biβ, biβ, bi))

∂εiεiεi

∂εiεiεi
∂bibibi

}
−Q−1Q−1Q−1

}
.

⇒ k′′(̃b̃b̃b) =
n∑
i=1

Ni∑
j=1

{
zTijz
T
ijz
T
ij

∂

∂εiεiεi

{
(1− δi)

∂logf(tij|β, biβ, biβ, bi)

∂εiεiεi

∂[yi − xTi β − zTijbiyi − xTi β − zTijbiyi − xTi β − zTijbi]
∂bibibi

+δi
∂(logF (tij|β, biβ, biβ, bi))

∂εiεiεi

∂[yi − xTi β − zTijbiyi − xTi β − zTijbiyi − xTi β − zTijbi]
∂bibibi

}
−Q−1Q−1Q−1

}
.

⇒ k′′(̃b̃b̃b) =
n∑
i=1

Ni∑
j=1

{
zTijz
T
ijz
T
ij

∂

∂εiεiεi

{
(1− δi)

∂logf(tij|β, biβ, biβ, bi)

∂εiεiεi
(−zijzijzij) + δi

∂(logF (tij|β, biβ, biβ, bi))

∂εiεiεi
(−zijzijzij)

}
−Q−1Q−1Q−1

}
.
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⇒ k′′(̃b̃b̃b) =
n∑
i=1

Ni∑
j=1

{
zTijz
T
ijz
T
ij

∂

∂εiεiεi

{
(1− δi)

∂logf(tij|β, biβ, biβ, bi)

∂εiεiεi
+ δi

∂(logF (tij|β, biβ, biβ, bi))

∂εiεiεi

}
(−zijzijzij)−Q−1Q−1Q−1

}
.

⇒ k′′(̃b̃b̃b) = −
n∑
i=1

Ni∑
j=1

{
zTijz
T
ijz
T
ij

∂2

∂ε2iε
2
iε
2
i

{
(1− δi)(log(f(tij|β, biβ, biβ, bi) + δilog(F (tij|β, biβ, biβ, bi))

}
zijzijzij −Q−1Q−1Q−1

}
.

LetWiWiWi = ∂2

∂ε2iε
2
iε
2
i

{
(1−δi)(log(f(tij|β, biβ, biβ, bi)+δilog(F (tij|β, biβ, biβ, bi))

}
, then we can write the afore-

mentioned equation in a matrix form by the following:

k′′(̃b̃b̃b) =
n∑
i=1

{
ZT
i WiZi −Q−1ZT
i WiZi −Q−1ZT
i WiZi −Q−1

}
. (4.21)

Plugging the values of k(̃b̃b̃b) and k′′(̃b̃b̃b) on equation (4.18), we get the following:

lLA(φ, bφ, bφ, b) =
1

2
log|QQQ| −

n∑
i=1

1

2
log|ZT

i WiZi −Q−1ZT
i WiZi −Q−1ZT
i WiZi −Q−1|+

n∑
i=1

{
log(Li(β, b̃β, b̃β, b̃))− 1

2
b̃Ti Q

−1b̃ib̃Ti Q
−1b̃ib̃Ti Q
−1b̃i

}

⇒ lLA(φ, bφ, bφ, b) =
1

2
log|QQQ| −

n∑
i=1

1

2
log|Z

T
i WiZiQ− IZT
i WiZiQ− IZT
i WiZiQ− I

QQQ
|+

n∑
i=1

{
log(Li(β, b̃β, b̃β, b̃))− 1

2
b̃Ti Q

−1b̃ib̃Ti Q
−1b̃ib̃Ti Q
−1b̃i

}

⇒ lLA(φ, bφ, bφ, b) =
1

2
log|QQQ| −

n∑
i=1

1

2
log|ZT

i WiZiQ− IZT
i WiZiQ− IZT
i WiZiQ− I| −

1

2
log|QQQ|+

n∑
i=1

log(Li(β, b̃β, b̃β, b̃))

−
n∑
i=1

1

2
b̃Ti Q

−1b̃ib̃Ti Q
−1b̃ib̃Ti Q
−1b̃i

Thus, we can write the aforementioned equation in the following way:

lLA(φ, bφ, bφ, b) =
n∑
i=1

log(Li(β, b̃β, b̃β, b̃))− 1

2

n∑
i=1

b̃i
T
Q−1b̃ib̃i

T
Q−1b̃ib̃i

T
Q−1b̃i −

1

2

n∑
i=1

logdet(ZT
i W̃iZiQ+ IZT
i W̃iZiQ+ IZT
i W̃iZiQ+ I). (4.22)

According to (Breslow & Clayton, 1993), (Ripatti & Palmgren, 2000) and (Hui et al.,

2017), the last term in equation (4.22) has minimal influence in the eventual estimated
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likelihood and therefore, we can ignore it with little to no information lost. Thus, the final

approximated likelihood (PQL) is given as:

lPQL(φ, bφ, bφ, b) =
n∑
i=1

log(Li(β, bβ, bβ, b))− 1

2

n∑
i=1

bTi Q
−1bibTi Q
−1bibTi Q
−1bi. (4.23)

From equation (4.23), it can be seen that the value of 1
2
bTi Q

−1bibTi Q
−1bibTi Q
−1bi represents a penalty term

that comes from this approximation. This is a generalized ridge penalty, where bbb is treated

as fixed effect vector. This penalty reduces the influence of extremes values of bbb.

PENALIZATION

We proposed to extend the penalty function of (Hui et al., 2017) for the censored

data using the AFT models. That is, a combination of the adaptive LASSO (penalizes the

fixed effects) and the adaptive group LASSO (penalizes the random effects) to perform a

joint selection effect over the fixed and the frailty effects of the AFT models via the given

approximated likelihood in equation (4.23).

For a given value of QQQ, the penalized estimates of the fixed and the frailty

effects of the AFT models from the above equation at (4.23) can be given as:

lpen(φ, bφ, bφ, b) = argmax(lPQL(φ, bφ, bφ, b))− λ
pf∑
s=1

vsvsvs|βsβsβs| − λ
∑pr

k=1wkwkwkb.kb.kb.k
2

√
Ni

(4.24)

where βsβsβs represents the fixed effects and b.tb.tb.t = (bi1, ..., bik) is the vector of coefficients of

the tth frailty effect, |.| denotes the L1-norm and ||.|| denotes the L2-norm. Furthermore,

vsvsvs and wtwtwt are the adaptive weights based on the unpenalized estimates. To get these unpe-

nalized maximum estimates in AFT model with a left censored mechanism, we used the

Monte Carlo Expectation Maximization (MCEM) algorithm as presented by (Vaida & Liu,
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2009a). Once the unpenalized estimates of the fixed effects coefficients β̂̂β̂β and the frailty

effects variance-covariance matrix estimate, Q̂̂Q̂Q, on the full AFT model are calculated, the

adaptive weights can be determined via: vs = |β̂s|−svs = |β̂s|−svs = |β̂s|−s and wk = Q̂−2s
kkwk = Q̂−2s
kkwk = Q̂−2s
kk . Q̂kkQ̂kkQ̂kk is the kth diag-

onal element of Q̂̂Q̂Q. Both weights are calculated with a common power parameter sss > 0.

Also, unlike (Hui et al., 2017), we have divided the group frailty effect penalty by
√
Ni, the

square root of the varying size of the given cluster i. This is done for the standardization

as the group LASSO depends on the varying size of the cluster. That is determined by the

cluster’s number and its size.

The penalty only has a single tuning parameter, λ, primarily because it saves

a considerable amount of computational time and complexity (Garcia, Müller, Carroll, &

Walzem, 2013). Moreover, given the concavity of both the PQL likelihood, lPQL(φ, bφ, bφ, b) and

the lasso penalty functions, if there exists a maximizer to l(φ, bφ, bφ, b) then it is also unique (Hui

et al., 2017) (further details is in Lemma 2.1 of (Jiang, Jia, & Chen, 2001)). The ICs crite-

rion as discussed in chapter 2 is used to select the value of the tuning parameter λ.

ESTIMATION OF THE VARIANCE-COVARIANCE MATRIX

Once, the penalized estimates of β̂̂β̂βλ and b̂̂b̂bλ have been determined from a given

value of QQQ, then these values can be used to update the value of the variance-covariance

matrix. Following (Hui et al., 2017), the estimated values of the Q̂̂Q̂Qλ can be determined

by substituting the value of β̂̂β̂βλ and b̂̂b̂bλ on equation (4.22), then the Laplace approximated
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log-likelihood given as :

lLA(φ, bφ, bφ, b) =
n∑
i=1

log(Li(β̂λ, b̂λiβ̂λ, b̂λiβ̂λ, b̂λi)−
1

2

n∑
i=1

b̂TλiQ
−1b̂λib̂TλiQ
−1b̂λib̂TλiQ
−1b̂λi −

1

2

n∑
i=1

logdet(ZT
i W̃iZiQ+ IZT
i W̃iZiQ+ IZT
i W̃iZiQ+ I)

⇒ lLA(φ, bφ, bφ, b) = −n
2
logdet(QQQ)− 1

2

n∑
i=1

logdet[ZT
i W̃iZi +Q−1ZT
i W̃iZi +Q−1ZT
i W̃iZi +Q−1] +

n∑
i=1

log(Li(β̂λ, b̂λiβ̂λ, b̂λiβ̂λ, b̂λi))

−1

2

n∑
i=1

b̂TλiQ
−1b̂λib̂TλiQ
−1b̂λib̂TλiQ
−1b̂λi

Hence, for any i = 1, ..., n, b̂λib̂λib̂λi are the penalized frailty estimates for a given AFT model.

Then by differentiating the likelihood function with respect to QQQ and setting it to zero we

get the following:

δlLA(φ, bφ, bφ, b)

δQQQ
= 0

Plugging the values for lLA(φ, bφ, bφ, b) from the aforementioned equation:

⇒
δ(−n

2
logdet(QQQ))

δQQQ
−
δ(1

2

∑n
i=1 logdet(Z

T
i W̃iZi +Q−1ZT
i W̃iZi +Q−1ZT
i W̃iZi +Q−1))

δQQQ
+
δ(
∑n

i=1 log(Li(β̂λ, b̂λiβ̂λ, b̂λiβ̂λ, b̂λi)))

δQQQ

−
δ(
∑n

i=1
1
2
b̂TλiQ

−1b̂λib̂TλiQ
−1b̂λib̂TλiQ
−1b̂λi)

δQQQ
= 0

⇒ −n
2

δ(logdet(QQQ))

δdet(QQQ)

δdet(QQQ)

δQQQ
− 1

2

n∑
i=1

δ(logdet(ZT
i W̃iZi +Q−1ZT
i W̃iZi +Q−1ZT
i W̃iZi +Q−1))

δ(det(ZT
i W̃iZi +Q−1ZT
i W̃iZi +Q−1ZT
i W̃iZi +Q−1))

δ(det(ZT
i W̃iZi +Q−1ZT
i W̃iZi +Q−1ZT
i W̃iZi +Q−1))

δ((ZT
i W̃iZi +Q−1ZT
i W̃iZi +Q−1ZT
i W̃iZi +Q−1))

∗δ((Z
T
i W̃iZi +Q−1ZT
i W̃iZi +Q−1ZT
i W̃iZi +Q−1))

δQQQ
− 1

2

n∑
i=1

δ(̂bTλiQ
−1b̂λib̂TλiQ
−1b̂λib̂TλiQ
−1b̂λi)

δQQQ
= 0

By Jacobi’s formula, we have adjugate(XXX) = δdetXXX
δXXX

(Magnus & Neudecker, 1999). So by

using this formula on the above equation we get:

⇒ −n 1

det(QQQ)
∗ adjugate(QQQ)

−
n∑
i=1

1

det(ZT
i W̃iZi +Q−1ZT
i W̃iZi +Q−1ZT
i W̃iZi +Q−1)

adjugate(ZT
i W̃iZi +Q−1ZT
i W̃iZi +Q−1ZT
i W̃iZi +Q−1)(−1)(Q−1 ∗Q−1Q−1 ∗Q−1Q−1 ∗Q−1)

−
n∑
i=1

(−1)(Q−1 ∗Q−1Q−1 ∗Q−1Q−1 ∗Q−1)(̂bλib̂
T
λib̂λib̂
T
λib̂λib̂
T
λi) = 0
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We knowX−1X−1X−1 = adjugate(XXX)
detXXX

. By using this in above equation, we get the following:

⇒ −n ∗ (Q−1Q−1Q−1) +
n∑
i=1

(ZT
i W̃iZi +Q−1ZT
i W̃iZi +Q−1ZT
i W̃iZi +Q−1)−1(Q−1 ∗Q−1Q−1 ∗Q−1Q−1 ∗Q−1) +

n∑
i=1

(Q−1 ∗Q−1Q−1 ∗Q−1Q−1 ∗Q−1)(̂bλib̂
T
λib̂λib̂
T
λib̂λib̂
T
λi) = 0

⇒ n ∗ (Q−1Q−1Q−1) = (Q−1 ∗Q−1Q−1 ∗Q−1Q−1 ∗Q−1)[
n∑
i=1

(ZT
i W̃iZi +Q−1ZT
i W̃iZi +Q−1ZT
i W̃iZi +Q−1)−1 +

n∑
i=1

(̂bλib̂
T
λib̂λib̂
T
λib̂λib̂
T
λi)]

⇒ QQQ =
1

n

n∑
i=1

[(ZT
i W̃iZi +Q−1ZT
i W̃iZi +Q−1ZT
i W̃iZi +Q−1)−1 + b̂λib̂

T
λib̂λib̂
T
λib̂λib̂
T
λi]

Then, it can be seen that we can use a iterative method to estimate the variance-covariance

matrix. Let m be the index of the mth iteration, then the variance-covariance matrix at the

m is given by:

Qm
λQ
m
λQ
m
λ =

1

n

n∑
i=1

[(ZT
i W̃λiZi + (Q

(m−1)
λZT

i W̃λiZi + (Q
(m−1)
λZT

i W̃λiZi + (Q
(m−1)
λ )−1)−1 + b̂λib̂

T
λib̂λib̂
T
λib̂λib̂
T
λi]. (4.25)

Therefore, using the approximated penalized maximum likelihood from equation (4.24)

and the above iterative equation at (4.25), we can build our model selection procedure.

OVERVIEW OF INDIVIDUAL DISTRIBUTIONS

Equation 4.24 provide a generalized form of the penalized PQL likelihood equa-

tion. In this study, we propose to test our penalty function in two commonly used survival

distributions: log-normal and Weibull distribution.

4.6.1 Lognormal distribution:

The lognormal distribution is a popular parametric function as it has ex-

tensive use in survival analysis. Such high applicability comes from its great property
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where the logarithm of a lognormal distribution is a normal distribution with mean µ

and variance σ2 (Liu, 2012). In notation wise, the lognormal distribution is denoted by

tij ∼ LN(µij, σ
2
i ). So if yij = logtij then the pdf of yij can be written as:

f(yij, µ, σ
2) =

1√
2πσi

exp

[
− yij − µij

2σ2
i

]
, y ∈ (−∞,∞) (4.26)

The cdf of yij can then be written as :

F (yij, µ, σ
2) =

∫ t

0

1√
2πσi

exp

[
− yij − µij

2σ2
i

]
∂yij (4.27)

As tij = exp(yij), then the lognormal density function of tij can be given as:

f(yij, µ, σ
2) =

1√
2πtijσi

exp

[
− logtij − µij

2σ2
i

]
, tij > 0 (4.28)

Then according to Liu (Liu, 2012), the cdf of tij has the following standard form:

F (tij, µ, σ
2) = 1− Φ

[
logtij
σi

]
(4.29)

Thus, from equation (4.4), the survival function can be derived as:

S(tij, µ, σ
2) = Φ

[
logtij
σi

]
(4.30)

Based on the above density equation, the penalized likelihood can be derived as the follow-

ing:

lpen(φ, bφ, bφ, b) =
n∑
i=1

Ni∑
j=1

{
(1− δij)log(

1√
2πσi

exp

[
− yij − µij

2σ2
i

]
)

+δij(log(

∫ t

0

1√
2πσi

exp

[
− yij − µij

2σ2
i

]
∂yij))

}

−λ
pf∑
s=1

vsvsvs|βsβsβs| − λ
∑pr

k=1wkwkwkb.kb.kb.k
2

√
Ni

(4.31)

Using the above equation, the penalized estimates for a log-normally distributed survival

time can be evaluated.
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4.6.2 Weibull distribution:

The Weibull probability distribution function is a continuous function with

two parameters, that is the scale parameter λij and the shape parameter pij . The logarithm

of Weibull distribution is a two-parameter extreme value distribution or often called the

Gumbel’s (type-1 extreme value) distribution (White, 1969). In notation, if we have a

Weibull distribution for tij then yij = logtij will have a Gumbel distribution given by the

following pdf:

f(yij, λij, pij) =
1

pij
exp

{[
yij − λij
pij

]
− exp

[
yij − λij
pij

]}
, y ∈ (−∞,∞) (4.32)

where λij and pij are the parameters for the Gumbel distrbution of yij . The cdf of yij can

then be written as :

F (yij, µ, b) =

∫ t

0

1

pij
exp

{[
yij − λij
pij

]
− exp

[
yij − λij
pij

]}
∂yij (4.33)

As tij = exp(yij) and if we let λij = exp(µij) and pij = b−1
ij , then the Weibull density

function of tij can be given as:

f(tij, λij, pij) = λijpij(λijtij)
p−1exp

[
− (λijtij)

p

]
(4.34)

Then according to Liu (Liu, 2012), the cdf of tij can have the following standard form:

F (tij, λij, pij) = 1− exp

[
− (λijtij)

p

]
(4.35)

Thus, from equation (4.9), the survival function can be derived as the following:

S(yij, λij, pij) = [1 + (tij/λij)
pij ]−1 (4.36)

The penalized likelihood equation for Weibull distributed survival time can be therefore be
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derived as the following:

lpen(φ, bφ, bφ, b) =
n∑
i=1

Ni∑
j=1

{
(1− δij)log(

1

pij
exp

{[
yij − λij
pij

]
− exp

[
yij − λij
pij

]}
)

+δij(log(

∫ t

0

1

pij
exp

{[
yij − λij
pij

]
− exp

[
yij − λij
pij

]}
∂yij))

}

−λ
pf∑
s=1

vsvsvs|βsβsβs| − λ
∑pr

k=1wkwkwkb.kb.kb.k
2

√
Ni

(4.37)

Thus, the penalized estimates for Weibull distributed survival time can be evaluated.
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CHAPTER 5

SIMULATION STUDY

Table 5.1-5.12 are the results for Lognormally distributed survival time. The

larger sample of Simulation 1 results are presented from Table 5.1 to 5.6. Looking at the

value of the sample n and the cluster sizem, it can be seen that as the sample size increases,

the penalty estimates are improving in terms of the values of cf , cr and c across all lev-

els of censoring. The tables also show with a lower censoring level, the penalties seem to

perform better and with a higher level of censoring, the penalty performance tends to go

down. The proposed method ALASSOn is better in terms of its higher values in cf , cr

and c across all sample sizes in this particular simulation. It is also consistent in all differ-

ent levels of censoring as the proposed method outperforms the other penalties in terms of

variable selection in all censoring cases of Simulation 1. Moreover, the mean total bias and

the mean total variance is lower in the proposed method compared to other methods. Even

in terms of the predicted negative log-likelihood value, the proposed method seems to have

a relatively lower value compared to most of the other methods.

Table 5.7-5.12 show Simulation 2 results for Lognormally distributed sur-

vival time. Here, all the penalties do not perform as well as compared to Simulation 1,

which is expected as Simulation 2 has a smaller sample size compared to Simulation 1.

The biases and variance are larger here too. The censoring distribution in simulation 2 is

exponential as opposed to uniform in Simulation 1. Regardless of the censoring mecha-

nism, the penalties seem to have similar results as Simulation 1 though not as good. The

proposed method in most of the cases are still outperforming or at least equivalently per-

forming when compared to other penalties except on the smallest sample at n20 m5 with

the largest censoring of 40 %. In this condition, the ALASSOc measure has a higher cor-

rect selection score of fixed effects coefficients, cf . However, in the selection of random
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effects, cr, the proposed method has a better score. Also, accounting for the average of the

two scores, c, the proposed method is still better. However, the AlASSOc has a relatively

lower Bias across the individual fixed effects coefficients in smaller sample size, but the

differences of bias between ALASSOc and the proposed method is minimal. Total vari-

ance seems to be the lowest on the proposed method.

Table 5.13-5.24 are the results for Weibull distributed survival time. The

larger sample Simulation 1 results for Weibull are presented from Table 5.13 to 5.18. Look-

ing at the value of the sample n and the cluster size m, the performance seems just like in

Lognormal distribution, the penalty estimates are improving in cf , cr and c as the sam-

pling values go higher. It can be seen that the proposed method ALASSOn is better with

its higher values in cf , cr and c across all sample sizes; however, other penalties are also

not distinctly different. Notably, it seems ALASSOc, ALASSO is almost equivalent to the

proposed at least in terms of the selection of fixed effects. However, the proposed method

has a higher bar in terms of the random effects selection (cr) and so taking the average (c),

the ALASSOn seems to be a better choice given its mostly high performance. The result is

also consistent in all different levels of censoring as the proposed method outperforms the

other penalties in variable selection in all censoring cases of Simulation 1. Moreover, the

mean total bias and the total variance is lower in the proposed method compared to other

methods. Even in terms of the predicted negative log-likelihood value the proposed method

seems to have a relatively lower value compared to most of the other methods.

Table 5.19-5.24 shows Simulation 2 results for Weibull distributed survival

time. Here, the cluster size is made larger for the smaller sample size as compared with

Lognormal distribution with 200 iteration run. It is done so to reduce distortions among

Weibull distributed survival time. The result shows a consistent pattern of the performance
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with Simulation 1 in terms of bias. However, in terms of model selection, the proposed

method (ALASSOn) has a better performance as it has higher scores in cf , cr and c as well

as variance and predicted likelihood. All of the described results start from the following

page.
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Table 5.1: Results of the sample n=40 m=10 on Simulation 1 for Lognormal Distribution

Censoring Penalty cf cr c totalbias Variance PL

ALASSOn 1 0.680 0.840 0.533 2.057 -1.433

ALASSOc 0.980 0.290 0.635 0.548 2.283 -1.464

40 % ALASSO 0.990 0.420 0.705 0.538 2.212 -1.454

LASSO 0.270 0.480 0.375 0.777 3.163 -1.614

SCAD 0.050 0.460 0.255 1.033 2.025 -1.744

ALASSOn 1 0.770 0.885 0.499 1.836 -1.442

ALASSOc 1 0.440 0.72 0.516 2.004 -1.471

30 % ALASSO 1 0.620 0.810 0.506 1.913 -1.455

LASSO 0.270 0.560 0.415 0.708 2.405 -1.579

SCAD 0.110 0.360 0.235 1.044 2.087 -1.503

ALASSOn 0.990 0.930 0.960 0.323 1.190 -1.355

ALASSOc 1 0.78 0.890 0.323 1.254 -1.376

10 % ALASSO 0.990 0.910 0.950 0.324 1.202 -1.358

LASSO 0.30 0.450 0.375 0.494 1.266 -1.349

SCAD 0.770 0.480 0.625 0.506 1.090 -1.291
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Table 5.2: Coefficient bias on sample n=40 m=10 for Simulation 1 following Lognormal Distribution

Censoring Penalty Bias1 Bias2 Bias3 Bias4 Bias5 Bias6 Bias7 Bias8 Bias9

ALASSOn -1.635 0.982 0.951 0.640 -0.405 0 0 0 0

ALASSOc -1.644 0.993 0.953 0.645 -0.400 0 0 0 0

40 % ALASSO -1.638 0.991 0.950 0.650 -0.414 0 0 0 0

LASSO -1.561 1.135 1.015 0.751 -0.517 0.008 -0.038 -0.009 -0.006

SCAD -1.264 1.231 0.969 1.074 -0.978 0 0 0 0

ALASSOn -1.109 0.686 0.734 0.473 -0.285 0 0 0 0

ALASSOc -1.112 0.696 0.728 0.474 -0.269 0 0 0 0

30 % ALASSO -1.111 0.691 0.730 0.473 -0.276 0 0 0 0

LASSO -1.034 0.833 0.769 0.565 -0.369 0.002 -0.029 -0.013 -0.016

SCAD -0.695 0.966 0.726 0.981 -0.934 0 0 0 0

ALASSOn -0.367 0.227 0.375 0.184 -0.096 0 0 0 0

ALASSOc -0.367 0.230 0.368 0.186 -0.095 0 0 0 0

10 % ALASSO -0.367 0.227 0.374 0.184 -0.096 0 0 0.001 0

LASSO -0.297 0.336 0.404 0.249 -0.143 -0.009 -0.025 0.005 -0.027

SCAD -0.196 0.322 0.396 0.306 -0.322 0 0 0 0
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Table 5.3: Results of the sample n=50 m=10 on Simulation 1 for Lognormal Distribution

Censoring Penalty cf cr c totalbias Variance PL

ALASSOn 1 0.960 0.980 0.405 2.018 -1.422

ALASSOc 1 0.760 0.880 0.414 2.104 -1.436

40 % ALASSO 1 0.840 0.920 0.410 2.066 -1.430

LASSO 0.090 0.410 0.250 0.638 2.481 -1.544

SCAD 0.010 0.350 0.180 2.027 2.168 -1.464

ALASSOn 1 0.950 0.975 0.488 1.837 -1.435

ALASSOc 1 0.830 0.915 0.491 1.895 -1.446

30 % ALASSO 1 0.920 0.960 0.490 1.850 -1.438

LASSO 0.070 0.570 0.320 0.726 2.180 -1.546

SCAD 0.150 0.510 0.330 0.862 1.912 -1.479

ALASSOn 1 1 1 0.299 1.286 -1.394

ALASSOc 1 0.930 0.965 0.300 1.321 -1.407

10 % ALASSO 1 0.990 0.995 0.299 1.291 -1.396

LASSO 0.190 0.870 0.530 0.537 1.473 -1.484

SCAD 0.950 0.840 0.895 0.389 1.276 -1.392
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Table 5.4: Coefficient bias on sample n=50 m=10 for Simulation 1 following Lognormal Distribution

Censoring Penalty Bias1 Bias2 Bias3 Bias4 Bias5 Bias6 Bias7 Bias8 Bias9

ALASSOn -1.643 0.943 0.883 0.594 -0.371 0 0 0 0

ALASSOc -1.643 0.947 0.882 0.596 -0.368 0 0 0 0

40 % ALASSO -1.642 0.946 0.883 0.596 -0.373 0 0 0 0

LASSO -1.549 1.069 0.936 0.669 -0.465 0.040 -0.051 -0.009 -0.001

SCAD -0.719 1.494 1.086 1.164 -0.998 0 0 0 0

ALASSOn -1.062 0.700 0.697 0.419 -0.265 0 0 0 0

ALASSOc -1.062 0.702 0.695 0.422 -0.265 0 0 0 0

30 % ALASSO -1.062 0.700 0.696 0.419 -0.264 0 0 0 0

LASSO -0.962 0.828 0.748 0.485 -0.347 0.026 -0.040 -0.019 0.006

SCAD -0.761 0.933 0.758 0.840 -0.909 0 0 0 0

ALASSOn -0.317 0.264 0.292 0.141 -0.080 0 0 0 0

ALASSOc -0.318 0.264 0.290 0.144 -0.081 0 0 0 0

10 % ALASSO -0.317 0.264 0.292 0.142 -0.080 0 0 0 0

LASSO -0.240 0.389 0.350 0.188 -0.139 0.018 -0.016 -0.012 -0.002

SCAD -0.254 0.289 0.297 0.200 -0.144 0 0 0 0
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Table 5.5: Results of the sample n=60 m=20 on Simulation 1 for Lognormal Distribution

Censoring Penalty cf cr c totalbias Variance PL

ALASSOn 1 0.950 0.975 0.444 2.309 -1.455

ALASSOC 1 0.770 0.885 0.452 2.386 -1.465

40 % ALASSO 1 0.90 0.950 0.447 2.328 -1.457

LASSO 0.030 0.240 0.135 0.700 2.544 -1.528

SCAD 0.020 0.550 0.285 1.375 2.507 -1.504

ALASSOn 1 1 1 0.596 2.050 -1.463

ALASSOC 1 0.870 0.935 0.601 2.109 -1.473

30 % ALASSO 1 0.980 0.990 0.597 2.060 -1.464

LASSO 0.020 0.380 0.200 0.848 2.241 -1.530

SCAD 0.090 0.190 0.140 1.467 1.968 -1.464

ALASSOn 1 1 1 0.401 1.448 -1.430

ALASSOC 1 1 1 0.402 1.460 -1.435

10 % ALASSO 1 1 1 0.401 1.449 -1.431

LASSO 0.100 0.820 0.460 0.637 1.561 -1.486

SCAD 0.950 0.870 0.910 0.433 1.442 -1.430
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Table 5.6: Coefficient bias on sample n=60 m=20 for Simulation 1 following Lognormal Distribution

Censoring Penalty Bias1 Bias2 Bias3 Bias4 Bias5 Bias6 Bias7 Bias8 Bias9

ALASSOn -1.627 1.005 0.873 0.660 -0.468 0 0 0 0

ALASSOc -1.627 1.007 0.877 0.662 -0.467 0 0 0 0

40 % ALASSO -1.627 1.006 0.874 0.660 -0.467 0 0 0 0

LASSO -1.521 1.115 0.927 0.715 -0.541 0.050 -0.040 0.011 -0.016

SCAD -1.087 1.367 1.000 1.082 -0.988 0 0 0 0

ALASSOn -1.017 0.782 0.690 0.496 -0.355 0 0 0 0

ALASSOc -1.016 0.784 0.690 0.498 -0.354 0 0 0 0

30 % ALASSO -1.017 0.782 0.691 0.496 -0.355 0 0 0 0

LASSO -0.916 0.886 0.746 0.541 -0.419 0.044 -0.029 0.015 -0.019

SCAD -0.519 1.115 0.778 1.055 -0.963 0 0 0 0

ALASSOn -0.297 0.341 0.309 0.202 -0.153 0 0 0 0

ALASSOc -0.300 0.343 0.310 0.202 -0.153 0 0 0 0

10 % ALASSO -0.298 0.341 0.310 0.202 -0.153 0 0 0 0

LASSO -0.219 0.457 0.360 0.235 -0.196 0.024 -0.014 0.005 -0.015

SCAD -0.263 0.356 0.302 0.248 -0.210 0 0 0 0
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Table 5.7: Results of the sample n=20 m=5 on Simulation 2 for Lognormal Distribution

Censoring Penalty cf cr c totalbias Variance PL

ALASSOn 0.600 0.740 0.670 0.034 0.819 -1.231

ALASSOc 0.690 0.610 0.650 -0.018 0.851 -1.243

40 % ALASSO 0.630 0.700 0.665 -0.004 0.818 -1.230

LASSO 0.290 0.100 0.195 0.151 1.150 -1.396

SCAD 0.160 0.300 0.230 0.392 1.139 -1.382

ALASSOn 0.740 0.860 0.800 0.057 0.766 -1.245

ALASSOc 0.740 0.790 0.765 0.033 0.788 -1.256

30 % ALASSO 0.750 0.820 0.785 0.042 0.776 -1.250

LASSO 0.220 0.310 0.265 0.225 1.098 -1.412

SCAD 0.410 0.460 0.435 0.329 0.936 -1.320

ALASSOn 0.860 0.910 0.885 0.078 0.738 -1.254

ALASSOc 0.820 0.850 0.835 0.079 0.784 -1.278

10 % ALASSO 0.860 0.920 0.890 0.071 0.741 -1.256

LASSO 0.240 0.430 0.335 0.229 1.043 -1.388

SCAD 0.540 0.450 0.495 0.274 0.831 -1.272
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Table 5.8: Coefficient bias on sample n=20 m=5 for Simulation 2 following Lognormal Distribution

Censoring Penalty Bias1 Bias2 Bias3 Bias4 Bias5 Bias6

ALASSOn -0.589 0.355 0.002 0.003 0.263 0.001

ALASSOc -0.590 0.336 0.001 -0.011 0.244 0.002

40 % ALASSO -0.589 0.334 0.001 -0.005 0.253 0.002

LASSO -0.588 0.448 -0.010 -0.016 0.336 -0.019

SCAD -0.584 0.549 0.000 -0.009 0.435 0.000

ALASSOn -0.351 0.253 -0.002 -0.010 0.169 -0.002

ALASSOc -0.353 0.246 -0.003 -0.008 0.153 -0.003

30 % ALASSO -0.352 0.248 -0.002 -0.007 0.158 -0.002

LASSO -0.346 0.355 -0.019 -0.022 0.267 -0.011

SCAD -0.338 0.361 -0.003 -0.004 0.311 0.002

ALASSOn -0.104 0.094 0.007 0.006 0.089 -0.014

ALASSOc -0.104 0.089 0.007 0.011 0.090 -0.013

10 % ALASSO -0.105 0.091 0.007 0.006 0.084 -0.014

LASSO -0.100 0.185 -0.004 -0.010 0.176 -0.018

SCAD -0.094 0.174 0.002 0.010 0.192 -0.011
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Table 5.9: Results of the sample n=30 m=5 on Simulation 2 for Lognormal Distribution

Censoring Penalty cf cr c totalbias Variance PL

ALASSOn 0.740 0.730 0.735 0.085 0.813 -1.219

ALASSOc 0.740 0.520 0.630 0.061 0.881 -1.246

40 % ALASSO 0.760 0.610 0.685 0.081 0.852 -1.235

LASSO 0.390 0.080 0.235 0.190 1.113 -1.370

SCAD 0.120 0.300 0.210 0.514 1.133 -1.372

ALASSOn 0.920 0.950 0.935 0.105 0.728 -1.225

ALASSOc 0.920 0.870 0.895 0.105 0.759 -1.240

30 % ALASSO 0.910 0.920 0.915 0.105 0.738 -1.230

LASSO 0.350 0.330 0.340 0.279 1.104 -1.419

SCAD 0.300 0.560 0.430 0.503 0.996 -1.352

ALASSOn 0.910 0.990 0.950 0.117 0.720 -1.256

ALASSO 0.910 0.980 0.945 0.118 0.732 -1.262

10 % ALASSOc 0.920 0.940 0.930 0.117 0.756 -1.274

LASSO 0.210 0.710 0.460 0.218 0.927 -1.363

SCAD 0.500 0.630 0.565 0.396 0.840 -1.299
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Table 5.10: Coefficient bias on sample n=30 m=5 for Simulation 2 following Lognormal Distribution

Censoring Penalty Bias1 Bias2 Bias3 Bias4 Bias5 Bias6

ALASSOn -0.583 0.399 -0.003 0.000 0.270 0.002

ALASSOc -0.585 0.379 -0.003 0.002 0.267 0.002

40 % ALASSO -0.584 0.396 -0.003 0.002 0.268 0.002

LASSO -0.570 0.463 -0.012 -0.022 0.336 -0.005

SCAD -0.544 0.622 -0.008 -0.004 0.448 0.000

ALASSOn -0.324 0.261 0.002 0 0.167 0

ALASSOc -0.324 0.259 0.001 0.001 0.168 0

30 % ALASSO -0.324 0.259 0.001 0.002 0.167 0

LASSO -0.305 0.342 -0.002 -0.015 0.273 -0.014

SCAD -0.287 0.418 0.001 -0.003 0.373 0

ALASSOn -0.084 0.125 0 -0.007 0.081 0.002

ALASSO -0.084 0.127 0 -0.007 0.080 0.002

10 % ALASSOc -0.085 0.128 0 -0.008 0.082 0

LASSO -0.074 0.183 -0.01 -0.019 0.139 -0.006

SCAD -0.058 0.224 0 -0.003 0.235 -0.002



65

Table 5.11: Results of the sample n=40 m=10 on Simulation 2 for Lognormal Distribution

Censoring Penalty cf cr c totalbias Variance PL

ALASSOn 1 1 1 -0.067 0.771 -1.183

ALASSOc 0.990 0.960 0.975 -0.066 0.783 -1.191

40 % ALASSO 1 0.990 0.995 -0.067 0.773 -1.185

LASSO 0.150 0.720 0.435 -0.028 0.874 -1.253

SCAD 0.530 0.720 0.625 0.049 0.794 -1.207

ALASSOn 1 1 1 0.020 0.790 -1.244

ALASSOc 0.990 0.990 0.990 0.018 0.797 -1.249

30 % ALASSO 1 1 1 0.020 0.790 -1.244

LASSO 0.120 0.910 0.515 0.040 0.840 -1.286

SCAD 0.590 0.810 0.700 0.147 0.831 -1.273

ALASSOn 1 1 1 0.075 0.825 -1.312

ALASSOc 1 1 1 0.075 0.825 -1.313

10 % ALASSO 1 0.990 0.995 0.074 0.835 -1.318

LASSO 0.040 0.990 0.515 0.083 0.850 -1.335

SCAD 0.790 0.800 0.795 0.140 0.841 -1.321
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Table 5.12: Coefficient bias on sample n=40 m=10 for Simulation 2 following Lognormal Distribution

Censoring Penalty Bias1 Bias2 Bias3 Bias4 Bias5 Bias6

ALASSOn -0.630 0.355 0 0 0.208 0

ALASSOc -0.631 0.355 0 0 0.210 0

40 % ALASSO -0.630 0.355 0 0 0.209 0

LASSO -0.631 0.381 0.002 -0.008 0.235 -0.007

SCAD -0.624 0.351 -0.001 0 0.324 -0.001

ALASSOn -0.359 0.240 0 0 0.139 0

ALASSOc -0.360 0.240 0 0 0.139 0

30 % ALASSO -0.359 0.240 0 0 0.139 0

LASSO -0.362 0.254 0 0 0.150 -0.010

SCAD -0.353 0.227 0 0 0.270 0

ALASSOn -0.094 0.104 0 0 0.064 0

ALASSOc -0.094 0.105 0 0 0.064 0

10 % ALASSO -0.095 0.105 0 0 0.064 0

LASSO -0.097 0.120 0 0 0.100 -0.010

SCAD -0.092 0.096 0 0 0.100 0



67

Table 5.13: Results of the sample n=40 m=10 on Simulation 1 for Weibull Distribution

Censoring Penalty cf cr c totalbias Variance PL

ALASSOn 0.980 0.660 0.820 1.115 2.242 -1.504

ALASSOc 0.970 0.440 0.705 1.122 2.360 -1.517

40 % ALASSO 0.970 0.560 0.765 1.121 2.286 -1.508

LASSO 0.090 0.170 0.130 1.251 2.097 -1.568

SCAD 0.090 0.460 0.275 1.483 2.503 -1.558

ALASSOn 0.990 0.680 0.835 0.991 2.157 -1.513

ALASSOc 0.990 0.490 0.740 0.998 2.265 -1.530

30 % ALASSO 0.990 0.590 0.790 0.997 2.205 -1.521

LASSO 0.140 0.230 0.185 1.127 2.001 -1.546

SCAD 0.100 0.340 0.220 1.512 2.333 -1.567

ALASSOn 0.990 0.920 0.955 0.932 1.634 -1.553

ALASSOc 1 0.83 0.915 0.931 1.688 -1.573

10 % ALASSO 0.990 0.90 0.945 0.932 1.645 -1.556

LASSO 0.190 0.460 0.325 1.068 1.587 -1.562

SCAD 0.590 0.490 0.540 1.040 1.590 -1.549
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Table 5.14: Coefficient bias on sample n=40 m=10 for Simulation 1 following Weibull Distribution

Censoring Penalty Bias1 Bias2 Bias3 Bias4 Bias5 Bias6 Bias7 Bias8 Bias9

ALASSOn -1.305 1.125 1.048 0.699 -0.452 0 0 0 0

ALASSOc -1.311 1.124 1.047 0.694 -0.432 0 0 0 0

40 % ALASSO -1.307 1.126 1.048 0.696 -0.441 0 0 0 0

LASSO -1.228 1.212 1.068 0.737 -0.472 0.016 -0.072 -0.001 -0.008

SCAD -1.048 1.343 1.055 1.097 -0.964 0 0 0 0

ALASSOn -0.783 0.756 0.816 0.519 -0.317 0 0 0 0

ALASSOc -0.788 0.763 0.812 0.518 -0.306 0 0 0 0

30 % ALASSO -0.782 0.761 0.813 0.519 -0.313 0 0 0 0

LASSO -0.705 0.842 0.843 0.572 -0.351 -0.01 -0.04 -0.01 -0.01

SCAD -0.389 1.032 0.806 1.014 -0.952 0 0 0 0

ALASSOn 0.102 0.320 0.404 0.221 -0.114 0 -0.002 0 0

ALASSOc 0.101 0.324 0.398 0.222 -0.113 0 0 0 0

10 % ALASSO 0.103 0.321 0.403 0.220 -0.113 0 -0.002 0 0

LASSO 0.167 0.421 0.430 0.293 -0.163 -0.011 -0.038 -0.011 -0.019

SCAD 0.261 0.400 0.419 0.456 -0.496 0 0 0 0
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Table 5.15: Results of the sample n=50 m=10 on Simulation 1 for Weibull Distribution

Censoring Penalty cf cr c totalbias Variance PL

ALASSOn 0.910 0.700 0.805 0.903 2.221 -1.499

ALASSOc 0.950 0.470 0.710 0.913 2.337 -1.514

40 % ALASSO 0.930 0.570 0.750 0.902 2.285 -1.506

LASSO 0.080 0.16 0.120 1.076 2.105 -1.583

SCAD 0.030 0.59 0.310 1.237 2.426 -1.554

ALASSOn 1 0.830 0.915 1.031 2.025 -1.500

ALASSOc 1 0.610 0.805 1.036 2.137 -1.521

30 % ALASSO 1 0.680 0.840 1.036 2.090 -1.513

LASSO 0.120 0.350 0.235 1.221 2.116 -1.601

SCAD 0.020 0.480 0.250 1.479 2.243 -1.574

ALASSOn 0.980 0.910 0.945 0.889 1.590 -1.534

ALASSOc 0.980 0.820 0.900 0.889 1.641 -1.548

10 % ALASSO 0.980 0.880 0.930 0.890 1.604 -1.538

LASSO 0.160 0.640 0.400 1.067 1.667 -1.583

SCAD 0.40 0.440 0.420 0.991 1.461 -1.503
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Table 5.16: Coefficient bias on sample n=50 m=10 for Simulation 1 following Weibull Distribution

Censoring Penalty Bias1 Bias2 Bias3 Bias4 Bias5 Bias6 Bias7 Bias8 Bias9

ALASSOn -1.372 1.093 0.993 0.694 -0.506 0 0 0 0

ALASSOc -1.376 1.095 0.997 0.679 -0.481 0 0 0 0

40 % ALASSO -1.376 1.093 0.994 0.690 -0.499 0 0 0 0

LASSO -1.305 1.182 1.026 0.715 -0.523 0.023 -0.066 -0.003 0.026

SCAD -1.147 1.278 1.041 1.052 -0.986 0 0 0 0

ALASSOn -0.725 0.810 0.807 0.491 -0.352 0 0 0 0

ALASSOc -0.730 0.817 0.800 0.492 -0.342 0 0 0 0

30 % ALASSO -0.727 0.816 0.804 0.493 -0.350 0 0 0 0

LASSO -0.651 0.920 0.838 0.548 -0.409 0.008 -0.044 -0.011 0.022

SCAD -0.399 1.054 0.817 0.997 -0.991 0 0 0 0

ALASSOn 0.158 0.301 0.354 0.220 -0.145 -0.001 -0.001 0.001 0.001

ALASSOc 0.155 0.302 0.351 0.223 -0.144 -0.001 -0.001 0.001 0.001

10 % ALASSO 0.158 0.302 0.354 0.221 -0.146 -0.001 -0.001 0.001 0.001

LASSO 0.221 0.406 0.373 0.283 -0.203 0.002 -0.018 -0.013 0.017

SCAD 0.323 0.387 0.377 0.572 -0.667 0 0 0 0
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Table 5.17: Results of the sample n=60 m=20 on Simulation 1 for Weibull Distribution

Censoring Penalty cf cr c totalbias Variance PL

ALASSOn 0.980 0.920 0.950 0.874 2.558 -1.540

ALASSOc 0.980 0.720 0.850 0.885 2.643 -1.553

40 % ALASSO 1 0.890 0.945 0.880 2.569 -1.542

LASSO 0.030 0.020 0.025 1.073 2.538 -1.607

SCAD 0.030 0.530 0.280 1.733 2.640 -1.578

ALASSOn 1 0.960 0.980 0.941 2.432 -1.564

ALASSOc 1 0.820 0.910 0.947 2.501 -1.577

30 % ALASSO 1 0.94 0.970 0.943 2.442 -1.566

LASSO 0.020 0.08 0.050 1.176 2.545 -1.657

SCAD 0.090 0.36 0.225 1.935 2.424 -1.59

ALASSOn 1 1 1 0.820 1.968 -1.613

ALASSOc 1 0.930 0.965 0.821 2.010 -1.626

10 % LASSO 1 1 1 0.820 1.973 -1.614

LASSO 0.030 0.620 0.325 1.041 2.109 -1.693

SCAD 0.840 0.580 0.710 0.868 1.942 -1.612
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Table 5.18: Coefficient bias on sample n=60 m=20 for Simulation 1 following Weibull Distribution

Censoring Penalty Bias1 Bias2 Bias3 Bias4 Bias5 Bias6 Bias7 Bias8 Bias9

ALASSOn -1.360 1.092 0.936 0.721 -0.515 0 0 0 0

ALASSOc -1.359 1.095 0.938 0.721 -0.509 0 -0.001 0.001 -0.001

40 % ALASSO -1.359 1.092 0.937 0.717 -0.507 0 0 0 0

LASSO -1.272 1.171 0.975 0.754 -0.557 0.059 -0.065 0.035 -0.026

SCAD -0.891 1.431 1.072 1.109 -0.989 0 0 0 0

ALASSOn -0.766 0.808 0.743 0.545 -0.388 0 0 0 0

ALASSOc -0.766 0.809 0.743 0.547 -0.387 0 0 0 0

30 % ALASSO -0.765 0.808 0.743 0.545 -0.387 0 0 0 0

LASSO -0.663 0.904 0.790 0.588 -0.446 0.054 -0.047 0.021 -0.023

SCAD -0.199 1.161 0.886 1.030 -0.943 0 0 0 0

ALASSOn 0.070 0.341 0.347 0.236 -0.174 0 0 0 0

ALASSOc 0.069 0.342 0.345 0.238 -0.173 0 0 0 0

10 % LASSO 0.070 0.342 0.347 0.236 -0.174 0 0 0 0

LASSO 0.155 0.445 0.393 0.272 -0.222 0.032 -0.026 0.017 -0.024

SCAD 0.133 0.360 0.363 0.323 -0.311 0 0 0 0
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Table 5.19: Results of the sample n=20 m=10 on Simulation 2 for Weibull Distribution

Censoring Penalty cf cr c totalbias Variance PL

ALASSOn 0.935 0.985 0.960 0.510 0.850 -1.220

ALASSOc 0.930 0.930 0.930 0.520 0.860 -1.230

40 % ALASSO 0.930 0.980 0.955 0.510 0.850 -1.220

LASSO 0.130 0.460 0.295 0.580 0.910 -1.290

SCAD 0.685 0.490 0.587 0.600 0.850 -1.240

ALASSOn 0.925 0.990 0.957 0.600 0.910 -1.340

ALASSOc 0.915 0.930 0.922 0.610 0.930 -1.350

30 % ALASSO 0.925 0.980 0.952 0.600 0.920 -1.340

LASSO 0.105 0.495 0.300 0.660 0.960 -1.390

SCAD 0.745 0.455 0.600 0.660 0.890 -1.330

ALASSOn 0.940 0.995 0.967 0.620 1.130 -1.530

ALASSOc 0.930 0.920 0.925 0.620 1.170 -1.550

10 % ALASSO 0.935 0.980 0.957 0.620 1.140 -1.540

LASSO 0.070 0.680 0.375 0.680 1.200 -1.580

SCAD 0.740 0.585 0.662 0.700 1.140 -1.540
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Table 5.20: Coefficient bias on sample n=20 m=10 for Simulation 2 following Weibull Distribution

Censoring Penalty Bias1 Bias2 Bias3 Bias4 Bias5 Bias6

ALASSOn -0.010 0.330 0 0 0.200 0

ALASSOc -0.010 0.330 0 0 0.210 0

40 % ALASSO -0.010 0.330 0 0 0.200 0

LASSO 0 0.370 0 -0.020 0.250 -0.010

SCAD 0 0.340 0 0 0.260 0

ALASSOn 0.200 0.250 0 0 0.160 0

ALASSOc 0.200 0.250 0 0 0.160 0

30 % ALASSO 0.200 0.250 0 0 0.160 0

LASSO 0.210 0.280 0 -0.020 0.200 -0.010

SCAD 0.210 0.250 0 0 0.200 0

ALASSOn 0.430 0.110 0 -0.010 0.090 0

ALASSOc 0.430 0.110 0 0 0.090 0

10 % ALASSO 0.420 0.110 0 -0.010 0.090 0

LASSO 0.440 0.150 0 -0.020 0.120 0

SCAD 0.440 0.120 0 0 0.140 0
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Table 5.21: Results of the sample n=30 m=10 on Simulation 2 for Weibull Distribution

Censoring Penalty cf cr c totalbias Variance PL

ALASSOn 0.970 1 0.985 0.514 0.873 -1.217

ALASSOc 0.965 0.985 0.975 0.515 0.879 -1.223

40 % ALASSO 0.970 0.990 0.980 0.515 0.875 -1.219

LASSO 0.105 0.590 0.348 0.555 0.928 -1.284

SCAD 0.720 0.520 0.620 0.580 0.869 -1.226

ALASSOn 0.985 1 0.990 0.580 0.919 -1.335

ALASSOc 0.975 0.995 0.990 0.590 0.927 -1.343

30 % ALASSO 0.985 1 0.990 0.580 0.920 -1.336

LASSO 0.105 0.680 0.390 0.620 0.970 -1.392

SCAD 0.745 0.620 0.680 0.650 0.920 -1.346

ALASSOn 0.985 1 0.990 0.590 1.120 -1.523

ALASSOc 0.975 0.970 0.970 0.600 1.140 -1.534

10 % ALASSO 0.985 1 0.990 0.590 1.122 -1.524

LASSO 0.045 0.850 0.450 0.630 1.170 -1.563

SCAD 0.840 0.690 0.770 0.640 1.117 -1.528
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Table 5.22: Coefficient bias on sample n=30 m=10 for Simulation 2 following Weibull Distribution

Censoring Penalty Bias1 Bias2 Bias3 Bias4 Bias5 Bias6

ALASSOn -0.009 0.323 0 0 0.200 0

ALASSOc -0.008 0.323 0 0 0.200 -0.001

40 % ALASSO -0.009 0.323 0 0 0.201 0

LASSO 0 0.346 -0.004 -0.008 0.223 -0.002

SCAD 0 0.320 0.001 0.003 0.257 -0.001

ALASSOn 0.190 0.240 0 0 0.150 0

ALASSOc 0.190 0.240 0 0 0.160 0

30 % ALASSO 0.190 0.240 0 0 0.150 0

LASSO 0.200 0.260 0 -0.010 0.180 -0.010

SCAD 0.200 0.240 0 0 0.210 0

ALASSOn 0.430 0.100 0 0 0.070 0

ALASSOc 0.430 0.100 0 0 0.070 0

10 % ALASSO 0.430 0.100 0 0 0.070 0

LASSO 0.440 0.130 -0.010 -0.010 0.090 -0.004

SCAD 0.440 0.100 0 0 0.110 0



77

Table 5.23: Results of the sample n=40 m=10 on Simulation 2 for Weibull Distribution

Censoring Penalty cf cr c totalbias Variance PL

ALASSOn 1 1 1 0.511 0.871 -1.222

ALASSOc 1 0.980 0.990 0.512 0.879 -1.230

40 % ALASSO 1 0.995 0.998 0.511 0.872 -1.224

LASSO 0.070 0.770 0.420 0.534 0.928 -1.289

SCAD 0.620 0.580 0.600 0.592 0.876 -1.242

ALASSOn 1 1 1 0.565 0.918 -1.325

ALASSOc 1 0.985 0.993 0.567 0.926 -1.332

30 % ALASSO 1 1 1 0.565 0.918 -1.325

LASSO 0.040 0.825 0.433 0.591 0.958 -1.374

SCAD 0.700 0.610 0.655 0.652 0.927 -1.343

ALASSOn 0.995 1 0.998 0.602 1.119 -1.517

ALASSOc 0.990 0.995 0.993 0.603 1.129 -1.523

10 % ALASSO 0.995 1 0.998 0.602 1.120 -1.518

LASSO 0.030 0.950 0.490 0.624 1.156 -1.548

SCAD 0.750 0.735 0.743 0.687 1.136 -1.531
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Table 5.24: Coefficient bias on sample n=40 m=10 for Simulation 2 following Weibull Distribution

Censoring Penalty Bias1 Bias2 Bias3 Bias4 Bias5 Bias6

ALASSOn -0.020 0.327 0 0 0.204 0

ALASSOc -0.019 0.328 0 0 0.203 0

40 % ALASSO -0.020 0.328 0 0 0.203 0

LASSO -0.015 0.342 0.006 -0.005 0.219 -0.013

SCAD -0.012 0.321 0.002 -0.001 0.285 -0.002

ALASSOn 0.179 0.242 0 0 0.145 0

ALASSOc 0.180 0.241 0 0 0.145 0

30 % ALASSO 0.179 0.242 0 0 0.145 0

LASSO 0.186 0.254 0 0 0.155 -0.003

SCAD 0.189 0.233 0 0 0.229 0

ALASSOn 0.430 0.106 0.001 0 0.066 0

ALASSOc 0.431 0.106 0.001 0 0.066 0

10 % ALASSO 0.430 0.106 0.001 0 0.066 0

LASSO 0.439 0.123 -0.003 -0.003 0.079 -0.010

SCAD 0.440 0.096 0.003 -0.001 0.149 0
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CHAPTER 6

APPLICATION TO UNSTRUCTURED TREATMENT INTERRUPTION DATA

INTRODUCTION

In this chapter, the proposed method is tested in a real secondary data of the clin-

ical outcomes from Unstructured Treatment Interruption (UTI) in children and adolescents

that have prenatally acquired HIV infection as done by (Saitoh et al., 2008). The study is

primarily related to the adverse effects of lack of adherence to the antiretroviral therapy

in children with HIV infection. The HIV infected adolescents present a significantly dif-

ficult medication challenge in achieving full adherence given their unique developmental,

psycho-social and lifestyle issues (Osterberg & Blaschke, 2005). Such problems may often

lead to a stage where the given population of adolescents has a sub-optimal adherence that

can lead to antiretroviral resistance and thereby diminishing treatment options. Therefore,

an intervention called the treatment infection is introduced where, for a specific time, an-

tiretroviral therapy is discontinued. This period of UTI has been studied in numerous ways,

but there exists a lack of information for the clinical and immunological outcomes of UTI

in adolescents and pediatric populations (Saitoh et al., 2008; Pai, Tulsky, Lawrence, Col-

ford, & Reingold, 2005; Gibb et al., 2004; Monpoux et al., 2004). Thus, this study aims

to study the viral RNA load among these patient groups with the time given at the time of

their UTI period (Vaida & Liu, 2009a).

THE UTI DATASET

The given UTI dataset (Saitoh et al., 2008) is a retrospective study at four aca-

demic centers in the United States among prenatally acquired HIV infected youths. Ini-

tially, 405 participants went though the antiretroviral treatment, and after 6 months of ther-
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apy, 71 subjects had a lack of adherence to the therapy and showed signs of treatment

resistance. Thus, the antiretroviral therapy among these 71 participants was discontinued

for some time (UTI period) and had their viral load observed in a set of eight different time

points: 0, 1, 3, 6, 9, 12, 18 and 24 months. At each time point, if a given participant had a

very high viral load of HIV-RNA, then they would be taken off the treatment interruption

and thereby allowed to continue the therapy, leading to a drop-off from the study. Con-

stituting these drop-offs, there was the following changes in the number of participants at

each time point: 71 patients at the start of the study that is time month 0; 62 patients in

time month 1; 58 patients in time month 3; 57 patients in time month 6; 43 patients in

time month 9; 34 patients in time month 12; 24 patients in time month 18 and lastly 12

patients in time month 24. These values are indicated by variable Fup-follow-up months

in the datasets. Therefore, by adding these numbers, it can be stated that there is a total

of 362 observations for all patients at all time points. Out of 362 observations, 26 (7%)

of them were below the detection limits (50 copies/mL), and therefore are censored (left-

censoring). The censoring indicator is represented by RNAcens which is one for censored

values (viral copies below 50 copies/mL observation) and is zero for uncensored values

(viral copies at least 50 copies/mL).

The independent variable xij is indicator of the dependent variable yij when

it is measured at time tj for patient i. For instance, if yi1 is measured at time t1 then xi1 = 1

while for all other time points: t2; t3; t4; t5; t6; t7; t8, the respective xi2; xi3; xi4; xi5;

xi6; xi7; xi8 are zero. Therefore, for eight different tj , there are eight different independent

indicator variable give byXjXjXj = (x1, x2, x3, x4, x5, x6, x7, x8). Other variables in the dataset

include: id and Days.after.TI. A sequence of one is developed to account for the random

intercept (zi1) and Days.after.TI is used as a random slope variable (zi2) for the model. A

part of the data is given in Table 6.1, which gives the values for patient id 4 and 37. Patient
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Table 6.1: Sample of the UTI data

id Y X1 X2 X3 X4 X5 X6 X7 X8 Z1 Z2 Censor

4 4.971 1 0 0 0 0 0 0 0 1 -94 0

4 4.919 0 1 0 0 0 0 0 0 1 40 0

4 4.823 0 0 1 0 0 0 0 0 1 117 0

4 5.034 0 0 0 1 0 0 0 0 1 257 0

4 4.693 0 0 0 0 1 0 0 0 1 329 0

4 4.741 0 0 0 0 0 1 0 0 1 392 0

4 5.258 0 0 0 0 0 0 1 0 1 552 0

4 5.095 0 0 0 0 0 0 0 1 1 867 0

37 1.698 1 0 0 0 0 0 0 0 1 0 1

37 4.424 0 1 0 0 0 0 0 0 1 65 0

37 4.424 0 0 1 0 0 0 0 0 1 65 0

37 3.992 0 0 0 1 0 0 0 0 1 155 0

37 4.574 0 0 0 0 1 0 0 0 1 252 0

37 4.697 0 0 0 0 0 1 0 0 1 321 0

id 4 has all eight observation for each time so there are 8 values inside the cluster whereas

patient id 37 has 6 observations with a drop-off so thus 6 values in the cluster. It also has

one censored observation.

DISTRIBUTION OF DEPENDENT VARIABLE

The dependent variable for this analysis is the log of the viral load RNA as we are

interested in the fluctuation of viral RNA among UTI patients with time. The distribution

of the log of viral load RNA was therefore examined using QQ plots, probability plots,
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plots of cumulative distribution functions, and probability density plots. The following dis-

tributions were examined: log-normal, log-logistic, Weibull and gamma distribution. The

plots were constructed using the fitdistrplus (Delignette-Muller, Dutang, Pouillot, Denis, &

Siberchicot, 2019) package in R 3.6.1. These plots from the distributions mentioned above

are provided in figures 2 to 5.

Among the distributions considered, Weibull offered a better fit to the data

compared to other distrbutions tested in this study. It is further confirmed by Table 6.2,

which gives the goodness of fit criteria of all the distributions with their respective AIC and

BIC. Weibull has the lowest values among these criteria for AIC and BIC. Hence, based on

these metrics, it is assumed that the dependent variable follows a Weibull distribution.

Table 6.2: Goodness of fit criteria for the considered distributions

Distribution AIC BIC

Weibull 1006.970 1014.754

Log-normal 1253.530 1261.313

Gamma 1158.024 1165.807

Log-logistic 1024.572 1032.356

DATA MODELING

The given UTI datasets was fitted by the AFT frailty model that can be repre-

sented by the following:

yij = β ∗XT
ij + bi ∗ ZT

ij + εijyij = β ∗XT
ij + bi ∗ ZT

ij + εijyij = β ∗XT
ij + bi ∗ ZT

ij + εij, (6.1)
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Here, yijyijyij is the log(HIV-RNA), that is the log of the viral load for a given patient i at a time

month tj; the fixed effect coefficients are represented by βββ = (β1, β2, β3, β4, β5, β6, β7, β8)

whereas bibibi = (bi0, bi1) is the random coefficients and εijεijεij is the error among each level of

modeling.

The model from each of the penalty values and an unpenalized model was

created for a good comparison. Then, the estimated value of the fixed effects coefficients

along with the variance-covariance matrix for each model is evaluated. Table 6.3 gives

these outputs for the given UTI dataset. Also, a sequence of 150 tuning parameter values

was generated from 0 to 1 to determine the appropriate penalty value via the IC crieterion.

RESULTS

The results presented here are those of an AFT frailty model. There are six

models shown in Table 6.3. The no-penalty model has the estimates for all the variables,

including the two random effects. In the variance-covariance matrix, the random slope is

very close to zero in the no-penalty model. Therefore, due to this value, the random slope

gets quickly penalized as it shrinks to zero on every penalty model in Table 6.3. Mean-

while, the values that are not closer to zero in the model aren’t shrunk, as evident in the

fixed effects and the random intercept.

Overall, it can be seen that there is a positive influence of each of the fixed

effect covariate on the dependent variable, that is with a unit change in any one of the

covariates, there is at least 3.53 unit change in the Log(HIV-RNA). The 3.53 value is the

lowest value on the model located in β1 of the LASSO penalty, and in all other cases, these

points are higher. So, the viral load increases dramatically with each passing time. But,
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such an outcome is expected for the study given the patients have stopped the anti-retroviral

therapy during the UTI time, so naturally, the virus multiplies under no treatment as pro-

vided by (Saitoh et al., 2008). The random intercept also has a positive influence; it shows

that the viral load is different among the patients at the start of the study.

Looking at the estimates of each of the model in Table 6.3, ALASSOn,

ALASSOc, and ALASSO have relatively similar or equivalent estimates. It is because

these penalties are different modified variations of the adaptive LASSO penalty. SCAD

and LASSO have a little more distinct estimates, but not by far as the coefficient values for

the fixed effects, and the random intercept are relatively higher than zero and all the penalty

models do not shrink these estimates as easily as compared to the random slope.
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Table 6.3: Estimated fixed effects and the variance covariance matrix for accelerated failure time random-

effect model for the considered distributions

Penalty β1 β2 β3 β4 β5 β6 β7 β8 VarCov

ALASSOn 3.673 4.195 4.270 4.384 4.577 4.582 4.690 4.792

0.670 0

0 0



ALASSOc 3.673 4.195 4.270 4.384 4.576 4.580 4.688 4.790

0.665 0

0 0



ALASSO 3.673 4.195 4.270 4.384 4.577 4.581 4.69 4.791

0.669 0

0 0



LASSO 3.533 4.026 4.098 4.212 4.384 4.368 4.457 4.514

0.621 0

0 0



SCAD 3.678 4.201 4.276 4.389 4.582 4.586 4.695 4.796

0.669 0

0 0



No-penalty 3.613 4.181 4.254 4.372 4.559 4.534 4.616 4.738

 0.9508 −0.00063

−0.00063 0.000017





86

Figure 6.1: PDF, QQ plot, PP plot and the CDF of empirical data compared to a Log-normal

distribution
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Figure 6.2: PDF, QQ plot, PP plot and the CDF of empirical data compared to a Log-logistic

distribution
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Figure 6.3: PDF, QQ plot, PP plot and the CDF of empirical data compared to a Weibull distribu-

tion
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Figure 6.4: PDF, QQ plot, PP plot and the CDF of empirical data compared to a Gamma distribu-

tion
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CHAPTER 7

CONCLUSION

Penalized variable selection and model building is one of the most important

tools in high dimensional data sets, big data analytics, machine learning, and artificial in-

telligence (George, Osinga, Lavie, & Scott, 2016). Therefore, this area has a vast amount

of ever-growing challenges. From traditional methods of selecting fixed effects, there has

been a shift towards the selection of random effects (Hui et al., 2017). However, a joint

selection of fixed and random effects is a very challenging problem due to the lack of

closed-form solution of the marginal likelihood, as demonstrated in Chapter 4. It is even

more complicated under censoring. This dissertation thus provides a solution for such kind

of problem by using Breslow and Clayton’s PQL approach (Breslow & Clayton, 1993) and

regularizing it with a proposed adaptive lasso penalty. This regularized PQL has demon-

strated an ability to reduce computational complexities and provided an efficient algorithm

for penalized estimation and model building.

With the simulation values, this dissertation has displayed consistency on

model building. It has proposed a penalty parameter that outperforms or at least equiva-

lently performs in selecting variables. These results were valid regardless of the type of

distribution (Weibull or Log-normal) of the dependent variable or the censoring distribu-

tion (uniform or exponential). Even in the real data analysis, it was evident the performance

of the proposed method was similar to other established methods. Therefore the proposed

method can be an excellent alternative to conduct joint model selection in survival analysis

using the AFT model and especially when there is the presence of a frailty factor.

However, there were certain limitations for the proposed method. First, it is

not able to have the same kind of performance in the smaller sample size while comparing
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to larger samples. However, all other penalties had the same issue as well and the proposed

method was still performing on the same level though the difference was not visible like the

larger samples. Therefore, we need further simulation in smaller sets of samples and clus-

ters to confirm robustness. Second, the study is in the left-censored mechanism. So there is

a need to focus on other censoring mechanisms like right-censoring, interval-censoring, or

informative-censoring to demonstrate full consistency and validity of the proposed method

in survival analysis. Third, in smaller sample size performance of the regularized PQL al-

tered in Lognormal and Weibull as we needed to change the sample in Weibull. The study

cannot confirm if the same sample size would produce the same kind of results on other

survival distributions like log-logistic, gamma, or exponential.

This dissertation gives a lot of steps for further bio-statistical research in

public health, medical area, and clinical trials. First, the thesis had primarily focused on a

lower-dimensional setting where the sample size is larger than the number of covariates in

the model. One could modify this approach to include high dimensional variable selection

where the covariate is larger than the sample size. Second, this study is on parametric sur-

vival analysis. However, survival distributions are very biased, and the parametric approach

may not always be accurate to account for all types of survival data. Therefore, a viable

strategy would be to have a future research on the proposed penalty that focuses in its per-

formance on non-parametric survival data. Third, survival data include variables that could

be time-varying, especially if it is pertaining to medical research and clinical trials. Spline

models are a good approach to solve such challenges. (Groll et al., 2017) have demon-

strated this using the PQL likelihood in Cox’s model and adding three different penalties

to penalize the fixed effect, the random effects and the time-varying spline effects. Our

study already demonstrates the fixed and random effects penalty. Future research that adds

a spline model could certainly be a new way to address time-varying effects in regularized
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AFT frailty models.
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