LANDSCAPE FEATURES AFFECTING NORTHERN BOBWHITE PREDATOR-SPECIFIC NEST FAILURES IN SOUTHEASTERN USA

Susan N. Ellis-Felege, Shannon E. Albeke, Nathan P. Nibbelink, Michael J. Conroy, D. Clay Sisson, William E. Palmer, and John P. Carroll

Predation and Birds

- Predator prey dynamics
 - Interesting
 - Challenging
- Predation = leading cause of nest failure
- Potential to limit populations?
- Role in ecosystem
- Complex set of interactions
- Need to understand process

The Bobwhite (*Colinus virginianus*)

Bobwhite Nest Ecology

Bobwhite Nest Predators

Predator Control

- Predator control controversy
- \uparrow game/ imperiled species, \downarrow damage to livestock
- Public divided
 - Need solution to \downarrow wildlife damage
 - Predators valuable to society and ecosystem
- Conflicting results for bird species enhancement
- The "predator context"

Objectives

- 1) Determine the landscape composition and configuration features important to nest fate
- 2) Determine specific predators responsible for nest failures across spatial scales.
- 3) Determine underlying spatial relationships to the predation process, and potential management that may minimize nest predation.

Study Sites

- 4 sites in S. GA and N. FL
 - 1300-1400 ha each
- Albany (Upper Coastal Plain)
 - Pinebloom East and Pinebloom West
- Thomasville (Red Hills Region)
 - Tall Timbers Research Station
 - Pebble Hill Plantation
- Managed to maintain open pine savannah

Experimental Design

- Two sets of similar areas, cross-over predator removal experiment
- 1 year baseline (2000) + 6 years manipulation (2001-2006)
- Years 2001-2003 predators removed on 2 sites. Years 2004-2006 predators reduced on paired sites.
- Reduction of meso-mammalian predators fox, armadillos, coyotes, bobcats, raccoons, opossum
 - Conducted by 4 full-time USDA-WS personnel
 - During bobwhite breeding season
 - (1 March to 30 September)

Bobwhite Nest Monitoring

- Radio-tagged ~ 100 bobwhites each year on each area.
 - Located birds \geq 5 times/week during nesting season
 - Birds in same location on 2 consecutive days \rightarrow nesting
 - Capture nesting at approximately same time, incubation only
- Nesting 746 nests across 4 study sites
 - Monitored with 24-hour continuous near infrared video cameras
 - Nests checked daily until hatch or failure
 - Video viewed to confirm nest fate and identify predators

Near-infrared Nest Cameras

What landscape features influence predatorspecific nest failures?

Habitat Features: Background

- Habitat features thought to drive predator foraging, movement (e.g. edges)
- Composition of landscape features may attract predator use
- Cameras enable identification of predators to species (or guild)
- Use of natural nests rather than artificial \downarrow bias

Habitat Features: Methods

- Monitored nests: 7 years, 4 sites
 - Camera data
 - Categorized failures: MM, Snakes, Ants, Other
 - Recorded nest locations in ArcMap
- Landcover
 - Digitized using DOQQ, Aerial imagery, GPS
 - Metrics: % composition, proximity, edge density
- 3 Scales: constructed buffers (3.1-, 19.6-, and 50.3-ha)

Habitat Features: Statistical Analysis

- Multinomial models conditioned on nest failures
 - Meso-mammal, Snake, Ant, or Other
- Evaluated *uncorrelated* habitat predictors that might influence predation
 - % Field (fallow, ragweed), % Hardwoods, % Wetlands, Edge Density
 - Proximity to Fields, hardwoods, wetlands, roads, feed lines
- Model Selection using AIC
- Conduct at each spatial scale and across scales
- Evaluated spatial autocorrelation using Moran's I

Habitat Features: Results

- Excluded abandoned (29), unknowns nests (35)
- 217 nests with known locations and failure causes
 - 92 meso-mammals
 - 67 snakes
 - 28 ants
 - 30 other

Habitat Features on Nest Success: Model Selection

Model	K	AIC _c	ΔAIC _c	Weight
Int + Field Distance + Field Composition (50.3ha)	3	914.52	0.00	0.352
Int + Field distance + Field Composition (50.3ha) + Wetland Distance + Hardwood Distance	5	915.03	0.50	0.274
Int + Hardwood Distance	2	915.05	0.53	0.270
Int + Wetland Distance + Hardwood Distance	3	916.96	2.44	0.104

Take Home:

• Best models describing nest success included metrics associated with old/fallow fields and hardwood drains.

Model-Averaged Parameter Estimates

				95%	Unit	Scaled Odds	Scaled	95% CI
Parameter	Estimate	SE	95% LCI	UCI	Scalar	Ratio	LCI	UCI
Intercept	-0.0481	0.40251	-0.837	0.6121				
Distance to fields	-0.0021	0.00094	-0.004	-0.0006	50	0.8998	0.8208	0.9719
Field Composition (50.3ha)	-0.0488	0.01917	-0.0864	-0.0174	10	0.6138	0.4215	0.8405
Distance to wetlands	-0.0001	0.00028	-0.0007	0.0003	50	0.9936	0.9666	1.0166
Distance to Hardwoods	0.0004	0.00018	0	0.0007	50	1.0181	1.0000	1.0336

<u>**Take Home</u>**: Probability of nest failure is <u>less</u> likely with increasing distance to fields, proportion of field composition, & distance to wetlands.</u>

Landscape Metrics and Nest Fate

	Distance to Field (m)			Distance to Field Compo (m) (50.3				% Fiel mposi 50.3 h	d tion a)	Di V	stance Vetlan (m)	to d	Distance to Hardwood Drain (m)		
Nest Fate	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max			
Success	122	0	473	7	0	24	417	0	1,701	329	0	2,442			
Fail	112	0	470	6	0	21	389	0	1,364	439	0	2,174			

<u>**Take Home</u>**: Summary statistics showing that while these metrics were important, there were not dramatic differences in between successful and failed nests!</u>

Landscape Metrics and Failure Cause Who was the predator?

Model	AIC	ΔΑΙϹ	Weight
Int + Field composition (3.1-ha)	549.75	0.00	0.700
Int + Field composition (3.1-ha) + Feed line Distance	551.97	2.22	0.231
Int + Feed line Distance	556.30	6.55	0.026
Int + Field composition (19.6-ha)	556.57	6.82	0.023
Int + Hardwood composition (50.3ha)	556.91	7.16	0.019

Take Home:

- Field composition at smallest scale playing an important role in which predator was responsible for nest failure.
- For every 10% increase in field composition, other predators/failures causes were 2.2 times LESS likely than meso-mammals.

Landscape Metrics and Nest Fate

	% Field Composition (3.1-ha)			% Field Composition (19.6-ha)			R Hardwood Composition (50.3-ha)			Distance to Feed line (m)		
Nest Fate	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max
Meso- mammal	7	0	53	7	0	26	8	0	53	374	0	1999
Snake	8	0	42	6	0	22	7	0	44	403	0	1511
Ant	10	0	39	8	0	27	12	0	39	624	0	2043
Other	2	0	19	4	0	29	8	0	40	388	0.8	1909
Successful	6	0	80	7	0	37	9	0	55	414	0	2102

Spatial Autocorrelation

Take Home:

- Predict that nests closer to one another would have similar fates.
- Did not observe that pattern across the landscape using residuals from our top model across all years (Moran's I ~0).
- Moran's I < 0.2 for all comparisons of meso-mammal failures to all others collectively and individually!

Habitat Features: Conclusions

• Field Composition

- Increased nest success w/ ↑ composition but also distance to the fallow fields
- Alternative prey = cotton rats
- Good to have areas for them, but not right next to nesting area
- Failures causes
 - Higher mammal predation with increased field composition relative to other nest failure events
 - Higher mammal predation near feedlines relative to ants
- Spatial autocorrelation
 - Fate of nest independent of neighboring nest fate!
 - Predators do not appear to be returning to area where nest was found
 - Incidental predation!

What have we learned? Where do we go from here?

- Predation = natural ecosystem process
- Driving force in community ecology
- Modern landscape very different from historical
- Predation process \rightarrow altered form
 - E.g. Meso-mammals at historically high densities
- Complex interactions among generalist predators, prey, and the modern landscape?
 - Lack of independence among nest predators
 - "Compensation"
 - Challenges even the way we measure processes!

What have we learned? Where do we go from here?

- Manage habitat = managing predators
 - % fields, % hardwoods,
 - Supplemental feed lines
- Predation management
 - Indirect Methods: habitat, alternative prey
 - Direct: Predator reductions ↓ predator use

- Goals
 - Historically: Eradication
 - Current: Minimize interactions with imperiled and game species
- Requires extensive reevaluation of the community
- Managing human-wildlife interactions, results of human-influences

Acknowledgments

- Research Partners: TTRS, Albany Quail Project, & USDA- Wildlife Services
- <u>Predator Project Team</u>: Shane Wellendorf and Clay Sisson, many technicians, & graduate students
- Warnell staff, faculty, and friends: Too many of you to list!

<u>Funding</u>: Warnell School of Forestry and Natural Resources, UGA Graduate School, Direct Congressional Appropriation, Northeast Chapter of QU [*Rex Johnson*], Shikar-Safari Club, AAUW

