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ABSTRACT 

The purpose of this study is to infer Northern Great Plains bison (Bison bison) 

paleoecology through the analysis of stable isotopes and dental calculus from bison skeletal 

remains. Bison used to roam in the millions throughout most of North America but today they 

are primarily kept in confined and isolated populations. Little is known about their ancestral 

ecology. The abundance of bison in the archeological record provides a unique opportunity to 

study their remains on a broad temporal and spatial scale. This research uses the archeological 

record of bison in North Dakota to study bison diet and environment from the Late Pleistocene 

up to modern day bison in Theodore Roosevelt National Park (TRNP). Chapter 1 reviews the 

history and current status of bison in North America and introduces the paleoecological 

techniques used in this research. Chapter 2 compares the stable isotopes of carbon and nitrogen 

found in bison remains to temporal episodes in the climatic record to infer bison diet and 

potential nutritional stress. Chapter 3 studies bison tooth enamel using serial sampling methods 

to collect seasonal data from the stable isotopes of carbon and oxygen. Individual bison are 

analyzed to decipher the potential for migratory movement. Finally, Chapter 4 includes the 

analysis of the contents of dental calculus found on bison teeth. Microfossils are observed under 

light and scanning electron microscopy to supplement the isotopic data with qualitative 

observations.  This research is possible through collaboration with the National Park Service and 

TRNP. 
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CHAPTER I 

 

A REVIEW OF GREAT PLAINS BISON HISTORY AND PALEOECOLOGICAL 
TECHNIQUES 

 

Bison History in the Great Plains 

Bison are large, terrestrial, even-toed ungulates that belong to the family Bovidae, the 

subfamily Bovinae, and the genus Bison. There are two extant subspecies in North America, the 

wood bison (Bison bison athabascae) and the plains bison (Bison bison bison). The plains bison 

once grazed in the tens of millions on the North American landscape but currently they are 

limited to restricted rangelands (Gates et al. 2010). The history of North American bison is 

complex and has great cultural significance for the different eras of human history within their 

historical range. Bison are ingrained in indigenous peoples’ cultures and traditions as a holy and 

self-sacrificing animal that provides materials to aid in their survival. Today they are also known 

as a symbol of the “American spirit” and the National Mammal of the United States. Bison are 

an emblem of strength, wildness, and resiliency and their restoration to the grasslands is an 

amelioration for many people and for struggling ecosystems. The return of bison to indigenous 

peoples’ tribal lands is an exercise of sovereignty for tribal governments and begins to rectify the 

bison’s near extermination by European settlers. In turn, bison’s presence on the grasslands 

prompts a cascade of events leading to greater biodiversity and healthy ecosystem functioning 

(Gates et al. 2010).  
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The bison’s original passage into North America began in the Middle Pleistocene. Over 

time, they have experienced several speciation events and the path to modern bison is not 

perfectly resolved. However, it is believed that Bison priscus (steppe bison), ancestor of the 

plains bison, entered North America from Eurasia around 200,000 years ago via the Bering land 

bridge (Froese et al. 2017, Martin et al. 2018)). From there, bison diversified into several 

morphological forms with large variation in body size and horn length. Bison priscus and Bison 

latifrons (long-horned bison) are known as the sister taxa group to extant bison and were 37% 

larger (Martin et al. 2018). Bison antiquus became abundant after Bison latifrons went extinct 

(~20,000 years ago). Bison occidentalis and Bison antiquus evolved into the extant species, 

Bison bison, which can be traced back to the Middle Holocene (~5,000 to 6,000 years before 

present) (McDonald 1981, Froese et al. 2017, Martin et al. 2018).  

During the Earth’s transition from the Late Pleistocene into the Holocene epoch, a global 

mass megafaunal extinction ensued (Meltzer 2015, Mann 2015). While bison ultimately 

persisted, there is evidence that they experienced a population bottleneck during this time 

(Heintzman et al. 2016). However, they overcame the adverse environmental conditions and 

successfully repopulated North America. Bison numbers grew to the tens of millions up until the 

late 1800’s when they were nearly extirpated from the landscape by European settlers (Lott 

2002). 

 All modern plains bison are descended from a group of less than 100 individuals 

(Hedrick 2009). Today, approximately 20,000 plains bison (and 10,000 wood bison) are heavily 

managed in isolated conservation herds, primarily within relatively small fenced boundaries and 

with no natural predators (Freese et al. 2007, Gates et al. 2010). This is concerning to 

conservationists because, as a keystone species, their presence in prairie ecosystems supports 
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natural disturbance regimes, increasing biodiversity (Gates et al. 2010). Bison grazing patterns 

create distinct differences between grazed and ungrazed vegetation and disrupt competition 

between plant species, allowing for a more complex vegetational community that can support 

diverse fauna (Knapp et al. 1999). Bison hoof traffic and wallowing behavior create indentations 

in the ground that collect moisture and form small nurseries for young plants and amphibians, 

increasing the overall heterogeneity of their habitat. As a result, more pioneer plant species can 

mosaic amongst the well-established grasses (Butler 2006). Their ability to traverse a broad 

range of terrain also promotes seed dispersal and soil fertilization through fecal matter, further 

benefitting ecological communities (McHugh 1958). 

Little is known about bison’s ancestral ecology and observations from modern herds may 

not be representative of their historical ethology and range of adaptability. Conservation herds 

stem from a small gene pool and are not often ecologically challenged across ecotypes and 

drivers of evolution, nor can these herds shape the landscape by moving freely on large and 

contiguous rangelands. By investigating ancient bison ecology, we can illuminate their degree of 

ecological plasticity and use this knowledge in modern bison restoration and management. 

 The Earth is currently undergoing another period of rapid climate and environmental 

change as temperatures rise and wild space becomes increasingly limited (Collinge 1996, 

Reidmiller et al. 2018). More robust methods in conservation strategies are needed if we are to 

be successful in maintaining biodiversity and ecosystem functions. Advancements in 

paleontology are allowing the collection of quantitative and qualitative data from vertebrate 

history, including stable isotopes, ancient DNA (aDNA), and the study of microfossils. Such data 

facilitate a management approach called “conservation paleobiology” (Dietl and Flessa 2009). 

The research in this thesis uses stable isotopes in bison bones and teeth and microfossils in bison 
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dental calculus to gain insight into Northern Great Plains bison paleoecology and will later be 

combined with the analysis of aDNA obtained from the same specimens. 

 

Sample Assemblage 

Ancient bison bone and tooth samples were collected from four North Dakota museum 

collections: North Dakota Heritage Center and State Museum (State Historical Society of North 

Dakota), Knife River Indian Villages National Historic Site (NPS permit number: KNRI-2015-

SCI-0006), University of North Dakota’s Department of Anthropology, and University of North 

Dakota’s Biology Museum.  Samples included in this project were collected as part of twenty-

one previously excavated archaeological sites in North Dakota and one previously excavated site 

in northern South Dakota (Figure 1). The context of the archaeological sites encompasses a large 

temporal scale from the Late Pleistocene throughout the Holocene and likely represent several 

species of bison in North American history. Samples from the Late Pleistocene are derived from 

the Beacon Island archeological site where remains of Bison antiquus have been identified 

(Mandel et al. 2014). Holocene sites are associated with each North Dakota Native American 

cultural tradition as defined by long standing archaeological schema including the Equestrian 

Period (1780 – 1880), Plains Village (AD 1200 – 1780), Plains Woodland (400 BC to AD 

1700’s), Plains Archaic (5500 BC to 400 BC) and Paleo-Indian (9500 to 5500 BC) (Figure 2). To 

avoid repeat sampling of bison individuals, the right 3rd molar was selected whenever possible. 

In other cases, the molars or large premolars were taken from the right side of the jawbone. 

Specimens were also chosen from different stratigraphic layers in the archaeological site context. 

While every effort was made to not repeat samples in the assemblage, there is a minute chance 

that repeats were made in some cases. Additionally, one bison tooth from the Red River Valley 
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was obtained from a private collection and one tooth was extracted from a bison skeleton that 

eroded from a butte within TRNP in the summer of 2017. Modern counterparts were obtained 

through TRNP from animals sampled ancillary to this research.  

 

Isotopes and Skeletal Material 

Isotopes are atoms with the same number of electrons and protons but differing numbers 

of neutrons, resulting in different atomic weights. These variations in mass have different bond 

energies, with heavier isotopes reacting slower and remaining more stable (Metcalf 2011). 

Isotopic compositions are calculated using the measured ratio between heavy and light isotopes 

in the sample relative to an accepted standard. This is notated as delta (!) in units of parts per mil 

(‰) according to the formula given by McKinney et al. (1950). 

 

(‰) = [(Rsample/Rstandard) – 1] x 1000 

 where R = heavy/light isotope of a given element. 

 

Isotopes are assimilated into skeletal tissue through the animal’s diet and leave a distinct 

signature based on the chemical composition of ingested material (Tykot 2004). Stable isotopes 

can be used to study ancient populations because their values will remain constant in a well-

preserved fossil (Schwarcz et al. 2010). The way in which isotopes separate as they are 

assimilated into living tissue is called “fractionation” and varies by species as well as tissue type 

(Dalerum and Angerbjörn 2005). This study uses collagen from bone and dentin for carbon and 

nitrogen analysis, and carbonate from tooth enamel for oxygen and carbon analysis. Collagen is 

formed from the protein in an animal’s diet while carbonate from enamel is assembled through a 
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mixture of protein, carbohydrates, and fats (Tykot 2004). By selecting for these different tissues, 

a more complete representation of the animal’s diet and environment can be attained. 

Collagen in bone has a slow turnover rate, therefore, its isotopic value represents the 

average of several years of the animal’s life (Ambrose and DeNiro 1986, Manolagas 2000, 

Dalerum and Angerbjörn 2005). However, the collagen in dentin from teeth is not continuously 

replaced so its isotopic value represents the period in which it initially formed (Metcalf 2011). 

The formation time of dentin in bovids varies between teeth and can range between time in utero 

for the 1st molar to ten months of age for the 3rd molar (Brown et al. 1960). Bison are fully 

weaned after the first year so the 3rd molar is the only tooth that is a reliably representative of the 

individual’s diet and not the mother’s (Larson et al. 2001). Isotopes could fractionate differently 

from mother to offspring, but this is thought to be species dependent and there are no studies, to 

date, that have looked at the difference in values between a bison cow and her offspring (Larson 

et al. 2001). Studies on other species have shown mixed results.  Some have observed no 

differences between isotopic values between mothers and offspring (Newsome et al. 2006, 

Ducatez et al. 2008) while others have shown differing values in infant collagen relative to adults 

(Witt and Ayliffe 2001).  

Mature enamel is comprised of 97% inorganic bioapatite and is less prone to diagenesis 

than collagen in skeletal tissues (Nanci 2017). Enamel undergoes a process of mineralization 

incremental in nature and the time frame for its accretion varies by species (Zazzo et al. 2012). 

Bison have high crowned (hypsodont) teeth that mineralize over a period of approximately 18 

months (Julien et al. 2012). The isotopic composition of enamel represents the time of the 

materials formation because once it is created, it does not remodel (Julien et al. 2012). Therefore, 
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sequential samples from root to crown of bison tooth enamel represent short periods of time (a 

few weeks to a few months) and can be used to obtain seasonal values (Kohn et al. 1996). 

 

Carbon Stable Isotopes 

Measuring the ratio of carbon isotopes 13C to 12C (δ13C) in bone collagen allows for the 

study of diet through primary producers in the food web (Bocherens et al. 1994). Plants use 

atmospheric CO2 during photosynthesis and will favor 12C, the degree of this favoring is based 

on their photosynthetic pathway (Metcalf 2011). Therefore, δ13C values in fossils are controlled 

by the photosynthetic pathways used by plants (Clementz 2012) and have distinctive signatures 

that can be classified as C3, C4, or Crassulacean acid metabolism (CAM) (Wang et al. 2013). 

Northern Plains grassland ecosystems are composed mainly of plants with C3 and C4 pathways 

and very few CAM plants (Wang et al. 2013), so only C3 and C4 will be considered in this study. 

The C3 pathway is used by cool season grasses and C4 is the photosynthetic pathway for warm 

season grasses and browse material (Ambrose and DeNiro 1986). Today, the Northern Great 

Plains has a mixture of C3 and C4 grasses with trees and shrubs abundant in riparian areas. As a 

predominately grazing species, more than 90% of bison diet is composed of grasses and sedges, 

browse material, lichens and mosses are selected for the remaining 10% (Coppedge et al. 1998, 

Leyden and Oetelaar 2001).  

!13C values are reported relative to a Cretaceous marine fossil found near the Pee Dee 

River in North Carolina, the Vienna Pee Dee Belemnite (VPDB) standard. C3 plants are 

distinguished by !13C values that range from -30‰ to -24‰ and C4 plants have a range from -

15‰ to -11‰ (Lohse et al. 2014). However, we must consider the amount in which !13C is 

enriched in specific tissues as it moves through trophic levels. Most herbivores have !13C 
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collagen enrichment values of 5‰ to 6‰ (Ambrose and DeNiro 1986), however, a study on 

modern bison in Yellowstone National Park (Feranec 2007) found there is an average enrichment 

of 6.3‰ in bison bone collagen. Accordingly, bison living in a 100% C3 ecosystem would have 

expected !13C collagen values between -23.7‰ and -17.7‰ and those in a 100% C4 ecosystems 

would have expected values between -8.7‰ and -4.7‰. Additionally, there are other 

environmental factors which could alter expected values. 

 When interpreting !13C values to reconstruct animal diet, it is important to remember that 

atmospheric values of CO2 can vary under different environmental conditions. In closed canopy 

forest, CO2 released in respiration is not able to mix with the atmosphere. The ambient air 

becomes depleted in CO2, allowing carbon to be transferred to other trophic levels resulting in 

more negative values for C3 and C4 plants than expected (Tieszen 1994).  

Anthropogenic contributions of CO2 into the atmosphere through the burning of fossil 

fuels and reductions in the removal of CO2 from the atmosphere due to agriculture and 

deforestation also need to be considered (Tieszen 1994). !13C in Antarctic ice cores prior to the 

industrial revolution has a value of -6.5‰ and modern estimates are -8.0‰. For this reason, it is 

necessary to adjust !13C values by -1.5‰ from samples earlier than 1800 AD when making 

comparisons to modern samples (Tieszen 1994). 

 

Nitrogen Stable Isotopes 

Stable isotopes for nitrogen include 14N and 15N (!15N) which are reported relative to the 

isotopic composition of air. The ratio in which plants assimilate nitrogen isotopes is based on 

their soil chemistry (Lohse et al. 2014).  Most terrestrial plants have !15N values between -5‰ to 

2‰ (Fry 1991), these values could be lower if a plant obtains nitrogen through a relationship 
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with nitrogen fixing bacteria (Koch et al. 1994). Values can also differ for different parts of the 

plant, i.e. roots versus leaves (Hedges et al. 2004, Schwartz et al. 1982). 

Nitrogen increases by 2‰ to 5‰ as it moves through each trophic level, therefore 

herbivores tend to have lower !15N values than secondary consumers (Schwartz-Narbonne et al. 

2015). Nitrogen levels in soil are largely based on precipitation amounts. In general, areas with 

less precipitation will have more nitrogen in the soil and in turn, the plants growing there will 

have higher nitrogen values (Schwarcz et al. 1999).  

In addition to the plants’ nitrogen values, physiological stress from drought could alter 

the signature of !15N in drought resistant animals, including bison (Tykot 2004).  Bison are able 

to make physiological adaptations to conserve water and allow them to produce higher 

concentrations of urea, which is argued to result in higher nitrogen values in collagen !15N 

signatures (Fizet et al. 1995). Additionally, altitude may play a factor in !15N values but is a 

negligible factor in the current study area (Tykot 2004). Study sites have a net elevational change 

of ~820 meters. The lowest points are located in the eastern portion of North Dakota in the Red 

River basin area on the eastern side of the state and highest points are found in the southwest. 

 

Oxygen Stable Isotopes  

 The ratio of 16O to 18O (!18O) values of enamel carbonate are relative to the isotopic 

composition of meteoric water which is partially dependent on water temperature (Longinelli 

1984). Meteoric water (water derived from precipitation) is ingested through drinking water as 

well as plant tissue (Luz et al. 1984). !18O values in skeletal tissue are reflective of body water 

composition, which is made at a constant temperature in equilibrium with ingested water (Luz et 

al.. 1984).  
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!18O of meteoric water varies with temperature and environment (i.e. air pressure, 

aridity, and altitude) (Dansgaard 1964). In general, lower  !18O values indicate colder 

temperatures (Dansgaard 1964). Due to the incremental formation of enamel, short time periods 

can be tracked in !18O values with a sequential sampling method.  When used in parallel with 

incremental !13C values, the type of variability seen in the carbon during different seasonal 

conditions give insight into the potential movement of bison across their range (Widga et al. 

2010). 

Migratory behavior is an area of contention in bison ecology. Only three of the more than 

fifty extant bison populations are considered free ranging (Boyd 2003). In free-range herds, 

migration is observed as an altitudinal movement (Reynolds et al. 2003, Plumb et al. 2009, 

Kauffman et al. 2018). Historical accounts support the idea of bison being a long-distance 

migratory animal (Widga et al. 2010). However, recent studies of ancient and modern free-range 

bison have found less evidence of large scale migrations (Julien et al. 2012, Widga et al. 2010),. 

Therefore, one of the main goals for this thesis is to add to the knowledge of ancient bison 

migratory behavior. 

 

Microfossils in Bison Dental Calculus 

Ancient bison tooth specimens often contain a large amount of dental calculus. Dental 

calculus is the mineral buildup on teeth from bacteria that is composed mainly of calcium 

phosphate (Gobetz et al. 2001). It accumulates at different rates throughout an animal’s lifetime 

and entraps microfossils, therefore; by studying the composition of this material, we can obtain a 

more complete dietary and environmental record (Gobetz et al. 2001).  
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Microfossils such as pollen, phytoliths. and starch grains may become incorporated into 

the matrix of calculus during mastication (Middleton and Rovner 1994). This material preserves 

well on ancient teeth because it is a hard, mineralized deposit and may actually shield entrapped 

microfossils from the effects of diagenesis (Weber and Price 2016). Microfossils can be 

extracted and analyzed by demineralizing the calculus and viewing samples using light 

microscopy and scanning electron microscopy (SEM) (Middleton and Rovner 1994, Power et al. 

2014). This may allow for more precise identification of species that are either incorporated into 

bison diet or occur commonly in the animal’s environment.  

The collection of qualitative data from bison dental calculus can help strengthen 

inferences made with the data collected from stable isotopes. It can also help put constraints on 

paleoclimate models if material is observed from plants that are known to only exist under 

certain environmental conditions. Additionally, there is potential to learn more about ancient 

humans since bison have been an important resource for Plains people and have lived alongside 

them. 
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OBJECTIVES OF STUDY 

 

North American bison ecology prior to their near extirpation in the late 19th century is not 

well understood. This work aims to illuminate the ecological history of bison using stable 

isotopes and microfossils found in dental calculus.  The main goals are to: 

1. Interpret bison diet and identify nutritional stress from the Late Pleistocene and 

throughout the Holocene through the comparison of climatic records with carbon and 

nitrogen isotopic signatures in bison bones and teeth. 

2. Infer migratory behavior of bison through the use of serial sampling bison tooth 

enamel for oxygen and carbon isotopic signatures. 

3. Evaluate the utility of the analysis of microfossils in bison dental calculus for 

describing diet and habitat use of historic bison using scanning electron and light 

microscopy.
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Figure 1.  Map of sample sites bison specimens were derived from, modern bison samples were obtained from Theodore Roosevelt 
National Park (red star). 
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.  
 
 
Figure 2. Cultural traditions associated with archeological sites and their calBP age ranges. The Beacon Island Site is derived from the 
Late Pleistocene, Rustad site is dated in the Early Holocene, Streifel Site represents the Middle Holocene, and all other sites are 
derived from the Late Holocene. 
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CHAPTER II 

 

 ISOTOPIC PALEOECOLOGY OF NORTHERN GREAT PLAINS BISON DURING 
THE HOLOCENE 

 
ABSTRACT 

Bison (Bison bison) are one of the few terrestrial megafauna to survive the transition 

from the Pleistocene into the Holocene and provide a unique opportunity to study a species on a 

broad spatiotemporal scale. Today, bison are primarily managed in small and isolated herds and 

their ability to adapt to a radically changing climate under artificial conditions is in question. We 

studied the carbon and nitrogen isotopes of Northern Great Plains bison from the terminal 

Pleistocene and throughout the Holocene to gain insight into bison paleoecology. This time span 

is contemporary with the first population bottleneck experienced by bison at the end of the 

Pleistocene and includes the second bottleneck which occurred in the late 19th century. Results 

were compared with modern bison herd isotopic values from Theodore Roosevelt National Park 

(TRNP). Patterns of isotopic variation found in bison over time indicate significant (δ13C p = 

0.007, δ15N p = 0.001) differences in diet composition and correlate with climatic periods 

throughout the Holocene. Modern bison were most similar to Late Pleistocene bison in isotope 

values but with considerably less variability. Isotopic relationships described here reveal the 

plasticity of ancient bison in unrestricted rangelands during climatic fluctuations and may be 

used as a guide to inform modern bison restoration efforts when identifying bison’s 

physiological limits and suitable reintroduction areas.
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INTRODUCTION 

The transition from the Pleistocene into the Holocene epoch (~11.7 thousand years ago) 

marked the disappearance of many North American megafauna. As this mass extinction event is 

more thoroughly investigated it has become clear that the cause cannot be attributed to any 

singular explanation for all species or regions (Lorenzen et al. 2011, Meltzer 2015, Mann et al. 

2015, Cooper et al. 2015). Bison (Bison bison) are one of the few terrestrial megafauna to 

survive the late Pleistocene extinction in North America. Because of their longevity on the 

landscape and widespread historical range, they provide a unique opportunity for species study 

across broad temporal and spatial scales.  

Bison entered North America from Eurasia via the Bering Land Bridge during two 

separate windows of time (195 to 135 thousand years ago and 45 to 21 thousand years ago) when 

the area’s ice sheets retreated and the exposed ground was above sea level (Froese et al. 2017). 

Bison rapidly colonized lower latitudes of North America when an ice-free corridor between the 

Cordilleran and Laurentide ice sheets opened around 14 to 13.5 thousand years ago (Mann et al. 

2015, Heintzman et al. 2016). In North America, the stable climate during interglaciation led to 

the rapid spreading of peatlands and dense forests, limiting connectivity of suitable habitat and 

the ability of megafauna to disperse when coping with climate change (Mann et al. 2015, 

Gilmour et al. 2015). This issue was confounded by rising sea levels that flooded former 

dispersal corridors (Mann et al. 2015, Cooper et al. 2015). Fossil records show that animal 

populations were dwindling before evidence of human presence, though some researchers have 

attributed the loss of Pleistocene megafauna at least in part to human activity (Mann et al. 2015, 

Cooper et al. 2015).  



17 
 

Ancient DNA data reveal that bison experienced a drastic reduction in numbers during 

the terminal Pleistocene, resulting in a genetic bottleneck (Lott 2002, Shapiro et al. 2004). 

Subsequently, they successfully repopulated North America in the tens of millions by the Early 

Holocene, spanning from Alaska to Mexico (Lott 2002, Heintzman et al. 2016). Near the end of 

the 19th century, bison suffered a second bottleneck when they were reduced to a few hundred 

individuals as a result of European settlement of the continent (Lott 2002, Heintzman et al. 

2016). Through conservation efforts enacted during the last century, North American bison have 

been brought back from the brink of extinction, but their long-term viability as a species remains 

threatened due to restricted rangelands, artificial selection within confined herds, and a lack of 

gene flow between herds. Questions remain about the genetic diversity currently found in 

conservation herds and how the species will respond to environmental change within restricted 

range. Analysis of stable isotopes in bison remains may help shed light on bison diet and 

foraging habitat selection over time, providing insights regarding physiological plasticity of the 

species relevant to management. 

Isotopic biogeochemistry of collagen found in ancient bones and teeth is increasingly 

used in the construction of paleoecology and paleoenvironments. In addition to recording 

climatic variables such as temperature and precipitation, stable isotopic signatures encapsulate 

feeding strategies of animals from the past (Tieszen 1994, Hoppe et al. 2006, Lohse et al. 2014). 

Isotopic ratios of carbon (δ13C) and nitrogen (δ15N) are assimilated into herbivore skeletal 

collagen and tooth dentin through diet, recording the isotopic composition of plant material 

consumed (Schwarcz et al. 2010). These values will remain the same over time in well-preserved 

specimens (Tykot 2004). Bone collagen has a slow turnover rate and records isotopic 

relationships for several years of the animal’s life (Ambrose and DeNiro 1986, Manolagas 2000, 
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Dalerum and Angerbjörn 2005). Tooth dentin forms at a specific point in development and 

records a shorter window of time, in the order of months (Balasse et al. 2001, Metcalf 2011). The 

carbon isotopic signature depends on the proportion of plants having C3 and C4 photosynthetic 

pathways in ecosystems (Clementz 2012, Cotton et al. 2016) as well as changes in atmospheric 

CO2 from canopy cover in forested areas (van der Merwe and Medina 1991) or post-industrial 

revolution CO2 emissions (Tieszen 1994). The values of C3 plants in North America range from -

30‰ to -24‰ and C4 plants fall between -15‰ and -11‰ (Coppedge et al. 1998). This allows us 

to distinguish between grazers, browsers, and mixed feeders due to the depletion in 13C (i.e. 

lower δ13C values) observed in grazing diets (Ambrose and DeNiro 1986). Bison exhibit an 

enrichment factor of 6.3‰ (Feranec 2007) when carbon isotopes are assimilated into their 

skeletal tissue and this value needs to be factored in when calculating the percentage of C3 and 

C4 plants in bison diet. Therefore, the expected δ13C values of bison feeding primarily on C3 

plants would be between -23.7‰ and -17.7‰, while C4 bison diets would range from -8.7‰ and 

-4.7‰. Throughout the Holocene, the Great Plains have been largely dominated by Poaceae 

(grass) communities (Valero-Garcés 1997), which can exhibit C3 or C4 photosynthetic pathways. 

The climate in the Northern Great Plains has predominately favored the C3 subfamily Pooideae 

with a smaller amount of C4 subfamilies, Panicoideae and Chloridoideae. The abundance of C4 

grasses increases as warm seasons get longer, allowing us to interpret climatic changes in the 

diets of grazers (Cotton et al. 2016). Nitrogen isotopic values provide insight into moisture level 

and nutritional stress due to an observed increase in δ15N in animal tissue from the recycling of 

urea under conditions of drought (Ambrose and DeNiro 1986, Hobson et al. 1993, Fizet et al. 

1995, Tykot 2004). However, there are other factors that contribute to nitrogen values in 

herbivores. Higher nitrogen can indicate warmer temperatures and a diet composed of more 
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graminoids and herbs than trees and shrubs (Tieszen 1994, Bocherens et al. 1996, Fox-Dobbs et 

al. 2008, Carlson et al. 2016, Hofman-Kamińska et al. 2018). In modern European bison, it was 

found that canopy cover had the biggest influence on δ15N where less light will decrease nitrogen 

values in plants (Hofman-Kamińska et al. 2018). 

North American isotopic studies of bison to date have primarily focused on Pleistocene 

paleoecology (Bocherens et al. 1996, Feranec and MacFadden 2000, Coltrain et al. 2004, Fox-

Dobbs et al. 2008, Feranec et al. 2009, Zazula et al. 2009), climatic interpretations (Lohse et al. 

2014, Carlson et al. 2016), and values from modern herds (Hobson et al. 1993, Hoppe et al. 2006, 

Berini and Badgley 2017). At present, there are few isotopic studies of Holocene bison in North 

America. Existing research covers relatively short time periods or small sample sizes (Cannon 

1997, Butler 2006, Lohse et al. 2014). The limited data on North American bison from the 

Holocene may be in part due to the prior perception of a relatively stable climate during this 

epoch, though the most recent studies of paleoclimate portray the Holocene as a dynamic period 

with fluctuations in temperature and precipitation (Alley et al. 1997, Mayewski 2004, Marsicek 

et al. 2018,). An analysis of approximately fifty paleoclimatic records of greenhouse gases, 

glacial coverage, and pollen profiles determined that the Holocene had several periods of sudden 

climate change punctuated by variations in atmospheric circulation, moisture, and temperature 

changes (Marsicek et al. 2018). For instance, a study of pollen records found three periods in 

which climate rapidly heated during the Holocene (Marsicek et al. 2018) and evidence of a steep 

drop in temperature at ~8.2 thousand years ago as well as other large fluctuations in temperature 

throughout the Holocene are supported by the analysis of Greenland ice cores (Alley et al. 1997). 

Therefore, bison in North America during the Holocene had to adapt to a wider range of climatic 

conditions than previously thought. The amount of variation seen in bison isotopic values 
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throughout specific time periods provides insight into their use of different resources as the 

environment changed (Jahren et al. 1998, Widga et al. 2010). 

This chapter aims to illuminate Northern Great Plains bison ecology from the Late 

Pleistocene through the Holocene and compare these findings with extant bison from Theodore 

Roosevelt National Park (TRNP) (Figure 1). The objectives are to: 1) identify δ13C and δ15N 

variation indicative of environmental change across time, and 2) utilize isotopic signatures to 

elucidate feeding ecology of historic bison in context of their modern counterparts in North 

Dakota.  

 

METHODS 

Sample Assemblage 

Samples in this chapter are derived from the 22 archeological sites in North and South 

Dakota, and one tooth from the Red River Valley in Grand Forks, North Dakota obtained from a 

private collection (Figure 1). The integrity of skeletal elements was observed under stereo 

microscopy, revealing well preserved tissues at surfaces and on cross sections of bones and teeth. 

Preservation quality was determined by a clear delineation between cortical and spongy material 

with little discoloration, compact tooth dentin and opalescent enamel (Figure 3). 

Modern bison teeth were obtained from animals (n=5) culled for management purposes 

or those dying of natural causes within TRNP. TRNP is located in the Badlands of southwestern 

North Dakota. Bison are kept in two separate populations within the park, the North Unit and the 

South Unit. The North Unit is smaller (97 km2) and sustains between 100 and 300 bison at a 

time. The South Unit is much larger (187 km2) and supports 300 to 500 bison. There are no large 

predators of bison in the park and fencing surrounds the perimeters; with no possibility for 
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expansion, bison numbers are managed through round ups to prevent overgrazing. Most of the 

bison are transported to tribal lands and a small fraction are transferred to other conservation 

populations within the park system. Average annual precipitation is 38.1 cm and the park 

experiences a wide range of temperatures with a high mean of 29°C and a low mean of -18°C. 

Vegetation consists of mostly mixed grass prairie (Salvia) with areas of sage (Artemisia) and 

juniper (Juniperus). Riparian areas are characterized by ash (Fraxinus pennsylvanica) and 

cottonwood (Populus deltoides). Grazing lands are shared with other large herbivores in the park 

(i.e. feral horses (Equus caballus), longhorn cattle (Bos taurus), elk (Cervis elaphus), pronghorn 

antelope (Antilocapra Americana), mule deer (Odocoileus hemionus), white-tailed deer 

(Odocoileus virginianus), moose (Alces alces), and bighorn sheep (Ovis Canadensis) as well as 

small mammals such as black-tailed prairie dogs (Cynomys ludovicianus).  

 

Sample Preparation and Isotope Analysis 

Sections of cortical bone or tooth dentin weighing 1-3 grams were cut from bison 

specimens using a band saw. The saw blade was cleaned with isopropyl alcohol between samples 

to prevent cross contamination. Tooth dentin samples were taken in 0.5 to 1 inch contiguous 

pieces from dentin underlying enamel in the orientation of crown to cusp. Some tooth dentin 

portions included root material. Samples were then sent to the University of California Irvine 

(UCI) Keck Carbon Cycle Accelerator Mass Spectrometry Laboratory where they were 

decalcified in 1N HCl and then gelatinized at 60°C, pH of 2, and ultrafiltered to select for a high 

molecular weight fraction (>30 kDa). Aliquots of ultrafiltered collagen were measured on a 

Fisons NA1500NC elemental analyzer/Finnigan Delta Plus isotope ratio mass spectrometer to 

obtain δ13C and δ15N values at a precision of < 0.1‰ and < 0.2‰, respectively. Stable isotope 
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measurements were determined on amino acid hydrolysate samples. Samples with C:N atomic 

ratios between 2.9 and 3.6 are indicative of well-preserved collagen (Ambrose and Norr, 1993, 

Van Klinken 1999) and were then measured for 14C dating at the UCI Keck AMS facility. At this 

facility, AMS samples were combusted in vacuum sealed quartz tubes at 900°C for three hours. 

H2 and a Fe catalyst was used to reduce the sample to graphite at 550°C and reaction water was 

drawn off. The graphite was then placed in Al boats onto a target wheel with oxalic acid 

standards, known age bone comparisons, and 14C free Pleistocene whale bone. Carbon dating 

measurements were made using a National Electronics Corporation compact spectrometer with a 

0.5 MV accelerator (NEC 1.55DH-1). The error range for 14C ages (BP) in this study is ±15-35 

years.   

 

14C Calibration and Temporal Episodes 

14C ages were calibrated using OxCal 4.3 (Ramsey 2009) and the IntCal13 curve (Reimer 

et al. 2013) for the Northern Hemisphere. All bison sample ages are reported in calibrated years 

before present (cal BP) and ranges are within a 95% confidence interval. The median of the 

confidence interval was used as the sample date for separation into temporal episodes. All δ13C 

values dated before 1800 AD were adjusted by -1.5‰ to account for the reduction in 

atmospheric CO2 due to the increased burning of fossil fuels after the Industrial Revolution 

(Tieszen 1994). 

The temporal range was split into episodes to allow comparisons between bison from the 

Late Pleistocene to modern. The episodes follow formal Holocene subdivisions recognized by 

the International Union of Geological Sciences (IUGS) and is based on data from Greenland ice 

cores, pollen records, lake sediments, and Global Stratotype Section and Points (GSSPs) (Walker 
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et al. 2018). The Pleistocene-Holocene boundary was marked at 11.7 thousand years ago. The 

Holocene was split into four episodes, Early Holocene (11.7 to 8.2 thousand years ago), Middle 

Holocene (8.2 to 4.2 thousand years ago), and Late Holocene (4.2 to 100 years ago) (Walker et 

al. 2018). Modern bison are also considered an episode.  

 

δ13C and δ15N Data Analysis 

We used generalized additive models (GAMs) illustrate bison carbon and nitrogen 

isotopes over time, created with R statistical software and the package “mgcv” (Wood 2011). 

This method allows the estimation of isotope values between data points, providing a continuous 

view of bison isotopic fluctuations throughout the Holocene (95% confidence interval). GAMs 

were modeled with a gaussian distribution, an identity link function, and a smoothing parameter 

on time (k=5 for δ13C and k=8 for δ15N).  

The δ13C means of temporal episodes were also used to calculate the percentage of C3 

and C4 grasses in bison using equation 1, modified from Carlson et al. (2016). 

 

1. C3 (%) = [(δ13C collagen – 6.3trophic level fractionation – δ13C C4) / (δ13C C3 – δ13C C4)] x 100  

C4 (%) = 100 – C3 (%) 

 

Where δ13C collagen includes a 6.3‰ adjustment for trophic level fractionation specific to bison 

(Mandel et al. 2014), δ13C C4 = - 12.5‰ and δ13C C3 = -26.5‰. 
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RESULTS 

Seventy-three of the seventy-seven samples of ancient bison bones and teeth yielded 

sufficient collagen (>1%) to produce reliable data (Table 1). All samples included in the analysis 

have C:N ratios between 2.9 and 3.6, relative carbon (%C) >30%, and relative nitrogen (%N) 

between 11 and 16%, indicative of well-preserved collagen (Table 1) (DeNiro 1985, Van 

Klinken 1999). Five modern bison tooth samples (Bison 100 – Bison 104) from TRNP herds 

returned carbon and nitrogen isotopic ratios for comparison with ancient samples.  

The age of ancient bison specimens ranged from the Late Pleistocene to the Late 

Holocene, 12,344 to 104 calibrated years before present (cal BP) with samples from the Late 

Pleistocene ( ~12.5 cal BP, n=4), Early Holocene (11,700 – 8,200 cal BP, n=1), Middle 

Holocene (8,200 – 4,200 cal BP, n=7), and Late Holocene (4,200 – 100 cal BP, n=61) (Table 2) 

(Walker et al. 2018). 

As previously stated, dentin and bone collagen represent different lengths of time in the 

bison’s life. The sampling method in this study for dentin likely captures less than a year 

(Balasse et al. 2001) while the collagen from bone samples describes the average over several 

years of the animal’s diet (Ambrose and DeNiro 1986, Manolagas 2000, Dalerum and 

Angerbjörn 2005). To compare the variation found in each tissue type, t-tests were conducted for 

the dentin and bone samples as a whole and also separated into temporal groups. No significant 

differences were found in isotopic values by sample tissue types (t-tests, δ13C p = 0.76, δ15N p = 

0.91), therefore, they are treated functionally the same for the purpose of this analysis.  

Generalized additive models (GAMs) identified significant changes in bison δ13C and 

δ15N values over time (p = 0.007 and p = 0.001, respectively) (Figure 4). Model fit values are 

included in Table 3. Bison dentin δ13C ranged from -21.5‰ to -10.7‰ and dentin δ15N ranged 

from 4.6‰ to 9.3‰. Bison bone δ13C values ranged from -21.1‰ to -14.6‰ and bone δ15N 
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ranged from 4.9‰ to 8.5‰ (Table 2). Overall, considerable variability was observed among 

temporal episodes for isotope values δ13C and δ15N (Table 2, Figures 5, 6). Only one data point is 

categorized into the Early Holocene, however GAM models estimate the increase in bison’s 

carbon and nitrogen isotopic values throughout this sub-epoch (Figure 4).  

Modern bison had the least variation in carbon and nitrogen values and the lowest mean 

δ15N value, 4.9‰. The highest variation for both isotopes was seen in Middle Holocene bone 

samples although they are derived from the same archaeological site and are close in age (Table 

1). The highest mean δ13C and δ15N values, -16.8‰ and 8.2‰ respectively, were observed in 

Middle Holocene bison dentin. Late Pleistocene and modern bison dentin were the most depleted 

in 13C with a mean δ13C of -20.6‰ and -20.5‰, respectively (Table 2, Figure 6).  

Ratios of C3:C4 plants demonstrated that bison diet for each temporal episode 

predominately included C3 plants (Table 2). Late Pleistocene bison consumed entirely C3 

vegetation with an increase in the consumption of C4 plants in the Early Holocene, a peak 

abundance of C4 material in the Middle Holocene and a small decrease again in the Late 

Holocene (Table 2, Figure 4a). Modern bison in TRNP exhibited an entirely C3 diet, congruent 

with the vegetation found in the park (Longinelli 1984). 
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DISCUSSION 

This project uses the archaeological record of bison in the Northern Plains to understand 

their evolutionary responses to environmental change and provide insight for best practices in 

bison conservation and management. The analysis of isotopic values from bison remains spans 

the terminal phase of the Late Pleistocene to present, representing post-glacial changes in bison 

diet and vegetation associated with changing climate during the recent natural history of the 

species. The sample assemblage is contemporary with two bison population bottlenecks. The 

first bottleneck occurred during the terminal Pleistocene and the second in the late 19th century 

when bison were nearly extirpated by humans (Lott 2002, Heintzmen et al. 2016).  

The Late Pleistocene in the Northern Great Plains is described as a time of sudden 

environmental change and a significantly wetter landscape after the recent retreat of the 

Laurentide ice sheet (Yansa 2006). Pollen records from the study region indicate an abundance 

of Picea (evergreen) species and relatively low amounts of herbaceous plants (grasses and forbs) 

(Yansa 2006, Grimm et al. 2006). Late Pleistocene Bison samples are derived from Beacon 

Island, a Paleoindian kill site in the Agate basin (Figure 1). The concurrent stratigraphic layer at 

this site exhibits C3 dominated plant material (Mandel et al. 2014) and is in agreement with the 

100% C3 diet recorded in the δ13C of bison remains (Table 2). However, bison δ15N values from 

the Late Pleistocene appear surprisingly low considering environmental conditions in the Late 

Pleistocene were adverse enough to wipe out the majority of megafaunal species while causing 

bison to undergo their first recorded population bottleneck (Shapiro et al. 2004, Mann et al. 

2015). One explanation for this discrepancy could be a heavier dependence on the nitrogen poor 

browse material in bison diet (Ambrose and DeNiro 1986). Substantial incorporation of browse 

is reported by other Late Pleistocene bison paleoecology studies in North America based on 
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stable isotopes and bison dentition wearing patterns (Coltrain et al. 2004, Rivals et al. 2007). In 

which, low δ13C values are recorded and indicate more browse in canopied forests where 

atmospheric CO2 is more concentrated (van der Merwe and Medina 1991). A grazing diet is 

more abrasive than a browsing diet and is depicted on the surface of bison teeth as deeper and 

more frequent pits and scratches (Rivals et al. 2007). However, it cannot be ignored that this 

could also be an effect of small sample size from only bison dentin for this temporal period. 

Evergreen forests south of the Laurentide ice sheet were rapidly succeeded by other 

vegetative communities in the transition between the Pleistocene and the Holocene (Yanss 2006, 

Jacobson et al. 2015). By the Early Holocene, new deciduous forest south of the evergreens 

formed and bordered along riparian areas while grasslands spread throughout the open landscape 

(Jacobson et al. 2015). As the Great Plains quickly became dominated by prairie (Pielou, 1991, 

Yansa 2006, Jacobson et al. 2015) bison migrated northward into the developing terrain and 

became plentiful at this time (Pielou 1991). Yet only one data point from the sample assemblage 

falls within the Early Holocene boundaries. This single bison indicates an increase in C4 

vegetation incorporated into diet (Table 2), consistent with rising temperatures and the presence 

of more C4 Chloridoideae grasses (Mandel et al. 2014, Shuman and Marsicek 2016). Additional 

evidence of an increase in C4 grasses are recorded in bison living during the Early Holocene 

within present day Yellowstone National Park and the state of Nebraska (Jahren et al. 1998, 

Cannon et al. 2010). Nitrogen levels are higher than what is seen in Late Pleistocene bison 

despite an increase in effective moisture in the Early Holocene (Shuman and Marsicek 2016), 

further supporting the argument that bison selected more browse material from lower light areas 

in evergreen forests during the Late Pleistocene.  
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 The Middle Holocene climate is summarized as highly variable with an overall shift 

towards warmer, drier conditions and patchiness of resources (Meltzer 2015). Herbaceous plants 

fluctuated throughout the Middle Holocene, alternating between Poaceae and Ambrosia 

(ragweed) communities,  indicating frequent changes in precipitation (Grimm et al. 2011, 

Commerford et al. 2018). Bison from this sub-epoch exhibit the highest mean values for carbon 

and nitrogen as well as large variation in bone samples (Table 2, Figures 5). Although the two 

bone samples from the Middle Holocene (Bison 22 and 98) coincide in both time and space, they 

exhibit large isotopic differences (Table 1, Figure 5). This could be representative of the vastly 

fluctuating climate, the migration of bison from outside areas, or a remnant of different feeding 

strategies among bison sexes (Berini and Badgley 2017).  In any case, the greatest amount of C4 

vegetation is observed in bison diet at this time for both tissue types (24%), indicating a trend 

towards longer and warmer growing seasons (Widga et al. 2010). This is corroborated by bison 

from the Eastern Great Plains during the Middle Holocene (Lohse et al. 2014). 

Climatic conditions in the Northern Great Plains during the Late Holocene generally 

followed a cooling trend with increasing moisture up to modern day (Valero-Garcés 1997, 

Kauffman et al. 2018). However, climate proxies provide evidence that severe arid conditions 

occurred at intervals throughout this time period (Luz et al. 1984, Valero-Garcés 1997). No 

obvious indicators of drought are evident in bison samples from the Late Holocene but changes 

in vegetation type may lower the amount of nitrogen available in soils and dampen the signal of 

physiological stress (Craine et al. 2018). A wide range of  δ13C values and more C4 plant material 

was signaled in Late Holocene bison (Table 2, Figure 5), suggesting diverse vegetation 

consumed and longer, warmer growing seasons (Cannon 1997, Widga et al. 2010). One bison 

(Bison 83) from Larson Village exhibits the highest δ13C value recorded in this analysis              
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(-10.7‰). Either this bison selected more browse material than its counterparts or it traveled 

further to encounter more C4 vegetation. Bison from Larson Village that are similar in age (Bison 

samples 32, 33, 77, 80) all exhibit much lower δ13C than this particular bison. Berini and 

Badgley (2017) determined that male bison will consume more nutrient poor vegetation during 

the mating season, however, the observed differences were not as large as seen in the Larson 

bison group. Nitrogen values would be elevated on a nutrient poor diet and that is not what is 

seen in this bison, therefore, it is likely this bison came from an outside area. Whether it was 

through migration or trade deals cannot be determined by the information at hand.  

Pollen records indicate that Poaceae increased in abundance during the Late Holocene 

and the first appearance of Salaginella densa, or spikemoss, is documented in the Northern Great 

Plains (Grimm et al. 2011). The ground cover provided by spikemoss and its ability to persist in 

dry conditions provides protection from erosion and forage to subsist on during lean winter 

months. Its expansion likely increased foraging capacity and may have contributed to the 

immense presence of bison on the prairie during the Late Holocene.  

Coinciding with the environmental changes that took place during the Late Holocene is 

the rise of a more complex human ecosystem throughout North America. How humans 

influenced landscapes, bison behavior, and available food supplies during the Holocene are 

currently not well understood but research suggests that, much like today, humans had a large 

impact on the Great Plains ecosystem. Charcoal deposits from Montana reveal that Native 

Americans likely used fire to increase grass productivity in an effort to lure bison into their 

hunting basins, potentially providing quality forage to bison during the Late Holocene that may 

have impacted their isotopic signatures (Roos et al. 2018). The bison’s past response to changing 

composition of habitat through farming and fire regimes remains unclear but their ability to adapt 
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and exploit a variety of resources is certainly attributed to the species’ long-term survival over 

other megafauna.  

Finally, isotopic values of modern bison dentin from TRNP were compared with ancient 

bison from the Late Pleistocene through the Late Holocene. Comparatively low variability in 

modern bison stable isotopes are observed (Table 2, Figure 5). TRNP bison have a more 

restricted rangeland than their ancient counterparts as well as a presumably shorter window for 

sample collection than other temporal episodes. Modern bison are depleted in 13C, similar to Late 

Pleistocene bison (Figure 5), indicating a diet of 100% C3 plant material (Table 2) despite vastly 

different climatic conditions experienced by the temporal groups. Nitrogen values are notably 

lower than other bison groups (Table 2, Figure 6), indicating no evidence of nutritional stress and 

adequate available moisture (Hobson et al. 1993). While low variation may be attributed to small 

sample size, other studies have found similar results in several living herds (Feranec 2007).  

Tieszen (1994) showed that the Wind Cave National Park bison herd in South Dakota had a diet 

with more C4 plants but bison also contained a small amount of δ13C variability within the herd. 

The Catalina Island bison population exhibits a comparable δ13C average and low variability 

(Cotton et al. 2016). Modern Yellowstone National Park bison exhibit low variability in δ13C 

values and a similar mean to the TRNP bison in this study despite their ability to cover much 

larger areas and complete substantial elevational migrations (Berini and Badgley 2017, 

Kauffman et al. 2018). Whether this trend in low variability in modern bison diet is due to 

restricted rangelands and herd management practices or if it is a result of a narrowing in 

plasticity from the recent genetic bottleneck in bison history is still not clear. We would expect 

that if it were only due to the habitat restrictions imposed upon modern bison, we would see 

some more variability in Yellowstone herds (Table 4).  
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Understanding the predecessors of present-day bison may unlock new views for 

reintroducing them more broadly to the North American landscape. These techniques are already 

influencing management decisions for European bison. European bison had to overcome similar 

environmental challenges as North American species during the terminal Pleistocene and are also 

predominately constricted to limited rangelands today (Bocherens et al. 2015). Most habitat of 

modern European bison is forested but their morphological adaptations suggest they evolved in 

open grasslands (Kerley et al. 2012) and then moved into forested areas as the forests expanded 

and pressure from humans increased (Hofman-Kamińska et al. 2018). Isotopic studies of the 

ancient Eurasian steppe bison (Bison priscus) are informing conservation strategies for their 

ecological successor, Bison bonasus (Stuart 1999). Several studies have found that Bison priscus 

did rely heavily on grazing, with more browse incorporated over time, as woody vegetation 

became more accessible (Rivals et al. 2007, Bocherens et al. 2015). This information makes the 

introduction of European bison to more open grassland habitats a plausible strategy for large 

scale restoration and is an example of the value of the relatively new field of conservation 

paleobiology for current species management. This knowledge can be carried over to North 

American bison with the expansion of isotopic studies and a better understanding of the potential 

plasticity of this resilient species. 
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a. b. 

Figure 3. Stereomicroscopy images to determine diagenesis in a. tooth enamel (Bison 13) and b. 
bone (Bison 4). 
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a. 

 
b.  
 
 
Figure 4. Generalized additive models for a. carbon and b. nitrogen isotopes in bison tissue over 
time (calBP age). Shaded region represents the 95% confidence interval. Dashed lines delineate 
temporal episodes (LP “Late Pleistocene”, EH “Early Holocene”, MH “Middle Holocene”, LH 
“Late Holocene”) and lines along the axis’ show density of sample points.  
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Figure 5. Scatterplot of carbon and nitrogen stable isotopes, means and standard deviation for 
temporal groups. Colors represent temporal groups while shapes differentiate tissue type, bone 
(B) or dentin (D).  
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a. 

 
b. 
 
 
Figure 6. Boxplots for a. carbon and b. nitrogen stable isotopes in bison from each temporal 
episode. Bars represent the range of data with outliers depicted outside of their spread and 
horizontal lines within the boxes represent the median value
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Table 1. Carbon and nitrogen isotopic values of all bison samples, calibrated 14C date ranges and median, collagen preservation 
checks, and the percent of C4 vegetation in bison diet. Samples which did not yield enough collagen are listed here, values not 
obtained are labeled as “na”. No carbon dating was necessary for modern samples, “na” is used in the modern bison calBP columns. 

 

Bison Location !13C !15N Median Age %N %C % Collagen C:N Episode Tissue Element
1 Medora -17.4 6.2 270 12 112 16.3 45.0 4.4 3.2 LH D tooth

2 Mondrian Tree 32MZ58 -21.1 8.1 3357 3241 3291 16.0 46.9 4.5 3.4 LH B fragment

3 Mondrian Tree 32MZ58 -18.5 4.9 2724 2497 2580 14.9 42.6 3 3.3 LH B phalanx

4 Anton Rygh, SD -14.8 5.8 501 332 469 15.1 42.9 6.3 3.3 LH B ant. cannon

5 Anton Rygh, SD -17.5 5.7 481 318 388 16.7 45.6 5.3 3.2 LH B carpal

6 Menoken Village 32BL2 -19.1 6.4 910 787 863 16.3 45.9 2.6 3.3 LH B phalanx

10 White Bison Robe 32ME7-959 -17.8 6.8 679 571 665 16.5 44.4 2.5 3.1 LH D tooth

11 White Bison Robe 32ME7-991 -17.8 6.6 460 313 381 17.0 45.9 4.7 3.2 LH D M

12 Huff Village 32MO11 -19.3 6.0 527 501 513 16.8 46.0 5 3.2 LH D tooth

13 Huff Village 32MO11 -18.6 6.5 518 487 504 15.3 41.6 9.9 3.2 LH D M3

14 Alkali Creek 32DU336 -18.3 6.9 1529 1412 1466 14.5 39.8 3 3.2 LH D tooth

18 Sakakawea 32ME11 -18.8 6.3 302 7 166 16.7 46.4 5.4 3.2 LH D M3

20 Rustad Site 32R1775 -16.3 9.3 8176 8041 8107 14.3 40.2 1.4 3.3 MH D tooth

22 Streifel Site 32ML903 -14.6 5.0 7834 7701 7768 15.0 41.9 3.8 3.3 MH B femur head

25 Big Hidatsa 32ME12 -18.6 7.4 294 14 167 16.5 45.4 5.9 3.2 LH D M

26 Big Hidatsa 32ME12 -20.5 7.5 290 14 170 16.4 44.0 4.3 3.1 LH D M3

29 Falkirk Bison Kill 32ML927 -15.6 5.8 694 661 677 14.9 43.1 8.2 3.4 LH B vertebrae

30 Falkirk Bison Kill 32ML927 -16.3 6.4 309 156 296 16.7 44.9 3.5 3.1 LH D M

31 Bobtail Wolf 32DU955A -20.1 6.1 283 5 189 15.6 44.9 6.2 3.4 LH B phalanx

32 Larson Village 32BL9 -17.1 5.5 491 320 437 16.9 45.3 3.8 3.1 LH D M3

33 Larson Village 32BL9 -20.3 7.3 485 319 429 16.0 43.9 5.4 3.2 LH B ant. cannon

34 Double Ditch Village 32BL8 -15.1 5.0 465 315 379 16.5 44.2 2.5 3.1 LH D M

35 Bundlemaker 32OL159 -16.7 6.6 1173 979 1027 15.2 42.3 6.2 3.2 LH D M

36 Cross Ranch 32OL151 -17.2 6.4 1175 1010 1107 16.1 44.2 5 3.2 LH D M3

37 Taylor Bluff Village 32ME366 -18.2 5.8 272 11 125 14.9 41.9 6.2 3.2 LH B phalanx

38 Taylor Bluff Village 32ME366 -20.1 7.0 294 14 167 16.4 44.8 3.6 3.2 LH D M

39 Falkirk Bison Kill 32ML927 -19.4 8.3 673 566 656 14.3 40.4 1.5 3.3 LH D M

40 Shea Farm 32CS101 -16.5 5.5 527 492 509 15.6 43.0 5.2 3.2 LH D tooth

Date Range (calBP)
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Table 1 continued. 

 

Bison Location !13C !15N Median Age %N %C % Collagen C:N Episode Tissue Element
41 White Bison Robe 32ME7 -19.6 8.3 465 315 379 16.5 44.7 3.6 3.2 LH D M3
42 White Bison Robe 32ME7 -20.3 8.0 458 307 386 15.5 42.3 6.3 3.2 LH D M3
43 Menoken Village 32BL2 -15.4 6.2 1175 989 1077 15.3 41.9 9.7 3.2 LH D M
44 Brand Bison Kill 32SK201 -19.7 6.2 703 668 683 16.5 45.8 3.5 3.2 LH B atlas
45 Brand Bison Kill 32SK201 -20.3 7.5 688 665 675 16.0 44.8 2.5 3.3 LH B atlas
46 Forest River -17.8 6.0 284 22 185 16.4 44.9 3.7 3.2 LH D M
47 Falkirk Bison Kill 32ML927 -20.2 6.9 670 565 653 16.3 45.4 2.8 3.3 LH D M
48 Rustad Site 32R1775 -17.9 8.8 7972 7860 7936 15.8 43.6 7.2 3.2 MH D M
49 Alkali Creek 32DU336 -18.3 7.8 2750 2539 2728 15.8 42.6 5 3.2 LH D M
50 Rustad Site 32R1775 -18.2 6.6 9029 8786 8999 15.0 42.0 2.1 3.3 EH B mandible
51 Mondrian Tree 32MZ58 -19.8 6.8 631 516 544 15.6 42.5 12 3.2 LH D M
52 Alkali Creek 32DU336 -20.3 7.3 1567 1416 1533 16.0 43.0 5.7 3.1 LH D tooth
53 Streifel Site 32ML903 -20.3 7.0 4079 3897 3964 15.4 42.0 11.3 3.2 LH B fragment
54 Beacon Island 32MN234 -21.5 6.2 12389 12030 12209 13.0 37.5 1 3.4 LP D M
55 Streifel Site 32ML903 -19.1 6.3 4082 3892 3966 15.5 42.0 12.6 3.2 LH B ant. cannon
56 Mondrian Tree 32MZ58 -19.1 7.8 2744 2502 2701 15.3 42.6 9.3 3.2 LH B fragment
57 Mondrian Tree 32MZ58 -19.8 5.8 2744 2497 2622 15.0 41.6 6.2 3.2 LH B phalanx
58 Beacon Island 32MN234 na na na na na na na < 1 na na D M
59 Beacon Island 32MN234 -21.1 5.0 12396 12056 12229 14.9 41.7 3.7 3.3 LP D M
60 Beacon Island 32MN234 -21.2 5.7 12373 11845 12068 15.0 41.9 2 3.3 LP D M
61 Beacon Island 32MN234 na na na na na na na < 1 na na D M3
62 Beacon Island 32MN234 -18.4 5.9 12547 12140 12431 15.2 41.4 4.2 3.2 LP D M3
63 Beacon Island 32MN234 na na na na na na na < 1 na na D M
64 Mondrian Tree 32MZ58 -20.7 8.1 3825 3640 3705 14.3 40.3 5.6 3.3 LH B phalanx
65 Brand Bison Kill 32SK201 -18.8 7.5 691 661 675 16.7 45.6 8.7 3.2 LH B horncore
66 Rustad Site 32R1775 -16.2 8.1 8191 8042 8116 14.9 41.7 3.8 3.3 MH D M
67 Rustad Site 32R1775 -17.5 6.8 8178 8036 8107 14.7 40.5 5.1 3.2 MH D M
68 Rustad Site 32R1775 -16.2 7.8 8187 8042 8116 14.9 41.5 5 3.3 MH D M3
74 White Bison Robe 32ME7 -18.4 6.5 1177 1007 1105 16.2 44.0 11.8 3.2 LH D M3 root
77 Larson Village 32BL9 -19.1 5.7 469 311 383 16.1 43.6 10.6 3.2 LH D M

Date Range (calBP)
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Table 1 continued. 

 
 
 

Bison Location !13C !15N Median Age %N %C % Collagen C:N Episode Tissue Element
80 Larson Village 32BL9 -19.8 6.1 498 317 425 16.1 43.5 8.4 3.1 LH D M
83 Larson Village 32BL9 -10.7 7.1 495 319 432 16.0 42.9 2.8 3.1 LH D M
92 Menoken Village 32BL2 -17.9 7.2 894 728 765 15.9 43.1 5.4 3.2 LH D M
97 Streifel Site 32ML903 -19.3 6.5 4084 3998 3913 15.2 42.4 10.5 3.3 LH B phalanx
98 Streifel Site 32ML903 -19.1 8.5 7932 7793 7862 14.9 42.3 3.8 3.3 MH B fragment
99 Streifel Site 32ML903 na na na na na na na < 1 na na D M
106 Big Hidatsa 32ME12 -17.5 5.5 310 12 277 15.9 43.3 7.1 3.2 LH D M3 root
108 Big Hidatsa 32ME12 -20.4 6.6 287 24 182 16.1 43.8 15.1 3.2 LH D M
111 Taylor Bluff Village 32ME366 -15.5 5.8 269 14 112 16.4 44.0 13.6 3.1 LH D M root
113 Sakakawea 32ME11 -16.3 5.2 259 25 110 16.1 43.8 12.2 3.2 LH D M3
117 Sakakawea 32ME11 -19.6 6.5 305 12 169 16.1 43.1 14.1 3.1 LH D M3 root
120 Sakakawea 32ME11 -19.4 7.0 287 24 182 16.1 43.2 6.7 3.1 LH D M
121 Sakakawea 32ME11 -15.9 6.0 266 22 111 16.3 44.5 16.0 3.2 LH D M3
122 Sakakawea 32ME11 -16.5 5.7 300 14 169 16.6 44.8 14.1 3.2 LH D M3
123 Sakakawea 32ME11 -18.2 6.3 302 14 168 16.1 43.8 13.9 3.2 LH D M3
125 Lower Hidatsa -16.3 5.1 458 306 388 15.8 42.5 9.2 3.1 LH D M root
126 Lower Hidatsa -16.7 6.7 271 11 117 16.0 42.8 13.5 3.1 LH D M3
131 TRNP, emerged skeleton -20.3 5.3 521 479 504 16.0 43.6 17.1 3.2 LH D M3
132 Red River Valley -18.2 7.1 300 14 169 15.3 41.5 8.2 3.2 LH D M
100 TRNP Bull -21.1 5.0 na na na 15.6 42.4 13.3 3.2 Mod. D M3
101 TRNP Bull -20.1 5.2 na na na 15.5 42.9 16.9 3.2 Mod. D tooth
102 TRNP Cow, "Wanda" -20.7 4.6 na na na 15.1 41.9 17.4 3.2 Mod. D M3
103 TRNP Cow -20.0 5.0 na na na 15.6 42.7 15.8 3.2 Mod. D M3
104 TRNP Cow -20.8 4.7 na na na 15.5 42.3 20.4 3.2 Mod. D M

Date Range (calBP)
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Table 2. Statistical summaries for bison dentin and bone and %C4 in each temporal episode. 

 
   
Table 3. Model fit values for generalized additive models (GAMs). 

Smoothed Function k-index p-value 
s(time) δ13C 0.89 0.12 
s(time) δ15N 0.86 0.12 

 
Table 4. Carbon isotopic values (VPDB) for modern bison compiled from other studies. 

 
 

 

Episode (cal BP) Tissue n 
Mean  
δ13C 

SD  
δ13C 

δ13C Mean  
δ15N 

SD  
δ15N 

δ15N % 
C4 low high low high 

Modern Dentin 5 -20.5 0.47 -21.1 -20.0 4.9 0.24 4.6 5.2 0 
Late Holocene (4,200 – 100) Dentin 43 -18.0 1.90 -20.5 -10.7 6.5 0.82 5.0 8.3 15 
 Bone 18 -19.0 1.67 -21.1 -14.8 6.6 0.94 4.9 8.1 9 
 Combined 61 -18.3 1.90 -21.1 -10.7 6.53 0.85 5.0 8.3 14 
Middle Holocene (8,200 – 4,200) Dentin 5 -16.8 0.82 -17.9 -16.2 8.2 0.96 6.8 9.3 24 
 Bone 2 -16.9 3.18 -19.1 -14.6 6.8 2.47 5.0 8.5 24 
 Combined 7 -17.4 2.10 -19.1 -14.6 7.6 1.5 5.0 9.3 20 
Early Holocene (11,700 – 8,200) Bone 1 -18.2 na -18.2 -18.2 6.6 na 6.6 6.6 14 
Late Pleistocene (12,500 – 11,700) Dentin 4 -20.6 1.44 -21.5 -18.4 5.7 0.51 5.0 6.2 0 

Location n δ13C Mean δ13C SD Reference
Wichita Mountains National Wildlife Refuge 4 -17.48 1.17 Tieszen (1994), Leyden (2004)
Yellowstone National Park, WY 15 -19.76 0.23 Feranec (2007)
Konza Prairie, KS 7 -16.27 0.53 Tieszen et al. (1994)
Catalina Island, CA 20 -24.75 0.43 Cotton et al. (2016)
Saskatoon, SK 4 -20.63 0.66 Leyden (2004)
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CHAPTER III 

SEASONAL CHANGES INFERRED FROM OXYGEN AND CARBON STABLE 
ISOTOPES IN BISON TOOTH ENAMEL 

 
ABSTRACT 

 The presence of bison in North America throughout history has shaped the evolution of 

the Great Plains ecosystem and fostered diversity in flora and fauna. After their near extirpation 

in the late 1800’s, bison are functionally absent from the majority of their original range. It 

would benefit bison conservation managers to know the historical space use of bison when 

restoring them to the landscape. With a lack of systematic studies on bison prior to their near 

extirpation, we don’t know what migratory patterns were exhibited by their ancestors. In this 

chapter, a serial sampling method of carbon (δ13C) and oxygen (δ18O) stable isotopes from bison 

tooth enamel is used to infer seasonal changes in diet that may occur due to climatic variability 

and migration patterns.  One hundred and eighty-nine samples were serially collected from 

twenty bison teeth (18 ancient and 2 modern) and fourteen samples were collected from one Late 

Holocene horse tooth. Samples represent 14C date ranges spanning the Terminal Pleistocene to 

modern bison in Theodore Roosevelt National Park (TRNP). Analysis of Variance (ANOVA) 

detects significant differences in isotopic values between all temporal groups apart from the Late 

Pleistocene and modern bison. Late Holocene bison values were compared to the Late Holocene 

horse tooth and found significant differences in diet composition.  Bison isotopic trends in this 

study do not indicate large scale migratory movements, apart from potentially two bison. One 

bison in the Late Pleistocene exhibits comparably high δ13C variability, indicating a more varied 
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diet. The other bison that may have been migratory occurred in the Middle Holocene and had an 

unpredictable trend in δ18O values, suggesting either a dependence on water sources not affected 

by precipitation or the avoidance of temperature extremes through migratory movement. These 

results differ from the historical accounts of European settlers on bison migrations. Further 

research should be pursued to accurately define migratory movements by isotopic values. 

 

INTRODUCTION 

Bison have evolved with the North American landscape, fostering the unique biodiversity 

of flora and fauna that can be found in the Great Plains. Patterns of movement for bison prior to 

their management by humans, is not well understood. The majority of bison today are kept in 

confined areas and the question of how far a free-ranging herd would actually migrate or 

disperse, given the opportunity, remains unclear (Gates et al. 2010). Any observance of bison 

behavior prior to their near extirpation is based on conjecture and was unsystematically recorded 

during a time when the natural order of the Great Plains ecosystem was severely disrupted by the 

expansion of European settlers and aggressive overhunting (Cannon 2001). Nonetheless, these 

accounts have recorded longitudinal migrations of bison associated with seasonal changes (Seton 

1929, Leopold and Roe 1970) and east to west migrations from open grassland to the protection 

of the Rocky Mountains in winter (Garretson 1938). Unlike dispersals, migrations are prompted 

by seasonal changes, are not necessarily dependent on population density, and imply that the 

animal will return to the original location (Soubrier et al. 2016). 

Free-ranging extant plains bison (Bison bison bison) can only attempt elevational 

migrations due to the constraints of current management practices (Larter and Gates 1991, 

Reynolds et al. 2003, Daleszczyk et al. 2007). Conversely, free-ranging wood bison (Bison bison 
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athabascae), whose current range is predominately in Alaska and Canada, have not been 

documented to complete any large-scale migratory movements (Larter and Gates 1991).  It has 

been shown that the elevational distance moved by bison is dependent on the severity of local 

conditions. During Yellowstone winters with deep snowpack, bison will move further down in 

elevation than winters with less precipitation and will follow the mountain down with each 

snowstorm (Kauffman et al. 2018). When population density is high and resources are limited (or 

in particularly harsh winters), Yellowstone bison will attempt to move outside of the park, but 

most of their efforts are thwarted by human intervention (Gates et al. 2010). As a result, the 

bison behavior we observe today is still largely influenced by humans. Fencing, hazing, and 

culling practices generally keep bison from venturing into open landscapes (Peacock 1997).  

Given the limited connectivity of wilderness for animals to navigate and the artificial 

conditions bison are kept under, it is not surprising that they generally do not exhibit the type of 

migratory behavior described by early explorers. Whether ancient bison actually did use 

migration as a survival strategy is still in question. Insight into the movement of ancient bison 

could be recorded in the enamel carbonate in bison teeth, where stable isotopes of carbon (δ13C) 

and oxygen (δ18O) can be observed in increments small enough to capture seasonal changes in 

diet.  

The finer resolution of time recorded in bison tooth enamel can provide insight into 

habitat use by bison and also allows the investigation of interspecies interactions on a smaller 

scale. Because a horse tooth was available in the sample assemblage, it is included into this 

chapter to see if comparisons could be made between bison and horse. Modern studies on horse 

and bison diet show that horses incorporate up to fifty percent of browse material while bison 

usually consume less than ten percent of browse (Feranec 2007). Previous isotopic studies 
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assessing habitat use by bovids and equines during the Pleistocene have found evidence of niche 

partitioning between the two species (Feranec 2007, Britton et al. 2012). 

Bison have hypsodont (high-crowned) teeth with enamel that forms in two steps. In the 

first step, a matrix that is high in organic material but lacks minerals is deposited along the 

tooth’s surface. This matrix undergoes maturation and becomes enamel in the second step (Zazzo 

et al. 2012). Enamel builds up from the root to crown incrementally and isotopically represents 

the time period in which it was created, a few weeks to a few months (Passey and Cerling 2002, 

Hillson 2005). These values will not differ from the point in which they are created because, 

unlike collagen, enamel does not undergo remodeling (Lee-Thorp and Sponheimer 2003). The 

maturation process is slower than the initial deposition and may allow for complex patterns of 

formation, resulting in attenuation of the isotopic signal when samples are taken perpendicular to 

the tooth axis. However, modeling work has proven that the signal is not lost (Passey and Cerling 

2002).  

Adding to the complexity of tooth formation are the stages in which bison molars form in 

their lives. The first molar (M1) starts growing in utero and completes mineralization shortly 

after birth. As M1 finishes growth, the second molar (M2) starts forming and mineralizes during 

the first year of the animal’s life (Gadbury et al. 2000). The third molar (M3) erupts at 9 to 10 

months of age and will complete mineralization at 15 to 18 months. Because the M3 forms after 

weaning, it is the only reliable molar to truly represent the diet of the individual and not time in 

utero or nursing on the mother’s milk (Gadbury et al. 2000, Hoppe et al. 2004). While the exact 

effect nursing has on isotopic fractionation is unclear, it is argued that the effect is minimal 

compared to environmental influences (Zazzo et al. 2012). Horse teeth and their enamel forms in 

a similar pattern to bison but will fully mineralize after three years (Hoppe et al. 2004). Because 
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horse tooth mineralization takes longer than bison, the isotopic signal is dampened in comparison 

(Higgins and MacFadden 2004). 

The Northern Great Plains are dominated by plants using the C3 photosynthetic pathway, 

but times of drought could increase the availability of C4 plants (MacFadden and Cerling 1999, 

Cannon 2007). Mammals have a consistent carbon fractionation of +14.6‰ in tooth enamel, 

which translates to all δ13C values above zero equating to a pure C4 diet. Values between 0‰ and 

-8‰ represent a mixed C3/C4 composition and values below -8‰ indicate a pure C3 diet 

(Feranec et al. 2009).  

 δ18O in enamel carbonate, documents meteoric water values (Dansgaard 1964). These 

isotopic signatures are assimilated into bison enamel, and in northern latitudes, oxygen isotopic 

values represent local temperatures (Luz et al. 1984, Hoppe et al. 2004, Britton et al. 2009). 

Therefore, δ18O in Northern Great Plains bison tissues change with the temperature and record 

seasonal variations (Britton et al. 2009). Lower δ18O represent cold seasons and higher values 

indicate warm seasons (Dansgaard 1964), creating a sinusoidal pattern in connection with the 

seasons. Dampening of this sinusoidal pattern may be explained by the animal drinking from 

water sources less affected by precipitation (i.e. lakes, groundwater and large rivers) but could 

also be attributed to large scale migratory movements and the avoidance of temperature extremes 

(Widga et al. 2010, Julien et al. 2012).  

 The objective for this chapter is to determine if Northern Great Plains bison were 

migratory during the Holocene. Based on the information described above, I expect non-

migratory bison in this study to reflect a C3 dominated diet and a distinct sinusoidal pattern (i.e. 

smooth wave pattern) in δ18O indicative of seasonal changes in temperature. Bison which deviate 

from these expected patterns potentially underwent seasonal migrations. 
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METHODS 

Sample Assemblage 

Tooth enamel samples were taken from a subset of bison specimens previously 14C dated 

and analyzed for carbon and nitrogen stable isotopes (Table 1). In total, twenty bison molars and 

one horse molar were selected. The horse molar (median calBP age of 177) was included from 

the antler, horn, and bone collection at the Medora Visitor’s Center for interspecies comparisons. 

Bison samples were chosen to represent time from the Late Pleistocene and throughout the 

Holocene (12,229 calBP to modern bison); two Late Pleistocene, three Middle Holocene, 

thirteen Late Holocene, and two modern. Eleven bison third molars (M3) and nine unspecified 

bison molars (either M1 or M2), and one horse (unspecified molar) were serially sampled for 

carbonate from enamel to analyze carbon and oxygen stable isotopes. Specimens were derived 

from eleven archaeological sites within North Dakota; Big Hidatsa, White Bison Robe, Larson 

Village, Huff Village, Menoken Village, Rustad, Beacon Island, Falkirk Bison Kill, 

Bundlemaker, Double Ditch Village, and Alkali Creek, spanning all cultural traditions (Figures 

1, 2).  

 

Sampling & Pretreatment 

Prior to collecting enamel, the surfaces of the teeth were cleaned using a dental pick and 

sandpaper. Using a Dremel handheld rotary tool with a 3/32-inch tapered diamond file, small 

samples of powdered enamel (~3 mg) were taken parallel to the tooth’s occlusal surface starting 

from the enamel root junction to the tooth apex. The thickest and most intact area of enamel was 

selected for sampling. Depending on the tooth, the most suitable area for sampling was along the 
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protoconid, hypoconid, metaconid, or entoconid.  The enamel powder was collected over sheets 

of aluminum foil and transferred to 2 mL flip-top plastic centrifuge tubes. Powder samples were 

then bathed in 0.1 molar acetic acid for 1 hour to remove all non-structural carbonate from the 

sample.  The acetic acid was removed with pipettes and the sample was rinsed 2x with 1 mL of 

distilled water. Samples were vortexed for 5 seconds and then allowed to settle after rinses. After 

the final DI water rinse, all of the liquid except for one small drop was pulled off of the powder 

to minimize sample loss. Flip top caps on the tubes were left open and the samples were placed 

in an oven to dry at 37ºC for 12-24 hours. 

The pre-treated samples were then sent to the University of Arizona Stable Isotope 

Laboratory where they were reacted with dehydrated phosphoric acid under vacuum at 70ºC. 

Measurements were made on an automated carbonate preparation device (KIEL-III) coupled to a 

gas-ratio mass spectrometer (Finnigan MAT 252). The isotope ratio measurement was calibrated 

based on repeated measurements of NBS-18 (!18O = -22.96‰, 	!13C = -5.00‰ VPDB) and 

NBS-19 (!18O = -2.20‰, !13C = 1.95‰ VPDB) with a precision of ±0.1‰ for !18O and  

±0.08‰ for !13C. 

 

Calibration and Analysis 

 The δ13C values of all ancient teeth dated prior to the Industrial Revolution (older than 

150 calBP) were corrected by -1.5‰ for the reduction in atmospheric CO2 due to the increased 

burning of fossil fuels40. Samples were separated by tooth type (third molar or unspecified 

molar) and were categorized into the formal subdivisions of the Holocene (Walker et al. 2018). 

Due to the different times of formation of bison teeth and potential influence from the mother’s 
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milk (Metcalf 2011), samples will also be labeled by tooth type (M= unspecified, M1 and M2, 

M3= third molar) but will be analyzed as a whole. 

 Analysis of variance (ANOVA) was used to detect significant differences in isotopes 

between bison temporal groups. A t-test was used to compare the difference between the Late 

Holocene horse and Late Holocene bison. ANOVA and t tests were performed in Rstudio 

version 3.5.3.  

 

RESULTS 

One hundred and eighty-nine samples were taken from 20 bison teeth (eighteen ancient 

and two modern) and fourteen samples were taken from the horse tooth (Tables 5, 6).  The 

number of samples per bison tooth ranged from 6 to 13 with an average of 9.5 from each tooth. 

Most bison with more than 30 mm of sampling distance display a sinusoidal pattern of δ18O 

values, indicating the capture of at least a full year of seasonal changes (Figure 7). 

δ13C values for third molars ranged from -12.8‰ to -5.1‰ and had a mean value of -

8.8‰. δ13C for the unspecified molars ranged from -12.4‰ to -4.2‰ with a mean of -7.9‰. 

δ18O for third molars ranged from -17.4‰ to -5.0‰ and had a mean of -10.9‰. δ18O values for 

the unspecified molars ranged from -15.3‰ to -4.7‰ and had a mean of -10.8‰. Amplitude for 

bison δ13C ranged from 0.5 to 3.4 with an average of 1.3 and amplitude for δ18O ranged from 2.4 

to 8.2 with a mean of 5.0. The horse tooth amplitude was comparable to the bison, 2.9 and 3.5 

for δ13C and δ18O, respectively (Figure 8, Table 7). However, the horse tooth was statistically 

different from Late Holocene bison in δ13C values (t-test, p < 0.001).  

Analysis of Variance (ANOVA) determined significant differences in δ13C and δ18O 

between bison by temporal episode. Middle Holocene bison were significantly different from 
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Late Holocene (δ13C, p < 0.001, δ18O, p < 0.001) and modern (δ13C, p < 0.001, δ18O, p = 0.003) 

bison for both isotopes. Late Pleistocene and modern bison were most similar with no significant 

differences in either isotope (δ13C, p = 0.99, δ18O, p = 0.80). All other comparisons were 

significantly different in δ13C (p < 0.001) but not δ18O (Table 8). 

Overall, Modern and Late Pleistocene bison had diets dominated by C3 vegetation (i.e. 

carbon values lower than -8‰). Some Middle and Late Holocene bison had diets that were C3 

dominated while others showed a mix of C3 and C4 vegetation composition (Figure 9). 

 

DISCUSSION 

The sampling strategy in this study aims to capture at least a year of seasonal changes in 

bison diet. Bison molar teeth will wear down with age and some teeth in the sample assemblage 

were more worn than others and may not represent a full year of growth. Overall, bison teeth 

with at least 30 mm of sampling length likely depicted a full year of changes (Higgins and 

MacFadden 2004).  

δ13C profiles indicate a C3 dominated diet with some incorporation of C4 vegetation in 

bison from all temporal episodes except for modern TRNP bison (Figure 9). A few bison from 

the Late Holocene have more C4 plants into their diet during the summer season, when an 

increase in available C4 grasses would be expected (Figures 7d, 7g). However, there are also 

several bison that record an increase in C4 plants during the winter (Figures 7i, 7p, 7t). This can 

be explained by the increased consumption of 13C depleted lichen in bison diet during the lean 

winter months (Widga et al. 2010, Julien et al. 2012). 

The mean values of δ18O varied widely but net changes in amplitude are similar amongst 

all bison and are comparable to changes that can be seen in modern meteoric water sources in 
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Northern latitudes (Table 7) (Widga et al. 2010). A sinusoidal pattern representative of the 

seasons is shown in all bison with a sufficient sampling distance except for one. Bison 67 from 

the Middle Holocene records more frequent and unpredictable shifts in δ18O than other bison 

(Figure 7b). The deviation from sinusoidal seasonal curves of the δ18O isotopic signal in this 

bison could indicate a reliance on water sources not closely tied to precipitation or avoidance of 

temperature extremes from large-scale migratory movements (Widga et al. 2010). 

The two Late Pleistocene bison exhibit the most variability in isotopic values (Table 7). 

Despite having a short sampling distance for Bison 62, it exhibits the largest variation in δ13C 

that decreases as temperatures warm (Figure 7a). The drop in δ13C may be explained by the bison 

spending more time in heavily forested areas to escape the day’s heat but this trend is not shared 

with its temporal cohorts (van der Merwe 1991). Bison 59 likely consumed lichens during the 

winter months as higher δ13C values are observed when temperatures drop (Julien et al. 2012) 

(Figure 7l).  The variability in this bison’s carbon values suggest that it came across more diverse 

vegetation than its counterparts. Whether this is influenced by local phenology or if the bison 

expanded its range to reach more vegetation is unclear. Late Pleistocene bison were derived from 

the Beacon Island archeological site. This site records a C3 dominated plant community in other 

proxies studied. While Bison 59 did incorporate C4 plants into its diet, it is not enough to confirm 

that it came from a different vegetational community (Mandel et al. 2014).   

Middle Holocene bison had diets with mixed composition and significantly differ from 

all other temporal groups in δ13C (Figure 9, Table 8). Bison 67 and Bison 68 (Figures 7b, 7m, 

respectively) consumed more C4 plants in colder months but this trend is not observed in Bison 

48 (Figure 7n). This could be due to its later occurrence at Rustad (~200 years later) and the 

large climatic fluctuations associated with Middle Holocene climate that would alter the 
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composition of vegetational communities (Grimm et al. 2011, Commerford et al. 2018). Climatic 

records indicate an overall shift towards longer and warmer growing seasons and supports the 

inclusion of more C4 plants in the Middle Holocene bison diet (Widga et al. 2010).  

Most Late Holocene bison exhibit a C3 dominated diet and small changes in δ13C despite 

seasonal changes being well documented by oxygen, with the exception of a few individuals. 

Bison 43 (Figure 7c) increases C4 plants into their diet when temperature cools and were likely 

subsisting on lichens. Conversely, Bison 47 (Figure 7r) only shows an increasing trend in C4 

plants as temperatures get warmer. Bison 39 (Figure 7q) and Bison 47 were likely herd cohorts 

given they were both derived from the Falkirk Bison Kill site, share very similar 14C ages, and 

have similar isotopic trends. However, the short sampling distance on Bison 47 makes it difficult 

to make inferences for all seasons.  

Another likely cohort group are three bison from White Bison Robe, Bison 11 (Figure 

7g), Bison 41 (Figure 7h), Bison 42 (Figure 7f) (Table 7). While Bison 42 records some lower 

oxygen values than the others, they all exhibit very small changes in δ13C throughout the 

seasons. Such small changes in δ13C has been associated with non-migratory behavior and are 

consistent for all Late Holocene bison in this study. Hanson (1984) suggested that bison living in 

North Dakota during the Late Holocene had access to enough quality forage for migratory 

movements to be an obsolete endeavor. However, Chisholm et al., (1986) proposed that Late 

Holocene bison from Canada were likely migrating to North Dakota in the winter to obtain better 

forage based on the incorporation of more C4 plants than expected for the local vegetative 

community. If Chisholm’s hypothesis was correct, there is a possibility that some bison from the 

current sample assemblage could have originated from Canada and would show more variation 
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than the bison who lived year-round in present day North Dakota. This is not detected in Late 

Holocene bison from North Dakota by this sample set (Table 7).  

The Late Holocene horse tooth has a weaker sinusoidal signal in oxygen values than most 

bison sampled in this study (Figure 8). This is likely due to the longer time averaging that takes 

place during horse enamel formation (Hoppe et al. 2004, Higgens and MacFadden 2004). The 

horse incorporated significantly different vegetation than bison (t-test, p < 0.0001). Late 

Holocene bison frequently incorporated C4 vegetation into their diet but this horse fed strictly on 

C3 plants. This is consistent with horses incorporating more trees and shrubs into their diet 

(~50%) as those materials are more depleted in 13C than herbaceous plants. However, there is no 

clear signal for resource partitioning here because some bison during the Late Holocene also 

displayed strictly C3 dominated profiles (Figure 9). 

Overall, the sample assemblage is indicative of non-migratory bison with a couple of 

exceptions, such as Bison 62 in the Late Pleistocene and Bison 67 from the Middle Holocene 

(Figures 7a, 7b). However, there is still uncertainty if these bison came from an outside area or 

just had access to more diverse vegetation in the highly mosaiced landscaped associated with the 

Late Pleistocene and the frequent climatic changes during the Middle Holocene (Cooper et al. 

2015). Sampling more bison would help elucidate bison ecology during this time.  

These results challenge the observations of early explorers in which bison were reported 

to migrate with the seasons in mass numbers. The image of bison thundering in large herds 

across the prairie was more likely driven by abrupt changes in the landscape and the intense 

pressure from hunters who were motivated to kill as many bison as possible. However, it must be 

considered that the methods to infer migratory movements from isotopic signatures are still 

limited. The lack of contiguous lands in the modern world leaves us no migratory counterparts to 
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compare to ancient bison and limits our ability to define the values that indicate large scale 

movements. The only animals in North America that are still able to complete large scale 

migrations belong to the Cervidae (deer) family and they have different diets than bison. The 

collection of more data from expanded geographical areas can help obtain a better resolved 

picture. For instance, bison who lived at the edge of their historical range should be studied to 

observe how the stress of living at the extent of suitable habitat affected their isotopic values. 

The incorporation of more isotopic data and continued studies of recently reintroduced bison to 

the landscape will only increase our understanding of the resilient Bison species and inform 

management strategies.
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a.  
 

b.  
 
Figure 7. Serially sampled isotopic values for each tooth. Red lines depict oxygen while black 
lines indicate carbon values. The cutoff for C3 dominated diets (-8 and below) and a mix of C3/C4 
(-8 and above) are depicted with a green dashed line. Pictures of the sampled tooth are included 
as well as whether it was a M3 (third molar) or M (unspecified M1 or M2). M3 are listed first, 
from oldest to youngest, then M are listed from oldest to youngest. 
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Figure 7 continued. 
 



55 
 

 
e. 
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Figure 7 continued. 
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Figure 7 continued. 
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Figure 7 continued. 
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Figure 7 continued. 
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Figure 7 continued. 
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Figure 7 continued. 
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Figure 7 continued. 
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Figure 7 continued. 
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Figure 8. Serial sampled isotopic data for the Late Holocene horse tooth molar (M). Red lines 
depict oxygen values while black lines indicate carbon values. The cutoff for C3 dominated diet 
(-8 and below) and a mix of C3/C4 (-8 and above) is depicted with a green dashed line.  
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Figure 9. Means and standard deviations for each bison tooth sampled with carbon on the x-axis 
and oxygen on the y-axis. Colors indicate temporal period and shapes represent the type of tooth, 
circles for M (unspecified molars M1 or M2) and triangles for third molars (M3). An additional 
shape symbol (circle with a yellow square to highlight) is added to distinguish the horse tooth.  
 
Table 5. Serial data isotopic (VPDB) values for M (unspecified molars, M1 or M2) and M3 teeth, 
the calBP age, distance from the root (mm), and temporal episode associated with the sample. LP 
(Late Pleistocene), MH (Middle Holocene), LH (Late Holocene), and MOD (modern). 

4 -6.84 -10.12
8 -7.96 -8.56
12 -9.06 -7.60
14 -10.09 -5.60
18 -10.16 -5.01
23 -10.00 -5.03
4 -5.74 -7.96
7 -5.89 -7.02
10 -6.77 -7.00
14 -5.87 -6.50
18 -5.42 -7.87
22 -5.77 -7.85
25 -5.84 -7.56
28 -6.16 -8.79
31 -6.04 -8.54
34 -5.69 -8.90
37 -5.32 -8.71

calBP Age EpisodeDistance (mm)ToothID δ13C δ18O 

62 12431M3 LP

67 8107M3 MH
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Table 5 continued. 

 

3 -5.43 -9.94
6 -5.64 -8.90
10 -5.51 -7.15
12 -5.94 -7.00
16 -5.69 -7.03
20 -5.39 -8.17
24 -5.09 -9.51
5 -7.34 -10.10
9 -7.58 -10.10
12 -7.73 -10.53
16 -7.79 -11.07
19 -7.87 -11.72
22 -7.91 -12.65
25 -8.05 -13.40
29 -8.08 -13.81
32 -8.19 -14.15
35 -7.99 -13.65
38 -8.09 -13.59
42 -8.10 -13.41
44 -8.15 -12.87
8 -6.55 -9.91
13 -6.28 -7.15
18 -6.68 -6.75
24 -6.92 -8.78
30 -7.10 -10.77
35 -7.47 -11.44
41 -7.46 -11.71
47 -7.33 -10.28
51 -7.61 -9.45
56 -7.45 -8.45
60 -7.37 -7.20
4 -9.35 -13.87
9 -9.35 -13.36
13 -9.31 -11.48
16 -9.77 -12.05
20 -9.48 -13.19
24 -9.93 -14.96
30 -10.06 -17.36
36 -10.21 -16.97
40 -10.12 -16.20

ID Tooth Distance (mm) δ13C δ18O calBP Age Episode

42 386M3 LH

32 437M3 LH

13 504M3 LH

43 1077M3 LH
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Table 5 continued. 

 

4 -8.12 -13.86
9 -8.21 -12.78
12 -7.83 -11.72
16 -7.69 -10.29
20 -8.00 -10.35
23 -8.23 -11.91
26 -8.24 -12.81
29 -8.09 -13.97
33 -8.35 -14.88
37 -8.48 -14.94
4 -8.89 -10.52
9 -9.10 -9.79
14 -9.37 -9.98
20 -9.35 -11.20
24 -9.22 -12.08
29 -9.34 -13.95
33 -9.26 -13.41
37 -9.39 -13.36
42 -9.27 -12.77
46 -9.22 -12.14
49 -9.43 -10.89
2 -10.42 -15.47
5 -10.61 -13.86
11 -10.61 -11.45
16 -10.71 -11.88
19 -10.49 -13.50
24 -10.34 -15.15
27 -10.40 -16.71
30 -10.16 -16.97
34 -10.38 -16.16
38 -10.31 -15.17
42 -10.69 -13.23
5 -10.09 -8.45
10 -10.17 -9.72
15 -11.43 -13.88
19 -11.31 -14.62
24 -11.61 -14.77
29 -11.54 -14.17
34 -11.84 -13.09
38 -12.44 -11.30
45 -12.38 -9.77

26 170M3 LH

41 380M3 LH

11 381M3 LH

59 12229M LP

calBP Age EpisodeID Tooth Distance (mm) δ13C δ18O 
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Table 5 continued. 

 
 
 
 
 
 

5 -6.74 -8.88
10 -6.57 -9.40
16 -5.65 -10.49
21 -5.54 -9.24
25 -5.61 -8.04
29 -5.42 -7.61
32 -5.24 -6.64
34 -6.36 -7.11
3 -6.68 -8.67
6 -8.11 -4.71
10 -8.39 -5.62
13 -8.50 -7.35
17 -8.54 -9.90
20 -8.18 -11.00
24 -8.09 -12.87
6 -7.48 -12.66
11 -8.12 -11.47
16 -7.64 -10.30
21 -8.13 -9.23
26 -8.68 -9.88
31 -8.72 -10.15
36 -8.60 -11.65
41 -8.66 -12.53
47 -8.77 -12.76
9 -6.49 -9.46
15 -6.90 -8.38
20 -7.05 -7.36
25 -7.16 -6.97
30 -7.16 -7.43
35 -7.26 -8.07
41 -6.92 -9.68
45 -6.78 -11.02
50 -6.54 -11.86
54 -6.49 -12.61
59 -6.18 -11.57

calBP Age Episode

68 8116 MHM

49 M LH2728

ID Tooth Distance (mm) δ13C δ18O 

48 7936M MH

35 1027M LH
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Table 5 continued. 

 
 
 

3 -9.08 -13.62
6 -9.33 -13.50
9 -9.00 -13.33
12 -9.01 -14.12
16 -8.71 -13.00
20 -8.62 -12.94
24 -8.70 -12.48
28 -9.02 -12.56
32 -8.99 -11.15
38 -10.04 -9.88
41 -9.77 -9.00
45 -10.51 -7.73
5 -9.84 -15.31
9 -9.50 -13.69
13 -8.77 -12.25
17 -8.62 -11.90
20 -8.45 -10.97
2 -4.20 -5.80
4 -4.95 -7.71
7 -4.96 -10.96
10 -4.94 -11.97
16 -4.80 -10.40
18 -4.98 -8.98
20 -5.01 -7.64
24 -4.82 -6.55
7 -5.73 -11.08
11 -6.11 -10.98
15 -5.75 -9.79
19 -5.85 -9.29
24 -5.65 -7.79
29 -5.61 -8.65
34 -5.54 -12.52
39 -5.01 -14.15
45 -5.42 -13.90
51 -5.21 -13.16
56 -5.19 -12.53

ID Tooth Distance (mm) δ13C δ18O calBP Age Episode

34 379M LH

47 653M LH

30 296M LH

39 656M LH
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Table 5 continued. 

 
 
Table 6. Serial data values for the Late Holocene (LH) horse M (M1 or M2) sample. 

2 -10.60 -8.79
5 -10.32 -8.83
9 -10.86 -7.84
15 -11.10 -7.87
21 -11.00 -9.49
24 -11.12 -10.12
30 -10.97 -11.36
35 -11.16 -11.50
41 -11.21 -10.57
47 -11.17 -10.02
53 -11.26 -8.95
3 -9.75 -15.26
6 -9.76 -14.58
8 -9.78 -13.37
10 -9.88 -13.38
12 -10.12 -12.32
14 -10.11 -11.62
16 -10.31 -10.93
19 -10.60 -10.44
21 -10.60 -10.37

ID Tooth Distance (mm) δ13C δ18O calBP Age Episode

100 
(TRNP 

Bull)
naM3 MOD

103 
(TRNP 
Cow)

naM3 MOD

17 -10.13 -10.85
22 -9.79 -11.62
27 -9.42 -12.63
31 -8.82 -13.97
36 -8.46 -14.38
39 -9.34 -13.37
43 -9.85 -12.61
47 -9.99 -12.71
52 -9.80 -12.59
56 -10.20 -12.95
60 -10.45 -12.92
64 -11.14 -12.65
67 -11.41 -13.36
72 -11.44 -13.42

Episode

105 (Horse) 177M LH

ID Tooth Distance 
(mm)

δ13C δ18O calBP Age
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Table 7. Summary statistics of carbon and oxygen stable isotopes for enamel sampled from twenty bison and one horse, the 
archeological site which they are derived from, and calBP date. 

 
 

From To Mean Min Max SD Mean Min Max SD
62 Beacon Island 12547 12140 12431 LP M3 6 23 -9.01 -10.2 -6.8 1.36 3.4 -6.99 -10.12 -5.01 2.1 5.11
67 Rustad 8178 8036 8107 MH M3 11 37 -5.87 -6.8 -5.3 0.38 1.5 -7.88 -8.90 -6.50 0.81 2.40
43 Menoken Village 1175 989 1077 LH M3 7 24 -5.52 -5.9 -5.1 0.27 0.8 -8.24 -9.94 -7.00 1.2 2.94
13 Huff Village 518 487 504 LH M3 13 44 -7.92 -8.2 -7.3 0.25 0.9 -12.39 -14.16 -10.10 1.5 4.06
32 Larson Village 491 320 437 LH M3 11 60 -7.11 -7.6 -6.3 0.44 1.3 -9.26 -11.71 -6.75 1.7 4.96
42 White Bison Robe 458 307 386 LH M3 9 40 -9.73 -10.2 -9.3 0.36 0.9 -14.38 -17.36 -11.48 2.1 5.88
11 White Bison Robe 460 313 381 LH M3 10 37 -8.12 -8.48 -7.7 0.24 0.78 -12.75 -14.93 -10.30 1.7 4.63
41 White Bison Robe 465 315 380 LH M3 11 49 -9.25 -9.4 -8.9 0.15 0.5 -11.83 -13.96 -9.79 1.4 4.17
26 Big Hidatsa 290 14 170 LH M3 11 42 -10.46 -10.71 -10.2 0.17 0.51 -14.50 -16.97 -11.46 1.9 5.51

100 TRNP Bull na na na MOD M3 11 53 -12.42 -12.75 -11.8 0.29 0.95 -9.58 -11.50 -7.84 1.3 3.66
103 TRNP Cow na na na MOD M3 9 21 -11.3 -12.1 -11.2 0.34 0.9 -12.47 -15.26 -10.37 1.8 4.89
59 Beacon Island 12396 12056 12229 LP M 9 45 -11.42 -12.4 -10.1 0.83 2.3 -12.19 -14.77 -8.45 2.4 6.32
68 Rustad 8187 8042 8116 MH M 8 34 -5.89 -6.7 -5.2 0.57 1.5 -8.43 -10.93 -6.64 1.3 4.29
48 Rustad 7972 7860 7936 MH M 7 24 -8.07 -8.5 -6.7 0.64 1.8 -8.59 -12.87 -4.71 2.9 8.16
49 Alkali Creek 2750 2539 2728 LH M 9 47 -8.31 -8.8 -7.5 0.49 1.3 -11.18 -12.76 -9.23 1.3 3.53
35 Bundlemaker 1173 979 1027 LH M 11 59 -6.81 -7.3 -6.2 0.35 1.1 -9.49 -12.61 -6.97 2 5.64
39 Falkirk Bison Kill 673 566 656 LH M 12 45 -9.23 -10.5 -8.6 0.58 1.9 -11.94 -14.12 -7.73 2 6.39
47 Falkirk Bison Kill 670 565 653 LH M 5 20 -9.03 -9.8 -8.5 0.6 1.3 -12.82 -15.31 -10.97 1.7 4.34
34 Double Ditch Village 465 315 379 LH M 8 24 -4.83 -5 -4.2 0.27 0.8 -8.75 -11.97 -5.80 2.2 6.17
30 Falkirk Bison Kill 309 156 296 LH M 11 56 -5.55 -6.2 -5 0.32 1.2 -11.26 -14.15 -7.79 2.2 6.36

105 (horse) Medora 289 20 177 LH M 14 72 -10.02 -11.44 -8.5 0.89 2.94 -12.86 -14.38 -10.85 0.89 3.53

δ18O 
Amplitude

ID Location calBP Date Range calBP median Tooth δ18O (VPDB)Temporal 
Episode

δ13C (VPDB)n Distance (mm) δ13C 
Amplitude
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Table 8. Analysis of variance (ANOVA) p-value results for differences 

between bison carbon and oxygen stable isotopes by temporal groups. 

 
  

Isotope Late Pleistocene Middle Holocene Late Holocene
!13C < 0.001
!18O 0.1
!13C < 0.001 < 0.001
!18O 0.17 < 0.001
!13C 0.99 < 0.001 < 0.001
!18O 0.8 0.003 0.72

Late Holocene

Middle Holocene

Modern
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CHAPTER IV 

MICROFOSSILS IN BISON DENTAL CALCULUS 
 

ABSTRACT 

 The contents of bison dental calculus can be used to infer paleoecology of ancient bison 

along with isotopic values. Dental calculus accumulates on the surface of animal teeth and 

remains well-preserved in a mineralized matrix. Microfossils will become assimilated into the 

calculus during mastication and can later be extracted for microscopy viewing. The calculus 

from fifty-four ancient, and three modern bison teeth was extracted, demineralized, and viewed 

under light microscopy and scanning electron microscopy. Microfossils such as pollen, animal 

hairs, diatoms, and phytoliths were found. While the utility of this method is limited in making 

correlations with stable isotopic data due to the difficulty in identifying the objects found, it does 

give qualitative information about the bison’s environment and could lead to new research 

questions based on the contents found. 

 

INTRODUCTION 

 Several materials in a bison tooth can be used for isotopic analysis to provide valuable 

information about ancient bison diet and environment. However, there is another medium present 

on the surface of bison teeth that allows us to gain additional insight into the time in which the 

bison lived. Dental calculus (plaque) is a mineralized substance that accumulates on the surface 

of teeth and remains well-preserved in archeological specimens (Hillson 2005). During 
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mastication, components from the bison’s diet and environment becomes incorporated into the 

calculus matrix and can later be extracted for microscopic viewing (Middleton and Rovner 

1994). In order for the mineralization process to occur, saliva must be present. This is a good 

indication that the material included in calculus originates when the animal is alive and does not 

accumulate post-mortem (Middleton and Rovner 1994).  

The composition of calculus can vary by species (Middleton and Rovner 1994) as well as 

the chemical and microbiome makeup of individuals (Power et al. 2014). There is also 

uncertainty about what materials can be recovered in the extraction process (Weber and Price 

2016). In general, pollen grains, diatoms, and starches are well-preserved for viewing (Middleton 

and Rovner 1994, Cannon 1997, Plumb et al. 2009) and may help parse out the data generated 

from isotopic analysis. Phytoliths are plant silica bodies that form when monosilicic acid is 

absorbed by plants through the soil and are also typically abundant in archeological samples. 

This method has been predominately used in the study of recreating ancient hominid diet 

to gain insight into farming and cooking practices (i.e. cooked starch versus raw starch grains) 

(Henry and Piperno 2008, Piperno and Dillehay 2008, Li et al. 2010, Leonard et al. 2015). In a 

limited number of studies, the diet of extinct herbivores has been observed to better understand 

the ecological changes that may have led up to the Pleistocene-Holocene megafaunal extinction 

event (Boyd 2003, Asevedo et al. 2012). Mastodon (Mammut americanum) specimens from 

Kansas during the Late Pleistocene revealed a suspicious lack of browse material (trees, shrubs, 

and other woody vegetation recovered from the calculus matrix (Gobetz et al. 2001). Whether 

the phytoliths from woody vegetation were inherently less preserved in this context or if 

mastodons turned to a heavier dependence on grasses when environmental conditions were 

rapidly changing is unclear (Gobetz et al. 2001). A study on the extinct Pleistocene gomphothere 
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(Notiomastadon platensis) in Brazil found sufficient evidence of browse material incorporated 

into their diet (Asevedo et al. 2012). Whether these differences are due to the ecology of the 

herbivores from different regions or if browse material can be less abundant in the archeological 

record isn’t fully understood and supports the notion that more dental calculus data needs to be 

collected to answer paleoecological questions.  

Previous work on one bison from Fawn Creek, Idaho observed microfossils in bison 

dental calculus and the contents of the infundibulum of bison molars (Cannon 1997). Grass 

phytoliths found could be categorized as short cell or smooth elongate. Short cell grass phytoliths 

come in various shapes but are usually symmetrical. Elongate grass phytoliths are plant 

epidermal cells that are long and slender with tapering edges (Twiss 1987). Short cell phytoliths 

are found in Festucoid, Chloridoid, and Panicoid tribes of grasses but smooth elongate grass 

phytoliths are produced by a wide variety of grasses and do not aid in resolving grass 

composition (Cannon 1997). Pollen from pine and Douglas fir, diatoms (single celled, silica 

bodied algae), starch, and plant fibers were also extracted from the three bison molars. 

In this chapter, the contents of ancient bison dental calculus will be extracted and viewed 

under light microscopy (LM) and scanning electron microscopy (SEM) to attempt to corroborate 

information gained from stable isotope analysis and supplement the data with qualitative 

information from the paleodiet and paleoenvironment of Northern Great Plains bison. The 

frequency of browse material will be evaluated as well as indications of environmental 

conditions based on the contents found. It is expected that bison dental calculus will contain 

pollen from grasses and evergreens, as well as phytoliths from various plants and grasses. Other 

environmental cues may also be identified. For comparisons to modern counterparts, the calculus 

from TRNP bison teeth will also be demineralized and viewed.  
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Two different extraction solutions will be used to demineralize the calculus. All studies 

mentioned above use hydrochloric acid (HCl) during the demineralization process as outlined by 

the foundational research of Middleton and Rovner (1994). Tromp et al. (2017) evaluated the 

utility of ethylenediaminetetraacetic acid (EDTA) to extract microfossils from calculus and 

suggest it may be a more effective solution to preserve the historical contents. As an added 

convenience, EDTA is in the protocol for both microscopic observation and DNA extraction, so 

it can allow for more material to be used for both types of analysis. The extraction of DNA from 

dental calculus has proven to be a useful medium for collecting environmental DNA (eDNA) and 

evidence of microbial communities within the oral microbiome (Warinner et al. 2015).  

 

METHODS 

Microfossil Extraction 

Dental calculus was scraped off of bison teeth using dental picks, a chisel, and various 

instruments form an archeological tool set. Care was taken to remove large pieces of calculus to 

minimize surface area exposed to modern elements. If excessive dirt was present on the surface 

of the tooth and calculus, it was scraped off with a scalpel. The pieces of calculus were weighed 

and placed in low static plastic 2 mL flip top centrifuge tubes. Larger samples were placed in 

plastic tubes and split between microscopy and environmental DNA analysis. The microscopy 

samples were then transferred to the low static 2 mL centrifuge tubes with some designated for 

light microscopy and some designated for scanning electron microscopy. An initial rinse of 

approximately 1 mL (or enough to cover the top of the sample) 10% hydrochloric acid (HCl) was 

used to clean off the exterior of the calculus. This rinse was left on for one minute then pulled off 

with a pipette. The sample was then rinsed with ~1 mL of deionized (DI) water, agitated, then 
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the DI water was pipetted off. For samples with a lot of dirt present, the calculus was transferred 

to a new centrifuge tube and rinsed again with DI water. Once the samples were sufficiently 

clean on the outer layer, ~1 mL (or enough to cover the top of the sample) of 10% hydrochloric 

acid HCl was added to the centrifuge tube and allowed to sit until the sample had dissolved. The 

demineralization process was encouraged by gently probing the samples with a pick periodically. 

Most samples dissolved within 24 hours but some took up to 72 hours to demineralize. Samples 

were checked as often as possible to ensure thy did not remain in the HCl for long after 

demineralization. Once demineralized, samples were centrifuged at 13,000 rpm for 7 minutes 

and the HCl was pipetted off carefully to minimize sample loss. Approximately a 1 mL rinse of 

DI water was added and the sample was centrifuged again, the water pipetted off and this process 

was repeated for a second rinse. A small amount of DI water was then added to the light 

microscopy samples (enough to pipette them onto a glass slide). This procedure was also 

reproduced with some samples using ethylenediaminetetraacetic acid (EDTA) to compare the 

outcomes of microfossil viewing with HCl and EDTA extractions. EDTA required more time for 

demineralization and samples were placed on a shaker on low speed during the demineralization 

process, but otherwise the extraction procedure was the same.  

 

Microscopy 

 Light microscopy samples were viewed using a Leica DM750 microscope and a Leica 

ICC50 camera. Images were captured using Leica Acquire software version 3.4.1. Some light 

microscopy samples were taken to the Human and Imaging Core Facility of the School of 

Medicine and Health Sciences at the University of North Dakota (UND) and viewed using a 

Zeiss LSM Meta Confocal microscope and ZEN software. Samples were viewed under 10x, 20x, 
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and 40x objectives. Samples for scanning electron microscopy were left to dry slightly and then 

mounted on aluminum stubs with double sided carbon tape in. a positive pressure hood. After 

properly set, the SEM samples were transferred to the Imaging Core Facility at UND where they 

were left in a desiccator for at least 24 hours prior to being sputter coated with gold for 20 – 30 

seconds (depending on the thickness of the sample, thinner samples were coated for less time). 

SEM samples were viewed between 5 – 7 kv and 300x to 2000x on a Hitachi 4700 Field 

Emission SEM.  

The risk of incorporation of modern material is high for this extraction process, so 

precautions were taken to minimize the chance of contamination. Extraction took place in a 

positive pressure hood and all tools were sterilized after each step. A running tally of 

microfossils was kept as samples were viewed. Categories for fibrous material (root like 

structures), elongate grass phytoliths, short grass phytoliths, pollen grains, hair, diatoms, 

tracheid/vessel elements (water conducting cells in vascular plants), starches, browse, and 

unidentified were made to organize the observations.  

 

Identification of Microfossils 

After microfossils were put into a category, various methods were employed to try to 

identify the object. Grass phytoliths were characterized using conventions from Twiss et al. 

(1969). Online databases were also used for identifying plant material. Phytoliths from woody 

vegetation were recognized using the database from “woodanatomy.ch”. Pollen was narrowed 

down to the Poaceae family and Betula genus using “paldat.org” and “microlabgallery.com”. 

Other plant components were discerned by searching for microscopic images of various plant 

parts or images of plants known to be present in the study area to make a visual match. 
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Chrysophycean cysts were discovered by using a reverse Google image search which led to 

identified images by Firsova et al. (2011). Other microfossils were identified by reaching out to 

people knowledgeable in in the appropriate areas. The mite was classified to suborder 

Trigynaspida by fellow graduate student and parasitologist Staci Dreyer. The diatoms were 

described through an email communication with diatom expert, Dr. Jeffrey Stone, Indiana State 

University. 

 

RESULTS 

 Calculus from fifty-four ancient bison teeth and three modern bison teeth was extracted 

and demineralized (Table 9). Ancient teeth were derived from 14 archeological sites with calBP 

dates in the Late Holocene (166 – 2728 calBP), except for one tooth from Rustad which is aged 

in the Middle Holocene (8107 calBP) (Figure 1, Table 9). Twenty-eight samples were split 

between SEM and light microscopy and 26 samples had the EDTA method applied. There was 

no observed difference in the preservation of microfossils between the extraction solutions apart 

from the extraction process taking considerably longer with EDTA. Microfossils found were 

split into the categories: fibrous root-like material (n=163), elongate grass (n=275), phytolith 

(n=387), pollen grains (n=268), hair (n=10), diatoms (n=2), tracheids (n=16), starch (n=25), 

browse (n=8), cysts (n=13), and unidentified (n=4). A total of 1,170 microfossils were observed 

(Figures 10 – 17, Tables 9, 10). 

 Taxonomic identifications in ancient material included Navicula diatoms, algae from the 

group Chrysophyceae (Figure 10), and pollen from the Poaceae family (Figure 11a; 11d, 11g, 

11h). Identifications in modern dental calculus included pollen from the Betula (birch) genus 

(Figure 17e) and a mite which belongs to the diverse suborder of Trigynaspida (Figure 17d).  
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DISCUSSION 

 While numerous microfossils were present in the bison’s calculus, many were unable to 

be identified. Fibrous materials likely came from the roots of various plants and elongate grass 

phytoliths led to no identification due to their presence in many different types of grasses 

(Cannon 1997). Other phytoliths came from grasses but the only specimens able to be identified 

with some confidence are from the C4 subfamilies of Chloridoideae (Figure 13a) and 

Panicoideae (Figure 17c, in modern bison) grasses (Twiss 1987, Ramsey et al. 2016). Tracheids, 

elongated cells which transport water in the xylem of vascular cells, were also found in 

abundance (Figure 14). Tracheids are present in most flowering plants but are not usually seen in 

grasses.  

 Several hairs were extracted from the bison calculus (Figure 15). While Figure 15a could 

potentially be a bison hair, the other three hairs remain unidentified. Figure 15c and15d have a 

unicellular medulla comparable to species like cats, mice, and foxes (Hausman 1920). These 

hairs could have been present in the bison’s grazing area and assimilated into the calculus matrix 

during chewing.  

Because bison are one of the few surviving megafauna of the Pleistocene-Holocene 

transition, paleoecological studies seek to identify the reasons for bison’s success. One 

explanation states that bison were able to switch between grazing and browsing foraging 

behavior as climatic shifts changed the composition of plant communities. Bison during the Late 

Pleistocene from different geographical areas within the United States have been shown to 

incorporate more browse into diet than bison from other temporal periods (Rivals et al. 2007, 

Coltrain et al. 2004). European bison are thought to have evolved on the grasslands as grazers 

and then shifted to forested areas and a browsing diet as a result of environmental pressure 
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(Bocherens et al. 2015). Therefore, a potential utility of observing plant material in ancient bison 

dental calculus is to determine if there were shifts between grazing and browsing behavior 

throughout their ecological history.  

Browse material was present in bison dental calculus from the present studies’ sample 

assemblage but at a low rate compared to modern bison diet studies, corroborating the idea that 

browse may be less well-preserved in some contexts (Gobetz et al. 2001). Ten percent of bison 

sampled contained some browse material, not including tracheids, which could also be derived 

from woody vegetation. A few tree-like (dendriform) phytoliths (Figure 12) were uncovered as 

well as a pollen grain from the genus of Pinus (pine trees) (Figure 11b) and a stemwood 

phytolith from an evergreen (Figure 12c). Figure 12d was derived from a bison aged 111 calBP 

in the Sakakawea archeological site while the other two dendriform phytoliths (Figure 12a, 12b) 

were found in Bison 70 from Alkali Creek. Although Bison 70 was not carbon dated, other bison 

from Alkali Creek have a calBP date range of 2728 – 1466 (Figure 2, Table 1).  

Herbaceous material was recorded more frequently in bison dental calculus samples. 

Grass pollen was particularly prevalent with 24 bison (44%) having at least one pollen grain 

(Table 9). Most pollen grains were identified broadly from the Poaceae family based on their 

dimpled, round appearance and frequent occurrence with air sacs and tails. These components 

were more visible using light microscopy (Figure 11), however, some pollen air sacs were visible 

in SEM images (Figure 11e, 11f).  

 Two forms of algae were observed in the calculus samples, chrysophycean cysts (golden 

algae) and diatoms. Golden algae are mainly found in freshwater (Tromp 2011) and their 

abundance in bison dental calculus samples (Figure 10a; 10f) only indicates the availability of 

water in the bison’s habitat. The two diatoms are both identified as biraphid (having two grooves 
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on the diatom’s cell wall) but only one could be narrowed down to the Navicula genus (pictured 

on the right in Figure 10g). Diatoms from the Navicula genus are often motile and can be found 

in freshwater ponds and rivers in North America at various depths (Fritz et al. 1993). The 

diatoms would have been incorporated into the bison’s calculus through drinking.  

 The modern bison provided a proxy to determine how well ancient material has been 

preserved within the calculus matrix. Unsurprisingly, the contents of modern bison dental 

calculus were generally more well preserved than the ancient bison but were not vastly different. 

Phytoliths in particular were as well preserved in modern bison as they were in the ancient 

material. Modern bison calculus components consisted of a single pollen granule that belongs to 

the Betula genus (Figure 17e), a member of the subfamily Panicoid grass phytolith (Figure 17c), 

a vessel element (Figure 17a), a tracheid (Figure 17b), and a Trigynaspida mite (Figure 17d). 

This mite type is found in soils and under the bark of trees and decaying logs and isn’t known to 

parasitize on mammals, therefore it was likely picked up while grazing or browsing. 

 Some additional structures are recorded which could not be identified (Figure 16). 

Figures 16c and 16e resemble seed granules but this could not be confirmed. As more data is 

collected from the calculus of herbivores, I expect that these pictures will become more useful 

for future studies. 

 All of the ancient calculus samples occurred during the Late Holocene except for one 

bison dated from the Middle Holocene (Bison 67, 8107 calBP). However, the only material 

found in the Middle Holocene sample was fibrous and root-like, suggesting that the contents of 

the calculus were less well preserved than Late Holocene bison.   

 Although it is very difficult to identify microfossils found in bison dental calculus to the 

species level, information gathered here provides qualitative data to supplement isotopic data. 
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Researchers are learning more about the diets of the extinct mastodons through the medium of 

dental calculus and may uncover more localized answers for the cause of their demise. Unlike 

the mastodon, bison succeeded in surviving the extreme environmental conditions during the 

terminal Pleistocene. Today, bison face a whole new set of challenges in restricted rangelands 

and isolated populations. Therefore, employing various methods to assess how bison have 

adjusted to stark changes in the past will help us to learn what management strategies may be 

most beneficial in the future.  
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Figure 10. Chrysophycean cysts and diatoms found in bison dental calculus. a. cyst, Bison 92, 

765 calBP, Menoken Village, b. cyst, Bison 95, date na, Menoken Village, c. cyst, Bison 30 

(SEM), 296 calBP, Falkirk Bison Kill, d. cyst, Bison 26, 170 calBP, Big Hidatsa, e. cyst, Bison 

124, date na, Lower Hidatsa, f. cyst, Bison 112 (SEM), date na, Taylor Bluff, g. biraphid 

diatoms, Bison 119, date na, Sakakawea. 

 

 
 
Figure 11. Pollen air sacs, pollen grains, and spores found in bison dental calculus. a. pollen or 

spores, Bison 43, 1077 calBP, Menoken Village b. Pinus pollen, Bison 74, 1105 calBP, White 

Bison Robe, c. grass pollen, Bison 35, 1027 calBP, Bundlemaker, d. grass pollen (LM), e. pollen 

air sac (SEM), and f. pollen air sacs (LM), Bison 30, 296 calBP, Falkirk Bison Kill, g. grass 

pollen, Bison 84, date na, Larson Village, h. grass pollen, Bison 46, 185 calBP, Forest River. 
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Figure 12. Dendriform (tree-like) phytoliths found in bison dental calculus. a. and b. dendriform 

phytoliths, Bison 70, date na, Alkali Creek, c. stemwood phytolith, Bison 32, 437 calBP, Larson 

Village, d. dendriform phytolith, Bison 121, 111 calBP, Sakakawea. 

 

 

 

 

 

 

 

 
Figure 13.  Grass and plant phytoliths found in bison dental calculus. a. Chloridoid phytolith, 

Bison 43, 1077 calBP, Menoken Village, b. short grass phytolith, Bison 13, 504 calBP, Huff 

Village, c. plant phytolith cells and d. vascular phytolith, Bison 79, date na, Larson Village, e. 
grass phytolith, Bison 112, date na, Taylor Bluff.
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Figure 14. Water conducting plant cells (tracheids and vessel elements) found in bison dental 

calculus. a. tracheid cells, Bison 43, 1077 calBP, Menoken Village, b. tracheid cells, Bison 71, 

date na, White Bison Robe, c. tracheid, Bison 13, 504 calBP, Huff Village, d. tracheid and e. 
vessel element, Bison 32, 437 calBP, Larson Village, f. Bison 84, date na, Larson Village, g. 
vessel element, Bison 26, 170 calBP, Big Hidatsa, h. tracheid, Bison 43, 1077 calBP, Menoken 

Village. 

 

 
 
Figure 15. Hairs found in bison dental calculus. a. Bison 34, 379 calBP, Double Ditch Village b. 
Bison 26, 170 calBP, Big Hidatsa, c. Bison 43, 1077 calBP, Menoken Village, d. Bison 47, 653 

calBP, Falkirk Bison Kill. 

 

 
 

Figure 16. Unidentified microfossils found in bison dental calculus. a. oblong shape granule, 

Bison 92, 765 calBP, Menoken Village, b. rod shaped vessel and c. round  seed-like granule, 

Bison 84, date na, Larson Village, d. oval with red line, Bison 78, date na, Larson Village, e. 
round seed-like granule, Bison 26, 170 calBP, Big Hidatsa. 
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Figure 17. Microfossils found in modern bison dental calculus. a. vessel element and b. tracheid, 

Bison 103, TRNP, c. Panicoid grass phytolith and d. Trigynaspida mite, Bison 104, TRNP, e. 
Betula pollen, Bison 104, TRNP. 
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Table 9. Tally of microfossils observation in bison dental calculus, the age of the sample (if available) location, type of microscopy, 
type of solution used for extraction, and sample weight (g).  

 
 
 

11 381 LH White Bison LM HCL 0.06 0 0 5 0 0 0 0 0 0 0 0
13 504 LH Huff Village LM HCL 0.27 12 9 16 0 0 0 0 0 0 0 0
13 504 LH Huff Village SEM HCL 0.25 0 0 0 0 0 0 0 0 0 0 0
18 166 LH Sakakwea LM HCL 0.44 1 0 9 0 0 0 0 0 0 0 1 oval 
18 166 LH Sakakwea SEM HCL 0.21 0 0 0 0 0 0 0 0 0 0 0
26 170 LH Big Hidatsa LM HCL 0.11 11 8 5 0 0 0 4 1 0 0 0
26 170 LH Big Hidatsa SEM HCL 0.1 0 1 0 0 0 0 0 0 0 7 0
26 170 LH Big Hidatsa LM EDTA 0.49 0 7 2 1 0 0 0 0 0 0 0
26 170 LH Big Hidatsa SEM EDTA 0.08 0 5 1 0 0 0 0 0 0 6 0
30 296 LH Falkirk LM HCL 1.02 9 18 0 0 0 0 0 0 0 0 0
30 296 LH Falkirk SEM HCL 0.07 0 0 3 1 0 0 0 0 0 0 0
30 296 LH Falkirk LM EDTA 0.31 0 0 7 18 0 0 0 0 0 0 1
30 296 LH Falkirk SEM EDTA 0.13 0 0 5 13 0 0 0 6 0 0 0
32 437 LH Larson LM HCL 0.48 4 11 52 1 0 0 3 0 1 0 0
32 437 LH Larson SEM HCL 0.14 0 0 2 1 0 0 3 0 0 0 0
34 379 LH Double Ditch LM HCL 0.03 0 0 5 0 1 0 0 0 0 0 0
35 1027 LH Bundlemaker LM HCL 0.37 13 3 3 30 2 0 1 0 0 0 0
35 1027 LH Bundlemaker SEM HCL 0.33 0 0 7 0 0 0 0 0 0 0 0
38 167 LH Taylor Bluff LM HCL 0.02 0 0 4 0 0 0 0 0 0 0 0
41 379 LH White Bison LM HCL 0.04 0 0 3 0 0 0 0 0 0 0 0
42 386 LH White Bison LM HCL 0.04 0 0 0 0 0 0 0 0 0 0 0
43 1077 LH Menoken LM HCL 0.87 20 16 31 0 2 0 1 4 1 0 0
43 1077 LH Menoken SEM HCL 0.13 0 0 3 0 0 0 0 0 0 0 0
46 185 LH Forest River LM HCL 0.01 0 0 3 5 0 0 0 11 0 0 0
47 653 LH Falkirk LM HCL 0.12 0 0 2 0 1 0 1 0 0 0 0
49 2728 LH Alkali Creek LM HCL 0.15 0 0 0 0 0 0 0 0 0 0 0
52 1533 LH Alkali Creek LM HCL 0.09 0 4 0 0 0 0 0 0 0 0 0
52 1533 LH Alkali Creek LM EDTA 0 0 3 0 0 0 0 0 0 0 0 0
67 8107 MH Rustad LM HCL 0.25 12 0 0 0 0 0 0 0 0 0 0
69 na LH Alkali Creek LM HCL 0.04 0 6 0 0 0 0 0 0 0 0 0
70 na LH Alkali Creek LM HCL 0.06 2 5 28 0 1 0 2 0 0 0 0
71 na LH White Bison LM HCL 0.07 7 8 8 4 0 0 0 0 6 0 0
72 na LH White Bison LM HCL 0.03 2 1 3 0 0 0 0 0 0 0 0
73 na LH White Bison LM HCL 0.08 1 1 3 0 0 0 0 0 0 0 0
74 1105 LH White Bison LM HCL 0.08 4 11 6 1 0 0 0 0 0 0 0
75 na LH White Bison LM HCL 0.02 5 5 16 0 2 0 0 0 0 0 1 round, yellow center
77 383 LH Larson LM HCL 0.25 3 20 17 29 0 0 0 0 0 0 0
78 na LH Larson LM HCL 0.15 10 13 37 0 0 0 0 0 0 0 2 ovals, red lines

Description of 
Unidentified

Diatom Tracheid Starch/S
eed

Browse Cysts Unidentified/
other

Weight 
(g)

Fibrous Elongate Grass 
Phytoliths

Short 
Phytoliths

Pollen HairSample Age calBP Episode Location Microscopy Solution
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Table 9 continued. 

1 

79 na LH Larson LM HCL 0.07 2 4 3 0 0 0 0 0 0 0 0
80 425 LH Larson LM HCL 0.09 6 0 12 2 0 0 0 0 0 0 0
83 432 LH Larson LM HCL 0.15 0 6 12 1 0 0 0 0 0 0 0
84 na LH Larson LM EDTA 0.05 4 17 10 1 0 0 0 3 0 0 2 rod & round granule
84 na LH Larson SEM EDTA 0.05 0 0 0 1 0 0 0 0 0 0 0
85 na LH Larson LM EDTA 0.02 1 32 3 0 0 0 0 0 0 0 0
85 na LH Larson SEM EDTA 0.03 0 0 0 0 0 0 0 0 0 0 0
87 na LH Larson LM EDTA 0.02 1 4 8 0 0 0 0 0 0 0 0
87 na LH Larson SEM EDTA 0.04 0 1 0 0 0 0 0 0 0 0 0
92 765 LH Menoken LM EDTA 0.14 0 7 6 109 0 0 0 0 0 0 0
92 755 LH Menoken SEM EDTA 0.11 0 0 0 0 0 0 0 0 0 0 0
94 na LH Menoken LM EDTA 0.18 0 0 4 0 0 0 0 0 0 0 0
94 na LH Menoken SEM EDTA 0.06 0 0 0 0 0 0 0 0 0 0 0
95 na LH Menoken LM EDTA 0.01 0 3 4 22 0 0 0 0 0 0 0
95 na LH Menoken SEM EDTA 0.02 0 0 0 0 0 0 0 0 0 0 0
96 na LH Menoken LM EDTA 0.09 2 4 12 0 0 0 0 0 0 0 0
96 na LH Menoken SEM EDTA 0.04 0 0 0 0 0 0 0 0 0 0 0
106 277 LH Big Hidatsa LM EDTA x 2 0 0 0 0 0 0 0 0 0 0
106 277 LH Big Hidatsa SEM EDTA x 0 0 0 0 0 0 0 0 0 0 0
110 na LH Big Hidatsa LM HCL x 0 0 0 0 0 0 0 0 0 0 0
112 na LH Taylor Bluff LM HCL x 0 0 2 0 0 0 0 0 0 0 0
112 na LH Taylor Bluff SEM HCL x 0 0 0 0 0 0 0 0 0 0 0
113 na LH Sakakwea SEM HCL x 0 0 0 0 0 0 0 0 0 0 0
113 110 LH Sakakwea SEM HCL 0.66 0 0 0 1 0 0 1 0 0 0 0
114 na LH Sakakwea LM HCL 0.11 0 4 0 0 1 0 0 0 0 0 0
114 na LH Sakakwea SEM HCL 0.1 0 0 0 1 0 0 0 0 0 0 0
116 na LH Sakakwea LM HCL x 3 0 0 0 0 0 0 0 0 0 0
116 na LH Sakakwea LM EDTA x 0 0 3 3 0 0 0 0 0 0 0
117 169 LH Sakakwea LM HCL x 0 4 0 0 0 0 0 0 0 0 0
118 na LH Sakakwea LM HCL x 7 12 4 0 0 0 0 0 0 0 0
118 na LH Sakakwea SEM HCL x 0 2 0 0 0 0 0 0 0 0 0
119 na LH Sakakwea SEM Ethanol 0.04 0 0 0 6 0 2 0 0 0 0 0
121 111 LH Sakakwea LM HCL x 0 0 0 0 0 0 0 0 5 0 0
122 169 LH Sakakwea LM HCL x 0 0 0 0 0 0 0 0 0 0 0
123 168 LH Sakakwea LM HCL x 0 0 0 0 0 0 0 0 0 0 0
123 na LH Sakakwea SEM HCL x 0 0 0 1 0 0 0 0 0 0 0
124 na LH Lower Hidatsa LM HCL x 0 2 0 2 0 0 0 0 0 0 0
125 388 LH Lower Hidatsa LM HCL x 6 0 5 0 0 0 0 0 0 0 0
125 388 LH Lower Hidatsa SEM HCL x 2 1 2 0 0 0 0 0 0 0 0
126 117 LH Lower Hidatsa LM HCL x 4 2 0 0 0 0 0 0 0 0 0

Browse Cysts Unidentified/
other

Description of 
Unidentified

Tracheid Starch/S
eed

Short 
Phytoliths

Pollen Hair DiatomSample Age calBP Episode Location Microscopy Solution Weight 
(g)

Fibrous Elongate Grass 
Phytoliths
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Table 9 continued. 

126 117 LH Lower Hidatsa SEM HCL x 0 0 0 0 0 0 0 0 0 0 0
127 na LH Lower Hidatsa LM HCL x 0 0 0 0 0 0 0 0 0 0 0
128 na LH Lower Hidatsa LM HCL x 0 1 0 0 0 0 0 0 0 0 0
128 na LH Lower Hidatsa SEM HCL x 0 0 0 0 0 0 0 0 0 0 0
129 na LH Lower Hidatsa LM HCL x 0 5 0 0 0 0 0 0 0 0 0
129 na LH Lower Hidatsa SEM HCL x 0 0 0 0 0 0 0 0 0 0 0
101 0 MOD TRNP LM EDTA 0.01 4 2 5 0 0 0 0 0 0 0 3 round, pollen-like
101 0 MOD TRNP SEM EDTA 0.01 0 1 0 1 0 0 0 0 0 0 0
103 0 MOD TRNP LM EDTA 0.05 2 4 2 0 0 0 0 0 0 0 0
104 0 MOD TRNP LM EDTA 0.01 1 2 4 0 0 0 0 0 0 0 1 mite

n= 163 275 387 255 10 2 16 25 13 13 11 N= 1,070

Description of 
Unidentified

Diatom Tracheid Starch/S
eed

Browse Cysts Unidentified/
other

Sample Age calBP Episode Location Microscopy Solution HairWeight 
(g)

Fibrous Elongate Grass 
Phytoliths

Short 
Phytoliths

Pollen
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Table 10. Summary of images of microfossils from Figures 11-18 found in bison dental calculus, 
their location, magnification, and associated calBP age (if available). 

 
 

Bison Figure ID Magnification calBP Site Description
70 12a 40x - Alkali Creek dendriform phytolith

70 12b 40x - Alkali Creek dendriform phytolith

43 13a 40x 1077 Menoken Village Chloridoid phytolith

43 15c 40x 1077 Menoken Village hair

43 14h 40x 1077 Menoken Village tracheid

43 11a 100x 1077 Menoken Village pollen or spores

43 14a 40x 1077 Menoken Village tracheid cells

92 10a 40x 765 Menoken Village chrysophycean cyst

92 16a 40x 765 Menoken Village unknown oblong shape

95 10b 40x - Menoken Village chrysophycean cyst

74 111b 40x 1105 White Bison Robe Pinus pollen

71 14b 40x - White Bison Robe tracheid cells

35 11c 40x 1027 Bundlemaker grass pollen

47 15d 40x 653 Falkirk Bison Kill hair

30 11d 40x 296 Falkirk Bison Kill grass pollen

30 10c 2510x 296 Falkirk Bison Kill chrysophycean cyst

30 11e 1100x 296 Falkirk Bison Kill pollen air sac

30 11f 3500x 296 Falkirk Bison Kill pollen air sacs

13 13b 40x 504 Huff Village short grass phytolith

13 14c 40x 504 Huff Village tracheid

32 14d 40x 437 Larson Village tracheid

32 14e 40x 437 Larson Village vessel element

32 12c 40x 437 Larson Village stemwood phytolith

79 13c 20x - Larson Village plant phytolith cells

84 16b 40x - Larson Village unknown, rod shaped vessel

84 14f 40x - Larson Village vessel element

84 16c 10x - Larson Village unknown round granule

84 11g 40x - Larson Village grass pollen

79 13d 40x - Larson Village vascular phytolith

78 16d 40x - Larson Village unknown oval with red line

34 15a 40x 379 Double Ditch Village hair

46 11h 10x 185 Forest River grass pollen

26 15b 40x 170 Big Hidatsa hair

26 16e 40x 170 Big Hidatsa unknown, round granule

26 14g 40x 170 Big Hidatsa vessel element

26 10d 40x 170 Big Hidatsa chrysophycean cyst

121 12d 40x 111 Sakakawea dendriform phytolith

119 10g 4000x - Sakakawea Navicula diatom (right), biraphid diatom (left)

124 10e 40x - Lower Hidatsa chrysophycean cyst

112 13e 40x - Taylor Bluff grass phytolith

112 10f 4000x - Taylor Bluff chrysophycean cyst

103 17a 10x Modern, cow TRNP vessel element

103 17b 10x Modern, cow TRNP tracheid

104 17c 40x Modern, cow TRNP Panicoid grass phytolith

104 17d 40x Modern, cow TRNP Trigynaspida mite

104 17e 40x Modern, cow TRNP Betula pollen
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CONCLUSIONS AND MANAGEMENT IMPLICATIONS 

 Stable isotopes of carbon, nitrogen, and oxygen in ancient bison bones and teeth describe 

valuable ecological information about this resilient species over a long period of time. Here, we 

have documented how the diet of ancient bison has varied in composition from the Late 

Pleistocene through modern day in the Northern Great Plains region of North America. We can 

determine the time periods in which bison had a larger breadth of diet than others and when they 

may have been migrating long distances.  

We have seen that bison during the Late Pleistocene consistently have similar isotopic 

values to modern bison but include more diverse vegetation in their diet. Isotopic signals suggest 

that bison may have been employing migratory movements during this epoch. Some temporal 

periods lack sampling points in the data set. Only one bison specimen was available from the 

Early Holocene and there is a second gap in data shortly after the beginning of the Middle 

Holocene. Whether the sample site assemblage simply did not represent contexts from this time 

or if bison were less abundant in the Northern Great Plains is not clear. The reasons for these 

gaps warrant further investigation into the archeological record as it may reveal interesting 

insights into the spatiotemporal trends in bison population density over time. Middle Holocene 

bison exhibit high variability. There are individuals widely apart in isotopic values despite 

having similar calibrated ages. These wide ranges were recorded in the collagen from Middle 

Holocene bones as well as the seasonal data obtained from the enamel in Middle Holocene 

bison’s teeth. Large migratory movements may explain the isotopic trends observed in Middle 

Holocene bison. Late Holocene bison were the most abundant in the sample assemblage. Bison 
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reached their highest numbers during this temporal period and thrived until their near extirpation 

in the late 19th century. Moderate variation is recorded in the Late Holocene bison despite the 

large increase in sample size. This suggests that there may have been an overall shift to less 

diversity in bison diet as the Earth transitioned from the Middle to Late Holocene epochs. 

Modern bison exhibit even less variation when compared to their ancient counterparts. Questions 

still remain as to whether this is a result of restricted rangelands or if bison diet is becoming 

increasingly narrower as time progresses. Genetic information from bison temporal groups may 

help uncover more answers to the underlying issues at hand.  

 All of this information is meant to inform current management for the next generation of 

bison management. A better understanding of the previous and current plasticity of bison in 

changing landscapes can help determine what actions should be taken to give bison the best 

chance of survival as we enter the Anthropocene epoch. The identification of suitable habitat for 

the restoration of bison is critical to their success as available land diminishes rapidly. Current  

management strategy is predominately characterized by small bison populations in many areas 

but perhaps it would be better to secure fewer restoration sites with larger areas of connected 

habitat.  
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