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ABSTRACT 

PERIVASCULAR WASTE METABOLITES CLEARANCE  

IN CENTRAL NERVOUS SYSTEM (CNS) 

 

by 

Yiming Cheng 

Efficient clearance of interstitial waste metabolites is essential for normal brain 

homeostasis. Such effective clearance is hampered by the lack of a lymphatic system in 

the brain, and the cerebrospinal fluid (CSF) is unable to clear large size waste metabolites 

in the brain. Here, a novel idea that brain arterial endothelium and smooth muscle cells 

reactivity regulates the clearance of these water-insoluble large size waste metabolites 

through the perivascular dynamic exchange, and that low dose ethanol promotes this 

perivascular clearance is proposed. 

In Aim 1, the biodistribution of a large size waste metabolite (Amyloid-β protein 

mimic) in rat perivascular space as a proof-of-concept is examined. Then the effects of 

low dose alcohol (ethanol) for promoting perivascular clearance path are evaluated. The 

result shows that ethanol increases perivascular clearance by enhancing the dilative 

reactivity of arterial endothelial cells (ECs) and alpha-smooth muscle cells (α-SMCs) via 

the activation of endothelial specific nitric oxide synthase (eNOS) and nitric oxide (NO) 

production. In Aim 2, the underlying molecular mechanisms of low dose ethanol on the 

perivascular clearance of waste metabolites is examined. The result shows that low dose 

ethanol specifically activates eNOS in arterial wall and generates physiological favorable 

level of NO without affecting the integrity of the Blood-Brain Barrier (BBB). This 

vasodilator NO stimulates the dilative reactivity of ECs- α-SMCs, which promotes 



the diffusive movement of waste metabolites from interstitial space/CSF to perivascular-

perivenous drainage path. Decrease in phosphorylation of myosin light chain in α-SMCs 

and increase in arterial vessel diameter validates α-SMCs reactivity and movement of 

waste metabolites towards perivascular space. In Aim 3, the contrast effects of chronic 

moderate alcohol intake on perivascular clearance of waste metabolites is assessed. The 

result reveals that chronic alcohol intake switches the induction of eNOS to inducible 

nitric oxide synthase (iNOS), thereby generating high level of NO. This continuous 

production of NO by iNOS in chronic alcohol exposure causes oxidative damage of the 

arterial endothelial-smooth muscle layers, and reduces dilative reactivity. Decrease in 

tight junction protein levels validates the BBB dysfunction, and increase in 

phosphorylation of myosin light chain in α-SMCs validates the impairment of α-SMCs 

reactivity, that are closely correlated with decrease in waste metabolites movement 

towards perivascular clearance path. 

The current work affords huge clinical relevance since aggregation of large size 

waste metabolites like Ab protein around the perivascular space is a hallmark of 

Alzheimer's disease. As such, the findings suggest new strategies for prevention and 

treatment of neurological diseases that are associated with clearance of entangled 

proteins.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Objective 

The objective of this dissertation is to present findings of large size waste metabolites 

clearance from brain and the underlying regulation mechanisms. Clinically, large size 

waste metabolites like tauopathy, prion-like proteinopathies, cerebral amyloid 

angiopathy, and Aβ proteins are accumulated around the perivascular space (PVS) in 

brain tissue from neurological diseases, including Alzheimer’s disease [1-3]. However, 

how these entangled proteins that originate from brain interstitial space due to neuronal 

activities translocate towards PVS and what are the underlying regulation mechanisms 

are still unknown. Here, we hypothesize that a dynamic driving force that produces by 

arterial vessel contraction/dilation creates a “pumping-like effect” within PVS, pooling 

large metabolites towards PVS and promoting their clearance from inside brain to 

systematic circulation. To validate this idea, we use low dose alcohol as a proof-of-

concept to stimulate dilative vascular reactivities. The rationale is that low dose alcohol, 

through a signaling molecule Nitric Oxide (NO), is known to induce vessel dilation [4]. 

Epidermological evidence reveal that different alcohol drinking patterns exihibit 

disctinctive corelations with onset and progression of neurological diseases that are 

associated with entangled proteins aggregation [5]. A detail discussion regarding the 

effects of alcohol will be expanded in Chapter 3-5. 

As such, to address these questions, three specific aims are evaluated:  

1) To determine the movement pattern of waste metabolites from cerebrospinal 

fluid (CSF) and interstitial spaces to perivascular spaces (PVS); 
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2)  To examine that movement of waste metabolites at perivascular spaces is 

associated with vessel dilation that regulated by interaction of brain endothelium and 

smooth muscle cells;  

 

3) To evaluate the contrast effect of low dose and chronic/moderate alcohol intake 

on perivascular clearance. 

 

 

1.2 Summary of Literatures 

The brain is the command center of the body that regulates the vital functions of 

circulation, respiration, motor function, metabolic activities, or autonomic outcomes. 

The brain coordinates these non-stop activities at the expense of huge energy utilization. 

This energy demand is achieved by active transport of nutrients across the endothelial 

blood-brain barrier (BBB). Trafficking of xenobiotics and inflammatory agents into the 

brain across the BBB or across the two other brain interfaces is harmful to brain cells, 

resulting in waste metabolites production in the interstitial space (IS). Clearance of these 

waste metabolites maintains the normal brain homeostatic functions, while aggregation 

leads to serious neurological disorders. In the absence of lymphatic system, the CSF 

flow serves as the clearance path in the CNS for water soluble peptides/solutes. The CSF 

disposal path is unable to clear large size waste metabolites, such as Aβ protein in AD. 

This section will first briefly discuss the existing entry routes of nutrients, immune cells 

or xenobiotics into the brain. Focus will be on the clearance paths and mechanisms of 

waste metabolites clearance in the CNS. This will include the mechanisms of waste 

metabolites movement from IS to perivascular clearance (PVC), from IS-CSF-PVC, and 

the exchanged from PVC to circulation. Therapeutic approach to improve the clearance 

mechanisms for ameliorating neurological diseases will be concluded finally. 
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1.2.1 Brain Barrier Interfaces  

The brain is the command center of the body. It controls the many functions of 

cardiovascular and systemic circulation, respiratory center, motor activities, metabolic 

function, renal and gastrointestinal excretion, and autonomic nervous system. 

Coordination of these numerous activities is carried out by the release of endocrinal 

chemical messengers known as hormones. The brain does this by receiving signals from 

sensory nerve cells, integrating and processing the information in interneurons, and 

sending out the message to the effector tissue organs through the motor neurons. 

Relaying of the message from the brain central nervous system to different part of the 

body through peripheral nervous system is connected by brainstem via the spinal cord. 

Constant supply of nutrients/minerals/ions across the selectively permeable blood-brain 

interface known as the blood-brain barrier (BBB) meets the energy demand of the brain. 

The localization of the tight junction proteins, protein/nutrient/ion transporters, 

multidrug resistant efflux receptors, or enzymes at the BBB, selectively maintain the 

ionic/nutrients homeostasis in the brain by dumping toxic agents in the circulation [6], 

as illustrated in Figure 1.1. Thus, small size molecules like glucose, amino acid, 

essential minerals/ions are transported across the BBB by carrier-mediated transporters, 

whereas receptor mediated transporters translocated the large size peptides and proteins 

[6, 7].  
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Figure 1.1 Routes of transport across the BBB. Passive diffusion favors lipophilic 

molecules; Carrier mediated transporters bi-directionally transport molecules influx 

and/or efflux through BBB endothelial cell layer; receptor mediated transport requires 

binding of ligand for transport of macromolecules such as glucose, peptides and proteins 

across BBB endothelium (transcytosis); paracellular pathway through tight junctions 

allows diffusion of for small molecules and cell trafficking. 

 

In addition to endothelial BBB and blood-spinal cord barrier (BSCB) interfaces, 

there are two other epithelial barriers that can render entry of molecules into the brain. 

The interface between the blood and ventricular cerebrospinal fluid (CSF) is known as 

the epithelial choroid plexus (CP), and the interface between the blood and CSF 

subarachnoid is known as the epithelial arachnoid villi [8, 9]. The main function of CP 

is the secretory source of cerebrospinal fluid for maintaining the fluid volume and ionic 

balance in the CNS. The concept is essentially justified by the fact that CP serves as the 

drainage sink in the brain. Recent findings reveal that this epithelial barrier is also 

involved in immune cell trafficking [10] and pathogens entry interface [11, 12], as such 

CP is apparently involved in the development of neurological diseases [13]. Most 

recently, Uchida et al. (2019) showed the impairment of tight junction protein claudin-



5 
 

11 expression at the BBB, at the blood-spinal cord barrier (BSCB), and at the epithelial 

arachnoid barrier in multiple sclerosis without affecting at the epithelial CP [14]. This 

finding indicates that CP barrier is unlikely involved in the development of neurological 

diseases. Choroid plexus is also implicated for supply of nutrients and signaling 

molecules to brain parenchyma, as such, it may play a role in brain development and 

aging [15]; however, this argument remains for open discussion. Another recent finding 

implicates CP as a potential BBB bypass route for drug delivery in the CNS [16]. This 

concept is based on the rationale that since carrier-mediated influx transporters or 

receptors are expressed in CP epithelium, these molecules can be designed for drug 

penetration across CP. The rationale uses the same principle that these molecules have 

been employed for drug delivery across BBB. The function of the second epithelial 

barrier known as the arachnoid villi interface between the blood and the CSF acts as the 

main drainage channels of water-soluble peptides/solutes from CSF subarachnoid to 

sagittal sinus for clearance. Intriguingly, micropinocytosis and vacuolization of 

endothelial cells present in the stromal central core of the villi seem to facilitate a 

bidirectional active transport across the arachnoid villi barrier [17].  

Out of these two endothelial (BBB and BSCB) and two epithelial (CP and 

arachnoid villi) barrier interfaces in the brain, the BBB is the primary 

transport/trafficking route of nutrients, micro-organisms, immune cells, and xenobiotic 

substances into the brain. The myeloid cells in the brain response to inflammatory event 

in the form of phagocytosis, proteolytic degradation, and autophagy, which produces 

harmful waste metabolites. Such harmful metabolites include components of 

degenerating neurons and extracellular vesicles that are entrapped in the interstitial 



6 
 

space (IS). Proper clearance of these waste metabolites from interstitial fluid/CSF 

maintains the normal homeostasis function of the brain, while aggregation leads to 

neurological disorders. Here, we focus the clearance mechanisms of these waste 

metabolites from the brain with emphasis on perivascular clearance.  

1.2.2 Interstitial Space Waste Metabolites 

The main donor of fluid in the interstitial space is the blood circulation and cellular 

secretion. The total volume of the interstitial fluid (ISF) is believed to be contributed by 

passive diffusion of fluid from the circulation. The ISF contains cellular metabolites, 

cellular shedded microvesicles and exosomes under normal condition, but ISF will 

contain entangled proteins like amyloid-β in neuropathologic condition [18]. Therefore, 

understanding the mechanisms of these waste metabolites movement from ISF to 

terminal clearance path is exceedingly important for improving neurological diseases. 

The drainage of water-soluble metabolites from ISF to CP, and to CSF compartments is 

a major route for clearance of small-size and hydrophilic substances.  

There are two school of thoughts on the mechanisms of ISF movement, the bulk 

flow and diffusive movement [19]. Cserr, et al. (1977 and 1981) showed that a bulk flow 

of the ISF independent of diffusion was responsible for clearance of waste metabolites 

in the CNS [20, 21]. Their conclusion was based on the findings that deposition of 

different molecular size tracers in rat brain interstitial space were drained at nearly 

identical half-life rates with varying diffusion coefficients. It was estimated that the rate 

of this bulk flow was 0.1–0.3 μL/g brain/min in rat brain [21, 22]. In recent time, the 

hypothesis of ISF bulk flow mechanisms has been challenged by other critiques. Sykova 

E and Nicholson C (2008) and Bakker EN et al. (2016) pointed out that the movement 
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of ISF in the interstitial spaces was attributed to diffusive movement rather than bulk 

flow mechanisms [23, 24]. Their argument was that first, the interstitial narrow spaces 

between cells are too limited to allow significant ISF bulk flow. Second, the extracellular 

matrix of the interstitial space contains repeated long chain polysaccharides like 

glycosaminoglycans, which are negatively charged, hydrophilic, and can easily trap 

water molecules and positive ions like sodium. These hindrance factors will not only 

deter the bulk flow of interstitial fluid, but also limit the movement of large size waste 

metabolites in the interstitial space. Thus, the question of whether the ISF move through 

bulk flow or passive diffusion mechanisms remains to be debated for further 

verification. Based on the emerging multiphoton imaging time-dependent interstitial 

bio-distribution of small, medium, and large size molecular weight fluorescent tracers, 

we will discuss my thought in glymphatic section below.  

1.2.3 Clearance of Waste Metabolites in Cerebrospinal Fluid (CSF) 

The cellular metabolites, extracellular vesicles, degraded peptides, and other 

degenerated cellular components contain in the interstitial fluid are mostly collected in 

the choroid plexuses (CP). The C3 compartment CP is localized in the cerebrum and C4 

is localized in the cerebellum regions of the brain. The C3 and C4 are connected by an 

aqueduct. The interstitial fluid drainage sink (CP) and ventricular cerebrospinal fluid 

(CSF) is separated by the epithelial choroid plexus barrier, through which collected 

interstitial fluid is excreted into the CSF [25]. The CSF flow passes through the 

interventricular foramina of the third ventricle to the fourth ventricle via aqueduct. From 

the fourth ventricle, the fluid then enters the subarachnoid space (SAS) through a median 

and two lateral apertures [26, 27]. The CSF containing the water-soluble waste 
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metabolites, but not cells ultimately move through the subarachnoid space and it can 

also reach to perivascular space [28, 29]. The water-soluble metabolites in the CSF 

subarachnoid space is absorbed into sagittal venous sinuses through arachnoid 

granulations. The evident came from the work of Weed et al. (1914), who found that 

non-toxic tracers injected into CSF crossed arachnoid granulations along sagittal sinus 

and eventually penetrated into dura wall of the sinus [30, 31]. The absorption of CSF 

dye arachnoid granulations was further confirmed by electron microscopy studies, 

which showed that the presence of pressure-sensitive vacuolation cycle of pores indicate 

the one-way valves transcellular flow [32]. The CSF contents in the sagittal sinus, most 

likely at the confluence of sinus exits along the myelin sheath of olfactory bulbs through 

cribriform plate [33], which is then believed to deliver into the deep cervical lymph 

nodes through nasal lymphatics [34]. This drainage path from subarachnoid space to 

nasal lymphatic system was further confirmed in seven different species using microfils 

tracers [35]. Recently, these lymphatic vessels have been investigated in rodents by 

using specific antibodies [36, 37].  

In summary, Figure 1.2 schematic presentation illustrates the intracranial CSF 

flow. It is important to emphasize here that the exchange of waste metabolites from 

subarachnoid to superior sagittal venous sinus may account only the water-soluble small 

size metabolites. This is because the granulation at the arachnoid microvilli barrier 

restrict the clearance of large size waste metabolites. As such, the clearance mechanisms 

of large size waste metabolites Aβ proteins from the interstitial space or from the CSF 

remains to be investigated. To this end, emerging findings such as the glymphatic 

hypothesis and our most recent published article on perivascular clearance mechanisms 
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revealed the clearance mechanisms of large size waste metabolites from the interstitial 

space or from the CSF circulation.  

 

 

Figure 1.2 Schematic presentation of the intracranial CSF flow. CSF is produced by 

choroid plexus and flows from the third ventricle to the fourth ventricle through cerebral 

aqueduct. After circulating over hemispheres, CSF is absorbed into superior sagittal 

sinus, transverse sinus, and sigmoid sinuses via arachnoid villi, as well as efflux from 

the CNS along olfactory nerves through cribriform plate to nasal lymphatics and 

eventually to cervical lymph nodes. 

 

1.2.4 Glymphatic System 

Glymphatic hypothesis proposed by Iliff JJ, Nedergaard M, et al. (2012) revealed the 

continuously exchange of interstitial fluid (ISF) and cerebrospinal fluid (CSF) in the 

brain compartments [29]. According to this hypothesis, the exchange is facilitated by 

aquaporin-4 (AQP4) water channels that are expressed in highly-polarized astrocytic 

end feet. In that, CSF from subarachnoid spaces fluxed into deep brain tissues along pial 

and penetrating arterioles and into the brain parenchyma towards perivenous spaces, 

which is facilitated by the convective function of astrocytic AQP4 [29, 38]. Figure 1.3 
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illustrates the convective interstitial flow towards perivenous spaces surrounding deep 

veins. They showed that water-soluble waste metabolites in ISF were collected and 

carried towards perivenous space, from where metabolites were drained to lymph nodes 

and systemic circulation.  

The evidence was shown by imaging the bio-distribution of small size (Texas Red: 

3 kD), medium size (Ovalbumin, 647 kD), and large size (FITC-d2000 kD) molecular 

weight injection in mice through cisterna magna. It was observed that the tracers rapidly 

entered the cortical pial arteries, then fluxed into perivascular spaces along the 

penetrating arterioles, which was distinguished in Tie2-GFP:NG2-DsRed double 

reporter mice. The small size tracer was found to exit primarily along the central deep 

veins and lateral-ventral caudal rhinal veins, while the medium and large size tracers 

accumulated at perivascular and peri-arterial spaces respectively in time-dependent 

manner. Using AQP4 knockout mice, this same group of investigators validated the 

proof-of-concept that astrocytic AQP4 was in part responsible for the clearance of 

radiolabeled Aβ1-40 peptide because they observed 55% reduction of Aβ1-40 peptide 

clearance in AQP4 knockout mice compared with wildtype [29, 38-40]. This idea of 

glymphatic hypothesis is further embraced by the independent studies of other 

investigators [41]. However, on the basis of time-dependent movement of tracers as 

stated above, the movement of medium to large size metabolites in interstitial fluid 

favors diffusion rather than the bulk flow mechanism of glymphatic hypothesis.   

 



11 
 

 

Figure 1.3 Movement of solutes in ISF and CSF through the glymphatic pathway. CSF 

from subarachnoid space fluxes into brain from perivascular spaces and exchanged with 

ISF. The exchange was facilitated by aquaporin-4 (AQP4) water channels that highly 

expressed in perivascular astrocyte end-foot. The bulk movement of CSF into brain 

drives the convective flow of ISF and interstitial solutes to perivenous route. 

 

The reproducibility of bulk flow mechanism is questioned by several most recent 

publications. Some investigations argued that clearance of waste metabolites in 

interstitial fluid is a passive diffusion and not a bulk flow convective transport [42, 43]. 

This argument is based on the size of metabolites. A model of diffusive and convective 

transport in brain extracellular space was designed to illustrate the validation in support 

of this argument. Findings from this model stated that diffusion alone [44] or combined 

effects of diffusion and macroscopic fluid motion [45] is responsible for transport of 

waste metabolites in brain parenchyma rather than bulk flow. The combined effects 

appear to reconcile the conflicting transport mechanisms of solutes in ISF or in 
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perivascular space. This is in parallel with the findings that cyclic changes in arterial 

pressure produces mixing of flow in opposite directions in different spaces of the arterial 

wall [46]. It is likely that convection can assist the movement of solutes into and out of 

the ISF without producing the net flow of fluid as required by glymphatic system. The 

diffusive molecular flow along the peri-arterial sheaths into subarachnoid CSF [47], and 

the diffusive drainage of waste metabolites from brain parenchyma into the basement 

membrane of capillaries [28] also argued against the glymphatic hypothesis.   

We discuss here that the transport of small size water-soluble waste metabolites 

could be mediated by glymphatic function. The missing piece is the accumulation of 

large size metabolites at the perivascular space, where glymphatic system does not 

account for the clearance mechanisms. This concept is clinically important because 

aggregation of entangled proteins at perivascular space is a hallmark of certain 

neurological diseases like Alzheimer’s disease and cerebral amyloid angiopathy [1, 2, 

48]. Unravelling the clearance mechanisms of these entangled proteins from 

perivascular to blood circulation would be novel for ameliorating the relevant 

neurological diseases. Our recent findings describe this novel clearance mechanisms at 

the perivascular space, which is discussed in perivascular clearance section.  

1.2.5 Meningeal Lymphatic Vessels 

Lymphatic system is critical for maintenance of physiological homeostasis and immune 

surveillance. It is a conventional believe that the central nervous system (CNS) lacks the 

lymphatic vessels. Recently, Aspelund et al., 2015 and Louveau et al., 2015, 

independently reported the existence of dura lymphatic vessels, known as the meningeal 

lymphatic vessels in the meninges of the brain [36, 37]. They showed this evidence by 
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positive stain of lymphatic endothelial cells marker hyaluronan receptor 1 (Lyve-1) and 

vascular endothelial growth factor receptor 3 (VEGFR3) marker along the superior 

sagittal and transverse sinuses.  

Aspelund et al., 2015, concluded that dural lymphatic vessels absorb CSF from the 

adjacent subarachnoid space and from brain ISF through glymphatic system, in which 

CSF is then transported into deep cervical lymph nodes via foramina at the base of the 

skull [36]. They validated this drainage route by nearly complete absence of tracer 

accumulation in cervical lymph nodes in transgenic mice deficient of dural lymphatic 

vessels compared with wild-type after injection of tracer into the CSF. Louveau et al., 

2015, found that the meningeal lymphatic cells were able to transport fluid and immune 

cells from the CSF and clear them to the deep cervical lymph nodes [37]. Their discovery 

of meningeal lymphatic function in the CNS becomes highly significant in the context 

of immune cell surveillance since the development of many neurological diseases 

involve inflammatory process. The findings of Aspelund et al. (2015) seems to connect 

with glymphatic hypothesis, but the CSF drainage route in meningeal lymphatic system 

appears to exit at the deep cervical lymph nodes, similar to conventional CSF exit. Here, 

we illustrate the possible connection of CSF flow, glymphatic and meningeal lymphatic 

system clearance route, Figure 1.4. Glymphatic system depicts the exchange of CSF/ISF 

waste metabolites at the perivascular space towards perivenous space, while meningeal 

lymphatic system accounts for cervical lymph nodes clearance route. 
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Figure 1.4 Connection of CSF circulation, glymphatic system and dura lymphatic 

vessels in terms of clearance. Glymphatic system (black arrow depicted flow direction) 

resided inside brain was responsible for small size water-soluble waste metabolites 

clearance (black dots). Lymphatic vessels (black circle) presented in dura was postulated 

to involve in waste metabolites clearance by granting access for waste metabolites that 

were drained by glymphatic system. 

 

It is possible that waste metabolites from perivenous space may gain access to 

meningeal lymphatics through subarachnoid or along the drainage veins that can merge 

into dura sinus. It may be still too early to embrace the meningeal lymphatic vessel as 

clearance route of CNS waste metabolites because there is no direct evidence to strongly 

support this argument. In fact, multiple paths of CSF drainage in the CNS that are 

functionally and anatomically close to lymphatic vessels were known [49-51]. However, 

the exact connection between those routes and lymphatic vessels is largely unknown. 

This is because the precise location of lymphatic vessels, whether within subarachnoid, 

inside the dura or bathed between these two layers needs to be unraveled [52].   

Since meningeal lymphatic vessels are not directly connected to CSF 

compartments, the primary route of CSF waste metabolites absorption from 

subarachnoid into sagittal sinus will be across the arachnoid villi. The arachnoid 
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microvilli barrier is permeable to small size water-soluble metabolites, as such the 

clearance mechanisms of large size waste metabolites remains to be investigated further. 

Thus, promoting the mechanisms of perivascular clearance becomes clinically 

significant since entangled proteins like A-β protein or neurofibrillary tau-

phosphorylated protein are commonly aggregated at the perivascular space.      

1.2.6 Perivascular Space Clearance Mechanisms  

Perivascular space (PVS) is referred to the space surrounding the penetrating arterioles 

when diving down into deep brain tissues from pial arteries [53, 54]. The fine structure 

of PVS consists of vascular endothelial and glial cells. The glial layer of the astrocyte 

end-feet forms the outer wall, which becomes continuous with the vascular membrane 

and basal lamina as it penetrates into the deep brain [55, 56]. The PVS channels are 

known to involve in CSF/ISF waste metabolites movement, as indicated by distribution 

of horseradish peroxidase following lateral ventricle or subarachnoid space injection in 

cats and dogs [3]. Recently, a dynamic exchange of fluorescently labeled tracer between 

CSF/ISF and perivascular was shown in NG2-DS transgenic mice by using two-photon 

microscopy imaging [29]. In fact, in the 70’s the PVS was implicated as a conduit of 

waste metabolites sink similar to the choroid plexuses because injection of horse radish 

peroxidase (HRP) tracer into striatum of rat was found to aggregate around the PVS 

[20].   

The assumption of PVS serving as a conduit sink in the CNS is significantly in 

line with the accumulation of waste metabolites around vasculatures that are clinically 

observed in certain neurological diseases. The classic examples of such waste 

metabolites deposition around the perivascular space are the neuropathological 
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observations of phosphorylated tau protein in cerebral amyloid angiopathy (CAA) and 

aggregation of amyloid beta protein in Alzheimer’s disease [1, 2, 5, 48]. These 

observations clearly suggest that PVS may be directly involved for the possible 

clearance of large size waste metabolites like phosphorylated tau protein and Aβ protein, 

which are transported by CSF, meningeal lymphatics and glymphatic function. 

Intriguingly, the ApoE family of molecules (ApoE2,E3) when mediated by low-density 

receptor protein (LRP1) seem to actively involved in the clearance of Aβ protein through 

BBB trans-vascular transcytosis [52, 57, 58]. In fact, experimental observations have 

shown that the trans-vascular clearance from brain to blood circulation across the BBB 

is believed to account for more than 80% of amyloid-beta clearance [59-61]. However, 

such findings are based on clearance of small Aβ peptide in normal physiological 

condition. In neuropathological condition, aggregation of phosphorylated tau protein 

and Aβ protein at the perivascular space still remains to be the hallmark of neurological 

diseases. The formation of this hallmark phenomenon needs further investigation to 

understand whether the aggregation of entangled proteins at the perivascular space is 

due to onsite formation or being translocated from the ISF. Since the aggregated proteins 

in AD are mostly originated from neuronal cell components, it is likely to translocate 

from the interstitial fluid rather than onsite formation. The rationale is that unlike the 

astrocyte end-feet, the location of neurons is not directly in contact with perivascular 

endothelial cells.   

Thus, we posit here two fundamental questions for further investigation. What is 

the driving force that regulate the movement of these waste metabolites towards the 

perivascular space, and how to improve the clearance of these metabolites from 
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perivascular space into the circulation in a timely manner? Understanding the improved 

mechanisms of the intertwined processes will be significant to alleviate this neurological 

disease. To this end, my recent findings gain clinical significant in understanding the 

underlying cellular and molecular mechanisms of waste metabolites movement towards 

perivascular space. We have shown that large size waste metabolite injected into the 

CSF directly or into the cortical interstitial fluid diffused towards perivascular-

perivenous space instead of clearing through the conventional CSF subarachnoid and 

sagittal sinus exchange [62]. We indicated that the hindrance for this exchange is due to 

the presence of arachnoid villi barrier between the two compartments which allows the 

absorption of mostly small size water-soluble metabolites/solutes. As a result, these 

stagnated waste metabolites are forced to move towards perivascular space, and we 

postulated that the driving force that regulate the movement appears to be the dilative 

reactivity of arterial endothelial cells and smooth muscle cells interactions.  
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Figure 1.5 Schematic presentation of waste metabolites clearance at the perivascular-

perivenous space. Arrows (orange) indicate the CSF subarachnoid flow and 

perivascular-perivenous clearance path (black) of large size waste metabolites (red dots) 

in neurodegenerative brain. Waste metabolites like β-amyloid proteins are aggregated 

more inside the interstitial space due to the lack of lymphatic system in the brain. Less 

metabolites are drained into the CSF flow due to less vessel dilative reactivity. In the 

presence of low dose alcohol (right), dilative arterial vessel reactivity promotes the 

dynamic movement of large size waste metabolites from interstitial fluid and interstitial-

CSF subarachnoid to perivascular-perivenous route. Reactivity of endothelial and 

smooth muscle cells in arteries is mediated by alcohol-elicited eNOS activation and NO 

production. From perivascular and/or perivenous spaces, large size metabolites are 

exchanged into circulation through two postulated mechanisms: (1) trans-vascular 

clearance to circulation from perivascular space, and (2) diffusion into circulation from 

perivenous space. 

 

The rationale is that reactivity of vascular smooth muscle cells was indicated to 

govern the cerebral arterial pulsation driven perivascular CSF flow locally [63]. This 

dynamic pulsatile pattern of neighboring blood vessels may exert significant attraction 

on fluid movement towards perivascular space. In this, the bioavailability of nitric oxide 

(NO), a potent vasodilator becomes essential to regulate dilative reactivity of cerebral 

arterial endothelial cells and smooth muscle cells interactions. Thus, we examined the 
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proof-of-concept that activation of brain endothelial specific nitric oxide synthase 

(eNOS) by low dose ethanol could produce favorable physiological levels of NO for 

increasing the cellular reactivity and increase diffusive movement of waste metabolites 

towards perivascular space. The rationale was that moderate level of ethanol has been 

shown to augment endothelial-SMCs dilative activity in placenta and pulmonary arterial 

vessels [4, 64, 65]. In deed my recent findings revealed that a very low dose ethanol (5.0 

mM, equivalent of 0.02% blood alcohol level) significantly enhanced the diffusive 

movement of waste metabolites from ISF/CSF to perivascular-perivenous space [62]. 

We found that dilative reactivity of brain endothelial and smooth muscle cell was the 

underlying cellular and molecular mechanisms for this improved diffusive clearance of 

waste metabolites at the perivascular-perivenous space. Figure 1.5 illustrates the 

underlying mechanisms of waste metabolites clearance at the perivascular-perivenous 

space.        

My findings also validated the exchange between perivascular-perivenous and 

blood circulation by detecting fluorescent labeled large size waste metabolite in 

systemic blood plasma after CSF/parenchyma injection. The question of whether the 

maximum diffusion into the blood circulation takes place at the perivascular space or at 

the perivenous space, and/or both remains future studies. Other studies indicated that 

perivenous flow may gain access to meningeal lymphatic vessels or large caliber 

draining veins, which may then merge to form the dura sinus [29, 39], but it has no direct 

evidence. This rationale is unlikely because lymphatic vessels appear to localize in dura 

leaflets or inside surface of the dura that are separated from the CSF, as such it will not 

have access to waste metabolites. On the basis of tissue organ environmental 
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considerations, Rapper et al. (2016) concluded that unlike the function of the peripheral 

lymphatic system, the meningeal lymphatics may not involve in CSF waste metabolites 

drainage system [52]. In summary, the movement of Aβ protein from ISF/CSF 

subarachnoid to perivascular space is regulated by dilative reactivity of brain arterial 

smooth muscle and endothelial cells interactions. This clearance path can be 

significantly promoted by low dose ethanol via eNOS-induced NO production. 

1.2.7 Conclusion 

Efficient clearance of interstitial waste metabolites in CNS is essential for normal 

maintenance of brain homeostasis. We describe here the up-to-date emerging 

discoveries of various possible clearance systems operating in the brain apart from the 

conventional cerebrospinal fluid (CSF) clearance path. This includes glymphatic 

system, meningeal lymphatic vessels, diffusive movement of waste metabolites from 

ISF/CSF to perivascular space, and perivascular clearance of waste metabolites across 

the BBB trans-vascular vessels. Each of this individual discovery does carry significant 

impact on current scientific knowledge gap towards the understanding of waste 

metabolites clearance and immune cells surveillance function in the CNS. Apart from 

the focal finding of astrocytic aquaporin-4 mediated clearance path, the glymphatic 

system does reveal the movement of waste metabolites like amyloid-beta towards the 

perivascular space.  Whether the movement of these waste metabolites from ISF/CSF to 

perivascular space is regulated by diffusion or a bulk flow mechanisms needs further 

verification. However, aggregation of waste metabolites at the perivascular space 

prompted the clearance path through the BBB trans-vascular or re-entry into the 

capillary basement membranes [66], which is relevant for eventual prevention of 
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neurological disease like Alzheimer’s disease. Thus, improving the newly discovered 

CNS clearance path(s) in the absence of traditional lymphatic drainage system assumes 

great therapeutic relevance for many neurological diseases.   
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CHAPTER 2 

MATERIALS AND METHODS 

 

2.1 Materials and Reagents 

Reagents: Primary antibodies rabbit anti-GFAP, iNOS, vWF, Glut-1, ZO-1, Occludin, 

Claudin-5, phospho-MLC; mouse anti-SMA, eNOS, 3-NT and anti-beta actin were 

purchased from Abcam (Cambridge, MA); anti-endomucin was purchased from 

Invitrogen (Carlsbad, CA). Rabbit anti- phosphor-MYL9, phospho-MYPT1/MYPT2 

and phosphor-MYLK were purchased from Invitrogen (Carlsbad, CA). All secondary 

Alexa Fluor conjugated antibodies were purchased from Invitrogen (Carlsbad, CA). 

Table 2.1 summarizes the details of the antibodies source, catalog numbers, and 

dilutions factors that were used for immunofluorescence staining and western blotting 

analyses.  

A highly stable fixable dextran-conjugated Fluorescein, 2,000,000 MW (FITC-

d2000) was purchased from Thermo Fisher Scientific (Waltham, MA), Nω-Nitro-l-

arginine methyl ester (L-NAME, a NOS inhibitor) was purchased from Sigma-Aldrich 

(St. Louis, MO).  

 

 

 

 

 

 

 



23 
 

Table 2.1 Antibodies Source, Catalogue Numbers, and Dilutions Factors for 

Immunoflurescence Staining and Western Blotting Analyses 

 

Antibody Marker Vendor Catalogue # 
Dilution 

for IHC 

Dilution 

for WB 

Anti--SMA 

 

Alpha 

smooth 

muscle actin 

 

Abcam 
ab7817 

 
1:250 1:1000 

Anti-GFAP Astrocyte 
Abcam 

 
ab7260 

 
1:250 -- 

Anti--actin Beta-actin Abcam ab8226 -- 1:2000 

Anti-Endomucin Endomucin 
Invitro

gen 

14-5851-

82 
1:200 -- 

Anti-iNOS 

Inducible 

nitric oxide 

synthase 

Abcam 

 
ab15323 

 
1:250 1:1000 

Anti- 3-

Nitrotyrosine 

3-

Nitrotyrosine 
Abcam ab110282 1:250 1:1000 

Anti-Von 

Willebrand 

Factor 

Von 

Willebrand 

Facto 

Abcam ab154193 1:250 1:1000 

Anti-Glucose 

Transporter 1 

Glucose 

Transporter 1 
Abcam ab652 1:250 1:1000 

Anti-ZO1 

ZO-1 tight 

junction 

protein 

Abcam ab96587 1:250 1:1000 

Anti-Occludin Occludin Abcam ab224526 1:250 1:1000 

Anti-Claudin 5 Claudin-5 Abcam ab15106 1:250 1:1000 

Anti- Myosin 

light chain 

(phospho S20) 

Myosin light 

chain 

(phospho 

S20) 

Abcam ab2480 1:250 1:1000 

Anti-phospho-

MYL9 (Thr18, 

Ser19) 

pThr18/Ser19 

of myosin 

light chain 2 

Invitro

gen 

PA5-

17727 
1:200 1:1000 

Anti-Phospho-

MYPT1/MYPT2 

(Ser668, Ser618) 

MYPT1/2 

(Phospho-

Ser668/Ser61

8) 

Invitro

gen 

PA5-

64805 
1:200 1:1000 

Anti-Phospho-

MYLK 

(Ser1760) 

myosin light 

chain kinase 

(MLCK) that 

contains 

serine 1760 

Invitog

en 
44-1085G -- 1:1000 

 

2.2 Methods 

2.2.1 Animals and Cell Culture 

Eight-week old male Sprague-Dawley rats were purchased from Charles River 
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Laboratory (Wilmington, MA). Animals were maintained in sterile cages under 

pathogen-free conditions in accordance with institutional ethical guidelines for care of 

laboratory animals, National Institutes of Health guidelines, and the Institutional Animal 

Care Use Committee, Rutgers University.  

For low dose/acute study: animals were randomly divided into 4 experimental 

groups (6 rats/group), 1) Control, 2) 5.0 mM ethanol, 3) 5.0 mM ethanol + L-NAME, 

and 4) L-NAME. A working concentration of 5.0 mM ethanol (EtOH, 0.230 g/kg body 

weight) was determined from a dose-dependent study of 0.046–0.460 g/kg body weight 

reconstituted in saline. 

For chronic alcohol animal model: a pair-fed procedure was employed as 

previously described [67]. In brief, rats were initially acclimated to Lieber DeCarli 

control and 29 % calorie (5% vol/vol) ethanol (EtOH) liquid-diets from Dyets Inc for 1 

week prior to weight-match pair feeding regimens for 10 – 12 weeks. Pair feeding of 

control animals (15 rats, 7 rats for acute/dose) was based on the amount of ethanol-liquid 

diets consumed by ethanol animals (8 rats). The macronutrient composition of control-

liquid diets as percent of total calories is 47% carbohydrate, 35% fat, and 18% protein; 

and that of ethanol-liquid diets is 35% fat, 18% protein, 19% carbohydrate and 29% 

ethanol caloric intake. Daily food intake and weekly body weights were recorded.  

2.2.2 Drug Concentration  

Ethanol or the NOS inhibitor L-NAME (10 mg/kg body weight) constituted in saline 

was injected through tail vein using a 27 G needle. Detailed experimental conditions for 

control tracer dye bio-distribution through cisterna magna or intracortical route of 

injection is described below. For group 2, ethanol was administered 15 min prior to 
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tracer dye injection following anesthesia, while L-NAME was administered 5 min prior 

to ethanol and 20 min prior to tracer dye injection for group 3. For group 4, L-NAME 

was given 20 min prior to tracer dye injection. 

2.2.3 Injection of Fluorescence Marker 

All rats were anesthetized by intraperitoneal injection of 0.1 ml of ketamine (80–100 

mg/kg) + xylazine (5–10 mg/kg) mixture using a 26-gauge needle as approved by the 

Panel on Euthanasia of the American Veterinary Medical Association (AVMA). 

Anesthetized rats were fixed in a stereotaxic frame. Then a total volume of 10 μl 

fluorescence tracers diluted in artificial CSF at a concentration of 5 mg/ml (0.5%) was 

injected via the cisterna magna at a rate of 2 μl/min over 5 min using 30-gauge needle 

syringe pump (Harvard Apparatus). The body temperature of animals was maintained 

at 37 °C with a temperature-controlled warming pad. Heart rate and respiratory rate were 

monitored through MouseSTAT® Pulse Oximeter & Heart Rate Monitor Module. To 

visualize the time-dependent movement of tracer from subarachnoid space into the brain 

parenchyma following cisterna magna injection, animals were perfusion fixed at 30 min, 

1 h and 2 h before surgically removing the intact brain tissues. A thickness of 40 μm 

tissue slices were cut and mounted on a glass covered slides and tracer bio-distribution 

was imaged ex-vivo by epifluorescence microscopy. 

2.2.4 Intracortical Tracer Injection 

All rats were anesthetized as describes above. A total volume of 1.0 μl fluorescent 

labeled tracers were injected stereotactically into the brain parenchyma at a rate of 

10 nl/s that controlled by a micro syringe pump (UMP3) from world precision 

instruments (Sarasota, FL). A 33-gauge needle was inserted via a small burr hole into 
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the brain at the following coordinates: right parietal skull, 2.0 mm lateral from the 

sagittal suture and 3.0 mm caudal from the coronal suture. After needle insertion, 30 min 

was given to allow the needle track to swell closed. To evaluate tracer bio-distribution, 

animals were perfusion-fixed between 1 – 4 h after injection and tissue slices (40 μm) 

were subsequently imaged as describe above. 

2.2.5 Ex-vivo Fluorescence Imaging 

Multi-channel whole-slice montages were acquired with Leica Aperio Versa 200 digital 

pathology grade slide scanner. This included separate DAPI, Green and Red emission 

channels. Exposure levels were determined based upon un-injected control slices, then 

maintained constant throughout the study. Fluorescent intensities were quantified using 

AreaQuant software specifically designed for this imaging application (Leica 

Biosystems) and expressed as average fluorescence intensity/unit area. This imaging 

technique allows for visualization of micro-structural details and digital scanning affords 

the ability to image large brain regions with no loss of resolution. In order to quantify 

fluorescence intensities, regions of interest were manually outlined in different brain 

section. For each channel (green 488 nm and red 594 nm), a minimum intensity 

threshold value was selected to exclude any background fluorescence from our 

calculation. The AreaQuant algorithm then determines if the intensity value of each 

pixel enclosed in the outlined region exceeds the minimum intensity threshold and 

outputs the total area of positive stain for each brain regions, the average intensity in 

each channel, and the expression profile of the tracers. 

2.2.6 Surgery for Two-photon in-vivo Imaging 

Rat surgery for two-photon imaging was as described by Eyo et al. [68]. Briefly, rats 
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were anesthetized and craniotomy (4.0 × 4.0 mm) was performed over the right parietal 

skull, 2.0 mm lateral from the sagittal suture and 3.0 mm caudal from the coronal suture, 

with the dura intact. A head plate was glued to the skull around the cranial window, and 

the plate was screwed into a customized stage and placed under the two-photon 

microscope. To visualize vasculatures, 1 ml BBB impermeable Texas Red-dextran 70 

(MW 70 kDa; 1% in saline, Invitrogen) was injected through tail vein 30 min before 

imaging. Rats were maintained under anesthesia and body temperature was kept at 37 °C 

with a warming pad for the duration of imaging. Heart rate and respiratory rate were 

monitored as previous described. 

2.2.7 In-vivo Imaging 

Two-photon microscopy setting and operation were as described [69]. In brief, two-

photon fluorescence microscopy (2PFM) was performed using a Bruker Ultima 

fluorescence microscope equipped with a Coherent Mira 900 laser source (200 fs, 

76 MHz). The excitation wavelength was 860 nm for dextran-conjugated FITC and 

Texas Red, and the emission was collected using two external nondescanned PMT 

detectors (NDD) at 525–600 nm. A 20 × , 1.0 N A. water immersion objective was 

employed for the 2PFM. A laser line-scan or ROI-based local excitation was used to 

better evaluate vessel diameter change and tracer movement over time. 

2.2.8 Line Scan 

To measure vessel diameters, 9000 ms X–Y line scan was conducted orthogonal to the 

vessel axis in penetrating arterioles 50–100 μm below the cortical surface. A customized 

Matlab code was developed to extract and calculate vessel diameter over time. 
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2.2.9 Immunofluorescent Staining 

For tissues: Immunostaining was described in previously publications [67, 70]. In brief, 

frozen brain tissue sections (10 μm thickness) on glass slides were washed with PBS, 

fixed in acetone-methanol (1∶1 v/v) fixative, blocked the cellular antigen with 3% bovine 

serum albumin at room temperature for 1 h in the presence of 0.4% Triton X-100 and 

incubated with respective primary antibodies such as rabbit anti-alpha smooth muscle 

actin(SMA) (1∶250 dilution), rabbit anti-GFAP (1∶250 dilution) and mouse anti-eNOS 

(1:250 dilution) for overnight at 4 °C. After washing with PBS, tissue sections were 

incubated for 1 h with secondary antibody: anti-rabbit-IgG Alexa fluor 594 (1:400 

dilution) for GFAP and mouse-IgG Alexa fluor 594 (1:400 dilution) for SMA and eNOS. 

Cover slips were then mounted onto glass slides with mounting solutions containing 

DAPI (Invitrogen), and fluorescence microphotographs were captured by Leica Aperio 

Versa 200 digital pathology grade slide scanner. 

For cells: Immunostaining procedure was described in previously publications 

[67, 70]. In brief, cells cultured on glass slides were washed with PBS, fixed in 

paraformaldehyde (4%) fixative, blocked the cellular antigen with 3% bovine serum 

albumin at room temperature for 1 hr in the presence of 0.4% Triton X-100 and 

incubated with respective primary antibodies for overnight at 4°C. After washing with 

PBS, cells were incubated for 1 hour with secondary antibody. Cover slips were then 

mounted onto glass slides with mounting solutions containing DAPI (Invitrogen), and 

fluorescence microphotographs were captured by Leica Aperio Versa 200 digital 

pathology grade slide scanner. 
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2.2.10 Western Blot 

A cerebral blood vessel isolation was performed using mesh filtration to concentrate 

protein content that originated solely from vasculatures [71]. In brief, fresh brain tissue 

was homogenized on ice using pestle in HBSS solution with 1% HEPES. Whole brain 

homogenization was centrifuged at 2,000×g for 10 min and 4,400×g for 15 min (in 20% 

dextran) at 4 °C. Then, pellet containing vessels was re-suspended into ice-cold 1% 

bovine serum albumin (BSA) solution and proceed to mesh filter (20 um) for isolation. 

Western blot was performed as described by previous publication [72]. In brief, isolated 

brain vessels or cell lysis from respective experimental conditions were lysed with 

CellLytic-M (Sigma) for 30 min at 4 °C, and centrifuged at 14000×g. The concentrations 

of protein from tissue homogenates were estimated by bicinchoninic acid (BCA) method 

(Thermo Fisher Scientific, Rockford, IL). Protein load was 20 μg/lane in 4–15% SDS-

PAGE gradient gels (Thermo Fisher Scientific). Molecular size separated proteins were 

then transferred onto nitrocellulose membranes, blocked with superblock (Thermo 

Fisher Scientific), and incubated overnight with respective primary antibody to alpha-

SMA, eNOS and beta-actin (all diluted at 1:1000) at 4 °C, followed by washes and 

incubation with horse-radish peroxidase conjugated secondary antibodies 

(corresponding to primary, diluted at 1:12000) for 1 hr at room temperature. 

Immunoreactive bands were detected by West Pico chemiluminescence substrate 

(Thermo Fisher Scientific). Data was quantified as arbitrary densitometry intensity units 

using the ImageJ software package. 

2.2.11 Real-time NO Detection 

For tissues: Briefly, freshly isolated brain tissues was prepared in ice-cold oxygenated 
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(95% O2 and 5% CO2) artificial cerebrospinal fluid (aCSF). Coronal slice (1 mm) was 

prepared using brain matrices and transferred to a recovery chamber for 30 min with 

oxygenated aCSF at 37 °C temperature before experiment. NO was measured using free 

radical analyzer with a specific NO probe (TBR4100, World Precision Instruments, 

Sarasota, FL). The NO probe is able to polarographically measure the concentration of 

NO gas in solutions. The system was calibrated using different concentrations of NO 

donor S-Nitroso-N-acetyl-dl-penicillamine (SNAP, Cayman Chemical) to generate a 

standard curve. To block endogenous NO, oxygenated aCSF containing 1 mM L-NAME 

was added to tissue 30 min prior experiments. Probe was positioned ~1 mm above tissue 

surface using a micromanipulator (World Precision Instruments, Sarasota, FL) and 

baseline of NO release was recorded prior EtOH treatment. Tissue was then treated with 

5 mM EtOH (in aCSF) and subsequently with 1 mM L-NAME (in aCSF). NO 

concentration was recorded using NO probe as described at the same time. Experiment 

was simultaneously performed with control from the same tissue source to exclude 

experimental drift in NO release unrelated to the study. 

For cells: To block endogenous NO prior experiment, cells were firstly incubated 

with medium containing 50 µM L-NAME for 30 min. During experiment, probe was 

positioned ~ 1 mm above cell layer surface using a micromanipulator (World Precision 

Instruments, Sarasota, FL) and baseline of NO release was recorded prior EtOH 

treatment. Cells were then treated with 10 mM EtOH or 15 µM SNAP (in medium) and 

data was collected at 10, 20, 30, 60 and 120 min respectively. Experiment was 

simultaneously performed with control from the same cell source to exclude 

experimental drift in NO release unrelated to the study. 



31 
 

2.2.12 Plasma Fluorescence Intensity 

Whole blood was collected from the tail vein before sacrificing and stored in citrate-

treated blood tubes (Fisher) to avoid coagulate. To extract plasma, whole blood was 

centrifuged at 1000×g for 10 min (4 °C). Clear supernatant was carefully collected and 

aliquoted into small tubes. Arbitrary fluorescence intensity was determined in 96-well 

plate using plate reader (Molecular Devices) at 490 excitation and 525 emission 

wavelengths. 

2.2.13 Endothelial and Smooth Muscle Cells Culture 

Rat primary brain vascular endothelial cells and were purchased from ScienCell 

(Carlsbad, CA) and rat primary brain vascular smooth muscle cells were purchased from 

Cell Biologics (Chicago, IL). Briefly, cells were cultured on collagen-coated flash in 

complete medium with supplements provided by vendor.  

2.2.14 Cell Toxicity Assay 

Endothelial cells and smooth muscle cells (1×104/well, determined by cell number 

titration) were seeded into a 96-well plate respectively and incubated in at 37°C under a 

humidified atmosphere of 5% CO2 and 95% air for 24 hours prior experiment to allow 

fully attachment. Cells were then incubated with medium containing different 

concentration of alcohol (0, 2.5 mM, 5 mM, 10 mM and 20 mM) for 2 hours. Toxicity 

was subsequently measured by using MTT assay kit (Abcam). In brief, adding 50 μl of 

MTT reagent to each well, and then incubated the plate at 37°C for 3 h. After incubation, 

150 μl of MTT solvent was added to each well and absorbance was measured at 590 nm 

using a multi-well spectrophotometer (Molecular Device). 
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2.2.15 Data Analysis 

All results values are expressed as the mean ± SE, N = 6. Statistical analysis of the data 

was performed using SPSS 24 (IBM). In the present studies, wherever the numeric 

values of N are indicated, it represents the actual number of animals/samples used for 

that specific experiments or the actual number of experiments performed in cell culture 

setting, and not the number of replicates per experimental condition. Comparisons 

between samples were performed by ANOVA with Tukey’s post-hoc tests. Differences 

were considered significant at *p < 0.05. 
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CHAPTER 3 

ALCOHOL PROMOTES WASTE CLEARANCE IN THE CNS VIA BRAIN 

VASCULAR REACTIVITY  

 

3.1 Summary 

The efficient clearance of the interstitial waste metabolites is essential for the normal 

maintenance of brain homeostasis. The brain lacks the lymphatic clearance system.  

Thus, the drainage of waste metabolites in the brain is dependent on a slow flow of 

cerebrospinal fluid (CSF) system. Glymphatic system claims the direct bulk flow 

transport of small size water-soluble waste metabolites into to the perivenous space by 

aquaporin-4 water channels of the astrocyte end-feet, but it did not address the diffusive 

clearance of large size waste metabolites. In this chapter, we addressed the clearance 

mechanisms of large size waste metabolites from interstitial fluid to perivascular space 

as well as from CSF subarachnoid into perivascular space via the paravascular drainage. 

A low dose ethanol acting as a potent vasodilator promotes the dynamic clearance of 

waste metabolites through this perivascular-perivenous drainage path. We observed that 

ethanol-induced increased in vascular endothelial and smooth muscle cell reactivity 

regulated the enhanced clearance of metabolites. Here, we found that activation of 

endothelial specific nitric oxide synthase (eNOS) by ethanol and generation of 

vasodilator nitric oxide mediates the interactive reactivity of endothelial-smooth muscle 

cells and subsequent diffusion of the CNS waste metabolites towards perivascular space. 

By detection of tracer dye (waste metabolite) in the perivenous space and in the blood 

samples, I further confirmed the improved clearance of waste metabolites through this 
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unraveled interstitial-perivascular-perivenous clearance path. As such, we conclud that 

alcohol intake at low-dose levels may promote clearance of neurological disease 

associated entangled proteins.   

 

3.2 Background 

Efficient clearance of interstitial fluid (ISF) waste metabolites by cerebrospinal fluid 

(CSF) flow is essential for normal healthy maintenance of brain homeostasis, because 

unlike most tissue organs the brain lacks a lymphatic system. The classical view of the 

CNS clearance system is that the interstitial fluid (ISF) contains the extracellular and 

intracellular waste metabolites that are drained into choroid plexus [31], from here CSF 

flows into subarachnoid space (SA) through the median and lateral apertures. CSF is 

then exchanged into dural sagittal sinuses via a restricted granulation known as 

subarachnoid microvilli, then the sagittal sinuses, merged at the confluence of sinuses, 

are drained into nasal or cervical lymphatic vessels [26, 27, 30]. Johnston et al. (2010) 

showed this path by filling the subarachnoid compartment of seven different species, 

from small rodents to humans, with yellow microfil CSF tracer dyes to trace the drainage 

path of CSF into nasal lymphatics [35]. They found that microfil was observed primarily 

in the subarachnoid space around the olfactory bulbs and cribriform plate. The contrast 

agent followed the olfactory nerves and entered extensive lymphatic networks in the 

submucosa associated with the olfactory and respiratory epithelium.  

Recently, Louveau et al. (2015) and Aspelund et al. (2015) have shown the 

existence of dura associated lymphatic vascular system in the brain's meninges whole-

mount fixing the meninges still attached to the skull [36, 37]. They observed distinctive 
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expression of lymphatic endothelial cells including lymphatic vessel endothelial 

hyaluronan receptor 1 (Lyve-1) and vascular endothelial growth factor receptor 3 

(VEGFR3) along the blood vessels of superior sagittal and transverse sinuses. The 

involvement of dural lymphatic vessels for the drainage of metabolites in dural venous 

sinus was shown by injecting tracers into the CSF of animals and by detecting the tracers 

in the lumen of Lyve-1-expressing vessels and in the deep cervical lymph nodes [37]. It 

was further confirmed that there was a significant reduction of tracers in Lyve-1-

expressing vessels and a complete absence of tracers in the cervical lymph nodes of 

transgenic mice deprived of lymphatic vessels [36]. Since anatomical sites of lymphatic 

vessels were strictly localized in brain dura meninges [36, 37, 52], as such transport of 

soluble waste metabolites into lymphatic vessels would be dependent on CSF 

subarachnoid circulation. Notably, the exchange of waste metabolites from 

subarachnoid to superior sagittal venous sinus is valid only for water-soluble small size 

metabolites because of granulated subarachnoid microvilli barriers. Thus, dural 

lymphatic vessels, also known as meningeal lymphatic clearance system may not clear 

large size waste metabolites.  

The recently discovered glymphatic system showed a molecular size dependent 

clearance profile of fluorescent dye tracers in the CNS, when tracers were injected 

through intracisterna magna [29]. The small size tracer (Texas Red, 3 kDa) directly 

entered the interstitial space and influx into the perivascular space along penetrating 

arterioles. The clearance of this small size tracer from perivascular space into central 

deep veins and lateral-ventral caudal rhinal veins is facilitated by aquaporin-4 (AQP4) 

water channel of a highly-polarized astrocytic end feet. Such an AQP4 facilitated 
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exchange between CSF and ISF is restricted to small size waste metabolites because the 

medium size tracer (Ovalbumin, 647 kDa) gets accumulated at perivascular space within 

3 hours of injection. The tracer then slowly penetrated into the basement membranes of 

parenchymal capillaries and perivascular space of large caliber draining veins, 

suggesting a capillary-venous drainage route. In contrast, a large size tracer (FITC, 2000 

kDa) was found to be aggregated at the perivascular space, lacking a distinct clearance 

path [29]. Injection of radiolabeled amyloid β1–40 (Aβ, a small peptide) into mouse 

striatum was rapidly cleared through the glymphatic pathway since the clearance was 

significantly diminished in AQP4 deficiency transgenic mice [29]. This further 

implicates the importance of glymphatic system clearance in neurological disease, like 

Alzheimer’s disease [29, 38-40], even though glymphatic system did not account for the 

clearance of such large size waste metabolites in the CNS. 

However, the reproducibility of the accredited bulk flow transport mechanism of 

glymphatic hypothesis has been questioned by a number of most recent verification 

studies. These investigations concluded that clearance of waste metabolites from the 

brain is more of a diffusion rather than bulk flow convective transport, based on the 

metabolites molecular size [42, 43]. In support of this argument, a model of diffusive 

and convective transport in brain extracellular space stated that diffusion alone size [44] 

or combined effects of diffusion and macroscopic fluid motion [45] is adequate to 

account for transport of waste metabolites in brain parenchyma rather than bulk flow 

alone. The later appears to be a more reconcile argument for such conflicting 

experimental observations, notably the transport of solutes in opposite directions in the 

perivascular space. This is in parallel with the findings that cyclic changes in arterial 
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pressure produces mixing or flow in opposite directions in different spaces of the arterial 

wall [46]. In this case, convection can assist the movement into and out of the cortex 

without necessarily producing the net flow of fluid into the cortex as required by 

glymphatic system. Furthermore, the diffusive molecular flow along the peri-arterial 

sheaths into subarachnoid CSF [47], and the diffusive drainage of waste metabolites 

from brain parenchyma into the basement membrane of capillaries [28] argued against 

the glymphatic hypothesis.   

The fact is that large size waste metabolites like tauopathy, prion-like 

proteinopathies, cerebral amyloid angiopathy, and Aβ proteins are seen accumulated 

around the perivascular space in brain tissue from neurological diseases [1, 2, 48]. Such 

observations suggest that large size waste metabolites are not cleared by CSF, 

glymphatic, or meningeal lymphatic systems. Here, we address the fundamental 

questions of what dynamic force specifically drives the movement of these waste 

metabolites towards perivascular space, and can we strategize to enhance the clearance 

of these waste metabolites from perivascular space into the circulation? It has been 

shown that the blood-brain barrier (BBB) trans-vascular clearance from brain to blood 

provides functionally a major pathway for elimination of different waste metabolic 

products from brain into the circulation including amyloid-beta, which is believed to 

account for > 80% of amyloid-beta clearance under physiological conditions [59-61]. 

Thus, uncovering the mechanisms of moving the waste metabolites towards perivascular 

space and the clearance of waste metabolites from perivascular space into the circulation 

should have significant clinical impact for possible prevention of many neurological 

diseases. We hypothesize that increasing the reactivity of brain arterial endothelial and 
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smooth muscle cell function by low dose ethanol can enhance the dynamic diffusion of 

water-insoluble large size CSF/interstitial metabolites into perivascular space and 

subsequent clearance into the circulation. Here we test the idea that activation of brain 

endothelial specific nitric oxide synthase (eNOS) by low dose ethanol produces potent 

vasodilator nitric oxide that can diffuse readily into the underlying SMCs to cause 

arterial vessel dilation through intracellular calcium signaling. The rationale is that 

activation of eNOS by low concentration of ethanol elevates physiological NO levels 

and augments endothelial-SMCs interactive reactivity [4, 64, 65]. This eNOS derived 

NO acts as a potent protective brain vascular tone and vasodilation [70]. 

 

3.3 Results 

In this study, we examined the idea that reactivity of endothelial and smooth muscle 

cells plays a critical role in the interstitial-perivascular-perivenous clearance of large 

size waste metabolites in the brain. Here we first focused on the dynamic bio-distribution 

of a 2000 kDa fluorescent dye representing large size waste metabolites following two 

different routes of injection, through cisterna magna and direct intracranial cortical 

injection. Cisterna magna route directly deposits the tracer into the C3 region of CSF-

subarachnoid flow, while deposition of tracer dye into the intracranial cortical region 

move through the interstitial space. Stimulation of brain arterial endothelial and smooth 

muscle cells reactivity by low dose ethanol was correlated to increase clearance of waste 

metabolite through interstitial-perivascular-perivenous space. We observed that reactive 

vascular endothelial-smooth muscle cell dilation and contraction regulates the diffusion 

and clearance of waste metabolites via the interstitial-perivascular-perivenous path. The 
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clearance path is supported by the present findings. 

3.3.1 Injection of FITC-d2000 into C3 Region of CSF Flow Accumulates in 

Perivascular Space via the Subarachnoid-paravascular Movement 

 

To evaluate the movement pattern of large size waste metabolites in the brain, we first 

injected FITC-d2000 (MW: 2000 kDa) directly into the CSF flow via cisterna magna 

which bypass the interstitial movement. This large size fluorescence tracer represents 

large size waste metabolite like A-β proteins, which is validated in Appendix E (Figures 

E1 and E2). We then evaluated the bio-distribution of tracer in the brain at different 

time points. We observed that a direct deposition of tracer into the C3 region of CSF-

subarachnoid flow and penetrated into the perivascular space via the paravascular route 

time-dependently. For example, in less than 30 min after intracistertna magna injection, 

the subarachnoid (SAS) was filled with fluorescence tracer, but very little tracer 

penetrated in less than 0.5 mm depth of paravascular area from SAS (Figure 3.1A). But 

after 60 min, more tracer was observed penetrating deep into brain perivascular space 

(Figure 3.1B – C). The magnified imaging data from Figure 3.1D – F showed the 

biodistribution of aggregated tracer along the different segmental branches of arterial 

vessel. These data suggest that waste metabolites from CSF flow can move into 

perivascular space through subarachnoid-paravascular drainage path. 
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Figure 3.1 Tracer bio-distribution after cisterna magna injection at 30, 60, and 120 min. 

[A-C] data indicated that tracer was firstly filled in SAS (t<30min), and subsequently 

penetrated into brain along vasculatures. [D-F] details the magnified view of 

vasculatures in the boxed in C. Data are representative of  N=6 animals. Scale bar: [A, 

B and C] 3 mm; [D, E and F]: 50 µm. 

 

We then evaluated the exact location of the tracer in perivascular space. The 

arteriole perivascular space consists of endothelial cells, pericytes, and smooth muscle 

cells including basement membrane proteins that are ensheathed by astrocytic end-feet 

from the brain side. The capillary perivascular space will contain all cellular components 

like in arteriole but there is absence of smooth muscle cells. Co-localization of this tracer 

with immunostaining of perivascular cellular markers indicated that the waste 

metabolite tracer was found to be entrapped in between astrocytes (Figure 3.2A, GFAP) 

particularly at the astrocytic end-feet (Figure 3.2 B & C) and vascular smooth muscle 

cells (Figure 3.2D – G) as indicated by colocalization of alpha-SMA and tracer. I also 

observed that the waste metabolite tracer did not readily cross the blood vessel but 
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aggregated around perivasculature at early time point as shown in Figure 3.2E – G. 

These observations seen in immunostaining colocalization studies were further 

confirmed by multiphoton imaging techniques (Figure 3.2 H, H1, H2 & H3; Green: 

FITC-d2000, CSF tracers; Red: Texas red-d70, label vasculatures). 
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Figure 3.2 Co-localization of FITC-d2000 after cisterna magna injection with astrocyte 

marker (GFAP) and vascular smooth muscle marker (alpha-SMA) revealed location of 

tracers relative to vasculatures. [A]: Co-localization of tracer (FITC-d2000, 120 min 

after cisterna magna injection) and astrocytes (GFAP). [B and C]: Detail views revealed 

that tracers were wrapped by astrocytic end-feet (white arrows). [D] Co-localization of 

tracer (FITC-d2000, 120 min after cisterna magna injection) and smooth muscle cells 

(alpha-SMA). [E – G]: Detail views on right revealed that tracers were outside smooth 

muscle layer, not in vessel lumen. [H]: Two-photon scanning of tracer bio-distribution 

(Green: FITC-d2000; Red: Texas-Red d70). Animals were injected with two types of 

tracers: FITC (green) was delivered through cisterna magna; Texas-Red (red) was 

injected through tail vein to label vasculatures. 2 hours were allowed before sacrificing. 
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[H] indicated location of vessel segments that presented in H1, H2 and H3. Data 

suggested that after cisterna magna injection, tracers aggregated along vasculatures. 

Data was representation of N=6 animals. Scale bar: [A and D]: 3 mm; [B and C]: 100 

μm; [E, F and G]; [H]: 3 mm; [H1 and H2]: 50 µm; [H3]: 25 µm. 

 

3.3.2 Intracranial Cortical Injection of FITC-d2000 Reaches the Perivascular 

Space Prior to Subarachnoid Clearance Path 

 

In contrast to deposition of waste metabolites directly into the CSF flow through cisterna 

magna injection, we also injected a FITC-d2000 tracer directly into brain interstitial 

space at the depth of 0.5 mm in the right cortical surface, 2.0 mm lateral to sagittal suture 

and 3.0 mm away from caudal coronal suture at different time points. The rationale was 

to determine if waste metabolites can diffuse directly into the perivascular space from 

site of production (parenchyma) or the route of translocation would follow the path of 

CSF flow via subarachnoid-paravascular clearance. We found that tracers started to 

diffuse directly into para-and peri-vascular space from interstitial space after 60 min of 

cortical injection, as indicated by Texas red-d70 labeled for vasculatures and FITC-

d2000 Green representing large size waste metabolites (Figure 3.3B – D). At this time 

point, no tracers were detected at subarachnoid space through this route of injection 

(Figure 3.3A), indicating that waste metabolites can move directly into PVS via the 

interstitial diffusion. There was more accumulation of tracer in the perivascular space at 

longer time points of 240 min (Figure 3.3E – F). This cumulative aggregation of tracer 

in the PVS was from interstitial movement and dynamic translocation of CSF flow 

because subarachnoid space was also filled with tracer at this later time point. Co-

localization of tracer and vascular smooth muscle marker (alpha-SMA) immunostaining 

revealed that most of the tracer was arterial and capillary structures (Figure 3.3G – H). 
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Figure 3.3 Intracortical deposition of FITC-d2000 (green) directly into cortex (0.5 mm 

below cortical surface) allow us to track the time-dependent diffusion of tracer along the 

perivascular space marked by vessel marker Texas-Red d70 injected through the tail 

vein. 45 µm brain slices on glass slides were subjected to fluorescence microscope. [A, 

B, and E] indicate the time-dependent location of tracer. Small traces of tracers were 

already translocated from site of injection to the perivascular space before reaching to 

CSF, indicated by the absence of fluorescence in SAS. More tracers were found to move 

at longer time (E). Detail view in [C, D, F] suggested that the accumulation of tracers at 

PVS. [G and H]: co-localization of tracer (green) with smooth muscle actin (red) 

indicated that these vessels were arterials due to the presence of smooth muscle cell. 

Data are representative of N=6 animals. Scale bar: A: 1 mm; B and E: 300 µm; C, D, F 

and G: 50 µm; H, I and J: 30 µm. 

 

 

3.3.3 Evaluation of the Putative Mechanisms of Tracer Movement Towards 

Perivascular Space 

 

We then evaluated the putative mechanism of dynamic waste metabolites movement 

towards PVS that could be associated with clearance path. Based on previous findings 

[23, 28, 66, 73], we rationalized that increase in arterial vessel dilative reactivity by low-

dose alcohol may regulate the movement of waste metabolites towards PVS. The 

justification was that low dose alcohol was known to enhance vessel dilation through 

nitric oxide (NO) production in endothelial cells [74]. As such, we first established the 
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dose-response of ethanol concentrations from 2 – 10 mM on the tracer movement from 

CSF to perivascular space. We determined 5 mM ethanol gave the maximal 

biodistribution of tracer and this optimal working concentration is approximately 

equivalent of 0.02% blood alcohol level, which is about 4 – 5 times lower than the legal 

limit of 0.08 – 1.0% blood alcohol level. We observed that low dose of 5 mM ethanol 

injection into rat via the tail significantly (p<0.05) enhanced the movement of the 2000 

kDa FITC tracer from CSF to PVS compared with control (Figure 3.4A). Three 

different regions of brain slices were selected according to rat brain atlas map (Figure 

3.4A), and we observed a similar trend of increased distribution of tracer by ethanol in 

all the three different brain regions. However, this stimulating effect of ethanol was 

reversed by nitric oxide synthase inhibitor L-NAME, indicating that low dose ethanol 

increased the movement of tracer through NOS mediated NO production. 



46 
 

 

Figure 3.4 [A] Bio-distribution of tracer at 2 hours after cisterna magna injection in 

control, 5 mM EtOH, and L-NAME + 5 mM EtOH. Coordination of brain coronal tissue 

slices (45 µm) are shown according to rat brain map in three different locations, where 

bio-distribution of tracer was imaged in the whole brain section. Scale bar: 2 mm. [B] 

The quantity of tracer distribution in brain was calculated as mean fluorescence intensity 

on each slide (from N=6 animals, 10~15 slices were taken from each animal, +SEM). 

Data indicated that alcohol significantly increased the biodistribution of tracer and 

vascular reactivity, while NOS inhibitor L-NAME reversed the effect compared with 

control (*p<0.05).  

 

Thus, among all isoforms of NOS, we evaluated the effects of 5.0 mM ethanol on 

qualitative and quantitative levels of endothelial specific eNOS, and subsequent 

production of NO levels in brain tissues. This biological marker was examined to 

validate the idea that low dose ethanol enhanced the movement of waste metabolites 

along the perivasculature through NO induced vessel dilative pathway. Interestingly, 
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immunostaining revealed a huge increase of eNOS induction by low dose alcohol group 

(Figure 3.5A), which was further validated by significant elevation of eNOS levels by 

ethanol compared with control (p<0.05), as determined by Western blot analysis (Figure 

3.5B). To correlate the low dose ethanol-induced eNOS activation with NO generation, 

we analyzed the real-time NO production in live rat brain tissue by Free Radical 

Analyzer (World Precision Instruments, Sarasota, FL) using a micro-sensor detector. In 

line with eNOS activation, low dose alcohol exposure significantly elevated the 

production of NO in rat brain compared with baseline (Figure 3.5C). As expected, co-

treatment of L-NAME not only inhibited the induction of eNOS but also the production 

NO level. These data collectively suggest that low dose alcohol can promote 

perivascular clearance of waste metabolites through eNOS-mediated NO production by 

increasing the cerebral arterial vessel dilations. 
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Figure 3.5 Induction of eNOS by low dose ethanol produces endothelial derived nitric 

oxide. [A] Left: Colocalization of eNOS (red) and tracer (green) in whole brain tissue 

slice. Right: detailed view in boxed area. Data indicated that eNOS was elevated by 

EtOH. (N=6 animals, 10~15 slices per animal). Scale bar: Left: 3mm; Right: 50 µm. [B 

and C] The quantity of tracer distribution in brain was calculated as mean fluorescence 

intensity on each slide (from N=6 animals, 10~15 slices were taken from each animal, 

+SEM). Fluorescence intensity quantification of eNOS was calculated as mean 

fluorescence intensity on each slide (from N=6 animals, 10~15 slices were taken from 

each animal, +SEM) and presented as bar graphs for both whole brain scanning [B] and 

arterial vessel cross-section [C]. Data indicated that both quantification showed 

statistically significance upregulation of eNOS by low dose EtOH. Magnitude of 

increase in eNOS levels in the whole brain area quantification is similar to that of 

Western blot analyses. Whereas, the fold increase in arterial vessel is much higher than 

that of whole brain or Western blot because localization of eNOS is specific to arterial 

endothelium. [D] Western blot analysis of eNOS levels in different experiment 

conditions. Data was analyzed using image J to obtain arbitrary densitometry intensity 

units. Three replicates were done for each animal sample from N=6 animals. Bar graphs 

data were quantified from the ratio of eNOS to that of β-actin bands, and expressed as 

mean ±SEM. [E] Real-time NO production in live rat brain tissue (1 mm) by Free 

Radical Analyzer, where NO production was simultaneously monitored. Bar graphs 

show the average NO concentration under each condition, and expressed as mean 

±SEM. The asterisk indicates the statistical significance (*p<0.05) in EtOH compare 

with control. 

 

 

 

 

 

 



49 
 

3.3.4 Low Dose Alcohol Enhances Dynamic Vessel Dilation 

To validate the proof-of-concept that ethanol-induced arterial vessel reactivity promotes 

the pool of waste metabolites along the PVS, we determined dynamic dilative vessel 

reactivity by multiphoton imaging in live animals. We found that low dose alcohol 

significantly increased tracer movement towards PVS within 15 min, where the flux of 

tracer could be detected easily in the depth of 50 – 100 µm below cortical surface 

(Figure 3.6A). This increase in tracer accumulation in the PVS in the presence of 

alcohol was further supported by a significant vessel dilation (Figure 3.6B - C) and a 

significant increase in arterial vessel diameter (Figure 3.6D) as revealed by two photon 

line scan. This alcohol-induced significant increase in arterial vessel dilation and 

contraction suggest the active interaction between brain endothelial cell and smooth 

muscle cell within the arterial cellular components via the signaling molecule eNOS-

elicited NO production. Such a cross-talk between endothelial cell and smooth muscle 

cell is unlikely to occur in the capillary since smooth muscle cells are absent in the 

capillary. 
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Figure 3.6 Low dose alcohol enhances dynamic vessel dilation: [A] Time-lapse in-vivo 

two-photon imaging of florescent tracer (green, injected via intracisterna) and vessel 

marker Texas-Red (injected via tail vein) showed the time-dependent aggregation of 

tracer in perivascular space in 50-100 µm below cortical surface. [B] Dynamic imaging 

of changes in vessel diameter over time (N=3) before and after exposure to 5 mM ethanol 

at different time lapse. [C] Left: Cerebral was visualization of cerebral vasculature by 

two-photon imaging after intravenous tail vein injection of Texas Red-d70 showing 

penetrating arteriole in box (25 µm in diameter). Right: Selected area for X-T line scan 

to examine the changes in vessel dimeter, which was analyzed by customized Matlab at 

different time lapse. [D] Calculated changes in vessel dimeter, wherein baseline was 

collected before alcohol exposure. A 9000 ms epoch line scan was applied every 15 

minutes to determine the changes in vessel diameter, which is shown in bar graphs. Two-

way ANOVA with tukey’s post-hoc test show the statistical significance * p<0.05 

compared with baseline, expressed as mean ±SEM, N=3. 

 

We then examined the idea that generation of the alcohol-induced vasodilator NO 

from brain endothelial cells can readily diffuse into the underlining smooth muscle cells 

(SMCs) reactivity. The rationale is that elevation of physiological NO levels in 
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endothelial cell augments the endothelial-SMCs interaction to increase arterial vessel 

dilation. The qualitative data from immunostaining staining of α-SMCs showed an 

increase reactivity in low dose alcohol group compared with controls (Figure 3.7A), 

which was in agreement with alcohol-induced NO production by endothelial cells. In 

parallel with an increase α-SMCs expression, the quantitative assay by Western blot 

analysis validated the significant elevation of α-SMCs levels in alcohol condition 

compared with controls (Figure 3.7B). This data suggests an active interaction between 

vascular endothelial cells (ECs) and smooth muscle cells through a paracrine signaling 

pathway in which ECs derived nitric oxide acts as the key signaling molecular 

messenger for vessel dilation. The underlying mechanism of ECs-SMCs interaction 

through NO will be thoroughly discussed in next chapter.  
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Figure 3.7 [A] Shows the representative expression of brain vascular α-smooth muscle 

actin (αSMA, red) in whole brain tissue sections (10 µm thick) in different experiment 

conditions with a significant increase by ethanol exposure (N=6 animals, 10~15 slices 

per animal). Scale bar: 30 μm. [B] Western blot analysis of αSMA levels in different 

experiment conditions. Data was analyzed by image J to obtain arbitrary densitometry 

intensity units. Three replicates were done for each animal per condition. Bar graphs 

show the quantified data that were expressed as ratio of αSMA immunoreactive bands 

to that of β-actin bands, with mean ±SEM. * indicates the statistical significance p<0.05 

compared with control or L-NAME+EtOH/L-NAME alone. 

 

3.3.5 Vessel Dilation Increases Waste Metabolite Clearance 

So far, we have shown that large size waste metabolites that are not able to diffuse across 

the subarachnoid (SA)-superior interface (due to the presence of SA microvilli) in CSF 

flow get accumulated in perivascular space in the presence of low dose alcohol. This 

includes the interstitial-perivascular movement of waste metabolites. The diffusion of 

these metabolites towards the perivascular space appeared to be regulated by alcohol 
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mediated increase in arterial vessel contraction and dilation. We then examined whether 

these accumulated waste metabolites at the perivascular space will diffuse into the 

perivenous space across the bed of capillaries, and get exchange/efflux into the blood 

circulation as clearance mechanisms. The results clearly showed an increase 

colocalization of the 2000 kDa FITC tracer and venule marker (endomucin) in alcohol 

group (Figure 3.8A – B) compared with controls (Figure 3.8C – D), even though the 

tracer aggregation in perivenous space was not as high as in perivascular space. This 

data suggests a limited exchange of metabolites from perivascular space to perivenous 

space, which indicates efflux of metabolites from perivascular/perivenous space into the 

blood circulation.   

This led us to examine validation of tracer in blood plasma samples from different 

experimental conditions as a proof-of-concept. Blood samples were collected at the time 

of sacrifice from different experimental groups with/without L-NAME injection, and 

separated the plasma. The 2000 kDa FITC tracer in blood plasma samples was detected 

by SpectraMax Multi-Mode fluorescence microplate reader at the specific excitation 

(490 nm) and emission (525 nm) wavelengths. We observed a significant increase of 

tracer fluorescence intensity in the plasma samples in low dose alcohol group compared 

with controls or the alcohol plus L-NAME group (Figure 3.8E), indicating that low dose 

alcohol promotes the waste metabolites clearance path from perivascular/perivenous 

space into the blood circulation. These findings suggest the existence of large size waste 

metabolites clearance path from perivascular or perivenous space into the blood 

circulation, which is regulated by alcohol-induced NO mediated cerebral vessel dilation.
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Figure 3.8 Validating the diffusive exchange of waste metabolite from perivascular to 

perivenous space (at the bed of capillaries). [A - D] Colocalization of FITC tracer 

(Green) and venule marker endomucin (red) in alcohol group (A&B) compared with 

control (C&D), indicating an exchange of large size metabolites from perivascular space 

to perivenous space. Scale bar: 30 μm.  [E] Detection of FITC-d2000 in blood plasma 

collected after 120 min cisterna magna injection from different experiment conditions, 

(n=6/per group, + SEM). One-way ANOVA and post-hoc turkey test (* p<0.05, 

compared with control) was performed to compare difference between each group. 
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3.4 Discussion 

We discuss the findings that large size waste metabolites in the brain that are unable to 

clear out by the conventional CSF clearance path get diffused towards perivascular-

perivenous space from the interstitial fluid and from the CSF-subarachnoid flow. Thus, 

there is a dynamic movement of large size waste metabolites from interstitial space and 

subarachnoid towards perivascular space under normal physiological condition.  To 

mimic those large size waste metabolites, we used a relative large molecular weight 

fluorescent tracer (2000 KD) and administered into brain. The rationale is that due to 

the molecular size limitation and also shown by other study [29], after injection into 

brain tracers tended to accumulate at perivascular space instead of being eliminated 

through typical clearance routes including BBB trans-vascular clearance, degradation 

and CSF/ISF diffusion as noted in publication [66]. This physiological behavior is 

comparable with what have been observed in certain neurological diseases including 

perivascular phosphorylated tau protein disposition in cerebral amyloid angiopathy 

(CAA) and aggregated amyloid beta protein in Alzheimer’s disease [75, 76]. To validate 

the use of tracers, we also showed that the tracers used in the study revealed similar 

movement pattern as A-β proteins following differnet injection routes (Figures D.1 and 

D.2). Thus, though differed from chemical composition, given the physiology similarity 

of tracers and large size waste metabolites in brain as discussed, the movement pattern 

of tracer was considered informative towards current study purpose. 

We firstly showed the perivascular disposition phenomenon by the bio-distribution 

of large size molecular weight fluorescent tracer injection from two different routes, a 

direct deposition of tracer into the CSF flow by intracisterna magna injection and a direct 
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deposit of tracer into interstitial space through intracranial cortical route. Even though 

the subarachnoid (SAS) was filled with fluorescence tracer within 30 min, the actual 

penetration of tracer into the perivascular space occurred after 60 minute in intracistertna 

magna injection (Figure 3.1A-F). In the interstitial cortical injection, the tracer diffused 

directly into perivascular space within 60 min (Figure 3.3A-D), while the CSF flow was 

filled with tracer at the much later time points (Figure 3.3E-F), indicating the slow 

clearance of large size waste metabolite from interstitial fluid to C3 choroid flexus. 

These data suggest that waste metabolites can diffuse directly into PVS time-

dependently from interstitial fluid and from CSF-subarachnoid flow, which is regulated 

by endothelial-smooth muscle cell dilation. Similar alternative clearance mechanisms of 

direct translocation of interstitial solutes to perivascular space have been proposed in 

mouse model [28].  

Intriguingly, the data showed that a very low level of 5.0 mM ethanol, equivalent 

of 0.02% blood alcohol level can enhance the dynamic movement pattern of these waste 

metabolites towards perivascular-perivenous space. This concentration is far below the 

legal limit of 0.08 % blood alcohol level. In spite of alcohol being an addictive 

substance, the low-dose of this legalized substance is likely to improve the clearance of 

waste metabolites in the brain. Thereby, one drink of alcohol a day may ameliorate the 

progression of many neurological diseases that are originated from toxicity of non-

clearance waste metabolites. Interestingly, a number of recent population-based cohort 

studies concluded that heavy alcohol use in chronic condition is associated with 

development dementia and progression of Alzheimer’s disease and cerebral amyloid 

angiopathy [77-84], the hallmark of these neurological diseases happen to be the 
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deposition of waste metabolites like A-β protein, or protein prion-like proteinopathies 

around the perivascular space [1, 2, 48]. These cohort studies also unequivocally noted 

the protective effects of low dose alcohol use against the progression of dementia and 

AD/CAA, with unknown mechanisms. It is apparent that beneficial or destructive effects 

of alcohol is dependent on the duration and concentration use. In the present studies, we 

use low level of alcohol to understand the protective mechanisms for promoting 

perivascular clearance because low-moderate alcohol use is protective of vascular and 

cardiovascular function [4, 64, 65, 85-87]. We also showed that use of alcohol 

concentrations that are between 2.5 mM - 20 mM (~ 0.08%) revealed comparable effects 

in terms of PVS clearance (Figure E.1).  The likely reason can be attributed to the 

findings that these alchol concentrations are adequately to stimulate eNOS expression 

and NO release (Figure E.2), which regulated the PVS clearance efficiency. In addition, 

repetitive intake of low dose alcohol (5 mM) showed similar effect (Figure E.3), which 

lined up with the beneficial effect of low dose alcohol intake.  

We noted here that the contrast effects of low dose alcohol intake and chronic use 

of high dose alcohol (equivalent of alcohol dependent subjects) in the context of blood-

brain barrier permeability and perivascular clearance path will be discussed in the 

following chapters.  

We then addressed the underlying clearance mechanisms of the accumulated waste 

metabolites from perivascular or perivenous space into the blood circulation by two 

approaches.  The exchange of waste metabolites from perivascular space to perivenous 

space across the bed of capillaries, and detection of waste metabolite in blood samples 

collected from jugular vein. Colocalization of tracer with venule marker clearly showed 
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a significant accumulation of tracer in perivenous space of alcohol group compared with 

controls (Figure 3.8A-D), however the tracer intensity was less than that of perivascular 

space (Figure 3.6A). These results indicated the movement of metabolites from 

perivascular to perivenous space across the bed of capillary. The exchange of waste 

metabolites from perivascular/perivenous space into the blood circulation as the 

clearance path was examined by the presence of fluorescent tracer in blood plasma 

samples from various experimental conditions. A significant detection of tracer in the 

plasma samples in low dose alcohol group was markedly higher than controls or alcohol 

plus NOS inhibitor L-NAME groups (Figure 3.8E). These data suggest that the tracer 

was leaked into the circulation from perivascular/perivenous exchange because this 

large size waste metabolite was not permeable from subarachnoid to sagittal sinuses due 

to blockade by subarachnoid microvilli. The significantly low level of tracer present in 

NOS inhibitor plus alcohol group also suggested the direct role of alcohol-induced NO 

elicited perivascular/perivenous-blood circulation clearance path. 

We then validated the underlying mechanisms that alcohol-elicited eNOS specific 

NO production promoted the cerebral arterial vessel dilation and clearance. The 

rationale was that NO production augmented the endothelial-smooth muscle cell 

reactive interactions and arterial vessel dilation. This is because low dose alcohol 

consumption led to an increase eNOS activity and NO production [4, 64, 65], whereas 

high dose chronic alcohol consumption led to detrimental consequences on vascular 

function [67, 88, 89]. In support of our hypothesis, we observed an increase reactivity 

of α-SMCs in low dose alcohol qualitatively and quantitative compared with controls or 

in the presence of NOS inhibitor (Figure 3.7A-B). The observations were in line with 
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the findings that NO-mediated endothelial-smooth muscle cells interaction was key to 

arterial vessel reactive dilation [90, 91], and perhaps the movement of tracer along PVS 

[73]. The rationale is that endothelial-derived NO generation can diffuse readily into the 

underlying SMCs and cause vessel dilation through a cascade of paracrine-mediated 

biochemical signaling events [90, 91], wherein NO serves as the key signaling molecule 

for vessel dilation. 

Apart from local level regulation of vessel dilation including response to 

mechanical forces (e.g., shear stress) and chemical stimuli (e.g., NO) as discussed above, 

it was also known that vessel contraction/dilation was neural activity dependent and 

increased vessel dilation was coupled sensory stimulus. For example, using whisker 

stimulation and cortical spreading depolarization, researchers observed microvascular 

diameter changes in smooth muscle covered microvessels in brain [63]. However, due 

to the study scope limitation, the current research focus was primarily on the local level 

regulation of regional blood vessel dilation that exerted by low dose alcohol. Brain 

activity dependent regulation was not discussed in this dissertation. 

In conclusion, the diffusive movement of large size waste metabolites from 

interstitial fluid and from CSF-subarachnoid flow into perivascular-perivenous drainage 

path is regulated by reactive dilation of endothelial-smooth muscle cells. We found that 

low dose alcohol can significantly promote these waste metabolites movement towards 

the perivascular-perivenous space and its clearance into the circulation. We confirmed 

that alcohol-elicited eNOS specific NO production regulated the cerebral arterial vessel 

dilation through endothelial-smooth muscle cell reactive interactions (Figure 3.9). The 

present findings are expected to have far-reaching translational significance, particularly 
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the timely clearance of entangled proteins in neurological diseases. 

 

 

Figure 3.9 Illustration of alcohol promotes waste metabolites clearance. (A) Arrows 

(orange) indicate the CSF subarachnoid flow and perivascular-perivenous clearance 

path (black) of large size waste metabolites (red dots) in neurodegenerative brain. Waste 

metabolites like β-amyloid proteins are aggregated more inside the interstitial space due 

to the lack of lymphatic system in the brain. Less metabolite are drained into the CSF 

flows due to less vessel dilative reactivity. (B) Neurodegenerative brain in the presence 

of low dose alcohol. Dilative arterial vessel reactivity promotes the dynamic movement 

of large size waste metabolites from interstitial fluid to perivascular space and from 

interstitial-CSF subarachnoid to perivascular space. Reactivity of endothelial and 

smooth muscle cells in arteries is mediated by alcohol-elicited eNOS activation and NO 

production. 
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CHAPTER 4 

MECHANISM OF ALCOHOL MEDIATED SMCs-ECs INTERACTION 

 

4.1 Summary 

We have shown that alcohol-mediated vasodilation can exert beneficial effects towards 

brain waste metabolites clearance through induction of endothelial function and 

enhancement of neighboring smooth muscle reactivity from previous chpater. Here in 

this chapter, we further investigated the underlying mechanism of ECs-SMCs 

interaction by addressing the response of endothelial cells to low dose alcohol and 

examining level of NO releasing and corresponding enzymes expression. We 

determined the activities of surrounding smooth muscle cells by evaluating the 

phosphorylation status of myosin light chain (MLC) and activities of corresponding 

regulatory subunits. Results indicated that low level alcohol promotes NO release from 

endothelial cells through eNOS. NO induced smooth muscle relaxation occured through 

myosin light chain dephosphorylation. Regulation of NO-mediated MLC 

dephosphorylation was done via the paradigm shift from myosin light chain kinase to 

myosin phosphatase activities. We validated such observations by qualitative 

immunostaining and quantitative Western blot analyses. Collectively, we showed that 

alcohol induced arterial vessel dilation was via eNOS mediated NO generation in ECs, 

which rapidly diffused into neighboring SMCs and caused MLC dephosphorylation 

through interplay of myosin light chain kinase and myosin phosphatase activities. 

 

 



62 
 

4.2 Background 

Low-to-moderate consumption of alcohol is known to exert protective effect towards 

biological vascular system. Intriguingly, consistent epidemiologic evidence has pointed 

to an inversely association between moderate alcohol consumption and vascular disease 

[86, 87, 92]. For example, human studies revealed a 20 – 40 % reduction of 

cardiovascular disease among drinkers of alcoholic beverages compared with non-

drinkers [93]. However, the underlying mechanism of such effect is still under debate.  

Some researchers claimed that beverage choice among wine, beer and liquor may 

bear more relevance and they supported a preferential red wine protective effect that 

partly attributes to the polyphenolic antioxidant content [94]. This hypothesis was 

initiated by a report known as the ‘French Paradox’ that describes the low vascular 

disease and mortality ratio of the French population despite their high dietary intake of 

saturated fats, a phenomenon accredited to consumption of red wine due to its active 

composites, including  resveratrol and other polyphenolic agents [95-97]. To support 

this point of view, several animal studies have focused on polyphenol vascular effects 

and revealed that wine polyphenols showed antioxidant, anti-inflammatory, hypotensive 

and anti-platelet aggregation actions [98-101]. In a human study, researchers showed 

that intaking of dealcoholized red wine at 1-week intervals significantly increased 

plasma antioxidants, indicating the strong antioxidant potential of wine polyphenols 

[102].  

On the contrary, other studies showed that equal effects of alcohol beverage were 

observed on vascular disease risk and the content of ethanol and its subsequent 

metabolites acted as active protective agents [103].  For example, alcohol is known to 
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elicit nitic oxide (NO) generation in vivo through vascular endothelial function [74]. 

Researchers found that low dose alcohol improved vascular endothelial function through 

increasing endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) 

production [74]. Loading low dose alcohol to certain cell types (e.g., human umbilical 

vein endothelial cells, bovine aortic endothelial cells) promoted NO production, eNOS 

protein expression [64, 104, 105] and corresponding mRNAs expression [65]. Similar 

phenomenon was observed in animal studies in which low dose ethanol consumption in 

rats increased nitric oxide production and eNOS expression in the aortic vascular wall 

[106].  Taken that NO can serve as a signaling molecule that regulates vascular dilative 

activity, studies have shown that low dose alcohol exertes a protective effect towards 

vasculatures through NO mediated vessels dilation. In vivo, animal studies have shown 

that acute low dose EtOH increases release of NO, augments endothelium-mediated 

vasodilatation [106-108] and decreases mean blood pressure [106]. In a human 

multiethnic study, drinkers (between 1 drink/month and 2 drinks/day) were more likely 

to have a higher flow-mediated dilation (FMD) than non-drinkers and those who drank 

>2 drinks/day, independently of the type of alcoholic beverage consumed [109].  

In a previous study [62], we showed that low dose alcohol-elicited NO production 

promoted large size brain waste metabolites clearance by enhancing interaction of 

vascular endothelial cells (EC) and smooth muscle cells (SMC). But the mechanism 

underlying ECs-SMCs interactive cross-talk was not yet fully understood yet. Here, we 

investigated the idea that alcohol-elicited NO from ECs can immediately diffuse into 

neighboring SMCs, subsequently cause relaxation of myosin light chain (MLC) in SMC, 

and ultimately induce vasodilation. The rationale is that the contractility of smooth 
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muscle cell is controlled by a cellular component known as myosin light chain (MLC) 

and NO has been shown to actively engage in regulation of MLC regulatory subunits 

[110]. 

4.3 Results 

In this chapter, we examined the idea that low dose alcohol mediated arterial vessel 

dilation was done through interaction of vascular ECs and SMCs whereby NO generated 

from ECs rapidly diffused into neighboring SMCs and subsequently caused SMC 

relaxation. To verify this idea, we firstly determined the response of ECs to low dose 

alcohol by examining NO generation and enzyme expression. Then we investigated how 

SMCs react to NO focusing on myosin light chain phosphorylation level and 

corresponding enzymes activities. The underlying mechanism of alcohol mediated 

arterial vessel dilation was supported by these findings. 

4.3.1 Alcohol below 20 mM Has no Toxic Effect on ECs and SMCs  

We first focused on the toxicity effect of different alcohol concentration on the co-

culture system of two cell types: ECs and SMCs. The two cell types were mixed at 1:1 

ratio and directly in contact with each other to mimic in vivo vascular structures. 

Corresponding cellular protein markers (vWF for ECs and SMA for SMCs) were 

evaluated to verify the co-existence (Figure 4.1A and B). A Serial concentration of 

alcohol was used to determine the toxicity as shown in the graph. Noted that the highest 

dose I used was 20 mM, which is approximately equivalent to the legalized blood 

alcohol level (~0.08%). I found that after incubating with alcohol at given concentrations 

for 2 hrs, no significant cell survival difference was observed among alcohol treatments 

compared with control (Figure 4.1C), indicating that alcohol concentration less than 20 
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mM have no toxic effect on ECs and SMCs, which is consistent with previous report 

[72].  

 

 

Figure 4.1 Cell toxicity evaluation. Various doses of alcohol were loaded to endothelial 

– smooth muscle cells co-culture system. Two hours were given before proceeding to 

MTT assay.  [A and B]. Immunoreactive bands of vWF (endothelial cell markers), SMA 

(smooth muscle cell markers) and β-actin, and quantitative corresponding protein 

content in different experimental groups. Results were expressed as the ratio of protein 

of interest to that of actin bands and presented as mean values (± SEM). [C]. Cell toxicity 

assay by MTT showed viability with variable concentrations of alcohol represented by 

plot. Results were expressed as the ratio of OD value of each experimental condition to 

that of control and presented as mean values (± SEM). *Statistically significant (p < 

0.05) compared with controls. Three replicates were done for each sample from at least 

N=3 cultures. 

 

4.3.2 Alcohol Promotes NO Release from ECs through eNOS not iNOS 

Next, we proceeded to investigate the response of ECs to alcohol (10 mM). The optimal 

alcohol concentration was determined from a dose-dependent study. We analyzed the 

real-time NO production in ECs by Free Radical Analyzer using a micro-sensor detector 

and found that alcohol exposure significantly elevated release of NO in ECs compared 

with baseline (Figure 4.2A and B). Moreover, we observed a time-dependent increase 

of NO production by checking different time intervals. This can be justified by the fact 
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that NO generation depends on corresponding enzymes induction. 

 

 

Figure 4.2 Real-time NO production in cultured endothelial cells in the presence of 10 

mM EtOH. 50 µM L-NAME pre-treated tissue for 30 min as baseline. Medium 

containing 10 mM EtOH was supplied subsequently. [A]. Functional output from free 

radical analyzer. Graph denotes the current signal (pA) change (proportional to NO 

concentration) captured by the NO sensor during each data collection interval, which 

was marked by blue vertical lines.  [B]. Bar graph was plotted as the ratio of signal 

readout of each acquisition interval to that of baseline and presented as mean values (± 

SEM). Statistically significant (*p < 0.05, ***p<0.001) compared with controls. Three 

replicates were done for each sample from at least N=3 cultures. 

 

We then evaluated the induction of NO generation enzymes, eNOS and iNOS to 

correlate with NO release. Interestingly, immunostaining revealed a huge increase of 

eNOS induced by alcohol and not surprisingly the effect was neutralized by inhibitor 

(L-NAME) (Figure 4.3A), which was further validated by significant elevation of eNOS 

levels by ethanol compared with control (p<0.05), as determined by Western blot 

analyses (Figure 4.3B). On the contrary, no significant change of iNOS was found in 
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alcohol group compared with control by both immunostaining and western blot (Figure 

4.4A and B), indicating that NO release can be mainly accredited to eNOS but not iNOS. 

This can be explained by the idea that elevation of physiological NO levels in endothelial 

cells through eNOS augments vascular function whereas iNOS mediates massive NO 

production associated with free radical generation, which exerts detrimental effect 

towards surrounding tissues [72, 111]. Further examination of nitrosative stress marker, 

3-nitrotyrosine (3-NT) expression across groups showed no significant difference 

(Figure 4.5A and B), supporting this justification.  

 

 

Figure 4.3 EtOH induces eNOS protein expression in endothelial cells. [A]. 

Immunostaining of eNOS (green) and vWF (red) protein in control, EtOH (10 mM), L-

NAME + EtOH and L-NAME. eNOS and vWF were used as primary antibodies 

(information in Table 2.1). Alexa Fluor 488/594 were used as corresponding secondary 

antibodies. Data representats at least N=3 cultures per each group. Scale bar: 30 μm. 

[B]. Immunoreactive bands of eNOS and β-actin, and quantitative corresponding protein 

content among experimental groups. Results were expressed as the ratio of protein of 

interest to that of actin bands and presented as mean values (± SEM). *Statistically 

significant (p < 0.05) compared with controls. Three replicates were done for each 
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sample from at least N=3 cultures. 

 

 

 

Figure 4.4 No difference of iNOS protein expression in endothelial cells under different 

experimental conditions. [A]. Immunostaining of iNOS (green) and vWF (red) protein 

in control, EtOH (10 mM), L-NAME + EtOH and L-NAME. iNOS and vWF were used 

as primary antibodies (information in Table 2.1). Alexa Fluor 488/594 were used as 

corresponding secondary antibodies. Data represents at least N=3 cultures per each 

group. Scale bar: 30 μm. [B]. Immunoreactive bands of iNOS and β-actin, and 

quantitative corresponding protein content among experimental groups. Results were 

expressed as the ratio of protein of interest to that of actin bands and presented as mean 

values (± SEM). No statistically significant (p < 0.05) difference compared with 

controls. Three replicates were done for each sample from at least N=3 cultures. 
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Figure 4.5 No difference of nitrosative marker, 3-nitrotyrosine expression in endothelial 

cells under different experimental conditions. [A]. Immunostaining of 3-NT (green) and 

vWF (red) protein in control, EtOH (10 mM), L-NAME + EtOH and L-NAME. 3-NT 

and vWF were used as primary antibodies (information in Table 2.1). Alexa Fluor 

488/594 were used as corresponding secondary antibodies. Data was representation of 

at least N=3 cultures per each group. Scale bar: 30 μm. [B]. Immunoreactive bands of 

3-NT and β-actin, and quantitative corresponding protein content among experimental 

groups. Results were expressed as the ratio of protein of interest to that of actin bands 

and presented as mean values (± SEM). No statistically significant (p < 0.05) difference 

compared with controls. Three replicates were done for each sample from at least N=3 

cultures. 

 

4.3.3 NO by Donor SNAP (15 µM ) Not Induces Free Radical Damage in SMCs 

To precisely investigate the effect of NO on SMCs, we also exposed cells directly to NO 

through the NO donor, SNAP (S-nitroso-N-acetylpenicillamine). NO is a highly active 

molecule that in the presence of O2, can react with O2− to form peroxynitrite (ONOO−), 

a potent oxidizing agent that can lead to cytotoxicity by nitrating and hydroxylating 

aromatic compounds, including guanosine and tyrosine (nitrotyrosine) [74, 112]. To 

avoid such deleterious effects, we tried to limit the amount of NO using but still 

adequately for experimental purposes. Therefore, we conducted a dose-dependent assay 
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(10 – 100 µM) and found that concentrations less than 20 µM did not induce noticeable 

nitrosative stress on SMCs, which agrees with a previous paper [72]. Among all 

concentrations, we found that 15 µM yielded best results for NO supply (Figure 4.6A 

and B) without significant free radicals damage (Figure 4.7A and B) and thus, was 

determined as the working dose.  

 

 

Figure 4.6  Real-time NO level in cultured SMCs in the presence of 15 µM SNAP.  

Cells were pre-treated with 50 µM L-NAME for 30 min as baseline. Medium containing 

15 µM SNAP was supplied subsequently. [A]. Functional output from free radical 

analyzer. Graph denotes the current signal (pA) change (proportional to NO 

concentration) captured by the NO sensor during each data collection interval, which 

was marked by blue vertical lines.  [B]. Bar graph was plotted as the ratio of signal 

readout of each acquisition interval to that of baseline and presented as mean values (± 

SEM). Statistically significant (*p < 0.05, ***p<0.001) compared with controls. Three 

replicates were done for each sample from at least N=3 cultures.  
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Figure 4.7 Nitrosative marker, 3-nitrotyrosine expression in cultured SMCs in the 

presence of 15 µM SNAP. [A]. Immunostaining of 3-NT (green) and SMA (red) protein 

in control and SNAP (15 µM SNAP). 3-NT and SMA were used as primary antibodies 

(information in Table 2.1). Alexa Fluor 488/594 were used as corresponding secondary 

antibodies. Data represents at least N=3 cultures per each group. Scale bar: 300 μm. [B]. 

Immunoreactive bands of 3-NT and β-actin, and quantitative corresponding protein 

content among experimental groups. Results were expressed as the ratio of protein of 

interest to that of actin bands and presented as mean values (± SEM). Statistically 

significant (p < 0.05) compared with controls showed no difference. Three replicates 

were done for each sample from at least N=3 cultures. 

 

4.3.4 Alcohol Induced Smooth Muscle Relaxation Was through Myosin Light 

Chain Dephosphorylation  

 

Next, we evaluated the mechanism of alcohol-elicited-NO from ECs induced smooth 

muscle relaxation by checking phosphorylation levels of myosin light chain (MLC). The 

phosphorylation of the 20-kDa myosin regulatory light chains (MLC) is the primary 

determinant of cross-bridge attachment and cycling during contraction and relaxation in 

smooth muscle [113]. In brief, phosphorylation of MLC leads to SMC contraction while 

dephosphorylation yields relaxation. Using specific antibodies that can detect 
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phosphorylation of MLC at Ser19/20 in smooth muscle cells, we found that compared 

with control, alcohol-induced-NO from ECs significantly diminished phosphorylation 

levels of MLC at Ser19/20 in SMCs and, in parallel quantitative assay western blot 

validated this finding (Figure 4.8A and B). The positive control from NO (SNAP) 

supported this finding. Since dephosphorylation of MLC suggests relaxation of SMC, 

the data indicates that alcohol-induced-NO-caused SMC relaxation was through 

dephosphorylation of MLC at Ser19/20.  
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Figure 4.8 Phospho-myosin light chain (Ser19/20) level in cultured ECs-SMCs in the 

presence of 10 mM EtOH and15 µM SNAP. [A and B]. Immunostaining of SMA (green) 

and phosphor-MLC protein in control, low dose alcohol and SNAP (15 µM; NO donor 

as positive control). SMA and smooth muscle specific phosphor-MLC(Ser19/20) were 

used as primary antibodies (information in Table 2.1). Alexa Fluor 488/594 were used 

as corresponding secondary antibodies. Data represents at least N=3 cultures per each 

group. Scale bar: 200 μm. [B]. Immunoreactive bands of phosphor-MLC (Ser20) and β-

actin, and quantitative corresponding protein content among experimental groups. 

Results were expressed as the ratio of protein of interest to that of actin bands and 

presented as mean values (± SEM). *Statistically significant (p < 0.05) compared with 

controls. Three replicates were done for each sample from at least N=3 cultures. 
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4.3.5 Alcohol Induced MLC Dephosphorylation Was via Myosin Phosphatase 

Activities 

 

Further, we proceeded to investigate the underlying mechanism of alcohol-elicited-NO 

mediated MLC dephosphorylation in the co-culture system. MLC phosphorylation level 

was determined by the balance of the Ca2+ dependent myosin light chain kinase 

(MLCK) and myosin light chain phosphatase (MLCP) activities. When MLCK was 

activated by Ca2+ -calmodulin complex, it underwent posttranslational change, 

phosphorylation to become active [114]. Whereas its counterpart, MLCP activity was 

similarly regulated by phosphorylation mediated events but in a more complex way. 

According to recent publications, phosphorylation of the MLCP regulation subunit, 

myosin phosphatase target subunit 1 (MYPT1) at Ser618/668/692/695 residues can 

increase MLCP activities while at Thr696/853 residues, led to inhibitory effects [110, 

115, 116]. Thus, by employing antibodies that target specific phosphorylation residues 

pertinent to each protein, we examined the activities of MLCK and MLCP in SMCs 

under control, alcohol and SNAP (positive control) treatment. Interestingly, we found 

that the phosphorylation level of MYPT1 at Ser618/668 in SMCs was significantly 

increased by alcohol and NO (positive control) through immunostaining and western 

blot (Figure 4.9A and B) assays, indicating that MLCP activities in SMCs were up-

regulated by alcohol-induced-NO from ECs. Meanwhile, the level of phospho-MLCK 

at Ser 1760 was decreased under alcohol and NO treatment compared with control 

(Figure 4.9C), suggesting a reduction of MLCK activities by alcohol-induced-NO from 

ECs. Postitive control validated the role of NO in this process.  

Collectively, the information that this data conveys is that alcohol-elicited-NO 
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release from ECs is strongly correlated with MLCP/MLCK activities in SMCs: NO led 

to elevation of MLCP activity but inhibition MLCK. When the entire system favored 

more MLCP, MLC turned to be dephosphorylated and SMC manifested relaxation.    

 

 

Figure 4.9 Phospho-MYPT1/2 (Ser618/688) and phosphor-MYLK (Ser1760) level in 

cultured ECs-SMCs in the presence of 10 mM EtOH and 15 µM SNAP. [A]. 

Immunostaining of SMA (green) and phospho-MYPT1/2 (Ser618/688) (red) protein in 

control, EtOH and SNAP (15 µM SNAP). SMA and phospho-MYPT1/2 (Ser618/688) 

were used as primary antibodies (information in Table 2.1). Alexa Fluor 488/594 were 

used as corresponding secondary antibodies. Data was representation of at least N=3 

cultures per each group. Scale bar: 200 μm. [B and C]. Immunoreactive bands of [B]: 

phospho-MYPT1/2 (Ser618/688), [C]: phosphor-MYLK (Ser1760) and β-actin, and 

quantitative corresponding protein content among experimental groups. Results were 
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expressed as the ratio of protein of interest to that of actin bands and presented as mean 

values (± SEM). *Statistically significant (p < 0.05) compared with controls. Three 

replicates were done for each sample from at least N=3 cultures. 

 

4.4 Discussion 

In the present study, we discuss the finding that alcohol, especially at low dose ingestion, 

can promote arterial vessel dilation through enhancing interaction of vascular 

endothelial cells and smooth muscle cells. Firstly, we evaluated the response of ECs 

when exposed to low dose alcohol (10 mM) with focus on nitric oxide (NO) generation 

and corresponding enzymes expression. We showed that alcohol, at given doses, can 

increase NO releasing, which is mediated by elevation of eNOS expression instead of 

iNOS. This phenomenon was consistent with previous observation in animal studies 

[62] and can be justified by the difference between those two isomers in terms of NO 

generation: eNOS augments physiological NO levels in endothelial cells that regulate 

normal vascular function while iNOS is typically associated with free radical generation 

like peroxynitrite, inducing surrounding tissue damage [72, 111]. Further evidence of 

no over-expression of the nitrosative stress marker among groups (Figures 4.5A and B) 

validates this explanation. 

We then investigated the underlying mechanism of alcohol-elicited NO-mediated 

relaxation of SMCs. Researches have shown that NO, known as an endothelium-

mediated vessel dilator, can regulate neighboring smooth muscle contractility [106-

108]. Smooth muscle cells, unlike skeletal and cardiac muscles, relied on 

phosphorylation of the 20 KDa regulatory myosin light chain (MLC) at the Ser19 

residue to exert contractile activities [110]. The regulation of phosphorylation extent 
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was determined by the balance of the activities of two protein enzymes: myosin light 

chain kinase (MLCK) and myosin light chain phosphatase (MLCP) [115]. We showed 

that by treating cultured ECs-SMCs with alcohol and NO (positive control), the 

phosphorylation level of MLC was significantly diminished compared with control and 

that MLCP activities line up with MLC dephosphorylation levels whereas MLCK 

activities are adversely correlated (Figures 4.8 and 4.9), indicating that alcohol-elicited 

NO-caused SMCs relaxation was regulated by MLCP/MLCK mediated MLC 

phosphorylation.  

NO can activate soluble guanylate cyclase, thus augmenting cGMP. Elevated 

cGMP presumably activates cGMP-dependent protein kinase (PKG) and hence induces 

a variety of phosphorylation events. For instance, the phosphorylation of several 

intracellular mechanisms by PKG results in a reduction in myoplasmic calcium [114, 

117], which reduces engagement of calcium with calmodulin. Since formation of the 

Calcium-Calmodulin complex is essential for MLCK activation, a reduction of proper 

engagement will inevitably lead to decreasing MLCK activities and therefore 

dephosphorylate MLC. Also, cGMP-PKG was found to directly involve in MLCP 

regulation in several studies. For example, phosphorylation of Ser-695 at myosin 

phosphatase target subunit 1 (MYPT1) by cGMP mediated PKG was found to activate 

MLCP [110] and inhibition of NO mediated cGMP-PKG by NOS inhibitor (L-NAME) 

showed a reduction of phosphorylation at S695/S668, which correlated with decreasing 

MLCP activities [116].  

Intriguingly, previously we reported that a very low level of 5.0 mM ethanol, 

equivalent of 0.02% blood alcohol level, can enhance the dynamic movement pattern of 
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large size waste metabolites towards the perivascular-perivenous space and the 

underling mechanism was that alcohol-elicited eNOS specific NO production regulated 

the cerebral arterial vessel dilation through endothelial-smooth muscle cell reactive 

interactions [62]. The current research further addressed the mechanism we proposed 

previously: alcohol induced arterial vessel dilation is via eNOS mediated NO generation 

in ECs, which rapidly diffuse into neighboring SMCs and cause MLC 

dephosphorylation through an interplay of myosin light chain kinase and myosin 

phosphatase activity (Figure 4.10) 

 

 

Figure 4.10 Schematic representation of alcohol mediated endothelial cells and smooth 

muscle cells interaction. Alcohol can elicit eNOS expression and NO production in 

endothelial cells. NO from endothelial cells rapidly diffuses into surrounding SMCs, 

causing elevation of cGMP. cGMP mediated PKG pathway leads to myosin light chain 

relax (de-phosphorylation) through: 1). up-regulation of myosin light chain phosphatase 
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activities;  2) down-regulation of myosin light chain kinase activities.   
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CHAPTER 5 

CONTRAST EFFECTS OF LOW/ACUTE AND MODERATE/CHRONIC 

ALCOHOL ON CNS WASTE METABOLITES CLEARANCE 

 

In previous chapters, we have shown that low dose alcohol promotes perivascular 

clearance of waste metabolites in the brain, which is regulated by dilative reactivity of 

arterial smooth muscle cells and endothelial cells via the signaling molecule, NO. These 

findings clearly indicate the importance of blood-brain barrier (BBB) transvascular 

clearance of large size metabolites in the CNS, where the lymphatic clearance system is 

absent. In this chapter, we examined the contrast effects of acute low dose and chronic 

moderate alcohol intake on perivascular clearance of waste metabolites in the brain. 

 

5.1 Summary 

To evaluate the contrast effects of acute low dose and chronic moderate alcohol intake 

on waste metabolites clearance in the brain, we injected a large size fluorescent dye 

representing waste metabolites like A-β protein into the cerebrospinal fluid (CSF). Then, 

we examined the bio-distribution of tracer towards perivascular space in different brain 

regions by whole brain tissue section scanning. We found that the underlying molecular 

and cellular mechanisms that drive the increase or decrease movement of tracer to 

perivascular space by acute/chronic alcohol exposure correlated to BBB integrity and 

arterial vessel reactivity. Accordingly, the contrast effects of alcohol appear to be 

regulated by the switch mechanisms of endothelial specific nitric oxide synthase (eNOS) 

activation by low dose and inducible NOS (iNOS) by moderately high alcohol exposure 

in chronic conditions. We validated these observations by qualitative and quantitative 
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data. As such, my conlusion is that low dose alcohol promotes the diffusive movement 

of waste metabolites to perivascular clearance through eNOS-derived NO-regulated 

arterial endothelial-smooth muscle cells dilative reactivity without affecting the integrity 

of BBB. Whereas, continuous induction of iNOS in chronic alcohol exposure causes 

oxidative damage of the arterial endothelial-smooth muscle layers that led to BBB 

dysfunction, reducing dilative reactivity, and decreasing movement of waste metabolites 

from interstitial space/CSF to the perivascular-perivenous drainage path.  

 

5.2 Background 

Effect of alcohol consumption and metabolism on vascular tissues yields biphasic 

consequences that depend on drinking patterns: low alcohol intake leads to beneficial 

effects while high amount of ingestion delivers detrimental results. Researchers found 

that low dose alcohol improved vascular endothelial function through increased 

endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) production 

[74]. For example, loading low dose alcohol to various cell types (e.g., human umbilical 

vein endothelial cells, bovine aortic endothelial cells) elicited NO production, eNOS 

protein expression [64, 104, 105] and corresponding mRNA expression [65]. A similar 

phenomenon was observed in animal studies: low dose ethanol consumption in rats 

increased nitric oxide production and eNOS expression in the aortic vascular wall [106].  

Given that NO is known as an endothelium-mediated vessel dilator that regulates 

vascular contractility, investigators found that low dose alcohol can exert a protective 

effect towards vasculatures due to NO mediated vessels dilation. In vivo animal studies 

showed that acute low dose EtOH intake increased release of NO, augmented 
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endothelium-mediated vasodilatation [106-108] and decreased mean blood pressure 

[106]. In a human multiethnic study, drinkers (between 1 drink/month and 2 drinks/day) 

were more likely to have a higher flow-mediated dilation (FMD) than non-drinkers and 

those who drank >2 drinks/day, independent of the type of alcoholic beverage consumed 

[109], indicating beneficial vascular effects gained from low dose alcohol.   

On the contrary, moderate/chronic alcohol consumption assumed an opposite 

effect. For example, in a thoracic aorta isolated from chronic ethanol-fed rats, eNOS 

expression and NO levels were down-regulated, leading to diminished vasorelaxation 

[118]. In other studies, researchers observed that dilatation of rat basilar arteries or pial 

arterioles was less in alcohol fed rats compared with non-alcohol-fed rats; while 

superoxide dismutase and NAD(P)H oxidase inhibitor apocynin were able to ameliorate 

the loss of function, suggesting that ROS induced by chronic alcohol may lead to 

impaired eNOS-mediated vasodilation [119, 120]. In addition to what was described 

above, alcohol-induced oxidative/nitrosative stress was known to cause vascular 

damage. Alcohol-induced tissue injury was mediated via metabolism of ethanol by 

alcohol dehydrogenase and cytochrome P450 2E1 that produced acetaldehyde and 

reactive oxygen species/reactive nitrogen species (ROS/RNS) [111, 121]. Thus, tissue 

injury was supposed to occur in cell types that expressed ethanol metabolizing or radical 

generating enzymes, like inducible nitric oxide synthase (iNOS) [72, 122]. For example, 

it is widely known that the blood-brain barrier (brain microvessels) is vulnerable to 

alcohol-induced free radical damage. Haorah et al. revealed that alcohol metabolizing 

enzymes have been shown to localize in the brain microvessel endothelium [111, 123, 

124] and metabolism of alcohol in brain endothelium generates oxidative and nitrosative 
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products that cause free radical damage to brain microvessels including the BBB [72, 

111].  

In previous findings [62], we described that alcohol promotes waste clearance in 

the CNS via brain vascular reactivity. It is known that waste metabolites can be drained 

out of the brain through various clearance systems, including enzymatic degradation, 

cellular uptake, transport across the blood–brain barrier (BBB), and interstitial fluid 

(ISF)/cerebrospinal fluid (CSF) absorption into the circulatory and lymphatic systems. 

Out of those clearance routes, BBB trans-vascular clearance from brain to blood 

provides functionally a major pathway for elimination of different waste metabolic 

products from brain and accounts for > 80% of clearance of amyloid-beta physiological 

conditions [59-61, 66]. However, large size waste metabolites like tauopathy, prion-like 

proteinopathies, cerebral amyloid angiopathy, and Aβ proteins are seen accumulated 

around the perivascular space in brain tissue from neurological diseases [1, 2, 48], 

suggesting that large size waste metabolites are not cleared by CSF, glymphatic, or 

meningeal lymphatic systems. We found that dynamic movement of large size waste 

metabolites from interstitial space and subarachnoid towards perivascular space is 

enhanced when interaction of brain vascular endothelial cells (ECs) and smooth muscle 

cells (SMCs) is prompted [62]. Interestingly, low dose alcohol (5 mM) can facilitate this 

process through up-regulation of NO since alcohol especially low dose was known to 

increase eNOS expression [64, 65, 74, 104]. We showed that clearance of large size 

waste metabolites was increased by low dose alcohol while NOS inhibitor neutralized 

this effect, indicating the underlying mechanism of alcohol-elicited eNOS activation and 

NO production [62]. 
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However, the pendulum shifts when it comes to chronic alcohol intake. 

Epidemiological population-based cohort studies revealed that heavy alcohol use in 

chronic condition was associated with development dementia and progression of 

Alzheimer’s disease and cerebral amyloid angiopathy [5, 77, 80, 81, 83, 84, 125, 126], 

the hallmark of these neurological diseases happen to be the deposition of waste 

metabolites like Aβ protein, or protein prion-like proteinopathies around the 

perivascular space [1, 2, 48]. These cohort studies also unequivocally noted the 

protective effects of low dose alcohol use against the progression of dementia and 

AD/CAA, with unknown mechanisms. Thus, it is apparent that the beneficial or 

destructive effects of alcohol depend on the duration and concentration used.  

In conclusion, we hypothesize the contrast effect of low dose and 

chronic/moderate alcohol on brain waste metabolites clearance: low dose facilitates 

clearance by acting as a vasodilator through activating eNOS and enhancing brain 

vascular endothelial cells (ECs)-smooth muscle cells (SMCs) interaction, while 

chronic/moderate condition hampers the clearance due to iNOS/free radicals mediated 

impairment of ECs-SMCs interaction. The rationale is that activation of eNOS by low 

concentrations of ethanol elevates physiological NO levels and augments ECs-SMCs 

interactive reactivity whereas chronic/moderate causes free radical damage to 

microvessels and leads to BBB dysfunction, reducing vascular dilative reactivities and 

decreasing perivascular clearance.   

 

5.3 Results 

We investigated the contrast effects of low/acute and moderate/chronic alcohol on brain 
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waste metabolites clearance in this study. Here, we first focused on bio-distribution of 

2000 kDa fluorescent dye representing large size waste metabolites in three different 

experimental conditions: control, low/acute alcohol (5 mM) and moderate/chronic 

alcohol. Low dose was found to promote dynamic movement of tracers along the 

perivascular space (PVS) while moderate/chronic showed an opposite effect. Further 

examination revealed that low dose alcohol elicited eNOS activation and improved ECs-

SMCs interactive reactivity whereas chronic/moderate alcohol induced iNOS 

expression that led to tissue damage at brain vasculatures including endothelium, smooth 

muscle cells and blood-brain barrier (BBB) tight junction proteins, indicating that 

chronic/moderate alcohol decreased vascular dilative reactivities and exerted 

detrimental effect towards brain PVS clearance. 

5.3.1 Animal Model of Liquid-Diet Alcohol Intake 

To determine success of the pair-feeding procedure, we weighed and recorded rats’ 

weight on a weekly basis. At the time of sacrifice (12 weeks), the average body weight 

was 428 ± 11.1 for pair-fed control and 451 ± 10.2 for pair-fed alcohol. This was 

consistent with previous reports that pair-fed alcohol revealed overall higher body 

weight distribution at the end of the feeding cycle compared with control [16]. Weekly 

body weight record showed that at early feeding cycles, alcohol feeding showed lower 

weight-gaining compared with control. That was because by nature animals required 

enough time to acclimate to the taste of alcohol. Once accustomed (after week 4), 

weight-gaining rate of alcohol rats exceeded that of control and weight of alcohol rats 

started to approach and preceded control (after week 6).  
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Table 5.1 Pair-feeding Rat Body Weight and Blood Alcohol Concentration Statistics 

before Sacrifice (12 weeks after feeding) 

 

 

 

Prior to sacrificing, blood alcohol concentrations for all rats was determined to be 

9.1 – 28.8 mmol/L in alcohol diet ingested animals (Table 5.1), which was consistent 

with our previous results [127]. The huge variation in blood alcohol levels is common 

in animal studies due to nocturnal feeding habits of rats and variation in ethanol 

metabolic and clearance rate.  

5.3.2 Injection of FITC-d2000 into C3 Region of CSF Flow under Control, Low 

Dose Alcohol and Chronic Alcohol Conditions  

 

To evaluate the contrast effects of low/acute and moderate/chronic alcohol on dynamic 

movement and clearance of large size waste metabolites in the brain, we injected FITC-

d2000 (MW: 2000 KD) directly into the CSF flow via cisterna magna. We then 

evaluated the bio-distribution of tracer in the brain two hours after injection under 

different experimental conditions. We observed that low/acute alcohol enhanced tracer 

movement along vasculatures whereas moderate/chronic hampered this process. For 

example, in the low/acute study, more tracers were found at the perivascular spaces 

(PVS) compared with control, which was in accordance with previous finding [62]. 

 
Body weight (g) after 12 weeks pair-fed (n=15 pairs) Blood alcohol 

concentration (mM) 

Gro

up 

Mean Standard 

Deviation 

Median Min Max Mean Range 

Cont

rol 

428 11.1 429 399 449 0.002 0 – 0.005 

EtO

H 

451 10.2 451 437 468 15.6 9.1 – 28.8 
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However, opposite effect revealed under the moderate/chronic treatment.  We barely 

found any tracers at PVS two hours after injection in moderate/chronic condition, 

suggesting that dynamic movement of tracers was decreased (Figure 5.1 Top A-I). This 

qualitative data was further validated by quantification of arbitrary fluorescence 

intensity at PVS (Figure 5.1 Bottom A, *** p<0.001).  

In addition, to evaluate the clearance efficiency, we also examined fluorescence 

intensity in systematic blood plasma collected from the jugular vein 2 hours after 

injection. Data (Figure 5.1 Bottom B) suggested that clearance from inside the brain to 

circulation was significantly (*** p<0.001) decreased in the chronic alcohol group 

compare with control, which was in parrel with the PVS tracer movement results. 

 

 

 

 

 

 

 

 

 

 

 

 

 



88 
 

Top: 

 

Figure 5.1 Tracer bio-distribution in the rat brain under different experiment conditions. 

Tracers were injected into the rats brain through cisterna magna and 2 hours were given 

before sacrificing. Coronary brain slices (45 µm) mounted with Dapi on glass slides 

were used for imaging.  Top: [A, B and C]. Bio-distribution of CSF tracer (FITC-d2000, 

green) in control, EtOH (low dose alcohol) and chronic alcohol groups. Scale bar: 1 mm. 

[D-I]:  Detail of corresponding boxed areas from A, B and C. Scale bar: 25 μm. Data 

was representation of at least N=6 animals per each group.  
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Bottom:  

 

Figure 5.1 Bottom: [A]. Fluorescence intensity quantification of tracer biodistribution 

at the PVS was calculated as mean fluorescence intensity on each slide (from N=6 

animals, 10~15 slices were taken from each animal, +SEM) and presented as bar graphs. 

Statistically significant (***p < 0.001) compared with controls. Three replicates were 

done for each animal sample from at least N=6 animals. [B]. Blood plasma tracer 

fluorescence intensity quantification. Samples were from N=6 animal per each group. 

Statistically significant (***p < 0.001) compared with controls.   

 

5.3.3 Contrast Effects of Low Dose and Moderate/Chronic Alcohol on Vascular 

Smooth Muscles 

 

To find out the reasons why chronic alcohol diminished PVS clearance efficiency, we 

studied two vascular components: smooth muscles and endothelium. The ratioale was 

that according to previous findings, PVS clearance was mediated by dilative vascular 

reactivities, which were regulated by endothelium and smooth muscles interaction. 

Firstly, we investigated vascular smooth muscles. Immunostaining of α-SMCs 

(smooth muscel actin, red) showed increasing expression in the low/acute alcohol group 

compared with control whereas expression of α-SMCs in the chronic condition was 

decreased (Figure 5.2A). The observation was validated by quantitative assay western 

blot (Figure 5.2B), collectively suggesting that chronic alcohol intake impaired smooth 
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muscle actins, which respresents the architectural structure of smooth muscle cells.  

We further examined the phosphorylation level of myosin light chain (MLC), 

which represents the contraction (phosphorylation) or relaxation (de-phosphorylation) 

status of smooth muscles. Immunostaining (smooth muscle specific p-MLC, green) 

showed that phosphorylation level of MLC was decreased by low dose (Figure 5.2 A), 

indicating enhanced dilative vascular reactivities. Whereas in the chronic condition, p-

MLC level was increased, suggesting that the vascular dilative reactivities were 

diminished. The observation was validated by quantitative assay western blot (Figure 

5.2 B). As such, the summary is that chronic alcohol intake impaired vascular smooth 

muscles and decreased dilative vascular reactivities.  

 

Figure 5.2 Effect of low dose and chronic alcohol intake on vascular smooth muscle 

reactivity. [A].Immunostaining of SMA (red) and smooth muscle specific phospho-

MLC (green) protein at brain microvessels (indicated by structures) in control, low dose 

EtOH and chronic EtOH treatment. SMA and p-MLC were used as primary antibodies. 

Data was representation of at least N=6 animals per each group. Scale bar: 30 μm.  [B]. 

Immunoreactive bands of SMA, p-MLC and β-actin, and quantitative corresponding 

protein content in three experimental groups. Results were expressed as the ratio of 

protein of interest to that of actin bands and presented as mean values (± SEM). 

Statistically significant (*p<0.05) compared with controls. Three replicates were done 

for each animal sample from at least N=6 animals. 

 

5.3.4 Contrast Effect of Low Dose and Moderate/chronic Alcohol on Brain 

Vascular Endothelial cells and the Blood-Brain Barrier (BBB) 
 

To investigate the effect of alcohol on brain vascular endothelial cells, we evaluated the 
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immunoreactivity of endothelial cell markers, von willebrand factor (vWF) and glucose 

transporter 1 (Glut-1). Immunostaining revealed that chronic alcohol intake diminished 

aimed proteins’ (vWF and Glut-1) expressions while there was no change for low/acute 

exposure, which was further validated by western blot analyses (*p<0.05) (Figure 5.3). 

These results indicated that chronic alcohol impaired brain vascular endothelial cells 

compared with control and low dose.  

Next, we procceded to investigate the integrity of blood-brain barriers (BBB), 

which were localized on the endothelium. We examined changes in expression of BBB 

tight junction (TJ) proteins: occludin, claudin-5 and zonula occluden 1 (ZO-1) by 

immunostaining and western blot since reduction in TJ protein levels or disruption of 

the architectural structure of any TJ protein was expected to impair BBB integrity. 

Immunostaining revealed that moderate/chronic alcohol exposure diminished 

expression of TJ proteins at brain microvessels compared with control (Figure 5.4A) 

while no significant change was observed in low/acute alcohol. These alcohol dosing-

induced changes in TJ protein expressions were validated by western blot, and 

quantification of the TJ protein immunoreactive bands (p<0.05) (Figure 5.4B). This 

data was in agreement with previous findings that chronic alcohol abuse leads to 

breaking of the BBB [88, 89, 111]. 

In summary, we concluded that moderate/chronic alcohol intake impaired brain 

vascular endoethelial cells and compromised BBB integrities.  
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Figure 5.3 Effect of low dose and chronic alcohol intake on vascular endothelial cells. 

Coronal tissue sections (10 ~ 15 μm) were analyzed for endothelial cell markers (vWF 

and Glut-1: red) subcellular distribution while protein extracts from brain were analyzed 

for alterations in corresponding protein content. [A]. Immunostaining of vWF (red) and 

Glut-1 (red) protein around brain microvessels (indicated by circular structures) in 

control, low dose EtOH and chronic EtOH treatment. vWF and Glut-1 were used as 

primary antibodies (information in Table 2.1). Scale bar: 30 μm. Data was representation 

of at least N=6 animals per each group. [B]. Immunoreactive bands of vWF, Glut-1 and 

β-actin, and quantitative corresponding protein content in three experimental groups. 

Results are expressed as the ratio of protein of interest to that of actin bands and 

presented as mean values (± SEM). Statistically significant (*p < 0.05) compared with 

controls. Three replicates were done for each animal sample from at least N=6 animals. 
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Figure 5.4 Effect of low dose and chronic alcohol intake on BBB tight junction proteins. 

[A]. Immunostaining of tight junction proteins: ZO-1, Occludin and Claudin-5 (red) in 

brain microvessels from coronal slices (10 ~ 15 μm) of control, low dose EtOH and 

chronic EtOH. ZO-1, Occludin and Claudin-5 were used as primary antibodies 

(information in Table 2.1). Scale bar: 30 μm. Data was representation of at least N=6 

animals per each group. [B]. Western blot analysis of ZO-1, Occludin, Claudin-5 and β-

actin in the whole brain tissue homogenates of rats at different experimental conditions. 

Results are expressed as the ratio of protein of interest to that of actin bands and 

presented as mean values (± SEM). Statistically significant (*p < 0.05) compared with 

controls. Three replicates were done for each animal sample from at least N=6 animals. 

 

5.3.5 Induction of Free Radicals by Alcohol Causes Vasculature Damage 

 

From previous data, it was shown that smooth muscles, endothelium and BBB integrities 

were impaired under chronic alcohol exposure. To find out the likely reasons that caused 

these observations, we focused on free radical generation - particularly the iNOS 

mediated nitrosative stress on brain vasculatures. Level of 3-nitrotyrosine (3-NT) was 
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the indicator of nitrosative stress, as it leads to formation of nitrated proteins. 

Immunostaining of 3-NT revealed that protein level was increased in the chronic 

condition while no change in the low/acute when compared with control (Figure 5.5A). 

Using the western blot assay, we detected three nitrotyrosine proteins (molecular 

weights of 210, 97, and 68 kDa). The 210‐kDa protein was the major nitrated protein as 

compared with 97 kDa or 68 kDa nitrated proteins. Quantitative data validated our 

finding that chronic exposure significantly increased 3-NT expression (Figure 5.5B) 

(*p<0.05).  The extent of nitrosative damage marker 3NT paralleled induction of iNOS, 

indicating that free radical damage was correlated with iNOS over-expression. eNOS 

expression was elevated under low dose condition, which lined-up with previous 

observations.  
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Figure 5.5 Effect of low dose and chronic alcohol intake on free radical generation. 

Coronal tissue sections (10 ~ 15 μm) were analyzed for eNOS, iNOS and 3-NT 

(nitrosative stress markers) subcellular distribution while protein extracts from brain 

were analyzed for alterations in corresponding protein content. [A]. Immunostaining of 

eNOS (red), iNOS (red) and 3-NT (red) protein at brain microvessels (indicated by 

structures) in control, low dose EtOH and chronic EtOH. eNOS, iNOS and 3-NT were 

used as primary antibodies (information in Table 2.1). Scale bar: 30 μm. Data was 

representation of at least N=6 animals per each group. [B]. Immunoreactive bands of 

eNOS, iNOS, 3-NT and β-actin, and quantitative corresponding protein content in three 

experimental groups. Results were expressed as the ratio of protein of interest to that of 

actin bands and presented as mean values (± SEM). Statistically significant (*p < 0.05) 

compared with controls. Three replicates were done for each animal sample from at least 

N=6 animals. 

 

Thus, these data above collectively suggested that iNOS mediated nitrosative 

stress leads to free radical damage at brain vasculatures when exposed to the 

moderate/chronic alcohol whereas no such effect was found on the low/acute. 
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5.4 Discussion 

We discuss the finding of contrast effects of alcohol (acute/low and moderate/chronic) on 

brain PVS waste metabolites clearance. In a previous study [62], we used low levels of 

alcohol to understand the protective mechanisms of promoting perivascular clearance 

because low alcohol use was protective of vascular and cardiovascular function [4, 64, 65, 

85-87]. We found that low dose alcohol intake (5 mM) can increase interaction of brain 

vascular ECs-SMCs. Large size waste metabolites clearance in the brain that cannot be 

efficiently done through CSF, glymphatic, or meningeal lymphatic systems were able to 

be facilitated by alcohol through this mechanism. In fact, Lundgaard et al. (2018) showed 

the beneficial effects of low dose alcohol and the adverse effects of high dose alcohol on 

glymphatic function [85]. We noted here that the contrast effects of low dose alcohol 

intake and chronic use of moderate-to-high dose alcohol (equivalent of alcohol dependent 

subjects) were examined in the context of vascular reactivity, blood-brain barrier 

permeability and perivascular clearance since epidemiological evidence showed 

distinctive consequences on brain clearance and associated neurological diseases (e.g., 

Alzheimer’s disease and cerebral amyloid angiopathy) under different alcohol drinking 

patterns as discussed previously [5, 77, 80, 81, 83, 84, 125, 126]. The data indicated that 

chronic alcohol hampered perivascular waste metabolites clearance, impaired dilative 

vascular reactivities and compromised BBB integrity, due to: 1) paradigm shift to iNOS 

in chronic conditions and 2) free radical damage induced by alcohol impaired brain 

microvessels during moderate/chronic alcohol exposure.  

To mimic the large size waste metabolites, we injected a large molecular weight 

fluorescent tracer (2000 KD) as proof-of-concept. We showed the contrast phenomenon 



97 
 

by examining the bio-distribution of large size molecular weight fluorescent tracer 

through cisterna magna injection under low/acute and moderate/chronic conditions 

(Figure 5.1). We found that low/acute alcohol enhanced dynamic tracer movement and 

clearance while moderate/chronic hampered this process. Further evidence showed that 

vascular smooth muscles and endothelium were impaired and BBB intergrites were 

compromised under chronic alcohol conditons (Figures 5.2 – 5.4), indicating that the 

vascular dilative reactivities that are regulated by endothelial-smooth muscle interaction 

were diminished. 

We also examined the expression of iNOS (Figure 5.5), which mediated free 

radical generating due to elevation of high amounts of NO compared with that of eNOS. 

Interestingly, iNOS showed an opposite expression pattern compared with eNOS. We 

then showed that free radical damages (3-NT) (Figure 5.5) that induced by chronic 

alcohol exposure impaired brain microvessels, which were in parallel with iNOS 

expression.  

Collectively, the contrast effects of acute/low and chronic/moderate alcohol intake 

were examined in this chapeter. It was found that unlike low dose, moderate/chronic 

alcohol intake diminished PVS clearance compared with control. The contrast effects 

were due to that moderate/chronic alcohol induced free radical generation, which led to 

impairement of vascular endothelium and smooth muscles, dysfunction of BBB and 

decreased vascular dilative reactivities. The significance of this work is the discovery 

that mis-use/chronic alcohol abuse impairs the brain clearance system, which may lead 

to onset/progression of neurodeneration diseases, like Alzheimer’s disease, supporting 

by epidemiological studies that discussed previously.  
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Figure 5.6 Illustration of Chapter 5. Left: Arrows (orange) indicate the CSF 

subarachnoid flow and perivascular-perivenous clearance path (black) of large size 

waste metabolites (red dots) in the neurodegenerative brain. Waste metabolites like beta-

amyloid proteins are aggregated more inside the interstitial space due to the lack of a 

lymphatic system in the brain. Less metabolites drain into the CSF flows due to less 

vessel dilative reactivity. Right top: The neurodegenerative brain in the presence of low 

dose alcohol. Dilative arterial vessel reactivity promotes the dynamic movement of large 

size waste metabolites from interstitial fluid to perivascular space and from interstitial-

CSF subarachnoid to perivascular space. Reactivity of endothelial and smooth muscle 

cells in arteries is mediated by alcohol-initiated eNOS activation and NO production. 

Right bottom: The neurodegenerative brain exposed to chronic/moderate alcohol intake. 

Loss of dilative arterial vessel reactivity due to free radical damage towards vasculatures 

hampers the dynamic movement of waste metabolites to the perivascular – peri-venous 

route. Paradigm shift from eNOS to iNOS initiates free radical generation and causes 

diminishing reactivity of endothelial and smooth muscle cells in arterial vasculatures 

with chronic/moderate alcohol exposure. 
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CHAPTER 6 

SUMMARY CONCLUSION  

 

Efficient clearance of the interstitial waste metabolites is essential for normal 

maintenance of brain homeostasis. The brain lacks the lymphatic clearance system – 

thus clearance of waste metabolites in the brain is dependent on cerebrospinal fluid 

(CSF) system. The recent discovery glymphatic system claims that the direct bulk flow 

transports small size water-soluble waste metabolites into to the perivenous space by 

aquaporin-4 water channels of the astrocyte end-feet, but it does not account for the 

clearance of large size waste metabolites, like peptide and/or protein aggregations.  

Here, the clearance mechanisms of large size waste metabolites from interstitial 

fluid to the perivascular space as well as from the CSF subarachnoid into perivascular 

space via the paravascular drainage is investigated. A low dose ethanol (5 mM) is found 

to promote the dynamic clearance of waste metabolites through this perivascular-

perivenous drainage path. This ethanol-induced effect can be explained by the findings 

that activation of endothelial specific nitric oxide synthase (eNOS) by ethanol and 

generation of vasodilator nitric oxide (NO) mediate the interactive reactivity of 

endothelial-smooth muscle cells. Futher evidence reveals that NO mediated ECs and 

SMCs interaction is regulated by myosin light chain activities, which depend on the 

balance between two opposite enzymatic acitivies: myosin light chain kinase and 

myosin light chain phosphatase.  

In addition to that, the contrast effects of acute low dose and chronic moderate 

alcohol intake on BBB associated perivascular clearance of waste metabolites in the 
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brain is also examined. The underlying molecular and cellular mechanisms that drive 

the increase or decrease movement of tracer to perivascular space by acute/chronic 

alcohol exposure are correlated to BBB integrity and arterial vessel reactivity. Evidently, 

the contrast effects of alcohol appear to be regulated by the switch mechanisms of 

endothelial specific nitric oxide synthase (eNOS) activation by low dose and inducible 

NOS (iNOS) by moderately high alcohol exposure in chronic conditions. As such, it is 

concluded that low dose alcohol promotes the diffusive movement of waste metabolites 

to perivascular clearance through eNOS-derived NO regulated arterial endothelial-

smooth muscle cell dilative reactivity without affecting the integrity of the BBB. 

Whereas, continuous induction of iNOS in chronic alcohol exposure causes oxidative 

damage of the arterial endothelial-smooth muscle layers that led to BBB dysfunction, 

reduced dilative reactivity, and decreased movement of waste metabolites from 

interstitial space/CSF to perivascular-perivenous drainage path.  

Given the fact that large size waste metabolites like tauopathy, prion-like 

proteinopathies, cerebral amyloid angiopathy, and Aβ proteins are seen accumulated 

around the perivascular space in brain tissue from neurological diseases, the significance 

of this current work affords new therapeutical strategies for neurological diseases, 

particarly the timely clearance of entangled proteins.  
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APPENDIX A 

MATLAB CODE FOR COMPUTING VESSEL DIAMETER CHANGE 

This code is used to calculate vessel diameters that present in Chapter 3. 
 

%% 

folderContents = dir; 

nFiles = length(dir); 

 

arteryFiles = cell(nFiles,1); 

nVids = 0; 

for i = 1:nFiles 

filename = folderContents(i).name; 

if length(filename) > 3 && strcmpi(filename(1:2),'T=') && strcmpi(filename(end-3:end),'.avi') 

nVids = nVids + 1; 

arteryFiles{nVids} = filename; 

end 

end 

 

arteryFiles = arteryFiles(1:nVids); 

exposureTimes = zeros(nVids,1); 

for i = 1 :nVids 

exposureTimes(i) = str2double(arteryFiles{i}(3:end-4)); 

end 

 

%% 

nDivisions = 5; 

peakQuantile = .9; 

pixelLength = 40/38; 

vesselDiameterYLim = [15,35]; 

interpFactor = 8; 

 

frameRate = 4; 

borderFraction = .1; 

 

vesselDiameters = cell(nVids,1); 

 

 

for i = 1:nVids 

vw = VideoWriter(['T',num2str(exposureTimes(i)),'_vessel_diameters']); %#ok<TNMLP> 

vw.FrameRate = frameRate; 

open(vw); 

 

cf = figure('units','normalized','outerposition',[0 0 1 1]); 

 

%     set(cf,'visible','off') 

exposureTimes(i) = str2double(arteryFiles{i}(3:end-3)); 

currentVideo = importdata(arteryFiles{i}); 

 

nX = size(currentVideo(1).cdata,2); 

nY = size(currentVideo(1).cdata,1); 

nFrames = length(currentVideo); 

 

vesselDiameters{i} = zeros(nFrames,nDivisions); 
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for j = 1:nFrames; 

iRed = currentVideo(j).cdata(:,:,1); 

iFilt = double(iRed); 

iFilt = filter2(eye(3)/9,iFilt); 

iFilt = medfilt2(iFilt,[1,3]); 

 

 

clf 

subplot(1,3,1) 

imshow(currentVideo(j).cdata) 

 

 

for k = 1:nDivisions 

 

 

 

y = round(k/(nDivisions+1)*(nY*(1-2*borderFraction)) + nY*borderFraction); %divide up only the 

middle half to avoid text at head and foot of video 

interpX = linspace(1,nX,nX*interpFactor); 

 

lineVals = interp1((1:nX),iFilt(y,:),interpX); 

mpp = 2*median(lineVals); 

[~, peaks] = findpeaks(lineVals,'MinPeakProminence',mpp); 

 

if numel(peaks) > 1 

leftPeak = min(peaks); 

rightPeak = max(peaks); 

vesselDiameters{i}(j,k) = range(interpX(peaks))*pixelLength; 

%                 vesselDiameters{i}(j,k) = min(diff(sort((interpX(peaks))*pixelLength))); 

else 

vesselDiameters{i}(j,k) = 0; 

end 

 

 

 

 

 

subplot(1,3,1) 

hold on 

plot([1,nX],[y,y],'b','linewidth',2) 

if ~isempty(peaks) 

plot(interpX(peaks),y,'w.','markersize',12) 

end 

 

subplot(nDivisions,3,2+(k-1)*3) 

hold on 

plot(interpX,lineVals,'linewidth',2) 

plot(interpX(peaks),lineVals(peaks),'k.','markersize',12); 

 

 

if k == 1 

title(arteryFiles{i}(1:end-4)) 

end 

 

if k == nDivisions 

xlabel('distance (\mum)') 
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end 

ylabel('relative intensity') 

 

subplot(nDivisions,3,3+(k-1)*3) 

hold on 

plot((0:j-1)/frameRate,vesselDiameters{i}(1:j,k),'.') 

xlim([0,nFrames]/frameRate) 

ylim(vesselDiameterYLim) 

 

if k == nDivisions 

xlabel('time (s)') 

end 

ylabel('distance (\mum)') 

 

 

 

end 

 

set(cf,'color','w') 

vw.writeVideo(getframe(cf)); 

%         pause(.01) 

end 

close(vw) 

 

 

end 
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APPENDIX B 

R CODE FOR VESSEL DIAMETER DATA PROCESS AND PLOTTING 

 

This code is used to generate plots that present in Chapter 3. 

 
# read data 

T0<-read.csv('T=0.csv',header = F) 

T15<-read.csv('T=15.csv',header = F) 

T30<-read.csv('T=30.csv',header = F) 

T45<-read.csv('T=45.csv',header = F) 

 

# rename column 

colnames(T0)<-c('Frame','1','2','3','4','5') 

colnames(T15)<-c('Frame','1','2','3','4','5') 

colnames(T30)<-c('Frame','1','2','3','4','5') 

colnames(T45)<-c('Frame','1','2','3','4','5') 

 

# add label 

T0$time<-'baseline' 

T15$time<-'15 min after alcohol' 

T30$time<-'30 min after alcohol' 

T45$time<-'45 min after alcohol' 

 

# plot 

T0reshape<-melt(T0,id.vars = 'Frame') 

T0reshape$variable<-NULL 

T0reshape$Frame<-as.factor(as.character(T0reshape$Frame)) 

T0sum<- 

  T0reshape%>% 

  group_by(Frame)%>% 

  summarise(mean=mean(value),sd=sd(value)) 

T0sum$Frame<- 

  as.numeric(as.character(T0sum$Frame)) 

ggplot(T0sum,aes(x=Frame,y=mean))+ 

  geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+ 

  geom_point()+ 

  geom_line(data = spline_int,aes(x=x,y=y)) 

spline_int<-as.data.frame(spline(T0sum$Frame, T0sum$mean)) 

 

 

plotfunction<-function(a){ 

  x1<-melt(a,id.vars = 'Frame') 

  x1$variable<-NULL 

  x1$Frame<-as.factor(as.character(x1$Frame)) 

  x2<- 

    x1%>% 

    group_by(Frame)%>% 

    summarise(mean=mean(value),sd=sd(value)) 

  x2$Frame<- 

    as.numeric(as.character(x2$Frame)) 

  spline_int<-as.data.frame(spline(x2$Frame, x2$mean)) 

  ggplot(x2,aes(x=Frame,y=mean))+ 
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    geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+ 

    geom_point()+ 

    geom_line(data = spline_int,aes(x=x,y=y)) 

} 

 

plotfunction(T30) 

 

T30<-T30[-12,] 

T30 

row.names(T30) <- 1:nrow(T30) 

ggplot(data=T30,aes(x=Frame,y=mean))+geom_point() 

 

# encoding time lapse 

 

T15$Frame<-T15$Frame+40 

T30$Frame<-T30$Frame+77 

T45$Frame<-T45$Frame+116 

 

combine<-rbind(T0,T15,T30,T45) 

combine<-combine[-c(89,90),] 

combine[combine$time=='30 min after alcohol','Frame']<-seq(78,114) 

combine[combine$time=='45 min after alcohol','Frame']<-seq(115,191) 

 

combine_reshape<-melt(combine,id.vars = c('Frame','time')) 

 

combine_reshape$Frame<-as.factor(as.character(combine_reshape$Frame)) 

 

combine_reshape_sum<- 

  combine_reshape%>% 

  group_by(Frame)%>% 

  summarise(mean=mean(value),sd=sd(value)) 

combine_reshape_sum$Frame<- 

  as.numeric(as.character(combine_reshape_sum$Frame)) 

 

combine_reshape_sum$timelapse<-ifelse(combine_reshape_sum$Frame>=117,'45 min after alcohol', 

                                  ifelse(combine_reshape_sum$Frame<117&combine_reshape_sum$Frame>=78,'30 

min after alcohol', 

                                         

ifelse(combine_reshape_sum$Frame<78&combine_reshape_sum$Frame>=41,'15 min after 

alcohol','baseline'))) 

 

combine_reshape_sum$timelapse<-as.factor(combine_reshape_sum$timelapse) 

is.factor(combine_reshape_sum$timelapse) 

combine_reshape_sum$label<-NULL 

 

# Plot for the combine 

 

spline_int<-as.data.frame(spline(x=combine_reshape_sum$Frame, y=combine_reshape_sum$mean)) 

 

p<- 

  ggplot(combine_reshape_sum,aes(x=Frame,y=mean,color=timelapse))+ 

  geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.5)+geom_point()+ 

  geom_line(data = spline_int,aes(x=x,y=y),inherit.aes = FALSE)+ 

  scale_color_discrete(breaks=c('baseline','15 min after alcohol','30 min after alcohol','45 min after 

alcohol'))+ 

  theme(legend.title=element_blank()) 



106 
 

 

# add theme 

p+xlab("Frame")+ylab("Diameter (um)")+ 

  ggtitle("Cerebral vessel diameter change under low dose alochol")+ 

  theme(axis.title.x = element_text(size=15), 

        axis.title.y = element_text(size=15), 

        axis.text.x=element_text(color="Black",size=10), 

        axis.text.y = element_text(color="Black",size=10), 

        plot.title = element_text(size=15,hjust=0.5), 

        panel.background = element_rect(fill='White',color='Black')) 

# plot 

T0reshape<-melt(T0,id.vars = 'Frame') 

T0reshape$variable<-NULL 

T0reshape$Frame<-as.factor(as.character(T0reshape$Frame)) 

grouped<-group_by(T0reshape,Frame) 

summarise(grouped,mean=mean(value),sd=sd(value)) 

T0sum<- 

T0reshape%>% 

group_by(Frame)%>% 

summarise(mean=mean(value),sd=sd(value)) 

View(T0sum) 

T0sum$Frame<- 

as.numeric(as.character(T0sum$Frame)) 

View(T0sum) 

geom_errorbar(aes(ymin=mean-sd, ymax=mean+sd), width=.1) + 

library("ggplot2", lib.loc="~/R/win-library/3.4") 

ggplot(T0sum, aes(x=Frame, y=mean) + 

str(T0sum) 

str(T0sum) 

summary(T0sum) 

geom_errorbar(aes(ymin=mean-sd, ymax=mean+sd), width=.1) + 

geom_point() 

geom_line() + 

gplot(T0sum, aes(x=Frame, y=mean) + 

geom_errorbar(aes(ymin=mean-sd, ymax=mean+sd), width=.1) + 

geom_line() + 

geom_point() 

gplot(T0sum, aes(x=Frame, y=mean) 

gplot(T0sum, aes(x=Frame, y=mean)+geom_errorbar(aes(ymin=mean-sd, ymax=mean+sd), width=.1) + 

ggplot(T0sum,aes(x=Frame,y=mean)) 

ggplot(T0sum,aes(x=Frame,y=mean)) 

View(T0sum) 

ggplot(T0sum,aes(x=Frame,y=mean)) 

ggplot(T0sum,aes(x=Frame,y=mean))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+ 

geom_point() 

ggplot(T0sum,aes(x=Frame,y=mean))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+ 

geom_point()+geom_line() 

ggplot(T0sum,aes(x=Frame,y=mean))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+ 

geom_point()+ 

stat_smooth(aes(x=Frame,y=mean),method = 'lm', 

formula = y~ploy(x,39)) 

ggplot(T0sum,aes(x=Frame,y=mean))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+ 



107 
 

geom_point()+ 

stat_smooth(aes(x=Frame,y=mean),method = 'lm', 

formula = y~poly(x,39)) 

ggplot(T0sum,aes(x=Frame,y=mean))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+ 

geom_point()+ 

stat_smooth(aes(x=Frame,y=mean),method = 'lm', 

formula = y~poly(x,10)) 

ggplot(T0sum,aes(x=Frame,y=mean))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+ 

geom_point()+ 

stat_smooth(aes(x=Frame,y=mean),method = 'lm', 

formula = y~poly(x,38)) 

ggplot(T0sum,aes(x=Frame,y=mean))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+ 

geom_point()+ 

stat_smooth(aes(x=Frame,y=mean),method = 'lm', 

formula = y~poly(x,30)) 

formula = y~poly(x,20) 

ggplot(T0sum,aes(x=Frame,y=mean))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+ 

geom_point()+ 

stat_smooth(aes(x=Frame,y=mean),method = 'lm', 

formula = y~poly(x,20)) 

ggplot(T0sum,aes(x=Frame,y=mean))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+ 

geom_point() 

spline_int<-as.data.frame(spline(T0sum$Frame, T0sum$mean)) 

ggplot(T0sum,aes(x=Frame,y=mean))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+ 

geom_point()+ 

geom_line(data = spline_int,aes(x=x,y=y)) 

plotfunction<-function(a){ 

x1<-melt(a,id.vars = 'Frame') 

x1$variable<-NULL 

x1$Frame<-as.factor(as.character(x1$Frame)) 

x2<- 

x%>% 

group_by(Frame)%>% 

summarise(mean=mean(value),sd=sd(value)) 

x2$Frame<- 

as.numeric(as.character(x2$Frame)) 

spline_int<-as.data.frame(spline(x2$Frame, x2$mean)) 

ggplot(x2,aes(x=Frame,y=mean))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+ 

geom_point()+ 

geom_line(data = spline_int,aes(x=x,y=y)) 

} 

plotfunction(T0) 

plotfunction(T0) 

T0reshape<-melt(T0,id.vars = 'Frame') 

T0reshape$variable<-NULL 

T0reshape$Frame<-as.factor(as.character(T0reshape$Frame)) 

T0sum<- 

T0reshape%>% 

group_by(Frame)%>% 
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summarise(mean=mean(value),sd=sd(value)) 

T0sum$Frame<- 

as.numeric(as.character(T0sum$Frame)) 

ggplot(T0sum,aes(x=Frame,y=mean))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+ 

geom_point()+ 

geom_line(data = spline_int,aes(x=x,y=y)) 

spline_int<-as.data.frame(spline(T0sum$Frame, T0sum$mean)) 

plotfunction<-function(a){ 

x1<-melt(a,id.vars = 'Frame') 

x1$variable<-NULL 

x1$Frame<-as.factor(as.character(x1$Frame)) 

x2<- 

x1%>% 

group_by(Frame)%>% 

summarise(mean=mean(value),sd=sd(value)) 

x2$Frame<- 

as.numeric(as.character(x2$Frame)) 

spline_int<-as.data.frame(spline(x2$Frame, x2$mean)) 

ggplot(x2,aes(x=Frame,y=mean))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+ 

geom_point()+ 

geom_line(data = spline_int,aes(x=x,y=y)) 

} 

plotfunction(T0) 

plotfunction(T15) 

plotfunction(T30) 

plotfunction(T45) 

View(T45) 

View(T30) 

T45<-read.csv('T=45.csv',header = F) 

colnames(T45)<-c('Frame','1','2','3','4','5') 

plotfunction(T45) 

View(T0) 

View(T15) 

View(T30) 

View(T45) 

# add label 

T0$time<-'baseline' 

T15$time<-'15 min after alcohol' 

T30$time<-'30 min after alcohol' 

T45$time<-'45 min after alcohol' 

View(T0) 

combine<-rbind(T0,T15,T30,T45) 

View(combine) 

View(T0) 

View(T15) 

T15$Frame<-T15$Frame+40 

View(T15) 

View(T15) 

View(T30) 

T30$Frame<-T30$Frame++77 

View(T30) 

T30$Frame<-T30$Frame+77 

View(T30) 

T30<-read.csv('T=30.csv',header = F) 
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colnames(T30)<-c('Frame','1','2','3','4','5') 

T30$time<-'30 min after alcohol' 

View(T30) 

T30$Frame<-T30$Frame+77 

T45$Frame<-T45$Frame+116 

combine<-rbind(T0,T15,T30,T45) 

View(combine) 

combine_reshape<-melt(combine,id.vars = 'Frame') 

View(combine_reshape) 

combine<-rbind(T0,T15,T30,T45) 

combine_reshape<-melt(combine,id.vars = c('Frame','time')) 

View(combine_reshape) 

combine$Frame<-as.factor(as.character(combine$Frame)) 

combine<-rbind(T0,T15,T30,T45) 

combine_reshape$Frame<-as.factor(as.character(combine_reshape$Frame)) 

combine_reshape_sum<- 

combine_reshape%>% 

group_by(Frame)%>% 

summarise(mean=mean(value),sd=sd(value)) 

combine_reshape_sum$Frame<- 

as.numeric(as.character(combine_reshape_sum$Frame)) 

View(combine_reshape_sum) 

View(combine_reshape_sum) 

View(combine_reshape) 

combine_reshape_sum<- 

combine_reshape%>% 

group_by(Frame)%>% 

summarise(time=time,mean=mean(value),sd=sd(value)) 

combine_reshape_sum$Frame<- 

as.numeric(as.character(combine_reshape_sum$Frame)) 

View(combine_reshape_sum) 

View(combine_reshape_sum) 

View(T0) 

View(T15) 

View(T30) 

View(T45) 

combine_reshape_sum$label<-ifelse(combine_reshape_sum$Frame>=117,'45min after alcohol', 

ifelse(combine_reshape_sum$Frame<117&combine_reshape_sum$Frame>=78,'30 min after alcohol', 

ifelse(combine_reshape_sum$Frame<78&combine_reshape_sum$Frame>=41,'15 min after 

alcohol','baseline'))) 

View(combine_reshape_sum) 

is.numeric(combine_reshape_sum$Frame) 

# Plot for the combine 

spline_int<-as.data.frame(spline(combine_reshape_sum$Frame, combine_reshape_sum$mean)) 

ggplot(combine_reshape_sum,aes(x=Frame,y=mean,color=label))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+ 

geom_point()+ 

geom_line(data = spline_int,aes(x=x,y=y)) 

ggplot(combine_reshape_sum,aes(x=Frame,y=mean))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+ 

geom_point()+ 

geom_line(data = spline_int,aes(x=x,y=y,color=label)) 

View(combine_reshape_sum) 

ggplot(combine_reshape_sum,aes(x=Frame,y=mean))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+ 

geom_point()+ 
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geom_line(data = spline_int,aes(x=x,y=y)) 

ggplot(combine_reshape_sum,aes(x=Frame,y=mean,color=label))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+ 

geom_point()+ 

geom_line(data = spline_int,aes(x=x,y=y)) 

ggplot(combine_reshape_sum,aes(x=Frame,y=mean,color=label),inherit.aes = FALSE)+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+ 

geom_point()+ 

geom_line(data = spline_int,aes(x=x,y=y)) 

combine_reshape_sum$timelapse<-ifelse(combine_reshape_sum$Frame>=117,'45min after alcohol', 

ifelse(combine_reshape_sum$Frame<117&combine_reshape_sum$Frame>=78,'30 min after alcohol', 

ifelse(combine_reshape_sum$Frame<78&combine_reshape_sum$Frame>=41,'15 min after 

alcohol','baseline'))) 

View(combine_reshape_sum) 

ggplot(combine_reshape_sum,aes(x=Frame,y=mean,color=timelapse)+ 

ggplot(combine_reshape_sum,aes(x=Frame,y=mean,color=timelapse)+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+ 

geom_point()+ 

geom_line(data = spline_int,aes(x=x,y=y)) 

combine_reshape_sum$label<-NULL 

combine_reshape_sum$label<-NULL 

View(combine_reshape_sum) 

# Plot for the combine 

spline_int<-as.data.frame(spline(combine_reshape_sum$Frame, combine_reshape_sum$mean)) 

ggplot(combine_reshape_sum,aes(x=Frame,y=mean,color=timelapse)+ 

geom_point()+ 

head(combine_reshape_sum) 

head(combine_reshape_sum) 

head(combine_reshape_sum) 

ggplot(combine_reshape_sum,aes(x=Frame,y=mean,color=timelapse)+ 

geom_point()+ 

head(combine_reshape_sum) 

head(combine_reshape_sum) 

ggplot(combine_reshape_sum,aes(x=Frame,y=mean,color=timelapse)+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+ 

geom_point()+ 

geom_line(data = spline_int,aes(x=x,y=y)) 

ggplot(combine_reshape_sum,aes(x=Frame,y=mean,color=timelapse)+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+ 

geom_point()+ 

geom_line(data = spline_int,aes(x=x,y=y)) 

# Plot for the combine 

spline_int<-as.data.frame(spline(combine_reshape_sum$Frame, combine_reshape_sum$mean)) 

geom_point()+geom_line(data = spline_int,aes(x=x,y=y)) 

ggplot(combine_reshape_sum,aes(x=Frame,y=mean,color=timelapse)+ 

geom_point()+geom_line(data = spline_int,aes(x=x,y=y)) 

head(combine_reshape_sum) 

p<-ggplot(combine_reshape_sum,aes(x=Frame,y=mean,color=timelapse) 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+ 

geom_point()+geom_line(data = spline_int,aes(x=x,y=y)) 

p<-ggplot(combine_reshape_sum,aes(x=Frame,y=mean,color=timelapse)) 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+geom_point()+geom_line(data = 

spline_int,aes(x=x,y=y)) 

p<-ggplot(combine_reshape_sum,aes(x=Frame,y=mean,color=timelapse))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+geom_point()+geom_line(data = 

spline_int,aes(x=x,y=y)) 
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p 

View(combine_reshape_sum) 

is.factor(combine_reshape_sum$timelapse) 

is.character(combine_reshape_sum$timelapse) 

as.factor(combine_reshape_sum$timelapse) 

is.factor(combine_reshape_sum$timelapse) 

combine_reshape_sum$timelapse<-as.factor(combine_reshape_sum$timelapse) 

is.factor(combine_reshape_sum$timelapse) 

spline_int<-as.data.frame(spline(combine_reshape_sum$Frame, combine_reshape_sum$mean)) 

ggplot(data=combine_reshape_sum, 

aes(x=Frame,y=mean,color=timelapse))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+geom_point()+geom_line(data = 

spline_int,aes(x=x,y=y)) 

ggplot(data=combine_reshape_sum, 

aes(x=Frame,y=mean))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+geom_point()+geom_line(data = 

spline_int,aes(x=x,y=y,color=timelapse)) 

ggplot(data=combine_reshape_sum, 

aes(x=Frame,y=mean))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+geom_point()+geom_line(data = 

spline_int,aes(x=x,y=y)) 

ggplot(data=combine_reshape_sum, 

aes(x=Frame,y=mean,colour=timelapse))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+geom_point()+geom_line(data = 

spline_int,aes(x=x,y=y)) 

ggplot(data=combine_reshape_sum, 

aes(x=Frame,y=mean,fill=timelapse))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+geom_point()+geom_line(data = 

spline_int,aes(x=x,y=y)) 

ggplot(data=combine_reshape_sum, 

aes(x=Frame,y=mean,fill=timelapse))+geom_point()+geom_line(data = spline_int,aes(x=x,y=y)) 

ggplot(data=combine_reshape_sum, 

aes(x=Frame,y=mean,color=timelapse))+geom_point()+geom_line(data = spline_int,aes(x=x,y=y)) 

summary(combine_reshape_sum) 

ggplot(data=combine_reshape_sum, 

aes(x=Frame,y=mean,color=timelapse))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+geom_point()+geom_line(data = 

spline_int,aes(x=x,y=y)) 

ggplot(combine_reshape_sum) 

ggplot(combine_reshape_sum,aes(x=Frame,y=mean)) 

ggplot(combine_reshape_sum,aes(x=Frame,y=mean,color=timelapse)) 

ggplot(combine_reshape_sum,aes(x=Frame,y=mean,color=timelapse))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1) 

ggplot(combine_reshape_sum,aes(x=Frame,y=mean,color=timelapse))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.5) 

ggplot(combine_reshape_sum,aes(x=Frame,y=mean,color=timelapse))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.5)+geom_point() 

ggplot(combine_reshape_sum,aes(x=Frame,y=mean,color=timelapse))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.5)+geom_point()+ 

geom_linegeom_line(data = spline_int,aes(x=x,y=y)) 

ggplot(combine_reshape_sum,aes(x=Frame,y=mean,color=timelapse))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.5)+geom_point()+ 

geom_line(data = spline_int,aes(x=x,y=y)) 

ggplot(combine_reshape_sum,aes(x=Frame,y=mean,color=timelapse))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.5)+geom_point()+ 

geom_line(data = spline_int,aes(x=x,y=y),inherit.aes = FALSE) 
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spline_int<-as.data.frame(spline(x=combine_reshape_sum$Frame, y=combine_reshape_sum$mean)) 

spline_int<-as.data.frame(spline(x=combine_reshape_sum$Frame, 

y=combine_reshape_sum$mean,color=combine_reshape_sum$timelapse)) 

ggplot(combine_reshape_sum,aes(x=Frame,y=mean,color=timelapse))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.5)+geom_point()+ 

geom_line(data = spline_int,aes(x=x,y=y),inherit.aes = FALSE)+ 

scale_fill_discrete(breaks=c('baseline','15 min after alcohol','30 min after alcohol','45 min after 

alcohol'))+ 

theme(legend.title=element_blank()) 

ggplot(combine_reshape_sum,aes(x=Frame,y=mean,color=timelapse))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.5)+geom_point()+ 

geom_line(data = spline_int,aes(x=x,y=y),inherit.aes = FALSE)+ 

scale_color_discrete(breaks=c('baseline','15 min after alcohol','30 min after alcohol','45 min after 

alcohol'))+ 

theme(legend.title=element_blank()) 

ggplot(combine_reshape_sum,aes(x=Frame,y=mean,color=timelapse))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.5)+geom_point()+ 

geom_line(data = spline_int,aes(x=x,y=y),inherit.aes = FALSE)+ 

scale_color_discrete(breaks=c('baseline','15 min after alcohol','30 min after alcohol','45 min after 

alcohol'))+ 

theme(legend.title=element_blank()) 

combine_reshape_sum$timelapse<-ifelse(combine_reshape_sum$Frame>=117,'45 min after alcohol', 

ifelse(combine_reshape_sum$Frame<117&combine_reshape_sum$Frame>=78,'30 min after alcohol', 

ifelse(combine_reshape_sum$Frame<78&combine_reshape_sum$Frame>=41,'15 min after 

alcohol','baseline'))) 

combine_reshape_sum$timelapse<-as.factor(combine_reshape_sum$timelapse) 

spline_int<-as.data.frame(spline(x=combine_reshape_sum$Frame, y=combine_reshape_sum$mean)) 

ggplot(combine_reshape_sum,aes(x=Frame,y=mean,color=timelapse))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.5)+geom_point()+ 

geom_line(data = spline_int,aes(x=x,y=y),inherit.aes = FALSE)+ 

scale_color_discrete(breaks=c('baseline','15 min after alcohol','30 min after alcohol','45 min after 

alcohol'))+ 

theme(legend.title=element_blank()) 

combine_reshape_sum[,combine_reshape_sum$mean<10] 

combine_reshape_sum[combine_reshape_sum$mean<10,] 

backup<-combine_reshape_sum 

backup[backup$mean<10,]<-NULL 

backup[66,] 

backup[89,] 

backup[89,] 

View(combine_reshape_sum) 

View(combine_reshape_sum) 

backup[182,] 

backup<-backup[-182,] 

View(backup) 

ggplot(backup,aes(x=Frame,y=mean,color=timelapse))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.5)+geom_point()+ 

geom_line(data = spline_int,aes(x=x,y=y),inherit.aes = FALSE)+ 

scale_color_discrete(breaks=c('baseline','15 min after alcohol','30 min after alcohol','45 min after 

alcohol'))+ 

theme(legend.title=element_blank()) 

T30 

T30[-12,] 

T30<-T30[-12,] 

T30 

plotfunction(T30) 
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plotfunction<-function(a){ 

x1<-melt(a,id.vars = 'Frame') 

x1$variable<-NULL 

x1$Frame<-as.factor(as.character(x1$Frame)) 

x2<- 

x1%>% 

group_by(Frame)%>% 

summarise(mean=mean(value),sd=sd(value)) 

x2$Frame<- 

as.numeric(as.character(x2$Frame)) 

spline_int<-as.data.frame(spline(x2$Frame, x2$mean)) 

ggplot(x2,aes(x=Frame,y=mean))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.1)+ 

geom_point()+ 

geom_line(data = spline_int,aes(x=x,y=y)) 

} 

plotfunction(T30) 

ggplot(data=T30,aes(x=Frame,y=mean))+geom_line 

ggplot(data=T30,aes(x=Frame,y=mean))+geom_line() 

ggplot(data=T30,aes(x=Frame,y=mean))+geom_point() 

row.names(T30) <- 1:nrow(T30) 

ggplot(data=T30,aes(x=Frame,y=mean))+geom_point() 

View(T30) 

T30 

View(T0) 

View(T15) 

View(T30) 

T30$Frame<-T30$Frame+77 

T30<-read.csv('T=30.csv',header = F) 

colnames(T30)<-c('Frame','1','2','3','4','5') 

T30$time<-'30 min after alcohol' 

T30$Frame<-T30$Frame+77 

View(T30) 

View(T45) 

combine<-rbind(T0,T15,T30,T45) 

combine_reshape<-melt(combine,id.vars = c('Frame','time')) 

combine_reshape$Frame<-as.factor(as.character(combine_reshape$Frame)) 

combine_reshape_sum<- 

combine_reshape%>% 

group_by(Frame)%>% 

summarise(mean=mean(value),sd=sd(value)) 

combine_reshape_sum$Frame<- 

as.numeric(as.character(combine_reshape_sum$Frame)) 

combine_reshape_sum$timelapse<-ifelse(combine_reshape_sum$Frame>=117,'45 min after alcohol', 

ifelse(combine_reshape_sum$Frame<117&combine_reshape_sum$Frame>=78,'30 min after alcohol', 

ifelse(combine_reshape_sum$Frame<78&combine_reshape_sum$Frame>=41,'15 min after 

alcohol','baseline'))) 

combine_reshape_sum$timelapse<-as.factor(combine_reshape_sum$timelapse) 

is.factor(combine_reshape_sum$timelapse) 

combine_reshape_sum$label<-NULL 

spline_int<-as.data.frame(spline(x=combine_reshape_sum$Frame, y=combine_reshape_sum$mean)) 

ggplot(combine_reshape_sum,aes(x=Frame,y=mean,color=timelapse))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.5)+geom_point()+ 

geom_line(data = spline_int,aes(x=x,y=y),inherit.aes = FALSE)+ 

scale_color_discrete(breaks=c('baseline','15 min after alcohol','30 min after alcohol','45 min after 

alcohol'))+ 
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theme(legend.title=element_blank()) 

View(combine_reshape_sum) 

View(combine) 

View(combine_reshape) 

View(combine) 

combine<-combine[-89,] 

View(combine) 

combine<-combine[-c(89,90),] 

combine[combine$time=='30 min after alcohol',] 

combine[combine$time=='30 min after alcohol','Frame'] 

combine[combine$time=='30 min after alcohol','Frame']<-seq(78,114) 

seq(78,114) 

combine<-rbind(T0,T15,T30,T45) 

combine<-combine[-c(89,90),] 

combine[combine$time=='30 min after alcohol','Frame'] 

combine[combine$time=='30 min after alcohol','Frame']<-seq(78,114) 

combine[combine$time=='45 min after alcohol','Frame'] 

combine[combine$time=='45 min after alcohol','Frame']<-seq(115,191) 

combine_reshape<-melt(combine,id.vars = c('Frame','time')) 

combine_reshape$Frame<-as.factor(as.character(combine_reshape$Frame)) 

combine_reshape_sum<- 

combine_reshape%>% 

group_by(Frame)%>% 

summarise(mean=mean(value),sd=sd(value)) 

combine_reshape_sum$Frame<- 

as.numeric(as.character(combine_reshape_sum$Frame)) 

combine_reshape_sum$timelapse<-ifelse(combine_reshape_sum$Frame>=117,'45 min after alcohol', 

ifelse(combine_reshape_sum$Frame<117&combine_reshape_sum$Frame>=78,'30 min after alcohol', 

ifelse(combine_reshape_sum$Frame<78&combine_reshape_sum$Frame>=41,'15 min after 

alcohol','baseline'))) 

combine_reshape_sum$timelapse<-as.factor(combine_reshape_sum$timelapse) 

is.factor(combine_reshape_sum$timelapse) 

combine_reshape_sum$label<-NULL 

spline_int<-as.data.frame(spline(x=combine_reshape_sum$Frame, y=combine_reshape_sum$mean)) 

ggplot(combine_reshape_sum,aes(x=Frame,y=mean,color=timelapse))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.5)+geom_point()+ 

geom_line(data = spline_int,aes(x=x,y=y),inherit.aes = FALSE)+ 

scale_color_discrete(breaks=c('baseline','15 min after alcohol','30 min after alcohol','45 min after 

alcohol'))+ 

theme(legend.title=element_blank()) 

P<- 

ggplot(combine_reshape_sum,aes(x=Frame,y=mean,color=timelapse))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.5)+geom_point()+ 

geom_line(data = spline_int,aes(x=x,y=y),inherit.aes = FALSE)+ 

scale_color_discrete(breaks=c('baseline','15 min after alcohol','30 min after alcohol','45 min after 

alcohol'))+ 

theme(legend.title=element_blank()) 

p<- 

ggplot(combine_reshape_sum,aes(x=Frame,y=mean,color=timelapse))+ 

geom_errorbar(aes(ymin=mean-sd,ymax=mean+sd),width=0.5)+geom_point()+ 

geom_line(data = spline_int,aes(x=x,y=y),inherit.aes = FALSE)+ 

scale_color_discrete(breaks=c('baseline','15 min after alcohol','30 min after alcohol','45 min after 

alcohol'))+ 

theme(legend.title=element_blank()) 

p 

# add theme 
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p+xlab("Frame")+ylab("Diameter (um)")+ 

ggtitle("Cerebral vessel diameter change under low dose alochol")+ 

theme(axis.title.x = element_text(size=20), 

axis.title.y = element_text(size=20), 

axis.text.x=element_text(color="Black",size=15), 

axis.text.y = element_text(color="Black",size=15), 

plot.title = element_text(size=20,hjust=0.5)) 

# add theme 

p+xlab("Frame")+ylab("Diameter (um)")+ 

ggtitle("Cerebral vessel diameter change under low dose alochol")+ 

theme(axis.title.x = element_text(size=10), 

axis.title.y = element_text(size=10), 

axis.text.x=element_text(color="Black",size=5), 

axis.text.y = element_text(color="Black",size=5), 

plot.title = element_text(size=10,hjust=0.5)) 

# add theme 

p+xlab("Frame")+ylab("Diameter (um)")+ 

ggtitle("Cerebral vessel diameter change under low dose alochol")+ 

theme(axis.title.x = element_text(size=15), 

axis.title.y = element_text(size=15), 

axis.text.x=element_text(color="Black",size=10), 

axis.text.y = element_text(color="Black",size=10), 

plot.title = element_text(size=15,hjust=0.5)) 

# add theme 

p+xlab("Frame")+ylab("Diameter (um)")+ 

ggtitle("Cerebral vessel diameter change under low dose alochol")+ 

theme(axis.title.x = element_text(size=15), 

axis.title.y = element_text(size=15), 

axis.text.x=element_text(color="Black",size=10), 

axis.text.y = element_text(color="Black",size=10), 

plot.title = element_text(size=15,hjust=0.5), 

panel.background = element_rect(fill='White')) 

# add theme 

p+xlab("Frame")+ylab("Diameter (um)")+ 

ggtitle("Cerebral vessel diameter change under low dose alochol")+ 

theme(axis.title.x = element_text(size=15), 

axis.title.y = element_text(size=15), 

axis.text.x=element_text(color="Black",size=10), 

axis.text.y = element_text(color="Black",size=10), 

plot.title = element_text(size=15,hjust=0.5), 

panel.background = element_rect(fill='White',color='Black')) 
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APPENDIX C 

TIME COURSE VESSEL DIAMETER CHANGE PLOT 

 

The plots that are presented here are used to support Chapter 3. 

Figure C.1 Time course vessel diameter change  

 

 

Figure C.2 Vessel diameter amplitude change at different time point 

 

 

* * * 



117 
 

 

APPENDIX D 

VALIDATION OF USING FITC-D2000 TRACERS AS MIMIC OF LARGE 

SIZE WASTE METABOLITES  

 

The figures serve to validate the tracers that are used in experiments.  

 

Figure D.1 Bio-distribution comparison of A-beta and FITC-d2000 tracers following 

intra-cranial injection  (scale bar: whole brain: top: 500 μm, bottom: 1 mm; magnified 

vessels: 30 μm) 
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Figure D.2 Bio-distribution comparison of A-beta and FITC-d2000 tracers following 

CSF injection (scale bar: whole brain: 1 mm; magnified vasculatures: 50 μm) 
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APPENDIX E 

NO DOSE AND TIME DEPENDENT EFFECT IN LOW DOSE ALCOHOL 

TREATMENT 

 

The figures examine dose- and time- dependent effects of low dose alcohol. 

 

Figure E.1 No dose dependent effect on bio-distribution was found in low dose 

alcohol treatment (2.5 mM – 20 mM; 2 hours post-dose; scale bar: 1 mm) 
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Figure E.2 No dose dependent effect on NO production and eNOS expression was 

found in low dose alcohol treatment (2.5 mM – 20 mM; 2 hours post-dose) 

 

 
 

 

 

Figure E.3 No time dependent (2 hours, 5 days, 15 days and 20 days) effect on bio-

distribution was found in low dose alcohol treatment (5 mM; 2 hours post-dose; scale 

bar: 1 mm)  

 
 

 

 

 

* 
* * * 

* * 
* 

* 
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APPENDIX F 

POSTIVE CONTROL OF TRACER BIODISTRIBUTION COMPARED WITH 

EFFECT OF ALCOHOL 

 

The figure is positive control comparing with effects of low dose alcohol.  

 

Figure F.1 Effect of Nitric Oxide (NO) donor S-Nitroso-N-acetylpenicillamine 

(SNAP: 100 μM, equivalent to 0.02 mg/mL through i.v injection) on tracer 

biodistribution (scale bar: 1 mm) 
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