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ABSTRACT 

 

QUANTITATIVE METRICS FOR MUTATION TESTING 

 

by 

Amani Ayad 

 

 

Program mutation is the process of generating versions of a base program by applying 

elementary syntactic modifications; this technique has been used in program testing in a 

variety of applications, most notably to assess the quality of a test data set. A good test set 

will discover the difference between the original program and mutant except if the mutant 

is semantically equivalent to the original program, despite being syntactically distinct. 

Equivalent mutants are a major nuisance in the practice of mutation testing, because 

they introduce a significant amount of bias and uncertainty in the analysis of test results; 

indeed, mutants are useful only to the extent that they define distinct functions from the 

base program. Yet, despite several decades of research, the identification of equivalent 

mutants remains a tedious, inefficient, ineffective and error prone process. 

The approach that is adopted in this dissertation is to turn away from the goal of 

identifying individual mutants which are semantically equivalent to the base program, in 

favor of an approach that merely focuses on estimating their number.  To this effect, the 

following question is considered: What makes a base program P prone to produce 

equivalent mutants?  The position taken in this work is that what makes a program prone 

to generate equivalent mutants is the same property that makes a program fault tolerant, 

since fault tolerance is by definition the ability to maintain correct behavior despite the 

presence and sensitization of faults; whether these faults stem from poor design or from 



mutation operators does not matter.  Hence if the redundancy  of the program  could be  

quantified, the redundancy metrics could be used  to estimate the ratio of equivalent 

mutants (REM) of a program. 

Using redundancy metrics that were previously defined to reflect the state 

redundancy of a program, its functional redundancy, its non injectivity and its non-

determinacy, this dissertation makes the following contributions: 

• The design and implementation of a Java compiler, using compiler generation 

technology, to analyze Java code and compute its redundancy metrics. 

 

• An empirical study on standard mutation testing benchmarks to analyze the statistical 

relationships between the REM of a program and its redundancy metrics. 

 

• The derivation of regression models to estimate the REM of a program from its 

compiler generated redundancy metrics, for a variety of mutation policies. 

 

• The use of the REM to address a number of mutation related issues, including:  

estimating the level of redundancy between non-equivalent mutants; redefining the 

mutation score of a test data set to take into account the possibility that mutants may 

be semantically equivalent to each other; using the REM to derive a minimal set of 

mutants without having to analyze all the pairs of mutants for equivalence. 

The main conclusions of this work are the following: 

• The REM plays a very important role in the mutation analysis of a program, as it 

gives many useful insights into the properties of its mutants. 

 

• All the attributes that can be computed from the REM of a program are very 

sensitive to the exact value of the REM; Hence the REM must be estimated with 

great precision. 

Consequently, the focus of future research is to revisit the Java compiler and 

enhance the precision of its estimation of redundancy metrics, and to revisit the regression 

models accordingly. 



QUANTITATIVE METRICS FOR MUTATION TESTING 

by 
Amani Ayad 

A Dissertation 
Submitted to the Faculty of 

New Jersey Institute of Technology 
in Partial Fulfillment of the Requirements for the Degree of 

Doctor of Philosophy in Computer Science 

Department of Computer Science 

December 2019 





APPROVAL PAGE 
 

QUANTITATIVE METRICS FOR MUTATION TESTING 
 

Amani Ayad 
 
 
 
 
 
Dr. Ali Mili, Dissertation Co-Advisor      Date 
Professor of Computer Science, NJIT 
 
 
 
 
Dr. Ji Meng Loh, Co-Advisor        Date 
Assistant Professor of Mathematical Sciences, NJIT 
 
 
 
 
Dr. Jason T. Wang, Committee Member      Date 
Professor of Computer Science, NJIT 
 
 
 
 
Dr. James Geller, Committee Member      Date 
Professor of Professor of Computer Science, NJIT 
 
 
 
 
Dr. Vincent Oria, Committee Member      Date 
Professor of Professor of Computer Science, NJIT 
 
 
 
 
Dr. Iulian Neamtiu, Committee Member      Date 
Assistant Professor of Professor of Computer Science, NJIT 
 
 
 



BIOGRAPHICAL SKETCH 

Amani Ayad 

Doctor of Philosophy 

December 2019 

Author: 

Degree: 

Date: 

 

Undergraduate and Graduate Education: 

• Doctor of Philosophy in Computer Science,

New Jersey Institute of Technology, Newark, NJ, 2019

• Master of Computer Science,

Monmouth University, West Long Branch, NJ, 2014

• Bachelor of Computer Science,

Garyounis University, Benghazi, Libya, 2000

Major: Computer Science 

Presentations and Publications: 

Personal Biography: 

A. Ayad, I. Marsit, J. M.Loh, M.N. Omri and A. Mili, "Estimating the Number of

Equivalent Mutants". The 14th International Workshop on Mutation Analysis 

2019. 

A. Ayad, I. Marsit, J. M.Loh, M.N. Omri and A. Mili, "Quantitative Metrics

for Mutation Testing". The 14th International Conference on

Software Technologies 2019. 

A. Ayad, I. Marsit, J. M.Loh, M.N. Omri and A. Mili, "Using Semantic Metrics

to Predict Mutation Equivalence". in Communication in Computers 

and Information Science Series, Heidelberg, Germany:Springer- Verlag, 

2019, Ch.1. 

iv 















 

1 
 

CHAPTER 1 

INTRODUCTION 

 

1.1 Survey of Mutation Testing 

Modifying a program syntactically generates artificial defects, called mutants [1]. Mutation 

testing analysis is the process of assessing the strength, effectiveness and ability of test 

suites to detect mutants. It has been a research topic for over four decades. Early in the 

1970s, mutation analysis was developed [1,2,3] and it has gradually increased in academia 

and in industry. DeMillo [1,4] (1989) summarizes the work of mutation testing in a survey.   

Also, Jia and Harman [1,5] (2011) provides the evidence that mutation testing 

techniques and tools are reaching a state of maturity and applicability, while the topic of 

mutation testing itself is the subject of increasing interest. 

Moreover, there are specific surveys that discusses various issues in mutation 

testing. For instance, Madeyski et al. [1,6] (2014) studies the equivalent mutant problem 

which is introduced in section [1.2]. Souza et al. [1,7] (2014) proposes a systematic 

mapping of mutation-based test generation.  Belli et al. [1-8] (2016) writes a survey on 

model-based mutation testing. Silva et al. [1, 9] (2017) presents a methodical review on 

mutation testing. Papadakis et al. [1] (2017) collects and analyzes a set of 502 papers that 

are published in various conferences from 2008 to 2017. 

In Figure 1.1, Papadakis   provides the number of mutation testing publications per 

year (years: 2008-2017). Furthermore, in Figure 2, Papadakos provides the number of 
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mutation publications by scientific conferences. Therefore, mutation testing remains one 

of the popular challenges and open problems for future work.  

 

 

 

The are some applied mutation-based techniques that would support various 

software engineering approaches.  

• Kaplan et al. [10] (2008) proposes mutant operators for UML domain 

models.  

 

• El-Fakih et al. [11] (2008) uses mutation-based techniques to generate the 

test cases to propose Extended Finite State Machines (EFSMs).  

 

• Trakhtenbrot [12] (2010) implements oriented mutation testing of 

state_chart models. 

 

• Adra et al. [13] (2010) uses a mutation-based technique to test agent-based 

systems. 

 

         Figure 1.1 Number of mutation testing publications per year. 

 

Figure 1.2 Number of mutation testing publications per scientific venue. 

 



 

3 
 

• Belli et al. [14] (2011) tests “go-back” functions, modelled by pushdown 

automata, by using a mutation-based technique. 

 

• Aichernig et al. [15,16] (2011) presents the techniques and results of a 

novel model-based test case generation approach that automatically derives 

test cases from UML state machines 

 

• Henard et al. tests [17] (2013)   software product lines by using a mutation-

based technique. 

 

• Arcaini et al. [18-19] (2015) uses a mutation-based technique to assess fault 

detection capability of model review. Arcaini generates tests for detecting 

faults in feature mutants models. 

 

• Filho et al. [20] (2016) proposes a multi-objective test data generation 

approach for mutation testing of feature models. 

 

• Devroey et al. [21] (2016) presents featured models based on mutation that 

optimized generation, configuration and execution of mutants.      

                 

• Su et al. [22] (2017) implements stochastic model-based GUI testing of 

Android applications by using mutation-based techniques. 

 

The syntax modification elementary that is applied on original program to generate 

mutants  is called mutant operators. A set of basic mutant operators are introduced by Offut 

in Table 1.1. Selecting a variant set of mutant operators results in creating a different set of 

mutant instances [1].  
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   Source: [23]. 

The test suite’s effectiveness can be the measured by mutation score. The mutation 

score or mutation coverage is defined by the ratio of mutants that are killed by test suits to 

the total number of mutants [1]. The more mutants that are killed, the more effective the 

test suite is. 

Redundant mutants are mutants that are killed, and they are semantically different 

from the original program, but they are equivalent to each other. The redundant mutants 

could distort the accuracy of mutant score criteria. Therefore, considering the mutation 

score for measuring test suite effectiveness is controversial [1]. 

  

1.2 Mutant Equivalence 

Mutation is used in software testing to analyze the effectiveness of test data or to simulate 

faults in programs and is meaningful only to the extent that the mutants are semantically 

distinct from the base program [24-27].  But in practice, mutants may sometimes be 

semantically equivalent to the base program while being syntactically distinct from it [28-

Table 1.1 Popular Five-operator Set 
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34].   The issue of equivalent mutants has affected the attention of researchers for a long 

time.  

Given a base program P and a mutant M, the problem of determining whether M is 

equivalent to P is known to be undecidable [35]. If we encounter test data for which P and 

M produce different outcomes, then we can conclude that M is not equivalent to P, and we 

say that we have killed mutant M; but no amount of testing can prove that M is equivalent 

to P. In the absence of a systematic/algorithmic procedure to determine equivalence, 

researchers have resorted to heuristic approaches.  In [30], Gruen et al. identify four sources 

of mutant equivalence:  the mutation is applied to dead code; the mutation alters the 

performance of the code but not its function; the mutation alters internal states but not the 

output; and the mutation cannot be sensitized.  This classification is interesting, but it is 

neither complete nor orthogonal, and offers only limited insights into the task of identifying 

equivalent mutants.  

 In [36] Offutt and Pan argue that the problem of detecting equivalent mutants is a 

special case of a more general problem, called the feasible path problem; also, they use a 

constraint-based technique to automatically detect equivalent mutants and infeasible paths.  

Experimentation with their tool shows that they can detect nearly half of the equivalent 

mutants on a small sample of base programs. Program slicing techniques are proposed in 

[37] and subsequently used in [38-39] as a means to assist in identifying equivalent 

mutants.  In [40], Ellims et al. propose to help identify potentially equivalent mutants by 

analyzing the execution profiles of the mutant and the base program.   

Howden [41] proposes to detect equivalent mutants by checking that a mutation 

preserves local states, and Schuler et al. [42] propose to detect equivalent mutants by 



 

6 
 

testing automatically generated invariant assertions produced by Daikon [43]; both the 

Howden approach and the Daikon approach rely on local conditions to determine 

equivalence, hence they are prone to generate sufficient but not necessary conditions of 

equivalence; a program P and its mutant M may well have different local states but still 

produce the same overall behavior; the only way to generate necessary and sufficient 

conditions of equivalence between a base program and a mutant is to analyze the programs 

in full (vs analyze them locally).  

 In [44], Nica and Wotawa discuss how to detect equivalent mutants by using 

constraints that specify the conditions under which a test datum can kill the mutant; these 

constraints are submitted to a constraint solver, and the mutant is considered equivalent 

whenever the solver fails to find a solution.  This approach is as good as the generated 

constraints, and because the constraints are based on a static analysis of the base program 

and the mutant, this solution has severe effectiveness and scalability limitations.   

In [45] Carvalho et al. report on empirical experiments in which they collect 

information on the average ratio of equivalent mutants generated by mutation operators 

that focus on preprocessor directives; this experiment involves a diverse set of base 

programs, and is meant to reflect properties of the selected mutation operators, rather than 

the programs per se.  In [45] Kintis et al. put forth the criterion of Trivial Compiler 

Equivalence (TCE) as a “simple, fast and readily applicable technique” for identifying 

equivalent mutants and duplicate mutants in C and Java programs.  They test their 

technique against a benchmark ground truth suite (of known equivalent mutants) and find 

that they detect almost half of all equivalent mutants in Java programs.   
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1.3 A Quantitative Approach 

It is fair to argue that despite several years of research, the problem of automatically and 

efficiently detecting equivalent mutants for programs of arbitrary size and complexity 

remains an open challenge.  In this dissertation, we adopt a totally orthogonal approach to 

prior research, based on the following premises:   

• For most practical applications of mutation testing, it is not necessary to identify 

equivalent mutants individually; rather it is sufficient to know their number.  If we 

generate 100 mutants and we want to use them to assess the quality of a test data 

set, then it is sufficient to know how many of them are equivalent: if we know that 

20 of them are equivalent, then the test data will be judged by how many of the 

remaining 80 mutants it kills.  

 

• Even when it is important to identify individually those mutants that are equivalent 

to the base, knowing their number is helpful: as we kill more and more non-

equivalent mutants, the likelihood that the surviving mutants are equivalent rises as 

we approach the estimated number of equivalent mutants.  

 

• For a given mutant generation policy, it is possible to estimate the ratio (over the 

total number of generated mutants) of equivalent mutants that a program is prone 

to produce, by static analysis of the program. We refer to this parameter as the ratio 

of equivalent mutants (REM, for short); because mutants that are found to be 

distinct from the base program are said to be killed, we may also refer to this 

parameter as the survival rate of the program.  
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CHAPTER 2 

BACKGROUND 

2.1 Entropy of Random Variables 

Our main source for this section is [47], to which the interested reader is referred, for further 

details. Given a variable X on a finite set X (by abuse of notation we use the name to 

represent the random variable and the set from which the random variable may take its 

values), we let the entropy of X be the following function: 

where

• log is the base 2 logarithm,

• X = {x1, x2, x3, ...xN },

• P= πX (xi) is the probability of the event: X = xi.

 We state without proof that H(X) ≥ 0; also, we take as a convention that the 

expression p*log(p) equals zero when p equals 0, hence we may apply the entropy function 

to probability distributions that are not necessarily non-zero for all xi.  

Intuitively, the entropy of random variable X represents the amount of uncertainty 

regarding the outcome of the random variable and takes its maximal value (which is log(n)) 

when all the outcomes are equally likely (πX(xi) = 1/n for all i). 

𝐻(𝑋) = − ∑ 𝜋𝑋(𝑋ᵢ) log(𝜋𝑋(𝑥ᵢ)) ,
𝑛

𝑖
=1       (2.1)  
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Given two random variables X and Y on sets X and Y, we define  πX and πY to  be 

probability distributions of X and Y over their respective sets; we let πXY be the probability 

distribution of the events (X = xi ∧Y = yj) over the Cartesian Product X × Y. Then we 

denote by H (X, Y) the entropy of the aggregate random variable (X, Y) over the set (X × 

Y), and we refer to it as the joint entropy of X and Y. Using this definition, we let the 

conditional entropy of X with respect to Y be denoted by H(X|Y) and be defined as follows  

 

Whereas the entropy of X represents the amounts of uncertainty about the outcome 

of X, the conditional entropy of X with respect to Y represents the amount of uncertainty 

about the outcome of X once we know the outcome of Y. We have an identity to the effect 

that the joint entropy of (X, Y) is greater than or equal to the entropy of Y, hence the 

conditional entropy is non-negative. 

Given a random variable X that takes its values in some space S, and given a 

function G on X, we let Y be the random variable Y = G(X), whose probability distribution 

is derived from that of X, i.e.,   

Then, we have the inequality [47]: H(X) ≥ H (Y). In other words, applying a 

function to a random variable reduces its entropy (due to possible loss of information). If 

G is total and injective, then H(G(X)) = H(X). 

To conclude this section, we introduce a concept that we use throughout the dissertation to 

assign intuitive interpretations to our metrics. 

 𝐻(𝑋|𝑌) = 𝐻(𝑋, 𝑌) − 𝐻(𝑌) (2.2)   

 𝜋𝑌(Y = y) = ∑      𝜋𝑥(𝑋 = 𝑥)
∀x:G(x)=y

 (2.3) 
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Definition 1 We consider a set S and a predicate A on S, and we let SA be the subset of S 

defined by elements of S that satisfy A(s). B is the bandwidth of assertion A is defined as 

H(S) − H(SA). 

Consider a set S defined by three integer variables, say x, y and z. Under the 

hypothesis of uniform probability distribution, and assuming that integers are represented 

by 32-bit words, the entropy of S is H(S)=32+32+32=96 bits. We consider a number of 

possible assertions, and compute their corresponding bandwidths: 

• We define A(s) as x = y. Then space SA is defined by variables y and z only. 

The entropy of SA under the hypothesis of uniform probability distribution is 

H(SA) = 64 bits, which is the entropy of data type x and y. Hence the 

bandwidth of A is 32 bits, which is the width of the two expressions (x and y) 

involved in assertion A. In other words, it’s B= 96-64=32 bits.  

 

• We define A(s) as x = z ∧ y = z. Then space SA can be defined by a single 

variable, say z. The entropy of SA under the hypothesis of uniform probability 

distribution is H(SA) = 32 bits, hence the bandwidth of A is 64 bits, which is 

B=96-32, the combined width of the expressions that are involved in assertion 

A. 

 

• We define A(s) as x = 0 ∧ y = 10 ∧ z = 20. H(SA)=H(x=0)+H(y=0)+ 

H(z=20)= width of variable x+ width of variable y+ width of variable 

z=32+32+32=96. Hence the bandwidth of A is B=96-96=0 bits. 

 

As another brief example, consider the binary representation of characters in a byte; 

seven bits out of eight are used to represent data, and the eighth bit is used for parity 

checking. We let S be the set of 8-bit patterns and we let A be the parity test, which can be 

written as parity (b1..b7) = b8. 

The bandwidth of this assertion is H(S) − H(SA), which is 8−7 = 1 bit. Indeed, assertion A 

is an equality between two 1-bit expressions. 
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2.2 Fault, Error and Failure 

Our main source for this section is [49], to which the interested reader is referred, for further 

details. We consider a program g on some space S, of the form 

          g = {g1; L: g2}; where g1 and g2 are subprograms and L is a label preceding g2. 

We let R be a relation on S that represents the specification that g must meet, and 

we let s0 be an arbitrary initial state of g. 

• A fault in program g is a feature of g that precludes it from satisfying its 

specification (in the sense of [50], for example). 

 

• An error of the program at label L for initial state s0 is a state that is distinct from 

the expected state at this label; a fault of the program  may or may not cause an 

error at label L, depending on the initial state s0; when a fault does cause an error, 

we say that it has been sensitized by the initial state s0. 

 

• A failure of program g occurs whenever the error that arises at label L causes the 

program to fail to produce a correct (with respect to R) final state for initial state 

s0. An error at label L may cause a failure of the program, in which case we say 

that the error has been propagated; it may also cause no failure, in which case we 

say that the error has been masked. 

 

We say that program g is fault tolerant if and only if it has provisions for avoiding 

failure after faults have caused errors. We consider three phases in the fault tolerance 

process: 

• Error detection, when the program detects an inconsistency that indicates that the 

program state is erroneous. 

 

• Damage assessment, when the program analyzes the current state to determine 

whether it is maskable (in which case recovery is unnecessary) or recoverable (in 

which case recovery is necessary and sufficient) or unrecoverable (in which case 

recovery is insufficient). 

 

• Error recovery, when a recovery is invoked to map the recoverable state into a 

maskable state and let the computation resume from label L. 
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As an illustration, consider the space S defined by a natural variable, let the 

specification be relation R defined by R = {(s, s′)|s′ MOD 3 = s2 MOD 3}, 

The remainder of the division of s by 3 is the same as the remainder of the division of s2 

by 3. We have chosen the example for the purpose of illustrating that when the program 

fails to produce the expected output, it may still be correct with respect to the specification.  

let g be the program 

g = {read(s); s=2*s; L: s = s mod 6; write(s);} 

The intent of the programmer was for g to compute the following function:   

                                         G = {(s, s′)|s′ = s2 MOD 6}, 

Which would have been correct with respect to R (in the sense of [51]), since G and R  are 

both total, and G ⊆ R, as shown below: 

s′ = s2 MOD 6 ⇒ s′ MOD 3 = (s2 MOD 6) MOD 3 = s2 MOD 3. 

But the programmer wrote the statement s = 2*s instead of the statement s=s*s, 

creating a fault. This fault may or may not be sensitized, depending on the input value. 

• For s₀ = 2, the fault is not sensitized, since the expressions 2*s and s*s return the 

same value for s = 2. 

 

• For s₀ = 6, the fault is sensitized, causing an error (s = 12 rather than s = 36 at label 

L), but the error is subsequently masked (since 12 mod 6 = 36 mod 6 at the end of 

the program). 

 

• For s₀ = 3, the fault is sensitized, leading to an error (s =6 instead of s = 9 at label 

L); the error is subsequently propagated, causing a failure (s = 0 instead of s = 3 in 

the final state); in this instance, program g fails to behave according to its intended 

function G, but does not fail with respect to its specification R,  since s₀² mod 3= 9 

mod 3 = 0 = 0² mod 3; hence, strictly speaking, it satisfies its specification for s₀ = 

3. 
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• Finally, for s₀ = 4, the fault is sensitized, leading to an error (the state at label L is 

s = 8 rather than s = 16); this error is propagated, leading to a final state that is 

distinct from the expected final state (the output is s = 2 rather than s = 4); this final 

state violates the specification, since 2 mod 3 ≠4 mod 3; in this case, the program 

failed to compute the expected final state, and also failed to satisfy the specification 

of the program. 

 

The same fault may cause different chains of events, depending on the input. In 

order to be fault tolerant, a program must make provisions for error detection (to recognize 

when the potential of a failure may arise), error masking (to limit cases when recovery is 

necessary), and error recovery (to map a recoverable state into a maskable state, and let the 

computation proceed). 
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CHAPTER 3 

SEMANTIC METRICS 

 

3.1 Redundancy Metrics 

In this section, we review a number of entropy-based redundancy metrics of a program, 

reflecting a number of dimensions of redundancy.  For each metric, we discuss, in turn:  

• How we define this metric.  

• Why this metric has an impact on the rate of equivalent mutants. 

• How we compute this metric in practice. 

Because our ultimate goal is to derive a formula for the REM of the program as a 

function of its redundancy metrics, and because the REM is a fraction that ranges between 

0 and 1, we resolve to let all our redundancy metrics be defined in such a way that they 

range between 0 and 1.   

A. State Redundancy 

 What is State Redundancy?  State redundancy is the gap between the declared state of 

the program and its actual state.  Indeed, it is very common for programmers to declare 

much more space to store their data than they actually need, not by any fault of theirs, but 

due to the limited vocabulary of programming languages.  An extreme example of state 

redundancy is the case where we declare an integer variable (entropy:  32 bits) to store a 

Boolean variable (entropy: 1 bit).  More common and less extreme examples include:  we 

declare an integer variable (entropy:  32 bits) to store the age of a person (ranging 
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realistically from 0 to 128, to be optimistic, entropy: 7 bits); we declare an integer variable 

to represent a calendar year (ranging realistically from 2018 to 2100, entropy: 6.38 bits). 

Definition: State Redundancy.  Let P be a program, let S be the random variable that 

takes values in its declared state space and  be the random variable that takes values in its 

actual state space.  The state redundancy of Program P is defined as: 

 𝐻(𝑆) − 𝐻()

𝐻(𝑆)
 

(3.1) 

 Typically, the declared state space of a program remains unchanged through the 

execution of the program, but the actual state space (i.e. the range of values that program 

variables may take) grows smaller and smaller as execution proceeds, because the program 

creates more and more dependencies between its variables with each assignment.  Hence, 

we are interested in defining two versions of state redundancy:  one pertaining to the initial 

state, and one pertaining to the final state.   

Where σI and σF are (respectively) the initial state and the final state of the program, 

and S is its declared state. Since the entropy of the final state is typically smaller than that 

of the initial state (because the program builds relations between its variables as it proceeds 

in its execution), the final state redundancy is usually larger than the initial state 

redundancy. 

Why is state redundancy correlated to survival rate? State redundancy measures 

the volume of data bits that are accessible to the program (and its mutants) but are not part 

 
𝑆𝑅𝐼 =

 𝐻(𝑆) − 𝐻(𝐼)

𝐻(𝑆)
, 

(3.2) 

 
𝑆𝑅𝐹 =

𝐻(𝑆) − 𝐻(𝐹)

𝐻(𝑆)
, 

(3.3) 
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of the actual state space. Any assignment to/ modification of these extra bits of information 

does not alter the state of the program. Consider the extreme case of using an integer to 

store a Boolean variable b, where 0 represents false and 1 represents true. If the base 

program tests the condition 

P: {if (b==0) {…} else {…}} 

and the mutant tests the condition 

      M: {if (5*b==0) {…} else {…}} 

then M would be equivalent to P. 

How do we compute state redundancy? We must compute the entropies of the 

declared state space H(𝑆), the entropy of the actual initial state 𝐻 (σI) and the entropy of 

the actual final state H(σF). For the entropy of the declared state, we simply add the 

entropies of the individual variable declarations, according to the Table 3.1 (for Java): 

                                             Table 3.1 Entropies of Basic Variable Declarations 

Data Type Entropy (bits) 

Boolean 1 

Byte  8 

Char, short 16 

Int, float 32 

Long, double 64 
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For the entropy of the initial state, we consider the state of the program variables once all 

the relevant data has been received (through read statements, or through parameter passing, 

etc.) and we look for any information we may have on the incoming data (range of some 

variables, relations between variables, assert statements specifying the precondition, etc.); 

the default option being the absence of any condition. When we automate the calculation 

of redundancy metrics, we will rely exclusively on assert statements that may be included 

in the program to specify the precondition. 

For the entropy of the final state, we take into account all the dependencies that the 

program may create through its execution.  We rely on preassert statement that the 

programmer may have included to specify the program’s post-condition; we also keep track 

of functional dependencies between program variables by monitoring what variables 

appear on each side of assignment statements. As an illustration, we consider the following 

simple example: We find: 

 

 

 

 

 

 

 

• H(𝑆) = 32 + 32 + 64 = 128 𝑏𝑖𝑡𝑠. 

             Entropies of x, y, z, respectively. 

 

• 𝐻(σI) = 10 + 31 + 64 = 105 𝑏𝑖𝑡𝑠 

             Entropy of x is 10, because of its range; entropy of y is 31 bits  

              because half the range of int is excluded. 

public void example(int x, int y) 

{prassert (1<=x && x<=128 && y>=0); 

long z = reader.nextInt(); 

// initial state 

Z = x+y; // final state 

} 
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• H(σF ) = 10 + 31 = 41 𝑏𝑖𝑡𝑠. 

Entropy of z is excluded because z is now determined by x and y. 

Hence 

𝑆𝑅𝐼 =
128 − 105

128
= 0.18, 

𝑆𝑅𝐹 =
128 − 41

128
= 0.68. 

B. Non Injectivity 

What is Non-Injectivity?  A major source of program redundancy is the non-injectivity 

of program functions. An injective function is a function whose value changes whenever 

its argument does; and a function is all the more non-injective when it maps several distinct 

arguments into the same image. A sorting routine applied to an array of size N, for example, 

maps N! different input arrays (corresponding to N! permutations of N distinct elements) 

onto a single output array (the sorted permutation of the elements). To introduce non-

injectivity, we consider the function that the program defines on its state space from initial 

states to final states. A natural way to define non-injectivity is to let it be the conditional 

entropy of the initial state given the final state: if we know the final state, how much 

uncertainty do we have about the initial state? Since we want all our metrics to be fractions 

between 0 and 1, we normalize this conditional entropy to the entropy of the initial state. 

Hence, we write: 

 
𝑁𝐼 =

𝐻(𝜎𝐼|𝜎𝐹)

𝐻(𝜎𝐼)
 . 

(3.4) 
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Since the final state is a function of the initial state, the numerator can be simplified as    

𝐻(σI ) − 𝐻(σF ). Hence: 

Definition: Non-Injectivity. Let P be a program and let σI and σF be the random 

variables that represent, respectively its initial state and final state. Then the non-injectivity 

of program P is denoted by NI and defined by: 

 

Why is non-injectivity correlated to survival rate? Of course, non-injectivity is 

a great contributor to generating equivalent mutants, since it increases the odds that the 

state produced by the mutation be mapped to the same final state as the state produced by 

the base program. 

How do we compute non-injectivity? We have already discussed how to compute 

the entropies of the initial state and final state of the program; these can be used readily to 

compute non-injectivity. For illustration, we consider the sample program above, and we 

find its non-injectivity as: 

𝑁𝐼 =
105 − 41

105
= 0.61 . 

C. Functional Redundancy 

What is Functional Redundancy? A program can be modeled as a function from initial 

states to final states, as we have done in sections A and B above, but can also be modeled 

as a function from an input space to an output space. To this effect we let X be the random 

variable that represents the aggregate of input data that the program receives (through 

parameter passing, read statements, global variables, etc.), and Y the aggregate of output 

 
𝑁𝐼 =

𝐻(𝐼) − 𝐻(𝐹)

𝐻(𝐼)
 . 

(3.5) 
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data that the program delivers (through parameter passing, write statements, return 

statements, global variables, etc.). 

Definition: Functional Redundancy. Let P be a program, and let 𝑋 be the random 

variable that ranges over the aggregate of input data received by P and 𝑌 the random 

variable that ranges over the aggregate of output data delivered by P. Then the functional 

redundancy of program P is denoted by FR and defined by:    

Why is Functional Redundancy Related to Survival Rate? Functional 

redundancy is actually an extension of non-injectivity, in the sense that it reflects not only 

how initial states are mapped to final states, but also how initial states are affected by input 

data and how final states are projected onto output data. Consider for example a program 

that computes the median of an array by first sorting the array, which causes an increase in 

redundancy due to the drop in entropy, then returning the element stored in the middle of 

the array, causing a further massive drop in entropy by mapping a whole array onto a single 

cell. All this drop in entropy creates opportunities for the difference between a base 

program and a mutant to be erased, leading to mutant equivalence. 

How do we compute Functional Redundancy? To compute the entropy of X, we 

analyze all the sources of input data into the program, including data that is passed in 

through parameter passing, global variables, read statements, etc. Unlike the calculation of 

the entropy of the initial state, the calculation of the entropy of X does not include internal 

variables and does not capture initializations. To compute the entropy of Y, we analyze all 

the channels by which the program delivers output data, including data that is returned  

                                                         
𝐹𝑅 =

𝐻(𝑋) − 𝐻(𝑌)

𝐻(𝑋)
 

(3.6) 
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through parameters, written to output channels, or delivered through return statements. For 

illustration, we consider the following program: 

 

 

 

 

 

 

 

We compute the entropies of the input space and output space: 

• H(𝑋) = 32 + 31 = 63 𝑏𝑖𝑡𝑠. 

Entropy of u, plus entropy of v (which ranges over half of the range of integers). 

 

• H(𝑌) = 32 𝑏𝑖𝑡𝑠. 

Entropy of z. Hence, 

𝐹𝑅 =
63 − 32

32
= 0.96875 

 

D. Non-Determinacy  

What is Non-Determinacy? In all the mutation research that we have surveyed, mutation 

equivalence is equated with equivalent behavior between a base program and a mutant; but 

we have not found a precise definition of what is meant by behavior, nor what is meant by 

equivalent behavior. We argue that the concept of equivalent behavior is not precisely 

defined: we consider the following three programs, 

P1: {int x,y,z; x=1; x=2; y=3; z=x; x=y; y=z;} 

P2: {int x,y,z; x=11;y=13; z=14; z=y; y=x; x=z;} 

P3: {int x,y,z; x=10; y=20; z=20; x=x+y;y=x-y;x=x-y;} 

public void example (int u, int v){ 

assert (v>=0); 

int z = 0; 

while (v!=0) {z=z+u; v=v-1;} 

return z; 

} 
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We ask the question: are these programs equivalent? The answer to this question depends 

on how we interpret the role of variables x, y, and z in these programs. If we interpret these 

as programs on the space defined by all three variables, then we find that they are distinct, 

since they assign different values to variable z (x for P1, y for P2, and z for P3). But if we 

consider that these are actually programs on the space defined by variables x and y, and 

that z is a mere auxiliary variable, then the three programs may be considered equivalent, 

since they all perform the same function (swap x and y) on their common space (formed 

by x, y). Consider a slight variation on these programs: 

Q1: {int x,y;{int z; z=x; x=y; y=z;}} 

Q2: {int x,y;{int z; z=y; y=x; x=z;}} 

Q3: {int x,y; x=x+y;y=x-y;x=x-y;} 

Here it is clear that all three programs are defined on the space formed by variables 

x and y; and it may be easier to be persuaded that these programs are equivalent. Rather 

than making this a discussion about the space of the programs, we wish to turn it into a 

discussion about the test oracle that we are using to check equivalence between the 

programs (or in our case, between a base program and its mutants). In the example above, 

if we let xP, yP, zP be the final values of x, y, z by the base program and xM, yM, zM the 

final values of x, y, z by the mutant, then oracles we can check include: 

O1:{return xP==xM && yP==yM && zP==zM;} 

O2:{return xP==xM && yP==yM;} 

Oracle O1 will find that P1, P2 and P3 are not equivalent, whereas oracle O2 will 

find them equivalent. The difference between O1 and O2 is their degree of non-

determinacy; this is the attribute we wish to quantify. Whereas all the metrics we have 
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studied so far apply to the base program, this metric applies to the oracle that is being used 

to test equivalence between the base program and a mutant. We want this metric to reflect 

the degree of latitude that we allow mutants to differ from the base program and still be 

considered equivalent. To this effect, we let σᴾ be the final state produced by the base 

program for a given input, and we let σM be the final state produced by a mutant for the 

same input. We view the oracle that tests for equivalence between the base program and 

the mutant as a binary relation between σᴾ and σM.  

We can quantify the non-determinacy of this relation by the conditional entropy 

H(σM| σᴾ): Intuitively, this represents the amount of uncertainty (or: the amount of latitude) 

we have about (or: we allow for) σM if we know σᴾ. Since we want our metric to be a 

fraction between 0 and 1, we divide it by the entropy of σM. Hence the following definition. 

Definition: Non-Determinacy. Let O be the oracle that we use to test the 

equivalence between a base program P and a mutant M, and let σᴾ  and σM be, respectively, 

the random variables that represent the final states generated by P and M for a given initial 

state. The non-determinacy of oracle O is denoted by ND and defined by: 

Why is Non-Determinacy correlated with survival rate? Of course, the weaker 

the oracle of equivalence, the more mutants pass the equivalence test, the higher the ratio 

of equivalent mutants. 

How do we compute non determinacy? All equivalence oracles define 

equivalence relations on the space of the program, and H(σM|σᴾ) represents the entropy of 

the resulting equivalence classes. As for H(σM), it represents the entropy of the whole space 

 
𝑁𝐷 =

𝐻(𝜎ᴹ|𝜎ᴾ)

𝐻(𝜎ᴹ)
 

(3.7) 
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of the program. For illustration, let the space of the program be defined by three integer 

variables, say x, y, z. Then H(σM) =96 bits. As for H(σM |σᴾ), it will depend on how the 

oracle is defined, as it represents the entropy of the resulting equivalence classes.  Table 

3.2 shows a few examples of equivalent oracles for the program. 

                 Table 3.2 Non-Determinacy of Sample Oracles 

 

 

 

 

 

 

 

 

 

 

Explanation: Oracle O1 is deterministic (assuming the space is made up of x, y, z 

only), hence its equivalence classes are of size 1; the corresponding conditional entropy is 

zero, and so is ND. Oracles O2, O3, O4 check for two variables but leave one variable 

unchecked, leading to a conditional entropy of 32 bits and a non-determinacy of 0.33 

(32/96). Oracles O5, O6, O7 check for one variable but leave two variables unchecked, 

leading to a conditional entropy of 64 bits and a non-determinacy of 0.66 (64/96). Oracle 

O# Oracle 𝐻(𝑀|𝑃)  𝑁𝐷 

O1 xP==xM&&yP==yM&&zP==zM 0      bits 0.0 

O2 xP==xM&&yP==yM 32    bits 0.33 

O3 xP==xM&&zP==zM 32    bits 0.33 

O4 yP==yM&&zP==zM 32    bits 0.33 

O5 xP==yM 64    bits 0.66 

O6 yP==yM 64    bits 0.66 

O7 zP==zM 64    bits 0.66 

O8 true 96    bits 1.00 
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O8 returns true for any σM. Hence knowing that a mutant passes this test does not inform 

us on any of xM, yM, nor zM. Total uncertainty is 96, hence ND=1. Imagine now, for the 

sake of illustration, that we have a single integer variable, say x. Then we can define the 

following oracles, in the order of decreasing strength, and increasing non-determinacy.  

                       Table 3.3 Non-Determinacy of Sample Integer Oracles 

 

 

 

 

 

 

 

 

 

 

 

The interpretation of rows O1 and O8 is the same as the Table above. For O7, for 

example, consider that if we know that xM satisfies oracle O7, then we know the rightmost 

bit of xM, but we do not know anything about the remaining 31 bits; hence the conditional 

entropy is 31 bits, and the non-determinacy is 0.969, which is 31/32. Oracle O2 informs us 

about the 12 rightmost bits of xM hence leaves us uncertain about the remaining 20 bits. 

The non-determinacy of the other oracles can be interpreted likewise.  

 

O# Oracle 𝐻(𝑀|𝑃)  𝑁𝐷 

O1 xP==xM 0        bits 0.000 

O2 xP % 4096 == xM % 4096 20     bits 0.625 

O3 xP % 1024 == xM % 1024 22     bits 0.687 

O4 xP % 64 == xM % 64 26     bits 0.812 

O5 xP % 16 == xM % 16 28     bits 0.875 

O6 xP % 4 == xM % 4 30     bits 0.937 

O7 xP % 2 == xM % 2 31     bits 0.969 

O8 True 32     bits 1.000 
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3.2 Empirical Study 

A. Experimental Conditions 

In order to validate our conjecture,  to the effect that the survival rate of mutants generated 

from a program P depends on the redundancy metrics of the program and the non-

determinacy of the oracle that is used to determine equivalence, we consider a number of 

sample programs, compute their redundancy metrics then record the ratio of equivalent 

mutants that they produce under controlled experimental conditions, for a fixed mutant 

generation policy. Our expectation is to reveal significant statistical relationships between 

the metrics (as independent variables) and the ratio of equivalent mutants (as a dependent 

variable).  

Because we start computing the redundancy metrics by hand, we limit ourselves to 

programs that are relatively small. We consider functions taken from the Apache Common 

Mathematics Library (http://apache.org/); each function comes with a test data file. The 

test data file includes not only the test data proper, but also a test oracle in the form of 

assert statements, one for each input datum. Our sample includes 19 programs. 

We use PITEST (http://pitest.org/), in conjunction with maven 

(http://maven.apache.org/) to generate mutants of each program and test them for possible 

equivalence with the base program. The mutation operators that we have chosen include 

the following: 

• Op1: Increments_mutator. 

• Op2: Void_method_call_mutator, 

• Op3: Return_vals_mutator, 

• Op4: Math_mutator, 
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• Op5: Negate_conditionals_mutator, 

• Op6: Invert_negs_mutator, 

• Op7: Conditionals_boundary_mutator. 

When we run a mutant M on a test data set T and we find that its behavior is 

equivalent (per the selected oracle) to that of the base program P, we may not conclude that 

M is equivalent to P unless we have some assurance that T is sufficiently thorough. In 

practice, it is impossible to ascertain the thoroughness of T short of letting T be all the input 

space of the program, which is clearly impractical. As an alternative, we mandate that in 

all our experiments, line coverage of P and M through their execution on test data T equals 

or exceeds 90%. This measure also reduces the risk of having mutants that are equivalent 

to the base program by virtue of the mutation being applied to dead code. 

In order to analyze the impact of the non-determinacy of the equivalence oracle on 

the ratio of equivalent mutants, we revisit the source code of PITEST to control the oracle 

that it uses. As we discussed above, the test file that comes in the Apache Common 

Mathematics Library includes an oracle that takes the form of assert statements in Java 

(one for each test datum). These statements have the form: Assert.assertEqual(yP,M(x)) 

where x is the current test datum, yP is the output delivered by the base program P for input 

x, and M(x) is the output delivered by mutant M for input x. For this oracle, we record the 

non-determinacy (ND) as being zero. To test the mutant for other oracles, we replace  

AssertEqual(yP,M(x))  with AssertEquivalent(yP,M(x))  for various instances of 

equivalence relations. If the space of the base program includes several variables, we use 

some of the oracles listed in Table 3.3, and we take note of their non-determinacy. Also, if 

yP and M(x) are integer variables, then we use some of the equivalence relations discussed 
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in Table 3.3, and we take note of their non-determinacy. Below, Table 3.4   shows the raw 

data for our experiments.
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Table 3.4 Raw data, REM vs Redundancy Metrics 

 

  

Functions LOC Oracle SRI SRF FR NI ND COV S/T REM log(REM/1-REM) 

gcd 56 Equal 0.888693 0.924545 0.50 0.491 0   16/103 0.10526316 -0.929418926 

  Eq%2 0.888693 0.924545 0.50 0.491 0.98438   22/103 0.21359223 -0.566062338 

  Eq%4 0.888693 0.924545 0.50 0.491 0.95313 90% 19/103 0.18446602 -0.645525685 

  Eq%16 0.888693 0.924545 0.50 0.491 0.9375   16/103 0.15533981 -0.73539927 

 mulAndCheck 42 Equal 0.861667 0.930833 0.50 0.43 0   6/43 0.13953488 -0.790050474 

    Eq%2 0.861667 0.930833 0.50 0.43 0.98438 95% 6/43 0.13953488 -0.790050474 

Fraction 68 Equal 0.88 0.961 0.33 0.66 0   22/95 0.23157895 -0.520900179 

    dEq 0.88 0.961 0.33 0.66 0.5   23/95 0.24210526 -0.49560466 

    dEq%2 0.88 0.961 0.33 0.66 0.84 96% 26/95 0.273 -0.425371764 

 getReducedFraction 26 Equal 0.86 0.98 1.00 0.77 0   17/46 0.37 -0.231138825 

    dEq 0.86 0.98 1.00 0.77 1 96% 19/46 0.413 -0.15268805 

 erfInv 88 Equal 0.62 0.63 1.00 0.031 0 99% 9/126 0.071 -1.116757365 

 ebeDivide 20 Equal 0.897738 0.9 0.50 0.1 0 97% 1/13 0.077 -1.078710976 

 getDist 19 Equal 0.890208 0.940347 0.05 0.32 0 97% 1/17 0.059 -1.202737612 

ArRealVec 12 Equal 0.901458 0.950729 0.90 0.48 0 97% 2/10 0.02 -1.69019608 

ToBlocks 42 Equal 0.895669 0.903898 1.00 0.07887 0 95% 3/31 0.097 -0.968916016 

 getRowM 27 Equal 0.876503 0.948932 0.98 0.58648 0 95% 7/23 0.304 -0.359735656 

orthogM 87 Equal 0.907995 0.933467 0.75 0.27685 0 100% 20/151 0.132 -0.817945794 

Equals 31 Equal 0.851625 0.934625 0.20 0.55939 0 90% 6/21 0.286 -0.397332179 

Density 18 Equal 0.883385 0.956771 0.25 0.23 0 95% 5/30 0.167 -0.69792853 

Abs 20 Equal 0.89625 0.930833 0.50 0.33333 0 96% 2/20 0.1 -0.954242509 

Pow 55 Equal 0.510214 0.61 0.67 0.19855 0 97% 6/52 0.115 -0.88624543 

 setSeed 17 Equal 0.80495 0.90455 1.00 0.51064 0 100% 4/16 0.25 -0.477121255 

Asinh 17 Equal 0.897917 0.913542 1.00 0.15306 0 97% 13/82 0.159 -0.723398871 

Atan 143 Equal 0.9 0.92 0.40 0.075 0 97% 14/136 0.103 -0.939955218 

nextPrime(int n) 35 Equal 0.7925 0.89625 0.40 0.5 0   3/58 0.05 -1.278753601 

    Eq%2 0.7925 0.89625 0.40 0.5 0.96 94% 34/58 0.58 0.140178703 

Correlations1_logREM     0.111559 0.31138 0.096 0.58187 0.37524     1   

Correlations2_REM     0.018562 0.274208 0.072 0.60616 0.46913         

 

2
9
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A. Statistical Analysis 

Figure 3.1 represents a matrix of scatter plots between each pair of the metrics and the 

REM. For example, in the bottom row of scatter plots, the y-axis is the REM (S/T), and the 

x-axis are, going from left to right, for metrics SRI, SRF, FR, NI and ND. On inspection 

of the plots, each of the metrics seems to show some positive correlation with S/T, the 

strongest being NI. We note that the ND values are confined to 0 or values very close to 1. 

In our models below, we assume a linear relationship, even though there is no data with 

moderate values of ND. Finally, we also note that SRI and SRF appear to be highly 

correlated. Inclusion of both variables in a model can result in unstable estimates. However, 

it turns out (see below) that both variables are not included in the final model. 

For any model M consisting of a set of the covariates X, we can obtain a residual 

deviance D(M) that provides an indication of the degree to which the response is 

unexplained by the model covariates. Hence, each model can be compared with the null 

model of no covariates to see if they are statistically different. Furthermore, any pair of 

nested models can be compared (using a chi-squared test). 

We fit the full model with all five covariates, which was found to be statistically 

significant, and then successively dropped a covariate, each time testing the smaller model 

(one covariate less) with the previous model. We continued until the smaller model was 

significantly different, i.e., worse than the previous model. Using the procedure described 

above, we found that the final model contains the metrics FR, NI and ND, with coefficient 

estimates and standard errors given in the Table 3.5 below: 
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Table 3.5 Regression Model 

 

 

 

Hence, the model is 

 

Each of the estimates are positive, hence, the survival rate increases with each of 

the three metrics. An increase in FR of 0.1 results in an expected increase in the odds by a 

factor of exp(0.1 x 0.459), or approximately 5%. Similarly,  increases of 0.1 in NI and ND 

each yields an expected increase of 22% and 3.5% respectively in the odds of survival.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Metric Estimate Standard Error p value 

Intercept -2.765 0.246 << 0.001 

FR 0.459 0.268 0.086 

NI 2.035 0.350 << 0.001 

ND 0.346 0.152 0.023 
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The sequence of models we tested, including their residual deviances, as well as the results 

of comparisons between them, are shown in the Table 3.6 below: 

Table 3.6 Candidate Models 

 

No. Model Deviance Degrees of 

freedom 

Test P value 

1 Null model 122.856 26   

2 SRI, SRF, FR, NI, ND 42.888 21 Models 2 and 1 << 0.001 

3 SRF, FR, NI, ND 57.447 22 Models 3 and 2 0.0001 

4 SRI, FR, NI, ND 57.484 22 Models 4 and 2 0.0001 

5 FR, NI, ND 57.74 23 Models 5 and 3 0.588 

6 NI, ND 60.667 24 Models 6 and 5 0.087 

7 FR, NI 62.955 24 Models 7 and 5 0.022 

Figure 3.1 Scatter plot, redundancy metrics and ratio of equivalent mutants. 
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For the training data, the mean square error of the survival rate is 0.0069 and the 

mean absolute error is 0.049. We re-checked the analysis by performing take-one-out 

cross-validation, i.e., we removed each row of data in turn, fit the list of models from our 

previous analysis on the remaining data, then used the fitted models to predict the data 

point that was removed. For each model, the error is the difference between the predicted 

value from that model, and the actual value. The mean squared and absolute errors of 

0.0087 and 0.057, respectively for the above final model were the smallest out of the list 

of models. The plot in Figure 3.2 shows the relative errors of the model estimates with 

respect to the actuals; virtually all the relative errors are within less than 0.1 of the actuals. 

 

 

 

 

  

 

 

 

 

 

  

Figure 3.2 Residuals models. 
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CHAPTER 4 

A JAVA COMPILER 

 

4.1 Defining Elementary Metrics 

In order to compute SRI, SRF, FR and NI, we have to derive these quantities for individual 

methods in Java classes. For each method, we must estimate the following quantities: 

• The entropy of the declared space, H(S). 

 • The entropy of the initial actual space, H(σI).  

• The entropy of the final actual space, H(σF). 

 • The entropy of the input space, H(X). 

• The entropy of the output space, H(Y). 

Therefore, 

The entropies of the declared space, the input space, and output space are fairly 

straightforward; they consist in identifying the relevant variables and adding their 

respective entropies, depending on their data type, as per Table 3.1 For the entropy of the 

initial actual space, we are bound to rely on input from the source code, as we have no 

                                                     𝑆𝑅𝐼 =
 𝐻(𝑆)−𝐻(𝐼)

𝐻(𝑆)
 (4.1) 

                                                     𝑆𝑅𝐹 =
𝐻(𝑆)−𝐻(𝐹)

𝐻(𝑆)
 (4.2) 

 
                                            𝑁𝐼 =

𝐻(𝐼)−𝐻(𝐹)

𝐻(𝐼)
 

 

(4.3) 

                                                     𝐹𝑅 =
𝐻(𝑋)−𝐻(𝑌)

𝐻(𝑋)
 (4.4) 
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other means to probe the intent of the programmer (re: how they use declared variables to 

represent the actual program state). To this effect, we introduce a special purpose assert 

statement, which the engineer may use to specify the precondition of the method whose 

REM we want to compute. We propose the following statement preassert(<precondition>) 

whose semantic definition is exactly the same as a normal assert statement, but this one is 

used specifically to analyze the entropy of the initial actual state. When the method has an 

exception call at the beginning as a guard for the method call, then it is straightforward to 

have a preassert() statement immediately after the exception statement, with the negation 

of the condition that triggers the exception.  

The entropy of the initial actual state is computed as:     H(σI) = H(S)−∆H, where 

∆H is the reduction in entropy represented by the assertion of the preassert() statement. 

This quantity is defined inductively according to the structure of the assertion, as shown 

summarily below: 

• ∆H(A∧B) = ∆H(A)+∆H(B). 

• ∆H(A∨B) = max(∆H(A),∆H(B)). 

• ∆H(X == Y), where X and Y are expressions of the same type, equals the entropy of the 

common type. For example, if x and y are integer variables, then ∆H(x+1 == y−1) is 32 

bits. 

• ∆H(X < Y) = ∆H(X <= Y) = ∆H(X > Y) = ∆H(X >=Y)=1 bit. So for example ∆H(x+1> 

0) = 1 bit, since this inequality reduces the range of possible values of x by half, whose 

log2 is then reduced by 1. 

This is not a perfect solution, but it is adequate for our purposes. For the entropy of 

the final actual space, we must keep track of dependencies that the program creates between 
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its variables. We do so using a Boolean matrix (called D, for Dependency),which is 

initialized to the identity (T on the diagonal, F outside, to mean that initially each variable 

depends only on itself); whenever we encounter an assignment statement, of the form 

(x=E(y,z,u,v)), we replace the row of x in D with the logical OR of the rows of all the 

variables that appear in expression E. At the end of the program we add (i.e. take the logical 

OR) of all the rows of the matrix; this yields a vector that indicates which program variables 

affect the value of the final state of the program. The sum of the entropies of the selected 

variables is the entropy of the final actual state. If the assignment statement is embedded 

within an if-statement, an if-then-else statement or a while loop, then the variables that 

appear in the condition of the if or while are added to the variables  that are on the right-

hand side of the assignment, since they affect the value of the assigned variable. For 

example, consider the following example: 

 

 

 

 

We analysis if-part and else-part separately. We consider (y=F(x,z,g)) for if-part  and 

(y=K(x,k))  for else-part. We replace the row of y in D with the logical OR of the rows of 

x, z, and g then we assign the effect to matrix D1. We replace the row of y in D with the 

logical OR of the rows of x and k, then we assign the effect to matrix D2. Then we find 

sum of all rows of D1 and D2, then the matrix that is given the minimum is assigned to the 

resulting matrix. 

 

if (x>10) 

y=z+g+3; 

else  

y=k+5; 
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Consider the following example:  

 

 

 

Since we have three variables, we have 3 columns represent each variable in matrix D. 

When the variable is declared, a row is assigned to that variable. Therefore, the first row 

represents x, the second row represents y, the third row represents z.  

 The sequence of matrix D is shown below  

Initial matrix is  

T F F 

F T F 

F F T 

 

When z=10, the matrix D becomes  

 

T F F 

F T F 

F F F 

 

When x = y+z, the matrix D becomes  

 

F T F 

F T F 

F F F 

 

When y = 2*x+15*z; the matrix D becomes 

 

F T F 

F T F 

F F F 

 

The sum of the rows is the vector   F T F which means, 0*32 for x + 1* 32 for y + 0*32 

for z. The total is 32 bits.  

 

 

int x, y, z; z=10; 

z=10; 

x=y+z; 

y=2*x+15*z; 
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4.2 An ANTLR-Generated Compiler 

 

 In our   research, we   use ANTLR  (Another Tool for Language Recognition 

http://www.antlr.org/)  to generate a compiler for  different programming languages such 

as Java, C#, JavaScript, Python2, and Python3. The initial release of ANTLR was on 

February 1992 by Dr. Terence Parr at University of San Francisco.   

ANTLR takes as input a grammar that specifies a language and generates output as source 

code for a recognizer for that language. It also automatically reports and recovers from 

syntax errors. 

ANTLR is a recursive descent parser generator. It uses the top-down parsing strategy LL 

(*)   for parsing.  LL (*)   is an LL-regular parser if it is not restricted to a finite k token of 

lookahead but can make parsing decisions by recognizing whether the following tokens 

belong to a regular language.  

We use ANTLR v4 which is the latest version of ANTLR.  ANTLR v4 

automatically rewrites left-recursive rules such as expression into non left-recursive 

equivalents. it dramatically simplifies the grammar rules used to match syntactic structures. 

How to set up ANTLR? 

• We download https://www.antlr.org/download/antlr-4.7.2-complete.jar,  add  

antlr4-complete.jar to  CLASSPATH  of our environment system variables. 

 

• We create the following batch commands: antlr4.bat  has the command java 

org.antlr.v4.Tool %*  and    grun.bat has the command    java 

org.antlr.v4.gui.TestRig %* 

 

 

 

 

http://www.antlr.org/
https://www.antlr.org/download/antlr-4.7.2-complete.jar
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ANTLR grammar 

The grammar of ANTLR must be of extension g4. ANTLR provides grammar specification 

(https://github.com/antlr/grammars-v4) for some programming languages.  We use 

java9.g4 to generate our compiler.  

How does ANTLR work? 

ANTLR first checks the specification of Java grammar, rules and actions and generates 

some of Java classes.   Figure 4.1 shows flowchart of ANTLR run. If the rules are 

successfully built, the ANTLR generates the following: 

• Java9Lexer.java  

• Java9Parser.java 

• Java9.tokens 

• Java9Lexer.tokens 

• Java9Listener.java  

• Java9BaseListener.java 
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How to use ANTLR? 

We have to create the object of lexer and parser, then we run the command 

parser.compilationUnit();  this command runs our grammar starting from start symbol 

which is compilationUnit to the end of the grammar.   Figure 4.2 shows our main method 

we consider data default size is 6. Each time we add the semantic actions to our grammar, 

we have to run our grammar then the example.   Figure 4.3 illustrates the steps of our run. 

 

  

Figure 4.1 Flowchart of ANTLR run. 

Figure 4.2 Run of the main method in ANTLR. 
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Figure 4.3 ANTLR run. 

ANTLR can generate a parse tree that helps us to debug our semantic actions. Figure 4.4 

shows our commands that generates the parse tree and Figure 4.5 shows parser tree 

inspector that the result of the run.  

 

 

 

 

 



42 
 

 

 

 

Figure 4.4 ANTLR run for parser tree inspector. 

Figure 4.5 Parser tree inspector for ANTLR. 
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4.3 Computing the Elementary Metrics 

The core component of our proposed tool, in terms of complexity and in terms of criticality, 

is the Java compiler that computes the intrinsic metrics of a method in a class; to compute 

these metrics, we need to evaluate the following quantities: H(S), H(σI), H(σF ), H(X) and 

H(Y). We briefly discuss these below. 

Calculating H(S) 

From the standpoint of a method in a class, the declared space is made up of three 

components, yielding four terms of the entropy:  

• H(G): Entropy of the global space, i.e. the space defined by the declared fields of 

the class; these are class wide variables that are accessible to all the methods of the 

class.  

 

• H(P): Entropy of the space defined by the parameters that are passed to the method.  

• H(I): Entropy of the local space, i.e. the space defined within the scope of the 

method. 

 

Therefore, H(S) = H(G) + H(P) + H(I). 

 

Calculating H(G)  

H(G) is the entropy of global variables. It includes all variables that are declared within the 

class header and before the method header.  We use a hashmap named mapGlobalVar   to 

store all global variables. Global variables appear in the fieldDeclaration rule. The 

following is the fieldDeclaration rule before adding the semantic actions.  Figures 4.6 and  

4.7 show the rule after we add the semantic actions. 

fieldDeclaration rule  
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fieldDeclaration :fieldDeclaration :fieldModifier* unannType variableDeclaratorList ';' ; 

 

 

 

 

Figure 4.6 Sematic actions for fieldDeclaration rule. 
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Sometimes we have variables or arrays of type object class. So, we must store the 

class name and its entropy inside mapGlobalVar.  We add our semantic actions into the 

normalClassDeclaration rule.  The following is   the rule without the semantic actions 

and Figure 4.8 shows the rule after we add the semantic actions.  

normalClassDeclaration: classModifier* 'class' Identifier typeParameters? superclass? 

superinterfaces?  classBody ; 

The rule gives the structure of declaration class. Class Modifier can be one of the following 

keywords: annotation, public, protected, private, abstract, static, final, or strictfp. 

Identifier represents the name of the class. typeParameters is type of class and it’s optional. 

superclass and superinterfaces are optional, they represent the inheritance feature. 

classBody is the body of the whole class.   

Figure 4.7 Sematic actions for fieldDeclaration rule. 
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Also, our compiler processes the enum structure in Java.  mapGlobalVar keeps the 

entropy of variables that appear in enum structure.  The following is the rule  without the 

semantic actions and Figure 4.9 illustrates the rule after we add the semantic actions.  

classDeclaration   :  normalClassDeclaration 

   |  enumDeclaration  ; 

 

            Figure 4.9 Sematic actions for normalClassDeclaration rule. 

Figure 4.8 Sematic actions for normalClassDeclaration rule. 
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Calculating H(P) 

 H(P) includes all passing parameters in a method header such as variables or arrays. We 

create   a hashmap named ele_HX. We calculate H(P) by adding our semantics actions into 

formalParameter rule and lastFormalParameter rule. The following is formalParameter 

rule and lastFormalParameter without adding the semantic actions. Figure 4.10 shows the 

formalParameter rule after we add our semantic actions. Figure 4.11 shows the 

lastFormalParameter rule after we add the semantic actions. 
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Figure 4.10 Sematic actions for formalParameter rule. 



49 
 

 

 

 

 

Calculating H(X)  

H(X) is the input channel of a method that includes the parameters that are passed to the 

method by value; the parameters of type class (which, we understand, Java passes 

implicitly by reference), and the global variables that are referenced on the right-hand side 

of assignment statements. The entropy of the input channel, H(X), is the sum of the 

Figure 4.11 Sematic actions for lastFormalParameter rule. 
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entropies of all these variables. We add the semantic rules into assignment rule. The 

following is the assignment rule before adding semantic actions.  The semantic actions of 

assignment rule can be found in Figure 4.12. 

 assignment:leftHandSide assignmentOperator expression; 

leftHandSide can be expressionName, fieldAccess or arrayAccess. 

  

assignmentOperator can be one of the following keywords : '=',  '*=', '/=',  '%=', '+=',  '-=', 

'<<=', '>>=', '>>>=', '&=', '^=', or  '|=' 
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Figure 4.12 Sematic actions for assignment rule. 
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Figure 4.13 Sematic actions for methodHeader rule. 

Calculating H(Y)  

 H(Y) is the output channel of a method and depends on whether the method is declared as 

void or has an explicitly declared return type: 

• If the method has an explicitly declared return type, then the entropy of that type is 

the value for the output channel entropy.  Figure 4.13 shows the methodHeader rule 

and the semantic actions added to the methodHeader rule.  

 

• If the method is declared as a void method, then the output channel is made up of 

the following components: the parameters of type class (which are implicitly passed 

by reference); the global variables that appear on the left of an assignment 

statement.  

 

To compute the entropy of the output channel, we use the dependency 

matrix D introduced in Section 4.1 whereas the entropy of the final state is 

computed by adding all the rows of D, the entropy of H (Y) is computed by adding 

the rows of D that correspond to the output variables cited above.  

methodHeader 

 : result methodDeclarator throws_? 

 | typeParameters annotation* result methodDeclarator throws_? 

 ; 

result  : unannType    

 |'void'  

 

 

 ;      
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CHAPTER 5 

STATISTICAL MODELS 

 

5.1 Benchmark 

In our experiment, we use benchmark from the Apache Common Mathematics Library 

(http://apache.org/); each function comes with a test data file.  We run our experiments on 

two different packages of Java classes. They are:  

1. The Apache Commons Math project is a library of lightweight, self-contained 

mathematics and statistics components addressing the most common practical 

problems not immediately available in the Java programming language or 

commons-lang. The version that we use is commons-math3-3.5-src. Table 5.1 

shows the class name, number of the methods, and its directory.  

 

Table 5.1 Classes Information of Commons-math3-3.5-src Library 

 

Class Name Number of the methods  Class Directory  

SchurTransformer 10 org.apache.commons.math3.linear 

BesselJ 7 org.apache.commons.math3.special 

BlockRealMatrix 54 org.apache.commons.math3.linear 

EigenDecomposition 27 org.apache.commons.math3.linear 

Array2DRowRealMatrix 31 org.apache.commons.math3.linear 

CholeskyDecomposition 11 org.apache.commons.math3.linear 

BaseSecantSolver 7 org.apache.commons.analysis.solvers 
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2. Apache Commons Lang is a package of Java utility classes for the classes that are 

in java.lang's hierarchy, or are considered to be so standard as to  justify existence 

in java.lang.  The version that we use is commons-lang3-3.4-src. Table 5.2 shows 

the class name, number of the methods at that class, and its directory.  

 

Table 5.2 Classes Information of Commons-lang3-3.4-src Library 

 

 

5.2 Mutation Generators 

When we produce a regression model based on empirical data obtained by deploying a 

particular mutant generation policy, then it stands to reason that our estimate is valid only 

as long as we use the same policy. How can we accommodate a variety of policies? We 

currently envision two possibilities to do this: 

• Either we select several well-known, widely used and / or widely researched 

generation policies, and generate a regression model for each. Then our tool offers 

the user a menu of policies and asks the user to select one; then the tool uses the 

corresponding regression formula. 

• Or we select a number of well-known mutation operators, generate a regression for 

each mutator applied individually. Then our tool offers the user a menu of 

Class Name  Number of the 

methods  

Class Directory  

Fraction 34 org.apache.commons.lang3.math 

NumericEntityUnescaper 3 org.apache.commons.lang3.text.translate 

WordUtils 13 org.apache.commons.lang3.text 

NumberUtils 55 org.apache.commons.lang3.math 

FastMath 26 org.apache.commons.lang3.math 
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operators and asks him / her to select all those she / he wishes to apply. Then the 

tool estimates the REM that stems from each mutator; but then it needs to combine 

the individual REM’s to estimate the overall REM obtained by combining the 

mutation operators. This approach raises the question of how we combine 

individual REM’s corresponding to single mutators to obtain the REM of the 

aggregate policy. In [51] we speculate that the following formula is a good 

approximation, and we provide some empirical evidence to this effect: 

 

 

Where N is the number of operators, and REMi is the REM obtained for operator i 

when it is deployed by itself. This approach, if it is indeed validated offers greater 

flexibility than the first, but also presents greater risk of imprecision; this matter is 

under investigation. 

We use two different Mutation Generators: PITEST and Mujava. We divide the 

mutation operators into four classes. Class1, 2, and 4 have mutation operators are generated 

by PITEST. Class 3 has mutation operators are generated by Mujava.  

A. PITEST 

We use PITEST (http://pitest.org/), in conjunction with Maven (http://maven.apache.org/) 

to generate mutants of each program and test them for possible equivalence with the base 

program. 

Class 1: 

a. Conditionals Boundary Mutator 

b. Arithmetic Operator Replacement Mutator  

c. Arithmetic Operator Deletion Mutator    

d. Constant Replacement Mutator  

e. Relational Operator Replacement Mutator 

 

Class 2: 

a. Constructor Call Mutator 

b. Empty returns Mutator 

c. False returns Mutator 

d. Inline Constant Mutator  

e. Null returns Mutator  

f. Non-Void Method Call Mutator 

𝑅𝐸𝑀 = 1 − ∏ (1 − 𝑅𝐸𝑀𝑖)𝑁
𝐼=1                                                              (5.1)  
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g. Primitive returns Mutator 

h. Remove Conditionals Mutator 

i. Remove Increments Mutator 

j. True returns Mutator 

k. Experimental Argument Propagation  

l. Experimental Big Integer 

m. Experimental Naked Receiver 

n. Experimental Member Variable Mutator 

o. Experimental Switch Mutator 

p. Negation Mutator  

q. BitWise Operator 

r. Unary Operator Insertion 

Class 4: 

a. Conditionals Boundary Mutator 

b. Increments Mutator  

c. Void Method Call Mutator 

d. Return Values Mutator 

e. Math Mutator  

f. Negate Conditionals Mutator 

g. Invert Negatives Mutator 

 

B. MuJava 

Mujava  (https://cs.gmu.edu/~offutt/mujava/) which is a mutation system for Java 

programs. Class 3 has mutation operators that are generated by Mujava. Mujava provides 

six kinds of primitive operators: arithmetic, relational, conditional, shift, logical, and 

assignment.  The Table 5.3 below shows the list of method-level mutation operators with 

its description.  
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Table 5.3 Method-level Mutation Operators in Mujava 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                     

 

 

 

 

Operator  Description  

AOR Arithmetic Operator Replacement 

AOI Arithmetic Operator Insertion 

AOD Arithmetic Operator Deletion 

ROR Relational Operator Replacement 

COR Conditional Operator Replacement 

COI Conditional Operator Insertion 

COD  Conditional Operator Deletion 

SOR Shift Operator Replacement 

LOR Logical Operator Replacement 

LOI Logical Operator Insertion 

LOD Logical Operator Deletion 

ASR Assignment Operator Replacement 

Deletion operator added in 2013 

SDL Statement Deletion 

VDL Variable Deletion 

CDL Constant Deletion 

ODL Operator Deletion 



58 
 

5.3 Redundancy Metrices by the Compiler 

The following is the data generated by the compiler when the data default size for array 

and string is equal to 10. Due to restricted space, we view only data that has LOC (lines of 

code) >=40. 
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Class Name Method Name LOC HS HG DH HL 

H 

sigma_F HX HY SRI SRF FR REMP 

BlockRealMatrix preMultiply 41 9024.00 6624.00 66.00 8958.00 576.00 900.00 10 0.0073 0.9362 0.9889 0.0000 

BlockRealMatrix toBlocksLayout 42 20608.00 6624.00 4.00 20604.00 960.00 6760.00 100 0.0002 0.9534 0.9852 0.0968 

CholeskyDecomposition/Solver solve 43 10080.00 1408.00 64.00 10016.00 512.00 20.00 0.00 0.0063 0.9492 1.0000 0.0294 

FastMath cos 45 21985 21121 0 21985.00 64 64 64 0.0000 0.9971 0.0000 0.2500 

BlockRealMatrix setSubMatrix 49 14944.00 6624.00 4.00 14940.00 1344.00 6628.00 0 0.0003 0.9101 1.0000 0.0000 

Fraction getFraction 49 3072.00 2208.00 128.00 2944.00 192.00 64.00 64.00 0.0417 0.9375 0.0000 0.3000 

BlockRealMatrix multiply 51 8544.00 6624.00 32.00 8512.00 384.00 196.00 32 0.0037 0.9551 0.8367 0.0270 

CholeskyDecomposition CholeskyDecomposition 52 4512.00 1408.00 0.00 4512.00 128.00 148.00 0.00 0.0000 0.9716 1.0000 0.1071 

FastMath pow 55 22337 21121 0 22337.00 96 96 64 0.0000 0.9957 0.3333 0.1250 

WordUtils wrap 57 1409.00 0.00 0.00 1409.00 1313.00 1313.00 640.00 0.0000 0.0681 0.5126 0.1600 

FastMath sin 58 22050 21121 0 22050.00 64 64 64 0.0000 0.9971 0.0000 0.2105 

BlockRealMatrix multiply 59 9248.00 6624.00 66.00 9182.00 416.00 260.00 32 0.0071 0.9550 0.8769 0.0000 

NumericEntityUnescaper translate 61 339.10 1.10 2.00 337.10 33.10 32.00 32.00 0.0059 0.9024 0.0000 0.0417 

FastMath cosh 62 22465 21121 0 22465.00 0 192 64 0.0000 1.0000 0.6667 0.4118 

FastMath tan 68 22370 21121 0 22370.00 64 64 64 0.0000 0.9971 0.0000 0.2581 

FastMath asin  69 21953 21121 0 21953.00 64 64 64 0.0000 0.9971 0.0000 0.0000 

FastMath scalb 73 21537 21121 0 21537.00 96 96 64 0.0000 0.9955 0.3333 0.2000 

FastMath scalb 73 21377 21121 0 21377.00 64 64 32 0.0000 0.9970 0.5000 0.1774 

FastMath acos  75 21889 21121 0 21889.00 64 64 64 0.0000 0.9971 0.0000 0.0267 

FastMath cbrt 76 22082 21121 0 22082.00 0 74 64 0.0000 1.0000 0.1351 0.0462 

BlockRealMatrix getSubMatrix 92 7936.00 6624.00 9.00 7927.00 320.00 192.00 32 0.0011 0.9597 0.8333 0.0656 

FastMath exp 110 22657 21121 0 22657.00 192 768 64 0.0000 0.9915 0.9167 0.1515 

FastMath sinQ 114 22369 21121 2 22367.00 128 178 64 0.0001 0.9943 0.6404 0.1522 

NumberUtils isNumber 116 900.00 0.00 1.00 899.00 640.00 640.00 1.00 0.0011 0.2889 0.9984 0.0000 

FastMath tanh 117 22658 21121 0 22658.00 128 128 64 0.0000 0.9944 0.5000 0.0857 

FastMath sinh 118 22978 21121 0 22978.00 128 192 64 0.0000 0.9944 0.6667 0.5455 

FastMath tanQ 133 23074 21121 2 23072.00 129 179 64 0.0001 0.9944 0.6425 0.0816 

FastMath expm1 139 23522 21121 0 23522.00 0 768 64 0.0000 1.0000 0.9167 0.1308 

FastMath atan 144 22819 21121 0 22819.00 34 223 64 0.0000 0.9985 0.7130 0.1045 

 

5
9
 

Table 5.4 Raw data, independent variables, redundancy metrics, vs REM 
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5.4 Preliminary Models 

In order to test our assumption that our redundancy metrics are statistically correlated with 

the REM of a program, we have conducted an empirical experiment, whereby we select a 

set of Java classes from the Apache Common Mathematics Library and run our Java 

compiler to compute the redundancy metrics of each method of each class. On the other 

hand, we apply a mutant generator to these classes using a uniform set of standard mutation 

operators, then we execute the base program and the mutants on benchmark test data sets 

and record how many mutants are killed by the test.  

Simultaneously, we keep track of coverage metrics, and exclude from consideration 

any method whose line coverage is below 90%. By keeping in our sample only those Java 

classes for which line coverage is high (in fact the vast majority reach 100%-line coverage) 

we maximize the likelihood that mutants that are found to survive after undergoing the test 

are equivalent to the base program. Under this assumption, we use the ratio of surviving 

mutants of each method over the total number of mutants as the REM of the method. Our 

data sample includes about 234 methods. 

We perform a statistical regression using the REM as the dependent variable and 

the intrinsic redundancy metrics (i.e., those metrics that pertain to the program, not the 

equivalence oracle) as the independent variables. We use a logistic model, i.e., a model 

such that REM is a linear combination of the independent variables. The metric that 

pertains to the equivalence oracle (ND) is not part of the regression analysis, but is 

integrated in the equation in such a way that if ND = 0 we obtain the regression formula 

involving the intrinsic metrics, and if ND = 1 (extreme case when the oracle tests trivially 

for true , i.e.,  all the mutants are found to be equivalent) we want the REM to be 1.   
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The resulting formula is:    

With this equation in place, we can now have a tool that automatically computes 

the redundancy metrics, then derives the REM using this formula. 

In the following Chapter 6, we refine the model based on different parameters such as lines 

of code, default size of array and string, test data size and mutation policy.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

𝑅𝐸𝑀 =0.1275+0.2442*SRI+0.0254*SRF-0.0314*FR.                                                        (5.5)  
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CHAPTER 6 

REFINING THE MODELS 

 

In this chapter, we want to study different possible settings to improve the multiple linear 

regression model accuracy. Through the forward selection, in each setting, we find the 

statistical correlation between redundancy (as quantified by our metrics), which are SRI, 

SRF, FR, NI, and the ratio of equivalent mutants REM.   We also note that SRI and NI 

appear to be highly correlated. Inclusion of both variables in a model can result in unstable 

estimates. Therefore, we build the models only for the following variables [SRI, SRF, FR 

and REM]. We assess each model based on standard error, predication error or residual 

plot (residuals versus fitted values).  We select the best model and we move to the next 

selection.  In some cases, the regression model is not meaningful, and the standard errors 

of the models are very similar, so we can select any model of our choice.   

 

6.1 Fine Tuning Component Size 

In this Section, we want to study the impact of lines of code (LOC) on accuracy of the 

statistical model.  We build three models for the following cases:  

We build three models for the following cases: 

• Case 1: model 1, is for multiple linear regression for all methods. 

• Case 2: model 2, is for multiple linear regression for all methods that have 
LOC>=20. 
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• Case 3: model 3, is for multiple linear regression for all methods that have 
LOC>=40. 
 

• Our selection for data size default is not important in this section. Therefore, we 

conduct empirical experiments on the data that is generated by the compiler for data 

default size 10. Table 6.1 shows the results of the experiments.  We find the model 

3 has smallest value of standard error. As a result, the model is selected, and we 

consider only methods that have LOC>=40 and we move to the next step.  

 

Table 6.1 Standard Error and Model Formula of the REM for Each Model 

 

 

6.2 Fine Tuning Default Parameters 

In this section, our setting is data default size which includes array and string sizes.  We 

want to find out if data default size can improve the accuracy of the regression model or 

not. We run our compiler on different data default sizes for 1, 2, 4, 6, 10.  We fit the five 

regression models, evaluate them, and select the significant model. Table 6.2 shows the 

results of the experiments.   

 

 

 

Model   Standard Error Model Formula of REM 

Model1 0.323043251122893 REM=0.1275+0.2442*SRI+0.0254*SRF-

0.0314*FR 

 

Model2  0.50518184729197 REM=0.1192-0.8648*SRI+0.1390*SRF-

0.0788*FR 

 

Model3  0.138295857014054 

 

REM=0.1149+0.0331*SRI+0.0841*SRF-

0.0779*FR 

 



64 
 

Table 6.2 Model Formula of the REM and Standard Error for Each Data Default Setting 

 

We find that data default size doesn’t improve the performance of the regression model, 

since there is no difference among standard error among the models.   Therefore, we can 

select any model, so we select the model of data default size =10.  

 

6.3 Fine Tuning Test Size 

So far, we have data that LOC>=40 and data default size =10. We study the impact of test 

data size.   Our setting is test data size for each method, so we build the regression model 

for all methods, methods that have test size >=20, and methods that have test size >=40. 

Table 6.3 shows the REM formula for each model and standard error. We conclude that 

test data size doesn’t significantly improve the accuracy of the model. There is not much 

difference in standard error. We can select any model. We select mode of test size >=40.  

 

Classification  Standard Error  Model Formula of REM 

Data Default 

Size=1 

0.13248953676045 REM =-0.0551- 

0.4179*SRI+0.2247*SRF+0.0435*FR 

 

Data Default 

Size=2 

0.133687606356218 REM=-0.0684-

0.3156*SRI+0.2437*SRF+0.0229*FR 

 

Data Default 

Size=4 

0.136640601594657 REM=-0.0063-0.1913*SRI+0.1939*SRF-

0.0295*FR 

 

Data Default 

Size=6 

0.138385346683011 REM=0.0611-0.092*SRI+0.1312*SRF-

0.055*FR 

 

Data Default 

Size=10 

0.138295857014054 REM=0.1149+0.0331*SRI+0.0841*SRF-

0.07793*FR 
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6.4 Fine Tuning Mutation Policy 

Now we have data that LOC>=40, data default size =10, and test size =40. In this Section, 

our setting is the impact of mutation operators of each class on the model.  Each class has 

different mutation operators. The details of each class are mentioned in the previous section 

5.2  

Table 6.4 Model Formula of the REM and Standard Error for Each Class  

 

We can understand from the result that the impact of mutant operators improves the 

regression model.  Based on standard Error and residuals plots (residuals versus fitted 

Classification  Standard Error  Model Formula of REM 

All Test Size  0.138295857014054 REM= 0.1149 +0.0331*SRI+0.0841 

*SRF-0.0779 *FR 

 

Test 

Size>=20 

0.148382153401973 REM=0.0405-

0.5413*SRI+0.1350*SRF+0.0448*FR 

 

Test 

Size>=40 

0.152588301735323 REM=-0.1481-0.5209 

*SRI+0.3173*SRF+0.0667 *FR 

 

Classification Standard Error Model Formula of REM 

Class 1 

 

0.156514737076486 REM=0.3437+0.3310*SRI-0.1548*SRF-

0.0559*FR 

Class 2 

 

0.0994563743180568   REM=0.2583-0.7434*SRI-0.0719*SRF-

0.0306*FR 

Class 3 

 

0.0806778025553742     REM=-0.0271-

1.2669*SRI+0.3434*SRF+0.0833*FR 

Class 4 

 

0.152588301735323    REM=-0.1481-

0.5209*SRI+0.3173*SRF+0.0667*FR 

Table 6.3 Model Formula of the REM and Standard Error for Each Classification 

 



66 
 

 

values) in Figure 6.1, we conclude that the models of class 2 and class 3 are the most 

significant.  All values in class 2 and class 3 are within the range [-0.1-0.1] except outliers. 

Also, we calculate the prediction error for each class, and we find that  only class 2 and 

class 3 have prediction errors >=0.10.  

 

 

  

Figure 6.1 Residuals plot of each class.  
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CHAPTER 7 

AUTOMATED ESTIMATION OF THE REM 

 

We select class 2 and class 3 is the best meaningful models, and  we show the correlation 

table, residuals, predication error, and residuals versus fitted values for each class. We plug 

in the values of SRI, SRF and FR variables into the REM formula. Then, we create the 

predicated REM column. We calculate predicated error which is equal to actual value of 

REM- predicated REM.  

7.1 Class 2 

Table 7.1 shows the correlation of each variable with the REM of class 2.  The REM 

formula for class 2 is  

 

 

 

Standard Error is 0.0994563743180568. Table 7.2 shows the actual value of the 

REM, predicated REM, and predicated error. We find only two values that have predicated 

REM= 0.2583-0.7434*SRI-0.0719*SRF-0.0306*FR                                                             (7.1)  

  SRI SRF FR REM_CLASS2 

SRI 1       

SRF -0.04377594 1     

FR 0.219976146 
-
0.333155345 1   

REM_CLASS2 -0.256383103 
-
0.067679541 -0.13508912 1 

Table 7.1 Correlation Table for Class 2 
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error >=0.10.  Figure 7.1 explains residuals plot versus fitted values. It’s clear that all values 

are within [-0.1-0.1] except for two outliers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REM_CLASS2 Predicated REM Predicated  Error 

0.194968553 0.186609306 -0.008359247 

0 0.15991875 0.15991875 

0.217270195 0.176709012 -0.040561183 

0.461139896 0.186608689 -0.274531207 

0.145728643 0.1664 0.020671357 

0.261538462 0.186605704 -0.074932757 

0.110864745 0.186609611 0.075744866 

0.106157113 0.186610224 0.080453112 

0.163511188 0.182345946 0.018834758 

0.107692308 0.167531476 0.059839169 

0.21372549 0.206749764 -0.006975726 

0.104347826 0.171806179 0.067458353 

0.134993447 0.166800522 0.031807075 

0.117414248 0.167463793 0.050049545 

0.068027211 0.1589 0.090872789 

0.163080408 0.165116995 0.002036588 

0.211360634 0.162821682 -0.048538953 

0.265135699 0.1664 -0.098735699 

0.114772103 0.064242866 -0.050529237 

0.208955224 0.160088253 -0.048866971 

Table 7.2 Residuals Table and Predicted Error for Class 2 
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Figure 7.1 Residuals plot (residuals vs fitted values) of 

class 2. 

 



70 

7.2 Class 3 

Table 7.3 shows the correlation of each variable with the REM of class 3.  The REM 

formula for class 3 is  

Standard Error is 0.0806778025553742. Table 7.4 shows the actual value of the 

REM, predicated REM, and predicated error. We find only three values that have 

predicated error >=0.10.  Figure 7.2 represents residuals plot versus fitted values. All values 

are within [-0.1-0.1] except for three outliers. 

REM= -0.0271-1.2669*SRI+0.3434*SRF+0.0833*FR                                                       (7.2) 

SRI SRF FR REM_CLASS3 

SRI 1 

SRF -0.043534701 1 

FR 0.212056729 -0.325081884 1 

REM_CLASS3 -0.346097318 0.466440345 0.068956512 1 

Table 7.3 Correlation Table for Class 3 
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                       Table 7.4 Residuals Table and Predicated Error for Class 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 

REM_CLASS3 Predicated REM Predicated Error  

0.285714286 0.315300337 -0.029586051 

0.217171717 0.24205 -0.024878283 

0.231481481 0.342590802 -0.11110932 

0.492890995 0.315303283 0.177587712 

0.396296296 0.371833333 0.024462963 

0.324590164 0.315317541 0.009272623 

0.247191011 0.315298879 -0.068107868 

0.227208976 0.315295952 -0.088086976 

0.407407407 0.327556757 0.079850651 

0.395061728 0.389748292 0.005313436 

0.434607646 0.36757116 0.067036486 

0.155555556 0.153866622 0.001688934 

0.387211368 0.356010058 0.031201309 

0.431034483 0.369920408 0.061114075 

0.342913776 0.367787099 -0.024873323 

0.396226415 0.392658333 0.003568082 

0.211382114 0.375181612 -0.163799498 

0.421768707 0.371833333 0.049935374 

0.220198675 0.212198412 0.008000263 

0.37791411 0.385293988 -0.007379878 

Figure 7.2 Residuals plot (residuals vs fitted values) of class 3. 
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CHAPTER 8 

IMPLICATION 

 

 

8.1 NEC: Number of Equivalence Classes 

Mutant Equivalence 

Given a set of M mutants of a base program P, and given a ratio of equivalent mutants 

REM, the number of equivalent mutants is estimated to be M ×REM. Hence, we cannot 

expect any test data set T to kill more than N = M×(1−REM) mutants (modulo the margin 

of error in the estimation of the  REM). 

 Mutant Redundancy 

In (Papadakis et al., 2019), Papadakis et al. raise the problem of mutant redundancy as the 

issue where many mutants may be equivalent among themselves, hence do not provide test 

coverage commensurate with their number. If we have sixty mutants divided into twelve 

classes where each class contains five equivalent mutants, then we have only twelve 

distinct mutants; and if some test data set T kills these sixty mutants, it should really get 

credit for twelve mutants (twelve casualties, so to speak), not sixty, since whenever it kills 

a mutant from one equivalence class, it automatically kills all the mutants of the same class. 

Of course, it is very difficult to determine, in a set of mutants, which mutants are equivalent, 

and which are not; but again, the REM enables us to draw some quantitative data about the 

level of redundancy in a pool of mutants.  
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The REM of the base program is computed using a regression formula whose 

independent variables are the redundancy metrics extracted from the source code of the 

program. Since the mutants are generated from the base program by means of elementary 

syntactic changes, it is reasonable to consider that the mutants have the same REM as the 

base program. 

 If we interpret the REM as the probability that any two mutants are semantically 

equivalent, then we can estimate the number of equivalence classes by answering the 

following question: 

Given a set of size N, and given that any two elements of this set have a probability REM 

to be in the same equivalence class modulo some relation EQ, what is the expected number 

of equivalence classes of this set modulo EQ?  

We denote this number by NEC (N, REM), and we write it as follows: 

Where p (N, REM, K) is the probability that a set of N elements where each pair has 

probability REM to be equivalent has k equivalence classes. This probability satisfies the 

following inductive conditions. 

Basis of Induction. We have two base conditions: 

• One Equivalence Class.

 This is the probability that all N elements are equivalent. 

𝑁𝐸𝐶(𝑁, 𝑅𝐸𝑀) = ∑ 𝐾 ×  𝑝(𝑁, 𝑅𝐸𝑀, 𝐾),

𝑁

𝑘=1

 (8.1) 

𝑝(𝑁, 𝑅𝐸𝑀, 1) = 𝑅𝐸𝑀𝑁−1 (8.2) 
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• As Many Equivalence Classes as Elements, or: All Equivalence Classes are

Singletons.

This is the probability that no two elements are equivalent: every two elements are not 

equivalent; there are N ×(N −1) pairs of distinct elements, but because equivalence is a 

symmetric relation, we divide this number by 2 (Mi ≠ Mj is the same event as Mj ≠ Mi). 

Inductive Step 

When we add one element to a set of N−1 elements, two possibilities may arise: 

Either this adds 1 to the number of equivalence classes (if the new element is equivalent to 

no current element of the set); or it maintains the number of equivalence classes (if the new 

element is equivalent to one of the existing equivalence classes). Since these two events 

are disjoint, the probability of the disjunction is the sum of the probabilities of each event. 

Hence: 

 The following recursive program, NEC, computes the number of equivalence 

classes of a set of size N whose elements have probability  REM of being equivalent. 

Execution of this program with N = 65 and REM = 0.158 yields NEC(N,REM) = 14.64, 

i.e. , our 65 mutants represent only about 15 different mutants; the remaining 50 are

redundant. 

The following recursive program is used to find the number of equivalent classes 

given the REM and N, which is the number of mutants in any method.  

𝑝(𝑁, 𝑅𝐸𝑀, 𝑁) = (1 − 𝑅𝐸𝑀)
𝑁 ×(𝑁−1)

2 (8.3) 

𝑝(𝑁, 𝑅𝐸𝑀, 𝐾) = 𝑝(𝑁 − 1, 𝑅𝐸𝑀, 𝐾) × (1 − (1 − 𝑅𝐸𝑀)𝐾 + 𝑝(𝑁 − 1, 𝑅𝐸𝑀, 𝐾

− 1) × (1 − 𝑅𝐸𝑀)𝐾−1

(8.4) 
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#include <iostream> 

#include <conio.h> 

#include <map> 

#include <vector> 

#include "math.h" 

using namespace std; 

double p(int N, int k, double R); 

std::map<vector<int>,double> resultsMap; 

int main () 

{ 

   double R=0.0689; int N=116; 

   double mean = 0.0;  double ps=0.0; 

   for (int k=1; k<=N; k++) 

      {double prob=p(N,k,R); ps = ps+prob; 

       mean = mean + k*prob; 

       double localVar=p(N,k,R); 

       cout << k << " " << localVar << endl;} 

      cout << "ps: " << ps << " mean: " << mean << endl; 

       getch(); 

   } 

 

 double p(int N, int k, double R) 

   { 

    vector<int> localVector; 

    localVector.push_back(N); 

    localVector.push_back(k); 

    std::map<vector<int>,double>::iterator it=resultsMap.find(localVector); 

    if(it!=resultsMap.end()) 

    { 

        return it->second; 

    }; 

    double result; 

   if (k==1) {result=pow(R,N-1);} 

    else 

    if (N==k) {result=pow(1-R,(k*(k-1))/2);} 

    else {result=p(N-1,k,R)*(1-pow(1-R,k))+p(N-1,k-1,R)*pow(1-R,k-1);} 

    resultsMap.insert(pair<vector<int>,double>(localVector,result)); 

    //cout<<"Temporary result "<<N<<" "<<k<<" "<<R<<" - "<<result<<endl; 

    return result; 

    } 
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Verification of the number of equivalent classes   

In this section, we want to verify the formula of finding the number of equivalent classes 

that is provided by the above program.   

Given a mutant m and test set T, what we refer to a vector is the array of all the outputs 

produced by m for all the elements of T, total number of mutants N. The algorithm finds 

the number of distinct mutants classes.  

We run our experiment on the Fibonacci class and we select the two following 

methods: int_fib (int) and void power (int [][], int). We use mujava generation mutation 

policy to find the REM. For int_fib (int), mujava outputs  8 as surviving  mutants and N, 

the total number of mutants, is equal to 32. Therefore, REM=8/32=0.25.  NEC (N, REM) 

=NEC(32,0.25)= 8 distinct mutants classes. 

For void power (int [][], int) , mujava outputs 0 as surviving  mutants and N=7. 

Therefore, REM=0/7=0.  NEC(N,REM)=NEC(7,0)= 7 distinct mutants classes. The 

question is, how good is our estimation? To answer the question, we do the following: 

We write test class for each different mutant that runs 200 times. We store the mutants 

output into a text file. Then, we write mutant engine class that works out the comparison 

among all mutants’ outputs and finds the distinct number of mutant classes. The mutant 

engine class finds 7 distinct mutants’ classes for int_fib (int) and 4 for void power (int [][], 

int). We plan to run more examples in future work.  
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The Validation of NEC 

The proposed algorithm below shows the validation of NEC.  

 

 

  

NEC(){ 

Given a set of M mutants of a base program P, 

For each mutant m, run the mutant on nbtest test data. 

Construct the output of m on testdata and save it to vector v. 

vector=emptyvector; // vector of current mutant 

for (t=1;t<=nbtest;t++){ 

          vector=vector+m(data(t)); //+ is append function, data is vector of input data 

    if(vector not in vectorset){ 

      vector=vector Union {vector}; // add new output vector to set 

      numDifferentClasses=numDifferentClasses Union {m}; 

      }// if  

  }// for  

   return numDifferentClasses; 

} 
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8.2 Equivalence Based Mutation Score 

The quantification of redundancy, discussed in the previous section, casts a shadow on the 

traditional way of measuring the mutation score of a test data set T: usually, if we execute 

a set of M mutants on some test data set T,  and we find that X mutants have been killed 

(i.e., shown to be different from the base program P), we assign to T the mutation score 

X/M. This metrics ignores the possibility that several of M mutants may be equivalent, and 

several of the X killed mutants may be equivalent. We argue that this metric can be 

improved and made more meaningful, in three ways:  

• Because of the possibility that mutants may be equivalent to the base program P, 

the baseline ought to be the number of non-equivalent mutants, i.e. N = (1−REM) 

×M. 

 

• Because of the possibility that those mutants that are not equivalent to P may be 

equivalent amongst themselves, we ought to focus not on the number of these 

mutants, but rather on the number of equivalence classes modulo semantic 

equivalence. This is defined in the previous section as NEC(N,REM). 

 

• Because of the possibility that the X mutants killed by test data set T may be 

equivalent amongst themselves, we ought to give credit to T not for the cardinality 

of X, but rather for the number of equivalence classes that X may overlap. We refer 

to this number as COV(N,K,X), where K = NEC(N,REM) is the number of 

equivalence classes of the set of N mutants modulo equivalence. 

 

To compute COV(N,K,X), we designate by C1,C2, ...CK the K equivalence classes, 

we designate by fi, for (1 ≤ i ≤ K), the binary functions that take value 1 if and only if 

equivalence class Ci overlaps with (i.e.,  has a non-empty intersection with) set X, and 

value 0 otherwise. Then COV(N,K,X) = E(∑ 𝐾𝑓𝑖𝑖=1 ). If we assume that all classes are the 

same size and that elements of X are uniformly distributed over the set of mutants, then 

this can be written as: 
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cov(N,K,X) = K × p( fi = 1) = K ×(1− p( fi = 0)), for an arbitrary i. For the first class to 

be considered,p(fi = 0) =
K−1X

K
 , since each element of X has a probability 

K−1

K
 of not being

in class C1; for each subsequent element, the numerator and denominator each drops by 1. 

Hence, we have the following formula: 

The following program computes this function, for N = 65, K = 15 and X = 50. 

Execution of this program yields COV(65,15,50) = 12.55. We propose the following 

definition. 

Definition1. Given a base program P and M mutants of P, and given a test data set T that 

has killed X mutants, the mutation score of T is the ratio of equivalence classes covered by 

X over the total number of equivalence classes amongst the mutants that are not equivalent 

to P. 

We denote the mutation score by EMS(M, X).  

The following proposition gives an explicit formula of the mutation score. 

𝐶𝑂𝑉(𝑁, 𝐾, 𝑋) = 𝐾 𝑥 (1 −
𝐾 − 1𝑋

𝐾
 𝑥 ∏

𝑁 −
𝑖

𝐾 − 1
𝑁 − 𝑖

),

𝑋−1

𝑖=0

 (8.5) 

#include <iostream> 

#include "math.h" 

using namespace std; 

double cov(int N, int K, int X); 

int main () 

{ 

int N=65; int K=15; int X=50; 

cout << "cov: " << cov(N,K,X) << endl; 

} 

double cov(int N, int K, int X) 

{ 

float prod=1; 

for (int i=0; i<K; i++) 

{prod = prod * 

(N-i/(float)(K-1))/(float)(N-i);} 

return K*(1-prod*pow((K-1)/(float)K,X)); 

} 
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Proposition 1. Given a program P and M mutants of P, and given a test data set T that has 

killed X mutants, the mutation score of T is given by the following formula: 

where the REM is the ratio of equivalent mutants of P and N = M(1−REM) is the number 

of mutants that are not equivalent to P. In the example above, for N = 65, REM = 0.158, 

and X = 50 we find   EMS (77,50) = 
12.55

15
= 0.84,

𝐸𝑀𝑆(𝑀, 𝑋) =
𝐶𝑂𝑉(𝑁, 𝑁𝐸𝐶(𝑁, 𝑅𝐸𝑀), 𝑋)

𝑁𝐸𝐶(𝑁, 𝑅𝐸𝑀)
, (8.6) 
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8.3 MMS: Minimal Mutant Set 

Now that we know how to estimate the redundancy of a set of mutants (by means of the 

NEC(N,REM)) function, we can derive a minimal set of mutants that is as good as the 

original set of mutants, but has no redundancy (i.e., all its elements are distinct). For 

example, imagine that we have 200 mutants and they are in 25 equivalent classes, how can 

we find 25 equivalent classes without having compare 200 mutants. The following program 

computes a minimal mutant set on the Fibonacci class of the method int_fib (int). We have 

N, the number of total mutants, is equal to 32, and k, the number of different equivalent 

classes, is equal to 7. Figure 8.1 outputs the size of the minimal mutant set is equal to 18.  

  

 

 

 

 

 

 

 

 

 

 

  

 

 

#include <iostream> 

#include <map> 

#include <vector> 

#include "math.h" 

using namespace std; 

 

int main () 

{for (int k=1; k<=7; k++) 

   {double bigoh=0; 

   for (int i=1; i<=k; i++) 

      {bigoh = bigoh + ((double)k/(double)i); 

      }  

   cout << "k= " << k << ". Big Oh()= " << bigoh << endl;} 

} 

Figure 8.1 Run of MMS. 
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Validation of MMS 

To estimate how good the above estimation is, we propose the following algorithm.  

Given a mutant m, test set T, different equivalent classes K. The algorithm finds how many 

mutants we need to check before we get K.  

The proposed algorithm of validation of MMS can be found below.  We use the same 

example as in the previous Section and the algorithm outputs 16 as the size of the  minimal 

mutant set.  

 

 

 

 

 

 

 

 

 

CHAPTER 9 

 

 

 

 

 

 

 

MMS() 

{ 

vector=emptyset; // set of vectors obtained from distinct mutants 

m=first(mutantset); // pick the first mutant in the set 

while (card(vectorset)<NEC)  // while we have not found NEC distinct mutants 

//card refers to cardinality 

vector=emptyvector 

for (t=1;t<=nbtest;t++){ 

vector=vector+m(data(t)); //+ is append function, data is vector of input data 

    if(vector not in vectorset){ 

      vector=vector Union {vector}; // add new output vector to set 

      minimalset=minimalset Union {m}; 

      }// if  

      m=next(mutantset); // go to the next mutant 

  }// while 

  // now we have found NEC non-equivalent mutants; they constitute minimal set 

   return minimalset; 

}// end 
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CONCLUSION: SUMMARY AND PROSPECTS 

A. Summary  

The presence of equivalent mutants is a constant source of aggravation in mutation testing, 

because equivalent mutants distort our analysis and introduce biases that prevent us from 

making assertive claims. This has given rise to much research aiming to identify 

equivalent mutants by analyzing their source code or their run-time behavior. 

Determination of mutant equivalence and mutant redundancy by inspection and analysis 

of individual mutants is very expensive and error-prone, at the same time that it is in fact 

unnecessary, for most purposes. As a substitute, we propose to analyze the amount of 

redundancy that a program has, in various forms, and we find that this enables us to extract 

a number of mutation-related metrics and attributes at negligible cost.    

 Specifically, we consider the following redundancy metrics:  State Redundancy 

(SRI for the initial state, and SRF the final state of the program), Functional Redundancy 

(FR), Non-Injectivity of the program function (NI), and non-determinacy of the program 

specification (ND). 

Central to this quantitative analysis is the concept of ratio of equivalent mutants (REM, for 

short), which measures the probability that any two mutants, or a mutant and the base 

program, are semantically equivalent.  In this dissertation we proceed as follows: 

• We highlight statistical relationships between the REM of a program and its 

redundancy metrics (SRI, SRF, FR, NI, ND) using experiments where the 

redundancy metrics are computed by hand. 

 

• We develop a Java compiler that computes the redundancy metrics automatically, 

by analyzing the way execution of the program affects redundancy. 

 



84 
 

• We use the Java compiler to run a controlled experiment where the programs under 

consideration are of arbitrary size and complexity, and attempt to build four 

statistical models, which correspond to four different mutation policies. 

All the steps executed so far are intended to estimate the REM of a program from a static 

analysis of its redundancy metrics.  The next steps attempt to use the REM to support 

decision-making in mutation testing.  These include: 

• Estimating the number of equivalent mutants may multiplying the total number of 

mutants by (1-REM). 

 

• Interpreting the REM as the probability that the original program and a mutant, or 

two distinct mutants, are equivalent, we estimate the number of equivalence classes 

in a set of mutants that are known to be distinct from the original; we call this 

function NEC(REM,N), where N is the number of mutants.  This function reflects 

the amount of redundancy between the mutants; in other words, if N=100, and a 

test data T kills all of them, we want to distinguish between two situations:  Did the 

test data set T kill 100 distinct mutants or 100 times the same mutant?  

NEC(REM,N) answers that question.  For example, for the REM=0.15 and N=100, 

we find NEC=17.77; in other words, the 100 mutants we have killed amount to only 

18 different mutants; the remaining 82 are redundant. 

 

• Using the NEC() function, we turn our attention to the mutation score, and we argue 

that it requires a revision.  Currently, when we have, say 100 mutants and a test 

data T kills 80 of them, we let the mutation score of T be 0.8, i.e. the ratio of killed 

mutants over the total number of mutants.  We argue that the mutation score ought 

to count equivalence classes, not individual mutants, and we propose a new 

definition where the denominator is NEC(REM,N) and the numerator is the 

estimated number of equivalence classes that are covered by the set of killed 

mutants. 

 

• The NEC function can also be used for another purpose:  if (to cite the example 

above) 100 mutants are as good as 18, why are we using 100?  Why can’t we single 

out 18 distinct mutants and use only those?  This is the well-known problem of 

minimal mutant set.  Here again, knowledge of NEC via the REM helps a great 

deal.  If we did not know how many distinct mutants to expect, we would have to 

compare each of the N mutants with the remaining (N-1) mutants, an O(N^2) 

operation.  But if we know how many distinct mutants to expect, we can run an 

algorithm that finds distinct mutants until it reaches the count of NEC(); we have a 

program that estimates the number of iterations needed for this purpose.  In the 

example above, with N=100 and NEC=17.77, we find that the expected number of 

mutants we need to consider is:  62.9. 
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B. Assessment 

This work can be divided into two parts:  the part that is geared towards estimating the 

REM, and the part that is geared towards using the REM to support decision-making.  As 

far as estimating the REM, we make the following observations: 

• We are able to show that the REM is statistically correlated to the redundancy 

metrics, using a sample of relatively small programs whose metrics are carefully 

computed by hand. 

 

• When we use the compiler to tackle a sample of larger and more complex programs, 

we struggle to establish statistical relationships.  Part of the difficulty is that the 

metrics are based on the assumption that we can readily compute the metrics of 

programs whose state entropy is easy to identify; most active benchmarks 

nowadays involve programs whose state space is ill-defined.  It is not clear what 

variables are part of the state.  This seems to have introduced biases into the metrics 

and precluded us from showing statistical relationships. 

 

• We see two possible remedies to this situation, which can be used separately or 

jointly:  one is to define broader metrics that take into account the case of programs 

whose entropy is not clearly identifiable; another is to consider a benchmark of 

programs where the entropy of the state space is more clearly defined.  In the first 

case, the compiler’s semantic rules have to be revised and adjusted. 

 

C. Prospects 

In the phase of estimating the REM, we envision to explore possible extensions to the Java 

compiler, as well as to apply the compiler to program samples that are better adapted to the 

proposed metrics. 

  In the phase of using the REM, we envision to validate our analytical results by 

means of empirical studies; we have started this process, as shown by the preliminary 

results presented in this thesis, but more remains to be done to conclude statistical 

significance. 
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APPENDIX A 

THE PROGRAM NEC VALIDATES THE ALGORITHM OF COMPUTES 

NUMBER OF EQUIVALENT CLASSES (NEC). 

 

import java.util.HashMap; 

import AOIS_1.R1; 

import AOIS_2.R2; 

import AOIS_3.R3; 

import AOIS_4.R4; 

import AOIS_5.R5; 

import AOIS_6.R6; 

import AOIS_7.R7; 

import AOIS_8.R8; 

import AOIU_1.R9; 

import AOIU_2.R10; 

import AORB_1.R11; 

import AORB_2.R12; 

import AORB_3.R13; 

import AORB_4.R14; 

import CDL_2.R15; 

import COI_1.R16; 

import LOI_1.R17; 

import LOI_2.R18; 

import ODL_3.R19; 

import ODL_4.R20; 

import ROR_1.R21; 

import ROR_2.R22; 

import ROR_3.R23; 

import ROR_4.R24; 

import ROR_5.R25; 

import ROR_6.R26; 

import ROR_7.R27; 

import SDL_1.R28; 

import SDL_2.R29; 

import SDL_3.R30; 

import SDL_4.R31; 

import VDL_2.R32; 

import java.util.*;   

import java.lang.reflect.Method; 

import java.lang.reflect.Modifier; 

import java.lang.reflect.Type; 

import java.math.BigInteger; 
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import java.io.*; 

import java.io.BufferedReader; 

import java.io.FileReader; 

import java.io.IOException; 

public class NEC { 

public static void main(String[] args) throws IOException 

 { 

List<String> Mtemp  = new ArrayList();     

NEC  test=new NEC(); 

Mtemp=test.FindEC(); 

int k=Mtemp.size(); 

System.out.println("the number of equivalence classes "+k); 

}// main 

public static List<String> mlist  = new ArrayList();  

 

 //{ 

 // The engine of running the mutants  

List<String> FindEC(){ 

  

// create objects of mutants // 88 mutants  

R1  m1=new R1(); 

R2  m2=new R2(); 

R3  m3=new R3(); 

R4  m4=new R4(); 

R5  m5=new R5(); 

R6 m6=new R6(); 

R7 m7=new R7(); 

R8 m8=new R8(); 

R9 m9=new R9(); 

R10 m10=new R10(); 

R11 m11= new R11(); 

R12 m12 =new R12(); 

R13 m13 =new R13(); 

R14 m14 =new R14(); 

R15 m15=new R15(); 

R16  m16 =new R16(); 

R17 m17=new R17(); 

R18 m18 =new R18(); 

R19 m19=new R19(); 

R20 m20=new R20(); 

R21 m21=new R21(); 

R22 m22=new R22(); 

R23 m23=new R23(); 
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R24 m24=new R24(); 

R25 m25=new R25(); 

R26 m26=new R26(); 

R27 m27=new R27(); 

R28 m28=new R28(); 

R29 m29=new R29(); 

R30 m30=new R30(); 

R31 m31=new R31(); 

R32 m32=new R32(); 

// call the mutants  

m1.runfib(); 

m2.runfib(); 

m3.runfib(); 

m4.runfib(); 

m5.runfib(); 

m6.runfib(); 

m7.runfib(); 

m8.runfib(); 

m9.runfib(); 

m10.runfib(); 

m11.runfib(); 

m12.runfib(); 

m13.runfib(); 

m14 .runfib(); 

m15.runfib(); 

m16 .runfib(); 

m17.runfib(); 

m18.runfib(); 

m19.runfib(); 

m20.runfib(); 

m21.runfib(); 

m22.runfib(); 

m23.runfib(); 

m24.runfib(); 

m25.runfib(); 

m26.runfib(); 

m27.runfib(); 

m28.runfib(); 

m29.runfib(); 

m30.runfib(); 

m31.runfib(); 

m32.runfib(); 

List<String> Mutantslist  = new ArrayList();     
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String Filecomp=""; 

String Mname="AOIS_"; 

int m_num=1; 

String MutantFile="m"+ Integer.toString(m_num);// source mutant 

Filecomp=Mname+Integer.toString(1)+"//"+MutantFile+"."+"txt";  

 

Mutantslist.add(Filecomp); 

mlist.add(Filecomp); 

Mutantslist=InitialStepComp(Filecomp,Mutantslist); 

m_num++; 

/// AOIS_1  8 

MutantFile="m"+ Integer.toString(m_num); 

for (int a=2;a<=8;a++){  

Mname="AOIS_"; 

Filecomp=Mname+Integer.toString(a)+"//"+MutantFile+"."+"txt"; // the path of mutant 

mlist.add(Filecomp); 

Mutantslist=FindEquiltyMutants(Filecomp,Mutantslist); 

m_num++; 

MutantFile="m"+ Integer.toString(m_num); 

}// for 

 

//AOIU  1-2 

for (int a=1;a<=2;a++){  

Mname="AOIU_"; 

Filecomp=Mname+Integer.toString(a)+"//"+MutantFile+"."+"txt";  

mlist.add(Filecomp); 

Mutantslist=FindEquiltyMutants(Filecomp,Mutantslist); 

m_num++; 

MutantFile="m"+ Integer.toString(m_num); 

} 

//AORB_1 4  

for (int a=1;a<=4;a++){  

Mname="AORB_"; 

Filecomp=Mname+Integer.toString(a)+"//"+MutantFile+"."+"txt";  

mlist.add(Filecomp); 

Mutantslist=FindEquiltyMutants(Filecomp,Mutantslist); 

m_num++; 

MutantFile="m"+ Integer.toString(m_num); 

} 

 //CDL_2 

Mname="CDL_"; 

Filecomp=Mname+Integer.toString(2)+"//"+MutantFile+"."+"txt";  

mlist.add(Filecomp); 
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Mutantslist=FindEquiltyMutants(Filecomp,Mutantslist); 

m_num++; 

MutantFile="m"+ Integer.toString(m_num); 

 

//COI 1 

Mname="COI_"; 

Filecomp=Mname+Integer.toString(1)+"//"+MutantFile+"."+"txt";  

mlist.add(Filecomp); 

 

 

m_num++; 

MutantFile="m"+ Integer.toString(m_num); 

 

//LOI 1  2 

for (int a=1;a<=2;a++){  

Mname="LOI_"; 

 Filecomp=Mname+Integer.toString(a)+"//"+MutantFile+"."+"txt";  

mlist.add(Filecomp); 

Mutantslist=FindEquiltyMutants(Filecomp,Mutantslist); 

 

 

m_num++; 

MutantFile="m"+ Integer.toString(m_num); 

} 

// ODL   3  4  

for (int a=3;a<=4;a++){  

 Mname="ODL_"; 

 Filecomp=Mname+Integer.toString(a)+"//"+MutantFile+"."+"txt";  

mlist.add(Filecomp); 

Mutantslist=FindEquiltyMutants(Filecomp,Mutantslist); 

 

 

m_num++; 

MutantFile="m"+ Integer.toString(m_num); 

} 

//ROR  1-7 

for (int a=1;a<=7;a++){  

Mname="ROR_"; 

Filecomp=Mname+Integer.toString(a)+"//"+MutantFile+"."+"txt"; 

mlist.add(Filecomp); 

Mutantslist=FindEquiltyMutants(Filecomp,Mutantslist); 

m_num++; 

MutantFile="m"+ Integer.toString(m_num); 
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} 

//SDL   1-4  

for (int a=1;a<=4;a++){  

Mname="SDL_"; 

Filecomp=Mname+Integer.toString(a)+"//"+MutantFile+"."+"txt";  

mlist.add(Filecomp); 

Mutantslist=FindEquiltyMutants(Filecomp,Mutantslist); 

 

m_num++; 

MutantFile="m"+ Integer.toString(m_num); 

} 

//VDL 2 

Mname="VDL_"; 

Filecomp=Mname+Integer.toString(2)+"//"+MutantFile+"."+"txt";  

mlist.add(Filecomp); 

Mutantslist=FindEquiltyMutants(Filecomp,Mutantslist); 

//System.out.println("m "+ m_num+"  "+Mutantslist.size()); 

 

m_num++; 

MutantFile="m"+ Integer.toString(m_num); 

return Mutantslist; 

} 

 

public static List<String> getmlist(){ 

return mlist; 

} 

 

public static List<String>   InitialStepComp(String mutantpath,List<String>  Mutantslist 

){  

 

int mindx=2; 

String Filecomppath=" "; 

/// AOIS_1-8 

for (int a=2;a<=8;a++){  

String Mname="AOIS_"; 

String MutantFile="m"+ Integer.toString(mindx); 

Filecomppath=Mname+Integer.toString(a)+"//"+MutantFile+"."+"txt";  

if ( !Filecomppath.equals(mutantpath) && !findEquailty(Filecomppath,mutantpath) ) 

Mutantslist.add(Filecomppath); 

mindx++; 

} 

 

//AOIU_1 2 
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for (int a=1;a<=2;a++){  

String Mname="AOIU_"; 

String MutantFile="m"+ Integer.toString(mindx); 

Filecomppath=Mname+Integer.toString(a)+"//"+MutantFile+"."+"txt";  

if ( !Filecomppath.equals(mutantpath) && !findEquailty(Filecomppath,mutantpath) ) 

Mutantslist.add(Filecomppath); 

mindx++; 

 

}/// for 

 

//AORB_1-4 

 

for (int a=1;a<=4;a++){  

String Mname="AORB_"; 

 

String MutantFile="m"+ Integer.toString(mindx); 

 Filecomppath=Mname+Integer.toString(a)+"//"+MutantFile+"."+"txt";  

if ( !Filecomppath.equals(mutantpath) && !findEquailty(Filecomppath,mutantpath) ) 

Mutantslist.add(Filecomppath); 

mindx++; 

}/// for 

///////////////////////////////////////////// 

//CDL_2 

 String Mname="CDL_"; 

String MutantFile="m"+ Integer.toString(mindx); 

 Filecomppath=Mname+Integer.toString(2)+"//"+MutantFile+"."+"txt";  

 

if ( !Filecomppath.equals(mutantpath) && !findEquailty(Filecomppath,mutantpath) ) 

Mutantslist.add(Filecomppath); 

mindx++; 

 

//COI 1 

Mname="COI_"; 

MutantFile="m"+ Integer.toString(mindx); 

Filecomppath=Mname+Integer.toString(1)+"//"+MutantFile+"."+"txt";  

 

if ( !Filecomppath.equals(mutantpath) && !findEquailty(Filecomppath,mutantpath) ) 

Mutantslist.add(Filecomppath); 

mindx++; 

//LOI  1  2 

for (int a=1;a<=2;a++){  

 Mname="LOI_"; 

 MutantFile="m"+ Integer.toString(mindx); 
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 Filecomppath=Mname+Integer.toString(a)+"//"+MutantFile+"."+"txt";  

 

if ( !Filecomppath.equals(mutantpath) && !findEquailty(Filecomppath,mutantpath) ) 

Mutantslist.add(Filecomppath); 

mindx++; 

}/// for 

 

///////////////////////////////////// 

// ODL  3  4 

for (int a=3;a<=4;a++){  

 Mname="ODL_"; 

 MutantFile="m"+ Integer.toString(mindx); 

Filecomppath=Mname+Integer.toString(a)+"//"+MutantFile+"."+"txt";  

 

if ( !Filecomppath.equals(mutantpath) && !findEquailty(Filecomppath,mutantpath) ) 

Mutantslist.add(Filecomppath); 

mindx++; 

}/// for 

 /////////////////////////////////// 

//ROR 1  7 

 

for (int a=1;a<=7;a++){  

 Mname="ROR_"; 

 MutantFile="m"+ Integer.toString(mindx); 

 Filecomppath=Mname+Integer.toString(a)+"//"+MutantFile+"."+"txt";  

 

if ( !Filecomppath.equals(mutantpath) && !findEquailty(Filecomppath,mutantpath) ) 

Mutantslist.add(Filecomppath); 

mindx++; 

}/// for 

 

//SDL   1 -4 

 

for (int a=1;a<=4;a++){  

 Mname="SDL_"; 

MutantFile="m"+ Integer.toString(mindx); 

 Filecomppath=Mname+Integer.toString(a)+"//"+MutantFile+"."+"txt";  

if ( !Filecomppath.equals(mutantpath) && !findEquailty(Filecomppath,mutantpath) ) 

Mutantslist.add(Filecomppath); 

mindx++; 

}/// for 

 

//////////// 
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  //VDL 2 

  Mname="VDL_"; 

 MutantFile="m"+ Integer.toString(mindx); 

 Filecomppath=Mname+Integer.toString(2)+"//"+MutantFile+"."+"txt";  

if ( !Filecomppath.equals(mutantpath) && !findEquailty(Filecomppath,mutantpath) ) 

Mutantslist.add(Filecomppath); 

mindx++; 

return Mutantslist; 

} 

///////////////////////////////////////////// 

public static List<String>   FindEquiltyMutants(String mutantpath,List<String>  

Mutantslist ) 

{  

int s=Mutantslist.size(); 

List<String> Mutantslisttemp  = new ArrayList();     

for (int i=0;i<s;i++) 

{ 

if ( !findEquailty(mutantpath,Mutantslist.get(i)) ) 

 if(!Mutantslisttemp.contains(Mutantslist.get(i)))  

  Mutantslisttemp.add(Mutantslist.get(i)); 

  } 

   if(!Mutantslisttemp.contains(mutantpath))  

    Mutantslisttemp.add(mutantpath); 

return Mutantslisttemp; 

} 

 

 public static  boolean   findEquailty(String f1, String  f2) 

            { 

      boolean areEqual = true; 

      int lineNum = 1; 

      String line1=""; 

      String line2 =""; 

 

            /// function to compare files  

        try { 

 

        BufferedReader reader1 = new BufferedReader(new FileReader(f1)); 

        BufferedReader reader2 = new BufferedReader(new FileReader(f2)); 

        line1 = reader1.readLine(); 

        line2 = reader2.readLine(); 

          while (line1 != null || line2 != null) 

        { 

            if(line1 == null || line2 == null) 
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            { 

                areEqual = false;      

                break; 

            } 

            else if(! line1.equalsIgnoreCase(line2)) 

            { 

                areEqual = false; 

                  

                break; 

            } 

              

            line1 = reader1.readLine(); 

             line2 = reader2.readLine(); 

             lineNum++; 

        } 

          reader1.close(); 

          

         reader2.close(); 

 } catch ( IOException e ) { 

            e.printStackTrace(); 

        } 

 

        if(areEqual) 

        { 

           

            return true; 

        } 

        else 

        { 

             

            return false;  

        }// else  

          

           }// end of the funciton  

 

} 
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APPENDIX B 

THE PROGRAM VALIDATES   THE ALGOTIRHM OF CALCULATING  

MINIMAL MUTANT SET(MMS) 

 

import java.util.HashMap; 

import AOIS_1.R1; 

import AOIS_2.R2; 

import AOIS_3.R3; 

import AOIS_4.R4; 

import AOIS_5.R5; 

import AOIS_6.R6; 

import AOIS_7.R7; 

import AOIS_8.R8; 

import AOIU_1.R9; 

import AOIU_2.R10; 

import AORB_1.R11; 

import AORB_2.R12; 

import AORB_3.R13; 

import AORB_4.R14; 

import CDL_2.R15; 

import COI_1.R16; 

import LOI_1.R17; 

import LOI_2.R18; 

import ODL_3.R19; 

import ODL_4.R20; 

import ROR_1.R21; 

import ROR_2.R22; 

import ROR_3.R23; 

import ROR_4.R24; 

import ROR_5.R25; 
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import ROR_6.R26; 

import ROR_7.R27; 

import SDL_1.R28; 

import SDL_2.R29; 

import SDL_3.R30; 

import SDL_4.R31; 

import VDL_2.R32; 

import java.util.*;   

import java.lang.reflect.Method; 

import java.lang.reflect.Modifier; 

import java.lang.reflect.Type; 

import java.math.BigInteger; 

import java.io.*; 

import java.io.BufferedReader; 

import java.io.FileReader; 

import java.io.IOException; 

public class MMS { 

public static void main(String[] args) throws IOException 

 { 

List<String> Mtemp  = new ArrayList();     

NEC  test=new NEC(); 

Mtemp=test.FindEC(); 

int k=Mtemp.size();// number of equivalent classes extracted from previous program   

List<String> Mutantslist=test.getmlist();// store all mutants 

int minsetNumber=minset(k,Mutantslist); 

System.out.println("minsetNumber="+minsetNumber); 

}// main  

public static int minset(int k,List<String>Mutantslist){ 

// k= 7. Big Oh()= 18.15 

TestFib  test=new TestFib(); 
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List<String> signatureset  = new ArrayList();  

int nbit=0; 

boolean check=false; 

int s=Mutantslist.size(); 

for (int i=0;i<s;i++){ 

// m=nextMutants();  

String m=Mutantslist.get(i); 

signatureset.add(m); 

if(!signatureset.contains(m)) signatureset.add(m); 

for (int j=0;j<signatureset.size();j++){ 

if (!m.equals(signatureset.get(j))&&  

//comparing  outputs of m on T; 

test.findEquailty(m,signatureset.get(j)) ) 

check=true; // there is mutant is equal to it 

}// for j 

if( check==true){ 

 //(signature in signatureset) 

signatureset.remove(m); 

check=false; 

}// if  

nbit++; 

if (signatureset.size()==k)    break; 

}// for i// loop for all mutants 

return nbit; 

 }// end of the method  

}// class 

package AOIS_1; 

import java.lang.reflect.Method; 

import java.lang.reflect.Modifier; 

import java.lang.reflect.Type; 

import java.io.*; 
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import java.io.BufferedReader; 

import java.io.FileReader; 

import java.io.IOException; 

import java.math.BigDecimal; 

import java.math.BigInteger; 

 

public class R1 

{ 

   public R1(){} 

   public void runfib(){ 

   BufferedWriter output = null; 

    try { 

                        

            File file = new File("AOIS_1//m1.txt"); 

            output = new BufferedWriter(new FileWriter(file)); 

            for (int i=1;i<=200;i++){ 

            int result=Fibonacci.fib(i); 

            output.write(Integer.toString(result)); 

            }// for 

           

           output.close(); 

             

    } catch ( IOException e ) { 

            e.printStackTrace(); 

        }          

 

    

   } 
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APPENDIX C 

FOR EACH MUTANT, THE TEST CLASS HAS TO BE ADDED TO RUN 

MUTANT OUTPUT 

 

package AOIS_1; 

import java.lang.reflect.Method; 

import java.lang.reflect.Modifier; 

import java.lang.reflect.Type; 

import java.io.*; 

import java.io.BufferedReader; 

import java.io.FileReader; 

import java.io.IOException; 

import java.math.BigDecimal; 

import java.math.BigInteger; 

 

public class R1 

{ 

   public R1(){} 

   public void runfib(){ 

   BufferedWriter output = null; 

    try { 

                        

             File file = new File("AOIS_1//m1.txt"); 

            output = new BufferedWriter(new FileWriter(file)); 

            for (int i=1;i<=200;i++){ 

            int result=Fibonacci.fib(i); 

            output.write(Integer.toString(result)); 

            }// for 

           

           output.close(); 

             

    } catch ( IOException e ) { 

            e.printStackTrace(); 

        }          

 

    

   } 
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