
North Carolina Journal of
Mathematics and Statistics
Volume 6, Pages 1–13 (Accepted January 13, 2020, published January 16, 2020)
ISSN 2380-7539

A computational investigation on how visitation affects the reproduction number in a
dengue fever model

Karen A. Yokley, Hannah Parker, Sabrina Campelo, and Crista Arangala

ABSTRACT. Dengue fever is transmitted by day-biting mosquitoes in tropical climates and is a ma-
jor public threat for many countries. Ordinary differential equation models can be used to describe
how infectious diseases move throughout populations, and predictions from these models may help
in the development of effective treatment strategies. In order to investigate the spread of dengue
fever in neighboring communities, a previously developed SIR/SI model of dengue transmission in
neighboring communities in Sri Lanka was used to generate the basic reproduction number, R0.
Parameters for time spent in neighboring communities were varied in order to investigate how time
spent in communities of different sizes affects the reproduction number. Results suggest that move-
ment of individuals among communities increases the reproduction number, especially if people are
traveling to a population of greater size.

1. Introduction

Dengue fever is a disease spread by mosquitoes in tropical areas and is a major public health
threat with more than 2.5 billion people at risk for acquiring the virus (Ranjit and Kissoon, 2011;
Sirisena and Noordeen, 2014). Aedes aegypti and Aedes albopictus mosquitoes are the primary
carriers of the dengue virus, laying their eggs closely around homes in tropical areas. Urbaniza-
tion trends have increased mosquito populations and the prevalence of the disease (Gubler and
Clark, 1995; Gubler et al., 2014). Treatments to control the disease have not yet been fully devel-
oped; therefore prevention is currently the most effective method to slow the spread of the disease
(Laughlin et al., 2012; Sirisena and Noordeen, 2014).

Aedes mosquitoes, more specifically Ae. aegypti mosquitoes, are typically the primary carriers
of the dengue virus. Ae. aegypti spend a majority of their lifetime around the houses where they
grow and develop, meaning the people (rather than the mosquitoes themselves) are likely more
responsible for transmitting the virus between various communities (World Health Organization,
2009). When the infected mosquito bites a human, the virus binds to white blood cells and repro-
duces inside the cells. Symptoms expressed of dengue fever include high fever, flu-like symptoms,
severe headache, severe eye pain behind the eyes, muscle and/or bone pain, rash, mild bleeding
manifestation, and/or low white cell count (CDC, 2012). Fluids from the bloodstream leak into
body cavities, resulting in less blood circulating in blood vessels which can eventually result in a
loss of blood pressure and a failure of delivery of blood to vital organs (Martina et al., 2009).

Dengue fever and dengue hemorrhagic fever belong to a group of four viruses referred to as
serotypes of the disease (DEN-1, DEN-2, DEN-3, and DEN-4). If left untreated, infection can
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lead to serious forms of the disease known as dengue hemorrhagic fever (DHF) and dengue shock
syndrome (DSS). Infection from one serotype does not result in immunity from the other strains,
and contraction of a second serotype leads to an increased risk of developing DHF/DSS (Gubler
and Clark, 1995; Gubler et al., 2014). Dengue fever is a also major concern in tropical countries
because of increases in reported cases of DHF (Gubler, 1998; Monath, 1994).

The mosquitoes responsible for spreading the virus are primarily active during the daytime. The
infection can be contracted through a single bite, humans being the primary host of the virus.
Vaccines for dengue fever are not yet well established, but one vaccine has been administered in a
few countries (Maron, 2015). Currently, the most effective way to manage the spread of the virus
is through preventative measures (World Health Organization, 2009). Mathematical models are
used to predict the path of infection transmission and have been used to investigate how measures
such as the use of repellents (Dorsett et al., 2016) and genetic interventions (Okamoto et al., 2013;
Robert et al., 2013) affect the transmission of vector-borne diseases. Simulating the spread of the
disease helps researchers achieve a better understanding of intervention techniques.

Disease transmission within populations is often described using ordinary differential equation
(ODE) models. Vector-borne diseases were first described using ODE models by Ross and Mac-
Donald (Macdonald, 1957), and many later models use a similar framework based on suscepti-
ble (S) and infected (I) populations (Aneke, 2002; Rodrı́guez and Torres-Sorando, 2001; Torres-
Sorando and Rodrıguez, 1997). Additional categories, including individuals removed from the
other populations or exposed but not able to infect others, are sometimes also incorporated (Aron
and May, 1982; Esteva and Vargas, 1998; Pinho et al., 2010). Disease transmission models may
also include movement of individuals to different areas (Auger et al., 2008; Rodrı́guez and Torres-
Sorando, 2001; Torres-Sorando and Rodrıguez, 1997) or incorporate discrete modeling structures
(Lloyd et al., 2007; MacDonald et al., 1968; Yokley et al., 2014).

The development of prevention and intervention methods for combating the spread of mosquito-
borne diseases should consider how mobile populations affect disease spread (Osorio et al., 2004).
The previous study in Reagan et al. (2019) developed an SIR/SI model of dengue fever transmis-
sion using the visitation model of malaria presented in Torres-Sorando and Rodrıguez (1997) with
the existing model of dengue fever in Esteva and Vargas (1998). The current study extends the
investigation from Reagan et al. (2019) to consider how visiting different communities affects the
basic reproduction number.

The basic reproduction number represents the expected number of new infections that arise
from a single infected subject in a population where all subjects are susceptible to acquiring the
disease (Chowell et al., 2007). This study will investigate how the amount of time spent in a
neighboring community affects the reproduction number produced from the already developed
model in Reagan et al. (2019). By adjusting the fraction of time an individual spends in each patch,
we can observe the trends and changes in reproduction number, and determine which visitation
patterns have the largest impact on the variation in reproduction number. This information will
improve the understanding of the outbreak patterns in these communities and could lead to more
effective intervention strategies.

2. Model Background

A previous study developed a model for the transmission of dengue fever between interacting
neighboring communities (Reagan et al., 2019). This model combined the SIR model for dengue
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fever in Esteva and Vargas (1998) with the visitation model for malaria transmission in Torres-
Sorando and Rodrıguez (1997). The study in Reagan et al. (2019) focused on simulating dengue
transmission among three communities in Sri Lanka: the city of Colombo with a population of
about 648,000 (worldatlas.com, 2015a), the smaller city Sri Jayawardenpura Kotte with a popula-
tion of about 115,000 (worldatlas.com, 2015b), and the town of Peliyagoda with a population of
about 31,000 (Time.is, 2016). Humans are at risk for being bitten at home and while they are away,
therefore being at risk for acquiring or spreading the virus in a community other than their own.

The SIR/SI model of dengue transmission among three neighboring communities is based on
the assumption that the human population would remain constant, and infection with only a single
serotype was represented (Reagan et al., 2019). The system of differential equations from Reagan
et al. (2019) is presented below.

dSh1(t)

dt
= µhNh1 −

βhb

N∗
h1 +m

(T11Sh1(t)Iv1(t))−
βhb

N∗
h2 +m

(T12Sh1(t)Iv2(t)) . . . (2.1)

− βhb

N∗
h3 +m

(T13Sh1(t)Iv3(t))− µhSh1(t)

dSh2(t)

dt
= µhNh2 −

βhb

N∗
h2 +m

(T22Sh2(t)Iv2(t))−
βhb

N∗
h1 +m

(T21Sh2(t)Iv1(t)) . . . (2.2)

− βhb

N∗
h3 +m

(T23Sh2(t)Iv3(t))− µhSh2(t)

dSh3(t)

dt
= µhNh3 −

βhb

N∗
h3 +m

(T33Sh3(t)Iv3(t))−
βhb

N∗
h1 +m

(T31Sh3(t)Iv1(t)) . . . (2.3)

− βhb

N∗
h2 +m

(T32Sh3(t)Iv2(t))− µhSh3(t)

dIh1(t)

dt
=

βhb

N∗
h1 +m

(T11Sh1(t)Iv1(t)) +
βhb

N∗
h2 +m

(T12Sh1(t)Iv2(t)) . . . (2.4)

+
βhb

N∗
h3 +m

(T13Sh1(t)Iv3(t))− (µh + γh) Ih1(t)

dIh2(t)

dt
=

βhb

N∗
h2 +m

(T22Sh2(t)Iv2(t)) +
βhb

N∗
h1 +m

(T21Sh2(t)Iv1(t)) . . . (2.5)

+
βhb

N∗
h3 +m

(T23Sh2(t)Iv3(t))− (µh + γh) Ih2(t)

dIh3(t)

dt
=

βhb

N∗
h3 +m

(T33Sh3(t)Iv3(t)) +
βhb

N∗
h1 +m

(T31Sh3(t)Iv1(t)) . . . (2.6)

+
βhb

N∗
h2 +m

(T32Sh3(t)Iv2(t))− (µh + γh) Ih3(t)

dRh1(t)

dt
= γhIh1(t)− µhRh1(t) (2.7)

dRh2(t)

dt
= γhIh2(t)− µhRh2(t) (2.8)

dRh3(t)

dt
= γhIh3(t)− µhRh3(t) (2.9)



4 K.A. Yokley, H. Parker, S. Campelo, & C. Arangala
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Nhi and Nvi represent the human and vector population sizes in patch i. Nh is the total human
population size, with Nhi representing the fixed (home) population of each patch i. Tij is the
fraction of the day that humans living in patch i spend visiting a different patch, j, during the day
while interacting with mosquitoes in patch j. Tij values are fractions of the day and the model
is based on average populations based on these fractions. Humans are assumed to be in only one
patch at a time,

Tii =

(
1−

∑
j

Tij

)
, (2.16)

and the number of humans in a particular patch was calculated using

N∗
hj =

∑
i

TijNhi . (2.17)

µh represents the per capita human birth and death rate assuming a constant population, and µv is
a per capita mortality rate of the mosquitoes. γh is a constant recovery rate for the humans, b is the
average number of bites per mosquito per day, βh is the probability that the disease is transmitted
from vector to human, βv is the transmission probability from human to mosquito, and m is the
number of alternative hosts available for mosquitoes to bite per patch (Esteva and Vargas, 1998).
Ai represents the constant recruitment rate for mosquitoes in patch i.

Fixed parameter values used in equations (2.1)-(2.17) are presented in Table 2.1. As previously
mentioned, the number of humans in each patch, Nhi, were based on communities in Sri Lanka.
Patch 1 will represent Colombo (Nh1 = 325000), Patch 2 will represent Sri Jayawardenepura
Kotte (Nh2 = 110000), and Patch 3 will represent Peliyagoda (Nh3 = 32000). Tij were based on
generalized amounts of time spent working (Reagan et al., 2019).
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TABLE 2.1. Parameter values used in equations (2.1)-(2.17).

Parameter Symbol Value Source

Per capita human birth and death rate µh 0.0000457 (Esteva and Vargas, 1998)
Per capita mortality rate in mosquitoes µv 0.25 (Esteva and Vargas, 1998)
Average number of bites per mosquito per day b 0.5 (Esteva and Vargas, 1998)
Transmission probability from vector to human βh 0.75 (Esteva and Vargas, 1998)
Transmission probability from human to vector βv 1 (Esteva and Vargas, 1998)
Number of alternative hosts available per patch m 0 (Esteva and Vargas, 1998)
Human recovery rate γh 0.1428 (Esteva and Vargas, 1998)
Recruitment rate for patch i Ai

1
3
Nvi (Soewono and Supriatna, 2001)

TABLE 2.2. Visitation parameter values, Tij , from Reagan et al. (2019).

j
TO

Colombo
(Patch 1)

Sri Jayawardenepura
Kotte (Patch 2)

Peliyagoda
(Patch 3)

i
FROM Colombo (Patch 1) 1 0 0

Sri Jayawardenepura
Kotte (Patch 2) 0.05 0.95 0

Peliyagoda (Patch 3) 0.08 0.04 0.88

The mosquito (or vector) population, Nvi, was assumed to be two times the human population
within each patch, i.e., 2Nhi = Nvi. This assumption was based on previously used ratios (around
4 to 1 (Hughes and Britton, 2013) and 2 to 1 (Kuniyoshi and dos Santos, 2017)).

The investigation in Reagan et al. (2019) set values for Tij based on work expectations and using
a 24-hour day. The assumptions for the visitation times are as follows:

• 12% of the time of the population of Peliyagoda is assumed to be spent in Colombo (8%)
and in Sri Jayawardenepura Kotte (4%).
• 5% of the time of the population of Sri Jayawardenepura Kotte is spent in Colombo, and

the population of Sri Jayawardenepura Kotte. is assumed to spend a negligible percentage
of time in Peliyagoda.
• People in Colombo are assumed to stay in Colombo.

The resulting values for the various Tij are presented in Table 2.2. The parameter values in Ta-
ble 2.2 were considered baseline values for the current study.

3. Simulation Methods

The basic reproduction number, R0, was calculated using the model from Reagan et al. (2019)
with various values of Tij . R0 was calculated using the method from Van den Driessche and
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Watmough (2002) and described in Browne et al. (2014). Specific parameter values were used
in generating R0, including population numbers for the particular communities being modeled.
Additionally, parameter values presented in Section 2 were used to calculate R0.

A systematic investigation was performed, which generated R0 under different visitation con-
ditions. Values used for Tij to generate R0 are presented in tables with resulting R0 values in
Section 4. All simulations were run in Mathematicar, Version 12.0. Values for Tij in all simula-
tions satisfied Equation (2.16), although some sets of visitation times may not be realistic in terms
of time physically spent in multiple locations (considering the ability to move among the three ar-
eas, time for sleep, etc.) A wide-ranging set of semi-realistic values of Tij were identified and used
to generate R0. Based on the results using these visitation times, more focused investigations were
performed. The investigation was based on the assumption that most individuals whose home was
in Colombo would stay completely or primarily in Colombo (Patch 1). Hence, the more focused
investigations considered changes in visitation for individuals in Sri Jayawardenepura Kotte (Patch
2) and Peliyagoda (Patch 3).

4. Results

Resulting values of R0 are presented in Table 4.1–Table 4.7. Each table lists the values of
Tij used to generate R0. Table 4.1 presents the beginning overall simulations. Tables 4.2-4.4
present results when the visitation times were held as in Reagan et al. (2019) except in Patch 2. In
Table 4.3, results are presented for simulations where T21 values were increased, representing an
increase in visitation time from individuals in Patch 2 traveling to Patch 1. As T21 values increase,
R0 values increase. However, Table 4.4, which includes simulation results for individuals from
Patch 2 spending higher visitation time in Patch 3, does not show a similar R0 trend.

Tables 4.5–4.7 present results for when the visitation times remained as used in Reagan et al.
(2019) for Patch 1 and Patch 2 but were changed for Patch 3. In all three tables, R0 increases
as visitation time outside Patch 3 increases. Both Colombo (Patch 1) and Sri Jayawardenepura
Kotte (Patch 2) have significantly higher populations than Peliyagoda (Patch 3), and the trend of
increasing R0 with increasing visitation time in one patch is consistent with the results for Patch 2
if the patch being visited has a higher population.

A trend of increasing R0 can be seen in Tables 4.3, 4.6, and 4.7, which all show results from
simulations where visitation times are increasing in a patch that has a higher population than the
one of the individual’s origin. A similar trend is not seen for Table 4.4, which shows simulation
results for individuals in Patch 2 spending time in a patch of smaller population (Patch 3). Note
that some values are unreasonable (95% of the time, individuals from Patch 2 will not be in Patch
1, for example) but are used to investigate general trends. The simulated R0 results versus the
visitation time in single patch of increased visitation are plotted in Figures 4.1(a)-4.2(b).

The calculated reproduction number,R0 in Reagan et al. (2019) was 3.29. Using visitation times
that reflect no visitation (i.e., Tij = 1 when i = j and Tij = 0 when i 6= j), R0 was calculated to
be 3.241. All other resulting R0 values as a part of this investigation were greater than 3.241.

5. Discussion and Conclusions

A previous study developed a model of dengue fever transmission incorporating human mobility
among three communities in Sri Lanka (Reagan et al., 2019). The current study ran multiple sim-
ulations to generate the basic reproduction number, R0, using the model from Reagan et al. (2019)
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TABLE 4.1. Wide-range investigation using semi-realistic values of Tij to generate
R0. All of the time values have been rounded to three decimal places except for
those denoted with an asterisk (*). The first line is from the original simulation in
Reagan et al. (2019), which is presented for reference.

T11 T12 T13 T21 T22 T23 T31 T32 T33 R0

1 0 0 0.05 0.95 0 0.08 0.04 0.88 3.290
1 0 0 0.375 0.675 0 0.25 0.125 0.625 3.469
1 0 0 0.375 0.675 0 0.08 0.04 0.88 3.412
1 0 0 0.05 0.95 0 0.25 0.125 0.625 3.375
1 0 0 0.37495* 0.62495* 0.0001* 0.375 0.625 0 3.463
0.958 0.042 0 0.05 0.95 0 0.08 0.04 0.88 3.283
0.917 0.083 0 0.05 0.95 0 0.08 0.04 0.88 3.293
0.958 0 0.042 0.05 0.95 0 0.08 0.04 0.88 3.253
0.917 0 0.083 0.05 0.95 0 0.08 0.04 0.88 3.265
1 0 0 0.042 0.958 0 0.08 0.04 0.88 3.288
1 0 0 0.083 0.917 0 0.08 0.04 0.88 3.298
1 0 0 0 0.958 0.042 0.08 0.04 0.88 3.290
1 0 0 0 0.917 0.083 0.08 0.04 0.88 3.284
1 0 0 0.05 0.95 0 0.042 0 0.958 3.268
1 0 0 0.05 0.95 0 0.083 0 0.917 3.275
1 0 0 0.05 0.95 0 0 0.042 0.958 3.271
1 0 0 0.05 0.95 0 0 0.083 0.958 3.292

TABLE 4.2. In-depth investigation on visitation from individuals in Sri Jayawar-
denepura Kotte (Patch 2). Between each case, the time that people from Patch 2
remained in Patch 2 was decreased by 0.1, and this difference was split and added
between Patch 1 and 3. The first line is from the original simulation in Reagan et al.
(2019), which is presented for reference.

T11 T12 T13 T21 T22 T23 T31 T32 T33 R0

1 0 0 0.05 0.95 0 0.08 0.04 0.88 3.290
1 0 0 0.1 0.85 0.05 0.08 0.04 0.88 3.310
1 0 0 0.15 0.75 0.1 0.08 0.04 0.88 3.357
1 0 0 0.2 0.65 0.15 0.08 0.04 0.88 3.399
1 0 0 0.25 0.55 0.2 0.08 0.04 0.88 3.438
1 0 0 0.3 0.45 0.25 0.08 0.04 0.88 3.472
1 0 0 0.35 0.35 0.3 0.08 0.04 0.88 3.499
1 0 0 0.4 0.25 0.35 0.08 0.04 0.88 3.518
1 0 0 0.45 0.15 0.4 0.08 0.04 0.88 3.516
1 0 0 0.5 0.05 0.45 0.08 0.04 0.88 3.465
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TABLE 4.3. In-depth investigation on visitation from individuals in Sri Jayawar-
denepura Kotte (Patch 2). Between each case, the time that people from Patch 2
remained in Patch 2 was decreased by 0.1, and this difference was added to Patch
1. The first line is from the original simulation in Reagan et al. (2019), which is
presented for reference.

T11 T12 T13 T21 T22 T23 T31 T32 T33 R0

1 0 0 0.05 0.95 0 0.08 0.04 0.88 3.290
1 0 0 0.15 0.85 0 0.08 0.04 0.88 3.320
1 0 0 0.25 0.75 0 0.08 0.04 0.88 3.359
1 0 0 0.35 0.65 0 0.08 0.04 0.88 3.401
1 0 0 0.45 0.55 0 0.08 0.04 0.88 3.443
1 0 0 0.55 0.45 0 0.08 0.04 0.88 3.484
1 0 0 0.65 0.35 0 0.08 0.04 0.88 3.523
1 0 0 0.75 0.25 0 0.08 0.04 0.88 3.559
1 0 0 0.85 0.15 0 0.08 0.04 0.88 3.597
1 0 0 0.95 0.05 0 0.08 0.04 0.88 3.763

TABLE 4.4. In-depth investigation on visitation from individuals in Sri Jayawar-
denepura Kotte (Patch 2). Between each case, the time that people from Patch 2
remained in Patch 2 was decreased by 0.1, and this difference was added to Patch
3. The first line is from the original simulation in Reagan et al. (2019), which is
presented for reference.

T11 T12 T13 T21 T22 T23 T31 T32 T33 R0

1 0 0 0.05 0.95 0 0.08 0.04 0.88 3.290
1 0 0 0.05 0.85 0.1 0.08 0.04 0.88 3.311
1 0 0 0.05 0.75 0.2 0.08 0.04 0.88 3.352
1 0 0 0.05 0.65 0.3 0.08 0.04 0.88 3.383
1 0 0 0.05 0.55 0.4 0.08 0.04 0.88 3.405
1 0 0 0.05 0.45 0.5 0.08 0.04 0.88 3.418
1 0 0 0.05 0.35 0.6 0.08 0.04 0.88 3.422
1 0 0 0.05 0.25 0.7 0.08 0.04 0.88 3.414
1 0 0 0.05 0.15 0.8 0.08 0.04 0.88 3.378
1 0 0 0.05 0.05 0.9 0.08 0.04 0.88 3.278

with various visitation times. The reproduction numbers from this analysis were between 3.253
and 3.763. The smallest generatedR0 resulted from individuals staying in their home communities,
or patches, which supports the idea that population movement increases rates of infection.

Simulation results suggest that the reproduction number increases with additional population
movement, especially if the movement is from individuals from a smaller population to a larger
population. This increase is likely due to susceptible humans coming into contact with a larger
population of (potentially) infected individuals. Simulation results for individuals moving from
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TABLE 4.5. In-depth investigation on visitation from individuals in Peliyagoda
(Patch 3). Between each case, the time that people from Patch 3 remained in Patch
3 was decreased by 0.1, and this difference was split and added between Patch 1
and 2. The first line is from the original simulation in Reagan et al. (2019), which
is presented for reference.

T11 T12 T13 T21 T22 T23 T31 T32 T33 R0

1 0 0 0.05 0.95 0 0.08 0.04 0.88 3.290
1 0 0 0.05 0.95 0 0.13 0.09 0.78 3.325
1 0 0 0.05 0.95 0 0.18 0.14 0.68 3.361
1 0 0 0.05 0.95 0 0.23 0.19 0.58 3.398
1 0 0 0.05 0.95 0 0.28 0.24 0.48 3.434
1 0 0 0.05 0.95 0 0.33 0.29 0.38 3.470
1 0 0 0.05 0.95 0 0.38 0.34 0.28 3.506
1 0 0 0.05 0.95 0 0.43 0.39 0.18 3.542
1 0 0 0.05 0.95 0 0.48 0.44 0.08 3.578

TABLE 4.6. In-depth investigation on visitation from individuals in Peliyagoda
(Patch 3). Between each case, the time that people from Patch 3 remained in Patch
3 was decreased by 0.1, and this difference was added to Patch 1. The first line is
from the original simulation in Reagan et al. (2019), which is presented for refer-
ence.

T11 T12 T13 T21 T22 T23 T31 T32 T33 R0

1 0 0 0.05 0.95 0 0.08 0.04 0.88 3.290
1 0 0 0.05 0.95 0 0.18 0.04 0.78 3.318
1 0 0 0.05 0.95 0 0.28 0.04 0.68 3.349
1 0 0 0.05 0.95 0 0.38 0.04 0.58 3.381
1 0 0 0.05 0.95 0 0.48 0.04 0.48 3.416
1 0 0 0.05 0.95 0 0.58 0.04 0.38 3.450
1 0 0 0.05 0.95 0 0.68 0.04 0.28 3.486
1 0 0 0.05 0.95 0 0.78 0.04 0.18 3.521
1 0 0 0.05 0.95 0 0.88 0.04 0.08 3.557

their patch of origin to a patch of higher population showed a trend of increasingR0 with increasing
visitation time in the patch with more people. However, values for the visitation time were used for
some simulations that would exceed typical movement for employment or day-to-day activities.

Many of the population values are held as constants in the model, such as overall and patch
population sizes. More sophisticated structures for modeling the populations in the individuals in
each patch could strengthen the predictions. Additionally, no climate considerations are incorpo-
rated in the model nor have infections from multiple serotypes. Refinements to the model could
help identify how to target intervention methods (regionally) to best combat disease spread. Addi-
tionally, different prevention methods may be more effective in urban settings than rural ones (and



10 K.A. Yokley, H. Parker, S. Campelo, & C. Arangala

TABLE 4.7. In-depth investigation on visitation from individuals in Peliyagoda
(Patch 3). Between each case, the time that people from Patch 3 remained in Patch
3 was decreased by 0.1, and this difference was added to Patch 2. The first line is
from the original simulation in Reagan et al. (2019), which is presented for refer-
ence.

T11 T12 T13 T21 T22 T23 T31 T32 T33 R0

1 0 0 0.05 0.95 0 0.08 0.04 0.88 3.290
1 0 0 0.05 0.95 0 0.08 0.14 0.78 3.336
1 0 0 0.05 0.95 0 0.08 0.24 0.68 3.385
1 0 0 0.05 0.95 0 0.08 0.34 0.58 3.435
1 0 0 0.05 0.95 0 0.08 0.44 0.48 3.485
1 0 0 0.05 0.95 0 0.08 0.54 0.38 3.534
1 0 0 0.05 0.95 0 0.08 0.64 0.28 3.583
1 0 0 0.05 0.95 0 0.08 0.74 0.18 3.631
1 0 0 0.05 0.95 0 0.08 0.84 0.08 3.678

0.0 0.2 0.4 0.6 0.8 1.0
T21

3.3

3.4

3.5

3.6

3.7

3.8

R0

(a) Patch 2 to Patch 1
0.0 0.2 0.4 0.6 0.8 1.0

T23
3.3

3.4

3.5

3.6

3.7

3.8

R0

(b) Patch 2 to Patch 3

FIGURE 4.1. Predicted changes inR0 resulting from increased visitation time from
individuals in Sri Jayawardenepura Kotte (Patch 2) to another patch.

vice versa), and tailoring community-specific strategies may have a greater impact than a single
intervention method.
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