

Progress of All-inorganic Cesium Lead-free Perovskite Solar Cells

Author	Xiaotong Li, Jinbo Wu, Shenghao Wang, Yabing
	Qi
journal or	Chemistry Letters
publication title	
volume	48
number	8
page range	989-1005
year	2019-06-04
Publisher	The Chemical Society of Japan
Rights	(C) 2019 The Chemical Society of Japan
Author's flag	publisher
URL	http://id.nii.ac.jp/1394/00001058/

doi: info:doi/10.1246/cl.190270

Highlight Review

Progress of All-inorganic Cesium Lead-free Perovskite Solar Cells

Xiaotong Li,¹ Jinbo Wu,¹ Shenghao Wang,^{*1,2} and Yabing Qi^{*2} ¹Materials Genome Institute, Shanghai University, Shanghai 200444, P. R. China ²Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan

E-mail: shenghao.wang@oist.jp (S. Wang), Yabing.Qi@OIST.jp (Y. B. Qi)

Yabing Qi is Professor and Unit Director of Energy Materials and Surface Sciences Unit (EMSSU) at Okinawa Institute of Science and Technology (OIST). Prior to his current appointment, Prof. Qi was a postdoctoral fellow at Princeton University. He received his B.S., M.Phil., and Ph.D. from Nanjing University, Hong Kong University of Science and Technology, and University of California Berkeley, respectively. His research interests include perovskite solar cells, surface sciences, energy materials, and organic electronics. (https://groups.oist.jp/emssu)

Shenghao Wang is professor in Materials Genome Institute, Shanghai University, China. He received Ph.D. from University of Tsukuba in 2013. Prior to his current appointment, he worked as a postdoctoral scholar in Prof. Yabing Qi's Unit at the OIST from 2013–2016, and then he worked in Institute of Applied Physics, University of Tsukuba from 2017–2018. His research interests include surface and interface sciences, photoemission spectroscopy techniques, and solar cells.

Xiaotong Li received her B.S. Degree in Polymer Materials and Engineering from Qingdao University of Science and Technology. She is currently studying for a Master's Degree in the Materials Genome Institute, Shanghai University. Her research interest focuses on lead-free perovskite solar cells.

Jinbo Wu is Professor in Material Genome Institute at Shanghai University. Dr. Jinbo Wu obtained his B.S. in Applied Chemistry from Shandong University, Master and Doctoral Degree from the Hong Kong University of Science and Technology (HKUST). Prior to his current appointment, Dr. Wu was a postdoctoral fellow at HKUST and King Abdullah University of Science and Technology (KAUST). Dr. Wu's research interests include microfluidics, electrorheological fluid and evaporative guided droplet self-assembly.

Abstract

Metal halide-based perovskite solar cells (PSCs) have developed rapidly due to exceptional optoelectronic properties of perovskite materials (such as high optical absorption coefficient, long charge carrier lifetime, long diffusion length, high carrier mobility and tunable bandgaps) and low-cost fabrication processes. The record power conversion efficiency has exceeded **24**%, demonstrating the great potential for photovoltaic application. However, the lead toxicity and instability still present as major obstacles for commercialization. In principle, Pb can be replaced with other less-toxic as well as environmentally benign metals, such as Ag, Na, Sn, Ge, Bi, Sb and Ti, to solve the toxicity issue. Replacing methylammonium (MA^+) or formamidinium (FA^+) with cesium (Cs^+) represents a promising direction to address the instability issue. Herein, we review the recent progress of all-inorganic cesium lead-free halide PSCs. At the end, we outline challenges and future directions.

Keywords: Perovskite solar cell | Lead-free | Stability

1. Introduction

Kojima et al. for the first time introduced CH₃NH₃PbI₃ perovskite into dye-sensitized solar cells, and achieved a power conversion efficiency (PCE) of 3.8% in 2009.1 Subsequently, solid-state solar cells were fabricated by using CH₃NH₃PbI₃ as light absorption layer and 2,2',7,7'-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro-OMeTAD) as hole transport layer (HTL) instead of iodine electrolyte resulting in a much higher PCE of 9.7%.² In the past several years, the device structure, interfacial engineering and processing technique of perovskite solar cells (PSCs) have been rapidly developed.³⁻⁵ At present, the PCE has exceeded 23%.⁶ Although high PCE has been achieved. PSCs still have not met the requirement for commercial applications due to the two pending major challenges: instability and toxicity.7-9 Methylammonium lead triiodide (MAPbI₃) and formamidinium lead triiodide (FAPbI₃), which contain organic cations, have poor stability against heat, light, and moisture.¹⁰⁻¹⁴ In order to improve the stability of hybrid organic-inorganic perovskites, it has been reported that all-inorganic cesium halide perovskites have become desirable candidates by replacing methylammonium (MA^+) or formamidinium (FA^+) with cesium (Cs^+) due to their excellent thermodynamic stability and resistance to humidity.¹⁵ However, the toxicity issue is still an unresolved problem. Considering the risk, it is important to reduce or preferably eliminate lead from the photovoltaic devices. Therefore, it is of importance to develop all-inorganic lead-free PSCs.

Theoretical studies based on density functional theory (DFT) have demonstrated that the unique photovoltaic properties of lead-based perovskites can be mainly attributed to the combination of the structure symmetry and the existence of lone-pair 6 s² orbitals in lead, which results in direct-gap p-p transitions and appropriate bandgaps.^{16,17} On the other hand, according to the geometric tolerance factor $t = (R_A + R_X)/[2^{1/2}(R_B + R_X)]$,^{18,19} where R_A , R_B and R_X are the effective ion radius of A, B and X ions in the typical perovskite formula ABX₃, the size of Pb²⁺ can maintain a special symmetrical structure. For a stable structure, *t* ranges from 0.8 to 1.0. Substantial deviations from this range can lead to structural distortion, which weakens photovoltaic characteristics, such as poor optical absorption, wider band gap, and larger effective mass of electrons/holes.^{20–22} Therefore, only limited metal ions are suitable for replacing lead ions.

In the present work, we review the development of allinorganic cesium lead-free halide PSCs, including materials properties, fabrication methods, stability improvement, and so on. Two types of structures, namely, homovalent to lead and heterovalent to lead are mainly discussed. Also a brief overview on the current challenges and prospectives in the development of all-inorganic cesium lead-free halide PSCs is given.

2. Homovalent to Lead

2.1 CsSnX₃ (X = I, Br, or a Mixture of I and Br). Sn and Pb belong to the same family with lone-pair s orbitals and have similar electronic arrangement. Sn has two main oxidation states, namely, +2 state and the more stable +4 state. More impressively, Sn-based perovskites exhibit similar or sometimes even superior electronic and optical characteristics compared to Pb-based perovskites, including narrower optical bandgap and higher charge carrier mobility.^{23,24} So far Sn-based perovskites with a general formula of ASnX₃ (A represents monovalent organic or inorganic cation) are thus the most well studied alternatives in the area of lead-free PSCs. Although most Snbased PSCs with high PCE used organic Sn-based perovskite materials as absorbing layers, such as MASnX₃ and FASnX₃, inorganic Sn-based perovskites have great potential due to their intrinsic thermal and air stability.²⁵ According to t,^{18,19} Cs⁺ is the most promising inorganic cation to replace organic cation. CsSnI₃ exhibits two polymorphs: one is a yellow one-dimensional (1D) double-chain structure (*i.e.*, Y-CsSnI₃), the other is a black three-dimensional (3D) perovskite structure (i.e., B-y-CsSnI₃).²⁶ Y-CsSnI₃ has nearly no photovoltaic response under solar light illumination, while B-v-CsSnI₂ (which crystallizes in the orthorhombic Pnma space group adopting a distorted 3D perovskite structure; see the panel *i* of Figure 1a) has excellent optical properties with a direct band gap of 1.3 eV and high absorption in the visible range (panel *ii* of Figure 1a).²⁷ Moreover, at room temperature, B-\gamma-CsSnI₃ has a fairly high hole mobility of \sim 585 cm² V⁻¹ s^{-1 26} and low exciton binding energy of ~ 18 meV.²⁸ The abovementioned excellent properties indicate that B-y-CsSnI₃ has good potential as a light-absorbing material for PSCs.

2.1.1 Performance of CsSnX₃ PSCs: In 2012, Chen *et al.* first reported the Schottky solar cell based on CsSnI₃ thin film, which is synthesized by depositing SnCl₂ layer through e-beam evaporation and CsI layer through thermal evaporation on glass substrate followed by annealing.²⁹ The device consists of a simple structure of indium tin oxide (ITO)/CsSnI₃/Au/Ti (panel *i* of Figure 1b) showing a PCE of 0.88% (panel *ii* of Figure 1b). This low efficiency may be associated to the deteriorated film quality and the device structure.

CsSnI₃ easily forms intrinsic vacancies, leading to metallic conductivity.²⁶ These intrinsic defects lead to short carrier lifetime and severe nonradiative recombination. In order to fabricate low-defect and good-quality Sn-based perovskites films, searching for suitable additives or new film preparations may be valid solutions. In 2014, Kumar *et al.* firstly explored the addition of SnF₂ to reduce the Sn vacancies resulting in the reduced intrinsic defects and background carrier densities and hence inhibit the metallic conductivity.³⁰ With 20 mol % SnF₂ addition, the PCEs of 1.87% and 2.02% were achieved in the CsSnI₃ PSCs using spiro-OMeTAD and 4, 4', 4"-tris(*N*,*N*-phenyl-3-methylamino)triphenylamine (m-MTDATA) as HTL, respectively. The higher efficiency is attributed to the higher recombination resistance of m-MTDATA. However, in both devices, the *V*oc (0.24 V) is low.

The substitution of I⁻ by Br⁻ in CsSnI₃ can change the band structure and thus effectively adjust its band gap.²⁵ As I⁻ is gradually replaced by Br⁻, the bandgap of CsSnX₃ can be adjusted from 1.27 eV (pure CsSnI₃) to 1.75 eV (pure CsSnBr₃)

Figure 1. (a) *i*, Distorted 3D perovskite structure of CsSnI₃ at room temperature. Red polyhedron, $[SnI_{6/2}]^-$; yellow sphere, Cs. *ii*. CsSnI₃ shows a sharp absorption edge at 1.3 eV. A, absorption in units of αS^{-1} , where α is the absorption coefficient and S is the scattering coefficient. Reprinted with permission, Springer Nature, 2012.²⁷ (b) *i*, A schematic layer structure of the Schottky solar cell based on CsSnI₃. *ii*, *J*-*V* curves of the champion device in dark (black) and under light illumination (blue) with a power density of 50 mW/cm², equivalent to half of the intensity of AM 1.5 standard radiation. Reprinted with permission, AIP Publishing, 2012.²⁹

with the crystal structure changing from the orthorhombic structure (pure CsSnI₃) to the cubic structure (pure CsSnBr₃) (panel *i* of Figure 2a). The increment of bandgap renders the low charge carrier density (*i.e.*, 6.32×10^{15} cm⁻³ of hole density) and increases charge recombination resistance contributing to the high $V_{\rm OC}$ over 0.4 V (panel *ii* of Figure 2a). However, the $J_{\rm SC}$ is sacrificed. It was found that CsSnI_{2.9}Br_{0.1} PSC achieved the best performance (with 1.76% PCE) among CsSnI_{3-x}Br_x ($0 \le x \le 3$) PSCs in this study.²⁵ It was also revealed that the PCE of 20 mol % SnF₂-CsSnBr₃ PSC can be improved from 0.95% to 1.28% by incorporating thicker TiO₂ (acting as electron transport layer, ETL).²⁵ The best CsSnBr₃ PSC exhibited a PCE of 2.17% with 20 mol % SnF₂ addition and 450 nm TiO₂ as ETL.³¹

A melt-synthesized CsSnI₃ containing high-quality large single crystal grains was reported which has superior properties compared with the polycrystalline counterpart (such as the longer carrier lifetime of 6.6 ns, the minority-carrier diffusion length close to 1 μ m and the lower doping concentration of about 4.5 × 10¹⁷ cm⁻³).³² According to this study, the optimized CsSnI₃ PSC was predicted to have a PCE of 23%, exhibiting

a very low surface recombination velocity $(2 \times 10^3 \,\mathrm{cm \, s^{-1}})$, similar to Pb-based PSC. To achieve high-quality perovskite films, Wang et al. obtained a relatively pure B-\gamma-CsSnI₃ powder by melting mixed SnI₂ and CsI in evacuated tubes and dissolving them with mixed polar solvents, followed by spin coating and annealing (panel *i* of Figure 2b).³³ The PCE of the champion B-γ-CsSnI₃ PSC (150 °C film annealing temperature; \sim 120 nm film thickness) achieved 3.31% without any additives (panel *ii* of Figure 2b). However, B-y-CsSnI₃ shows very poor structural stability, and it easily converts from a cubic phase to a chain structure at room temperature leading to the poor structural stability. Because of such instability, it is difficult to obtain a pure phase and a high-quality film. A uniform, dense and pinhole-free CsSnI₃ film was prepared by evaporation-assisted solution method.³⁴ The scheme of the deposition system is shown in the panel *i* of Figure 2c. SnI_2 with SnF_2 as an additive is firstly deposited on the substrate (typically on mesoporous TiO_2) by a spin-coating method. After annealing, the SnI_2 film is transferred into the vacuum chamber for the next CsI deposition. The sample after vaporization is annealed to ensure the sufficient inter-diffusion of each component. As compared to the work in

Figure 2. (a) *i*, Band gap variation as a function of the Br⁻ concentration. *ii*, J-V curves of CsSnI_{1-x}Br_x-based PSCs. Reprinted with permission, American Chemical Society, 2015.²⁵ (b) *i*, Schematic representation of the one-step solution fabrication of B- γ -CsSnI₃ thin film from solid CsSnI₃. *ii*, Corresponding J-V curve of the champion B- γ -CsSnI₃ PSC. Reprinted with permission, John Wiley and Sons, 2016.³³ (c) *i*, Schematic illustration of the evaporation-assisted solution method. *ii*, Corresponding J-V curves of the champion CsSnI₃ PSC in both forward and reverse directions. Reprinted with permission, John Wiley and Sons, 2018.³⁴

ref 30 (*i.e.*, solution process), the rapid crystallization was retarded and the crystallization process here can be well controlled by the inter-diffusion process. Thus, the device performance improves (2.23% PCE; see the panel *ii* of Figure 2c). The device structures and the device performance of $CsSnX_3$ PSCs are summarized in Table 1.

2.1.2 Stability of CsSnX₃ PSCs: Although CsSnX₃ exceeds MASnX₃ or FASnX₃ in thermal and air stability theoretically,²⁷ the facile tendency of oxidization from Sn²⁺ to Sn⁴⁺ makes the Sn-based perovskites much more sensitive to air than the Pb analogs. For example, the absorbance of CsSnI₃ thin film rapidly degraded to 30% after 40 min in air (see the squared curve in the panel *i* of Figure 3a). This instability can be improved by adding SnX₂, and it was reported by Marshall *et al.* that SnCl₂ was the most effective additive (panel *i* of Figure 3a).

The HTL-free CsSnI₃ PSC (with 3.56% PCE) with 10 mol% SnCl₂ exhibited approximately 10-fold better stability over a device with the same architecture using MAPbI₃ (panel *ii* of Figure 3a).³⁵ The improved device performance and stability stem from n-doping of the ETL by SnCl₂. However, Heo *et al.* reported different results, namely, they compared the additive (SnX₂) effect and found that the SnBr₂ is the best additive to improve the stability of CsSnI₃ (panel *i* of Figure 3b) and the corresponding device shows the prolonged stability of about 100 h with a high PCE of 4.3% (panel *ii* of Figure 3b) due to the passivation effect of the surface.³⁶ It should be commented that the device structures and the constituent layers of the devices in refs 35 and 36 are different, resulting in different effects of the additive. In addition, the fabrication condition can also affect the additive effect role. For example, Song *et al.* reported that

Absorber	Device structure	Voc [V]	Jsc [mA cm ⁻²]	PCE [%]	Device stability (Under continuous constant 1 sun simulated solar illumination)	Year	Ref.
	FTO/c-TiO ₂ /m-TiO ₂ /absorber/ m-MTDATA/Au	0.24	22.70	2.02	After 250 h, negligible variation of		
20 mol % SnF ₂ -CsSnI ₃	FTO/c-TiO2/m-TiO2/absorber/spiro/Au	0.24	25.80	1.87	PCE (stored in glovebox)	2014	30
10 mol % SnI ₂ -CsSnI ₃	ITO/CuI/absorber/C ₆₀ /BCP/Al	-	-	1.5	$\label{eq:After10 days, PCE = 1.35 \%}$ (stored in a nitrogen filled glove box: $<5~ppm~O_2~and < 0.1~ppm~H_2O)$	2015	40
20 mol % SnF ₂ -CsSnI _{2.9} Br _{0.1}	FTO/c-TiO2/m-TiO2/absorber/spiro/Au	0.22	24.16	1.76			
20 mol % SnF ₂ -CsSnI ₃	FTO/c-TiO2/m-TiO2/absorber/spiro/Au	0.20	27.67	1.66			
20 mol % SnF2-CsSnI2Br	FTO/c-TiO2/m-TiO2/absorber/spiro/Au	0.29	15.06	1.67	-	2015	25
20 mol % SnF2-CsSnIBr2	FTO/c-TiO ₂ /m-TiO ₂ /absorber/spiro/Au	0.31	11.57	1.56			
20 mol % SnF2-CsSnBr3	FTO/c-TiO ₂ /m-TiO ₂ /absorber/spiro/Au	0.41	3.99	0.95			
CsSnI ₂	ITO/NiO/absorber/PCBM/Al	0.52	10.21	3.31	_	2016	33
CsSnBr ₂	FTO/m-TiO ₂ /absorber/spiro/Au	0.42	91	2.17		2016	31
2.5 mol % SnF2=CsSnBr2	TTO/MoO:/absorber/Cso/BCP/Ag	0.4	2.4	0.55		2016	41
10 mol % SnCl ₂ -CsSnI ₃	ITO/absorber/PCBM/BCP/AI	-	-	3.56	>45min (~25 % RH, ~50 °C)	2016	35
60 mol % SnF2+HPA- CsSnIBr2	FTO/c-TiO2/m-TiO2/m-Al2O3/absorber/C	0.31	17.4	3.2	After 9 h, PCE = 3.14 % (tested by vacuum thermostatic system with a vacuum of 10^{-6} Torr at 473 K); 103 % of initial PCE after 77 days (encapsulated, ~ 25 °C, ~ 20 % RH)	2016	38
$SnF_2/hydrazine-CsSnI_3$ (CsI : $SnI_2 = 0.4$)	FTO/m-TiO ₂ /absorber/PTAA/ Au	0.38	25.71	4.81	-	2017	37
20 mol % SnF ₂ -CsSnBr ₃	FTO/c-TiO2/m-TiO2/absorber/PTAA/Au	0.37	13.96	3.04	After 5 h without losing the diode characteristics (~ 40 % RH in air)		12
20 mol % SnF ₂ /hydrazine -CsSnI ₃	FTO/c-TiO2/m-TiO2/absorber/PTAA/Au	0.17	30.75	1.83	-	2017	42
CsSnI ₃	FTO/c-TiO2/m-TiO2/absorber/spiro/Au	0.28	17.10	2.23	-	2018	34
10 mol % SnBr ₂ -CsSnI ₃	FTO/c-TiO ₂ /absorber/PTAA/Au	0.44	18.5	4.30	After 10 h, PCE = 4.21 % (25 °C, 40 % RH)		
10 mol % SnCl ₂ -CsSnI ₃	FTO/c-TiO ₂ /absorber/PTAA/Au	0.43	17.4	3.90	After 10 h, PCE = 1.80 % (25 °C, 40 % RH)	2018	36
10 mol % SnI ₂ -CsSnI ₃	FTO/c-TiO ₂ /absorber/PTAA/Au	0.41	18	3.40	After10 h, PCE = 1.23 % (25 °C, 40 % RH)		
CsSn _{0.3} Ge _{0.5} I ₃	FTO/PCBM/absorber/native oxide/spiro/Au	0.63	18.61	7.11	92 % of the initial PCE after 500 h (45 °C in N2); 91 % of the initial PCE after 100 h (45 °C in air)	2019	43

Table 1. The performance and stability of $CsSnX_3$ (X = I, Br, or a mixture of I and Br) PSCs.

FTO: fluorine doped tin oxide, RH: relative humidity, c-TiO₂: compact TiO₂, m-TiO₂: mesoporous TiO₂, TPFB: tetrakis(pentafluorophenyl)borate, HPA: hypophosphorous acid, spiro: spiro-MeOTAD, BCP: bathocuproine, PCBM: [6,6]-phenyl-C₆₁-butyric acid methyl ester, PTAA: poly[bis(4-phenyl)(2,4,6-trimethylphenyl) amine], PEDOT:PSS: poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate).

Figure 3. (a) *i*, Normalized absorbance at 500 nm for CsSnI₃ without and with 10 mol % of SnI₂, SnBr₂, SnCl₂ or SnF₂ additive. All films were deposited on ITO-coated glass. *ii*, Mean (squares) and champion (circles) normalized efficiency for PSCs without encapsulation tested in ambient air (at ~25% humidity and ~50 °C) under continuous 1 sun simulated solar irradiation with the structure: ITO/CsSnI₃ + 10 mol % SnCl₂/PC₆₁BM/BCP/A1 (blue); ITO/MAPbI₃/PC₆₁BM/BCP/A1 (green); ITO/MAPbI₃/PC₆₁BM/Bis-C₆₀/Ag reported in ref 39 (purple). Reprinted with permission, Springer Nature, 2016.³⁵ (b) *i*, *J-V* curves of the encapsulated CsSnI₃ PSCs with SnF₂, SnCl₂, and SnBr₂ additives. *ii*, Corresponding stability of the devices. Reprinted with permission, American Chemical Society, 2018.³⁶ (c) Normalized PCE of the encapsulated CsSnIBr₂ PSCs without and with HPA additive under ambient condition for 77 days. Reprinted with permission, Royal Society of Chemistry, 2016.³⁸

adding SnF₂ in CsSnI₃ under a reducing vapor atmosphere of hydrazine (H₂NNH₂) can stabilize the Sn²⁺ state by playing the role of compensator and Sn²⁺ vacancy inhibitor, which effectively reduces p-type conductivity. The resulting optimized CsSnI₃ PSC (fabricated using molar ratios: CsI:SnI₂ = 0.4) achieved a maximum PCE of 4.81%.³⁷ Except the SnX₂, a new additive, *i.e.*, hypophosphorous acid (HPA) was used to successfully prepare the CsSnIBr₂ perovskite films with low Sn vacancies and stable perovskite phase.³⁸ The champion CsSnIBr₂ PSC achieved a PCE of 3.20%, more importantly, exhibiting stable PCE in 77 days (Figure 3c) and a superior thermal stability (remaining 98% of PCE) after 9 hours of continuous power output at 473 K. The stability property of CsSnX₃ PSCs was also summarized in Table 1.

2.2 CsGeX₃ (X = I, Br, Cl, or a Mixture of I and Br). Except for Sn, Pb replacement by Ge can also form a perovskite structure to satisfy the coordination on ionic size and charge balance.^{15,44} Compared to FAGeI₃ (2.30 eV band gap) and MAGeI₃ (2.00 eV band gap), CsGeI₃ has a more suitable band gap of 1.65 eV,⁴⁵ which is larger than CsSnI₃ (1.3 eV³⁷) due to the deeper orbital energy for Ge 4s states than that of Sn 5s states and the structural distortion of [GeI₆] octahedra.⁴⁶ It was reported that the bandgap of CsGeI₃ varies from 0.73 eV to 2.30 eV under different external strain,⁴⁷ which is important for understanding the effects of strain on the perovskites and guiding the experiments to improve the photovoltaic performance of the PSCs. In addition, the DFT calculation shows that CsGeI₃ has the best electronic and optical properties compared with CsGeBr₃ and CsGeCl₃. However, CsGeI₃ is inferior to CsGe(I_{0.7}Br_{0.3})₃ in applications due to the inferior ductility.⁴⁸ We comment that both mechanical property and the band gap should be considered for mixture CsGe(I_{1-x}Br_x)₃ in application.

CsGeI₃ is crystallized in two different space groups (with 290 °C as phase transition temperature): the lower-temperature structure R3m (panel *i* of Figure 4a) and the higher-temperature structure Pmmm (panel *ii* of Figure 4a).⁴⁹ Obviously, CsGeI₃ possesses the R3m structure at room temperature so high temperature treatment in the film-forming process should be avoided. In fact, in the R3m structure, Ge2+ and I- form a slightly distorted cubic densest packing constituting a pyramid cluster of [GeI₃] and leading to an off-centre symmetry, which results in high optical nonlinear response.⁴⁹ In contrast to the high hole density of CsGeI3 under the Ge-poor condition, CsGeI₃ under the Ge-rich condition is a p-type direct band gap semiconductor with reduced hole density and conductivity due to the increased concentration of the iodine vacancy.⁵⁰ However, due to the short-range potential and strong Ge-Ge covalent bond (Figure 4b), the iodine vacancy in CsGeI₃ is a deep electron trap, which severely restricts electron migration and thus affects V_{OC} of the PSCs.

2.2.1 Performance of CsGeX₃ PSCs: The research work in CsGeI₃ is scant. Although CsGeI₃ exhibits better thermal stability (with no phase transition in the range of device working temperature) compared to MAGeI₃ and FAGeI₃ (panel *i* of Figure 4c),⁴⁵ the V_{OC} of CsGeI₃ PSC is less than 0.1 V leading to a low PCE of only 0.11% due to the terrible film morphology

Figure 4. (a) *i*, The unit-cell structure of CsGeI₃ (*R*3*m*). In *R*3*m* symmetry, the Ge²⁺ ion inclines to one of the corners and a tetrahedron with a Ge²⁺ ion and three I⁻ ions at vertices to form a pyramidal structure. *ii*, The unit-cell structure of CsGeI₃ (Pmmm). In Pmmm symmetry, a Ge²⁺ ion is located at the centre of an octahedron formed by six I⁻ ions. Medium spheres: Cs; small spheres: Ge; large spheres: I. Reprinted with permission, IOP Publishing, 2000.⁴⁹ (b) Structure of V_I⁻. The two Ge ions (Ge₁ and Ge₂) form a covalent bond. Each of them is coordinated with only two iodine ions. Reprinted with permission, Royal Society of Chemistry, 2016.⁵⁰ (c) *i*, Thermogravimetric analysis (TGA) thermogram of germanium perovskites. *ii*, *J*–*V* curves of photovoltaic devices fabricated with CsGeI₃ and MAGeI₃. Reprinted with permission, Royal Society of Chemistry, 2015.⁴⁵ (d) Transmission electron microscopy (TEM) images CsGeI₃ perovskite nanocubes with different exposure time at ambient condition. Reprinted with permission, John Wiley and Sons, 2018.⁵² (e) *i*, Photograph of as-synthesized CsSn_{0.5}Ge_{0.5}I₃ perovskite solid using the melt-crystallization method and schematic illustration of the single-source evaporation method for the deposition of ultra-smooth CsSn_{0.5}Ge_{0.5}I₃ perovskite thin films. *ii*, PCE evolution of a typical unencapsulated PSC under continuous operation under 1-sun illumination at 45 °C in N₂ atmosphere. Reprinted with permission, Springer Nature, 2019.⁴³

caused by the poor solubility in polar solvents (panel *ii* of Figure 4c). The significant efforts were made, but the $V_{\rm OC}$ remained low.^{45,50,51} The low $V_{\rm OC}$ (0.46 V) has limited the maximum PCE of Ge-based solar cells to only 0.57% so far with the device structure of ITO/PEDOT:PSS/MAGeI_{2.7}Br_{0.3}/PC₇₀BM/Ag.⁵¹

2.2.2 Stability of CsGeX₃ PSCs: Recently, Wu *et al.* synthesized R3m CsGeI₃ perovskite colloidal nanocrystals (NCs) and studied the degradation process of the morphological change in air (shown in Figure 4d). The NCs gradually changed from single crystal CsGeI₃ (rhombohedral R3m) to single crystal

CsI (cubic *Pm3m*), and then converted into polycrystalline CsI fragments.⁵² This work provides insights into the instability origins by investigating morphology evolution and structure variation of CsGeI₃ perovskite NCs.

Surprisingly, Chen *et al.* reported a promising discovery that $CsSn_{0.5}Ge_{0.5}I_3$ formed by simply incorporating Ge^{2+} into $CsSnI_3$ exhibited high stability and a PCE up to 7.11%.⁴³ The panel *i* of Figure 3e shows that $CsSn_{0.5}Ge_{0.5}I_3$ powder was synthesized by the solid-state reaction between mixed solid powder precursors in evacuated Pyrex tube, and $CsSn_{0.5}Ge_{0.5}I_3$ was deposited on the substrate by a thermal evaporator. This

work indicates that PCE can be effectively enhanced by using mixed metals for replacing the pure metal of Sn in CsSnI₃ by solid-state reaction. The extremely high oxidation activity of $\mathrm{Ge}^{2+45,53}$ allows the rapid formation of an ultra-thin (<5 nm) uniform native-oxide passivation layer on CsSn_{0.5}Ge_{0.5}I₃ perovskite leading to superior stability. They further proved that the devices could run steadily for more than 500 hours under 1-sun illumination (panel *ii* of Figure 3e) with no degradation in $V_{\rm OC}$ and showed good reproducibility with an average PCE of 6.48%. This native-oxide passivation method provides a new solution to both improve the efficiency and stability of lead-free PSCs. In addition, it has been reported in the literature that using the GeI₂ additive in precursor can strikingly suppress the trap density of the Sn-Ge alloy perovskites, thereby rendering longer charge diffusion length ($\sim 1 \,\mu m$).⁵⁴ These studies suggest alloying may help the designation of high-performance lead-free PSCs.

3. Heterovalent to Lead

3.1 Cs₂ABX₆ (A: Ag, Na; B: Bi; X = I, Br). Cesium lead-free halide double perovskites with the formula of quaternary Cs₂ABX₆ are derived from the CsPbX₃ perovskite structure by replacing two divalent Pb²⁺ with a pair of nontoxic heterovalent (*i.e.*, one monovalent A⁺ and one trivalent B³⁺) metal cations (Figure 5a),⁵⁵ which have recently attracted considerable interest as new alternatives to lead-halide-perovskite-based optoelectronic materials because of their non-toxicity and enhanced chemical and thermodynamic stability.^{56,57} In the following, we successively summarize the progress of Cs₂AgBiBr₆ and Cs₂NaBiI₆ which have been used as absorbers for PSCs.

3.1.1 Cs₂AgBiBr₆: Many efforts have been made in the fabrication of Cs₂AgBiBr₆ PSCs (Table 2). The Cs₂AgBiBr₆ film was incorporated into PSC for the first time by Greul et al. via a fast spin-coating step and two important annealing steps (panel i of Figure 5b).⁵⁶ The first heating step is named 'preheating step" where the substrate and dimethyl sulfoxide (DMSO)-based precursor solution were heated to 75 °C prior to the spin coating. Then, the hot precursor solution was spun on top of the hot substrate. The second heating step named "annealing step", was performed after the spin-coating procedure at a temperature of at least 250 °C, resulting in phase pure films. The resulting Cs₂AgBiBr₆ PSC exhibited a very promising PCE close to 2.5% with Voc exceeding one volt (panel ii of Figure 5b), showing the potential of double perovskites as absorber materials. But the J-V curves show hysteresis, due to the trapping/de-trapping of charge carriers. By using eco-friendly anti-solvent isopropanol (IPA) technology and post-annealing process under high temperature (250 °C) (panel *i* of Figure 5c), a high quality Cs₂AgBiBr₆ film with ultra-smooth morphology and high crystallinity can be achieved.⁵⁸ This superior film enabled the best performing solar cell device with inverted structure ITO/Cu-NiO/Cs2AgBiBr6/C60/BCP/Ag yielding a PCE of 2.23% with $V_{\rm OC} = 1.01$ V, $J_{\rm SC} = 3.19$ mA cm⁻², FF = 69.2% and no hysteresis (panel ii of Figure 5c). Moreover, owing to the high thermal and ambient stability of Cs₂AgBiBr₆, the PSC exhibited long term stability over 10 days stored in air.

In addition to the traditional solution method, Wang *et al.* successfully developed a sequential vapor deposition method to

demonstrate the feasibility of high-quality double perovskite films.⁵⁵ As shown in the panel i of Figure 5d, AgBr is first deposited onto a dense TiO₂ coated FTO substrate. BiBr₃ and CsBr were then subsequently deposited on top of the AgBr film layer-by-layer. Upon subsequent thermal annealing (a two-step annealing process), a double Cs₂AgBiBr₆ perovskite phase was formed through diffusion reaction. The optimized PSC based on the vapor deposition of the double perovskite film showed a maximum PCE of 1.37% (panel *ii* of Figure 5d) exhibiting good device stability with reducing initial efficiency by less than 10% after 240 h storage in air. Igbari et al. compared vacuum-sublimation and solution-processing methods for fabricating Cs₂AgBiBr₆ halide double perovskite films.⁵⁷ The results showed that solution-processing could guarantee a precise composition stoichiometry to form high quality film, which leads to the optimized PCE of 2.51%. The counterpart (*i.e.*, vacuum-process) is 1.41%. Obviously, the photovoltaic performance of Cs₂AgBiX₆ solar cells is still poor, namely, a PCE of less than 3% until now.⁵⁶ Firstly, it is due to their indirect and large band gap, i.e., 2.19 eV and 2.77 eV for Cs₂AgBiBr₆ and Cs₂AgBiCl₆, respectively.⁵⁹ Thus, it is necessary to find double perovskite materials which have direct band gaps. In addition, the exciton effect and electron-phonon coupling lead to undesired electron-hole recombination and hinder carrier transport.⁶⁰ Such inherent electronic properties need to be properly addressed in future double perovskite designs. For example, efficient exciton separation needs to be improved by appropriately designing the interface between the charge extraction layer and the double perovskite.

Although the performance of $Cs_2AgBiBr_6$ PSCs is worse than the PSCs homovalent to lead as discussed in *Section* 2, the $Cs_2AgBiBr_6$ PSCs exhibit better stability overall. The detailed stability properties of $Cs_2AgBiBr_6$ PSCs are summarized in Table 2.

3.1.2 Cs₂NaBil₆: Another lead-free double perovskite material is Cs₂NaBil₆ (abbreviated as CNBI), which has a band gap of 1.66 eV. CNBI can be synthesized via a facile one-step hydrothermal process.⁶¹ CsI, NaI and Bil₃ were dissolved in hydroiodic acid at a stoichiometric molar ratio. Then the precursor was transferred to an autoclave for hydrothermal reaction to obtain CNBI. The device was fabricated by a one-step spin coating method (panel *i* of Figure 5e), and it achieved a PCE of 0.42% (panel *ii* of Figure 5e). For stability, CNBI showed negligible degradation after 5 months of storage at relative humidity of 70%.

In fact, there are other inorganic double perovskites (such as $Cs_2AgInBr_6$,⁶² Cs_2AgSbX_6 ,⁶³ and $Cs_2CuBiBr_6$,⁶⁴) that have potential as optical absorption materials, but they have not yet been used to prepare devices. They may bring interesting double PSCs to the photovoltaic arena. Especially, replacing Bi with In in $Cs_2AgBiBr_6$ causes direct bandgap (*i.e.*, 1.33 eV of $Cs_2AgInBr_6$).

3.2 Cs_2BX_6 (B: Sn, Ti; X: I, Br). Cs_2BX_6 derived from its $CsBX_3$ perovskite structure by removing half of the B-site cations has also received wide attention as a new type of perovskite-like structure, where B is a tetravalent metal cation (Figure 6a). Due to the absence of connectivity between the $[BX_6]$ octahedra, the Cs_2BX_6 perovskite variants are viewed as a zero-dimensional (0D) structure, as well as double perovskite. In the following, we successively summarize the progress of

Figure 5. (a) Crystal structure of Cs_2ABX_6 double perovskite. Reprinted with permission, John Wiley and Sons, 2018.⁵⁵ (b) *i*, Schematic synthesis route for $Cs_2AgBiBr_6$ thin films. *ii*, *J-V* curve of the best performing device. Reprinted with permission, Royal Society of Chemistry, 2017.⁵⁶ (c) *i*, Schematic illustration of the spin-coating process with and without anti-solvent dropping (IPA). The morphology of the as-prepared film can be improved by IPA dropping. *ii*, *J-V* curves of forward and reverse scan directions of the best PSC. Reprinted with permission, John Wiley and Sons, 2018.⁵⁸ (d) *i*, Scheme showing the sequential vapor deposition process. *ii*, *J-V* curve of the optimized solar cell. Inset: cross-sectional scanning electron microscopy (SEM) image of the device. Reprinted with permission, John Wiley and Sons, 2018.⁵⁵ (e) *i*, Schematic illustration of Cs_2NaBiI_6 (CNBI) PSC fabrication process. *ii*, *J-V* curve of the best Cs_2NaBiI_6 PSC. Reprinted with permission, Royal Society of Chemistry, 2018.⁶¹

 Cs_2SnI_6 and Cs_2TiBr_6 PSCs that have been investigated for photovoltaic applications.

3.2.1 Cs_2Snl_6 : The Cs_2Snl_6 has a bandgap of 1.48 eV and high absorption coefficient (over 10^5 cm^{-1} at 1.7 eV). It is

formed by the spontaneous oxidative conversion of CsSnI₃ in ambient air.⁶⁸ The Cs₂SnI₆ film was for the first time adopted as a light absorber layer for a PSC obtaining an encouraging PCE of near 1% with $V_{\rm OC}$ of 0.51 V, $J_{\rm SC}$ of 5.41 mA cm⁻² and

Absorber	Device structure	Voc [V]	J _{SC} [mA cm ⁻²]	PCE [%]	Film thermal stability (No degradation at the temperature)	Device stability	Year	Ref.
	ITO/SnO2/absorber/P3HT/Au ITO/SnO2/absorber/Au		1.78	0.86	-	No obvious degradation after 30 days under ambient conditions (20-30 °C, 40- 60 % RH)	2018	65
Cs2AgBiBr6						Clear degradation within 1 day under ambient conditions (20-30 °C, 40- 60 % RH)		
	ITO/Cu-NiO/absorber/C ₆₀ /BCP/Ag		3.19	2.23	100 °C for 2 h	90 % of origin PCE after 10 days	2018	58
	FTO/c-TiO2/m-TiO2/absorber/spiro/Au		3.93	2.43	285 °C for 5 min	No significant decay after 100 min > 25 days	2017	56
	ITO/TiO2/absorber/spiro/Au		1.55	1.22	250 °C for 5 min	Stable PCE over 600 s	2018	66
	FTO/c-TiO2/m-TiO2/absorber/PTAA/Au		1.84	1.26	280 °C for 5 min	-		
	FTO/c-TiO ₂ /m-TiO ₂ /absorber/spiro/Au		2.45	0.90	280 °C for 5 min	- 201		67
	FTO/c-TiO ₂ /m-TiO ₂ /absorber/PCPDTBT/Au		1.67	0.68	280 °C for 5 min	-		
	FTO/c-TiO2/absorber/P3HT/Au		1.79	1.37	-	Over 90 % of initial PCE after 240 h of storage in dry box (25 °C, 7 % RH)	2018	55
	FTO/TiO2/absorber/spiro/MoO3/Ag	1.01	3.82	2.51	300 °C for 5 min	Over 90 % of initial PCE after 15 days	2019	57
Cs₂NaBiI ₆	FTO/c-TiO2/m-TiO2/absorber/spiro/Au	0.47	1.99	0.42	120 °C for 2 h	Slight decrease after storage in ambient air for 14 days	2017	61

Table 2. The performance and stability of Cs_2ABX_6 (A: Ag, Na; B: Bi; X = I, Br) PSCs.

PCPDTBT: poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-2,6-diyl]], P3HT: poly(3-hexylthiophene-2,5-diyl).

Figure 6. (a) Schematic representation of the relationship between the perovskite crystal structures of ABX₃ and B-Site deficient A_2BX_6 . Reprinted with permission, American Chemical Society, 2018.⁷¹ (b) *i*, Cs₂SnI₆-based unsealed PSC stability. Reprinted with permission, Elsevier, 2017.⁶⁸ (c) *i*, X-ray diffraction (XRD) patterns of as-prepared Cs₂SnI₆ powder in air after a month, a week, and raw powder. Vertical lines indicate the standard spectra from PDF card (51-0466). *ii*, XRD patterns after heating at different temperature (170, 280, and 340 °C). Reprinted with permission, Elsevier, 2017.⁶⁹ (d) *i*, *J-V* curves of a series of devices with different composition of Cs₂SnI_{6-x}Br_x (device structure: FTO/TiO₂/Sn-TiO₂/Cs₂SnI_{6-x}Br_x/solid state Cs₂SnI₆ based HTL/large effective-surface-area polyaromatic hydrocarbon/FTO) structure cells. The inset shows the incident photon to charge carrier efficiency (IPCE) values for Cs₂SnI₆ (black) and Cs₂SnBr₂I₄ (green). *ii*, Stability properties of Cs₂SnI₆ (black), and the Cs₂SnBr₂I₄ (green) based solar cells for 50 days. Reprinted with permission, Royal Society of Chemistry, 2017.⁷⁰

FF = 0.35. Though the Cs₂SnI₆ film itself is stable in dry air (RH <20%), an unsealed Cs₂SnI₆ solar cell degraded over one week (Figure 6b). Jiang *et al.* found the phase and morphology of Cs₂SnI₆ film can be maintained in high relative humidity for a week or even a month (panel *i* of Figure 6c).⁶⁹ Thermal stability measurements show that Cs₂SnI₆ is stable at about 270 °C and

then decomposes into CsI and SnI₄ (panel *ii* of Figure 6c). However, they found that there are many defects in Cs_2SnI_6 film. In addition, low electron mobility and high hole effective mass were confirmed leading to the low PCE of 0.47%. This suggests that the further improvement of material quality is urgent. Lee *et al.* used two-step solution process to synthesize $Cs_2SnI_{6-x}Br_x$

Figure 7. (a) Absorption spectra of Cs_2TiI_6 , $Cs_2TiI_4Br_2$, $Cs_2TiI_2Br_4$, and Cs_2TiBr_6 . Reprinted with permission, American Chemical Society, 2018.⁷² (b) *i*, Schematic illustration of the vapor-based synthesis of Cs_2TiBr_6 thin film. *ii*, *J-V* curves at both forward (hollow circles) and reverse (solid circles) scans of the best PSCs without and with C_{60} interfacial layer. *iii*, Evolution of PCE of the best Cs_2TiBr_6 -based PSC (unencapsulated) as a function of the storage time under environmental stress (70 °C, 30% RH, ambient light). Reprinted with permission, Elsevier, 2018.⁷³

(0 < x < 3) thin films through optimizing the annealing temperature and the annealing duration. The x value is optimized to achieve suitable properties as absorbers for light-to-charge conversion.⁷⁰ They found that the devices showed short circuits coming from the edges of the adjacent layers prepared by the standard device fabrication procedure (i.e., layers were sequentially deposited forming a structure of FTO/ETL/perovskite/ HTL/Au). Alternatively, they adopted a different device structure so-called "sandwich" structure as described below. Firstly, they separately fabricated the anode/perovskite part (i.e., FTO/ $TiO_2/Sn-TiO_2/Cs_2SnI_{6-x}Br_x$) and the cathode part (FTO/large effective-surface-area polyaromatic hydrocarbon). Then the two parts were sandwiched together using a solid state Cs₂SnI₆ based HTL. The highest PCE is 2.03% (panel *i* of Figure 6d) for a Cs₂SnI₄Br₂-based PSC. As shown in panel *ii* of Figure 6d, the Cs₂SnI₄Br₂ PSCs show stability superior to Cs₂SnI₆ PSCs. It suggests that the device stability of Cs₂SnI₆ PSCs can be improved by substitution of Br to I.

3.2.2 Cs₂TiBr₆: The bandgap of Cs₂TiI_xBr_{6-x} can be tuned from 1.02 to 1.78 eV (Figure 7a).⁷² Particularly, Cs₂TiI₂Br₄ and Cs₂TiBr₆ exhibit bandgaps of 1.38 and 1.78 eV, which are ideal for application in single-junction PSCs and tandem photovoltaics, respectively.

Recently, Chen et al. demonstrated that high quality Cs₂TiBr₆ film can be prepared by low temperature gas phase processes (panel *i* of Figure 7b).⁷³ Firstly, the CsBr layer was deposited on the substrate by thermal evaporation and the sample was placed in a chamber filled with TiBr₄ vapor. Correspondingly, the Cs₂TiBr₆ thin film can be obtained after 24 h. The optimal Cs₂TiBr₆ PSC with the structure of FTO/ TiO₂/C₆₀/Cs₂TiBr₆/P3HT/Au showed a PCE up to 3.3% (panel *ii* of Figure 7b). The C_{60} interfacial layer not only facilitates the electron transfer from Cs₂TiBr₆ to the TiO₂ ETL, but also influences the microstructure of the as-deposited CsBr thin film and thus the formation of the Cs₂TiBr₆ thin film. In addition, the device shows good stability (panel iii of Figure 7b). The potential high efficiency and the superior stability as discussed above suggest that the composition and device engineering of $Cs_2TiI_xBr_{6-x}$ thin films may lead to a broader family of Ti-based perovskites for a wide range of optoelectronic application.

Except for Cs_2SnI_6 and Cs_2TiBr_6 , Cs_2PdBr_6 nanocrystal (NC) has shown admirable potential in promising optoelectronic application. Cs_2PdBr_6 NC was first synthesized by a simple antisolvent method at room temperature, possessing a band gap of 1.69 eV and exhibiting sensitive photo-response behavior

Figure 8. (a) *i*, Scheme of the $Cs_3Bi_2I_9$ structure. The unit cell is marked with the dark lines and the bismuth iodide octahedra are marked with a cyan color. *ii*, *J*-*V* curves of $Cs_3Bi_2I_9$, MA₃Bi₂I₉ and MA₃Bi₂I₉Cl_x PSCs, respectively. Reprinted with permission, John Wiley and Sons, 2015.⁷⁸ (b) *i*, *J*-*V* curves of the $Cs_3Bi_2I_9$ PSCs with three kinds of HTL: CuI, spiro-OMeTAD and PTAA. *ii*, Steady-state PCE measured at the maximum power output point of the champion $Cs_3Bi_2I_9$ PSCs based on CuI, spiro-OMeTAD and PTAA as HTLs. Reprinted with permission, Elsevier, 2018.⁸⁰

in photochemical tests.⁷¹ It can also be transformed to iodide counterpart Cs_2PdI_6 NC via an anion exchange reaction. In addition, Cs_2PdBr_6 nanocrystals have high stability upon 1 sun illumination more than 1000 h, high humidity of 70% (2 months) and high temperature at 120 °C (600 h).

3.3 Cs₃B₂I₉ (B: Bi, Sb). Cs₃B₂I₉, a class of representative lead-free halide perovskites, in which B represents trivalent metal cation especially with lone-pair state (*e.g.*, Bi³⁺ and Sb³⁺) is derived from its CsBI₃ parent structure by removal of 1/3 of the B-site cations, attracting significant interest as potential candidates for lead-free PSCs.^{74–76} The Cs₃B₂I₉ perovskite have two typical polymorphs:⁷⁴ one is the so-called 0D dimer modification, which consists of an isolated face-sharing $[B_2I_9]^{3-}$ double octahedron, and the other is a two-dimensional (2D) layer modification, which can be regarded as a vacancy-ordered layered perovskite.

0D Cs₃B₂I₉ shows undesired optoelectronic properties for photovoltaic application because of their low structural dimensionality (corresponding to low electronic dimensionality).⁷⁷ Here, we discuss the development of vacancy-ordered 2D layered perovskites (*i.e.*, Cs₃Bi₂I₉ and Cs₃Sb₂I₉) that have been used for the light absorbing materials of PSCs.

3.3.1 Cs₃Bi₂I₉: The electronic structure of Bi is similar to Pb with ns² electrons. Cs₃Bi₂I₉ consists of two metal halide octahedral layers, between which the voids are filled by cations (panel *i* of Figure 8a).⁷⁸ It has rich structural changes and interesting optical and electronic properties.⁷⁸ Park *et al.* firstly used a one-step spin coating method to prepare Cs₃Bi₂I₉, MA₃Bi₂I₉, and MA₃Bi₂I₉Cl_x.⁷⁸ The Cs₃Bi₂I₉ PSC exhibited the highest performance with a PCE of more than 1% (panel *ii* of Figure 8a).

Adding excess Bil₃ in precursor solution could improve the device performance, *i.e.*, from 0.07% (no excess Bil₃) to 0.21% (with excess Bil₃), probably due to the reduction of nonradiative defects.⁷⁹ However, the 0.21% PCE is still very low compared with other cesium lead-free PSCs. The low PCE of Cs₃Bi₂I₉ PSCs is seriously limited by the poor photocurrent density ($\sim 0.67 \,\mathrm{mA}\,\mathrm{cm}^{-2}$), in spite of the reasonable bandgap (~2 eV) and absorption coefficient (~1 \times 10⁴ cm⁻¹ at 450 nm). In addition, the low PCE is also attributed to the poor charge transport resulted from the discrete nature of the double octahedra (*i.e.*, $[Bi_2I_9]^{3-}$) and subsequent bulk charge recombination. Except for the material improvement, Bai et al. employed different HTLs (CuI, spiro-OMeTAD and PTAA) for Cs₃Bi₂I₉ nanosheet based PSCs. Perhaps due to good conductivity of CuI, the Cs₃Bi₂I₉ PSC using CuI achieved a PCE of 3.20% (panel *i* of Figure 8b) which is the highest PCE value of double PSCs so far.⁸⁰ More importantly, the device with CuI as HTL exhibited excellent long-term stability under ambient condition (panel *ii* of Figure 8b). This work encourages us to further improve the performance of Cs₃Bi₂I₉ PSCs by device engineering.

3.3.2 Cs₃Sb₂I₉: The optoelectronic properties of both polymorphs were studied by Saparov *et al.* through DFT calculations.⁸¹ In fact, Cs₃Sb₂I₉ has both the dimer and the layer modifications. While the Cs₃Sb₂I₉ with dimer modification has an indirect band gap of 2.40 eV, the layer modification has an almost direct band gap of 2.06 eV at the Γ point (panel *ii* of Figure 9a). The vacancy-ordered 2D layered perovskite Cs₃Sb₂I₉ (panel *i* of Figure 9a) exhibits improved optoelectronic properties over 0D dimer modification according to DFT calculation.⁸¹

Figure 9. (a) *i*, Removal of every third Sb layer along the $\langle 111 \rangle$ direction of the perovskite structure results in the 2D layered modification of Cs₃Sb₂I₉. Cs and I atoms are shown as orange and green spheres, respectively; Sb coordination polyhedra are shown in blue and pink. *ii*, Calculated band structures of Cs₃Sb₂I₉ in layered and dimer modifications. Reprinted with permission, American Chemical Society, 2018.⁸¹ (b) *i*, Schematic preparation process of the layered Cs₃Sb₂I₉, accompanied by an SEM image of the sample surface. *ii*, *J-V* curves of forward and reverse scans of layered Cs₃Sb₂I₉-based PSC. *iii*, Stability property of devices made with conventional Pb based perovskite (black squares) and layered Cs₃Sb₂I₉ (red spheres). Reprinted with permission, American Chemical Society, 2018.⁸²

shows a nearly direct band gap, higher electron/hole mobility and better tolerance to defects (because of higher dielectric constants),^{17,75} indicating better carrier transport as well as photovoltaic application. Although layered Cs₃Sb₂I₉ can exhibit potential photovoltaic behavior, solution-processing Cs₃Sb₂I₉ generally favors the formation of dimeric phase with poor photovoltaic properties.

Therefore, some efforts have been devoted to stabilize the layered structure of Cs3Sb2I9 to avoid dimeric phase formation for solar cell application. Singh et al. prepared a layered polymorph of Cs₃Sb₂I₉ film with an optical band gap of 2.05 eV by vapor-assisted solution-process.⁸² As shown in panel i of Figure 9b, a mixture of N,N-dimethylformamide (DMF) and DMSO was used as the solvent for dissolving SbI₃ and CsI. After spin-coating the precursor by the normal one step method, the sample was firstly annealed at 70 °C for 15 min to remove the solvent and then was directly moved to the bottle (covered with a cap after adding 30 wt % SbI₃ in DMF). The sample was maintained at 250 °C for 15 min in the bottle. The formed layered-Cs₃Sb₂I₉ PSC exhibited a PCE of 1.5% with a V_{OC} of 0.72 V (panel *ii* of Figure 9b), which is the highest reported PCE for Cs₃Sb₂I₉ PSCs. More importantly, the Cs₃Sb₂I₉ PSCs show a higher stability under ambient air as compared to MAPbI₃ (panel *iii* of Figure 9b).

4. Challenges and Opportunities

We summarize the best efficiencies of the cesium lead-free

halide perovskite devices, as shown in Figure 10. It is obvious that they are far from the lead-based PSCs. The relatively low PCE suggests that the replacement of lead with other metal cations lowers the light-to-current conversion. Despite the inferior performance of lead-free PSCs, we still see great potential for them due to their inherent outstanding optical properties and potential good stability. Among these perovskite alternatives, replacing Pb²⁺ by Sn²⁺ and Ge²⁺ can maintain the 3D structure. However, Sn²⁺ is easy to be oxidized to Sn⁴⁺. Furthermore, the CsSnI₃ is easy to form intrinsic vacancies, leading to metallic conductivity, and therefore short carrier lifetime and severe non-radiative recombination. Additives (such as SnX₂ and HPA) in CsSnI₃ can largely improve the film quality and thus the device performance. Ge-based perovskites have rarely been investigated due to the poor chemical stability of Ge²⁺ and solubility in polar solvents. Pure Ge-based PSCs have only produced a maximum PCE of 0.57% so far. Surprisingly, by simply incorporating Ge^{2+} into CsSnI₃ to form CsSn_{0.5}Ge_{0.5}I₃, the PCE and stability can be dramatically improved, revealing a feasible method to develop cesium leadfree PSCs.

The double perovskites (Cs_2ABX_6) show enormous potential as excellent candidates for lead-free perovskites because they exhibit prominent stability, especially thermal stability. However, most of the reported double perovskites, *i.e.*, $Cs_2AgBiBr_6$ show indirect and wide band gap, which are not undesirable for photovoltaic application. Thus, it is necessary to find new double perovskites possessing direct bandgap and new

Figure 10. The best performance of cesium lead-free PSCs reported in literature. The numbers in the legend indicate reference number.

fabrication methods to prepare high-quality films. For Cs₂BX₆ double perovskites, Cs₂SnI₆ contains intrinsically deep defects that are detrimental to the PSC performance, which indicates that more efforts toward characterizing defect properties should be made. Cs2TiBr6 thin films-based PSCs were demonstrated showing a PCE of up to 3.3% recently, showing great potential for optoelectronic application. By further composition optimization of $Cs_2TiI_xBr_{6-x}$ and device engineering, the performance of Cs₂TiI_xBr_{6-x}-based PSCs may be further improved. Although Cs₂PdBr₆ shows admirable potential in promising optoelectronic application, Cs₂PdBr₆-based PSC has not been reported yet. This may be caused by the poor film formation or lack of proper fabrication method. Besides, it contains the noble element Pd, making it potentially unaffordable. The low electronic dimensionality of Cs₃Bi₂I₉ and Cs₃Sb₂I₉ leads to the poor charge transport, significantly limiting the performance of the resulting PSCs. However, they also show potential properties, especially excellent stability, which are important for photovoltaic application. In addition, the Cs₃Bi₂I₉ PSC achieved a PCE of 3.2% by incorporating CuI as HTL recently, which encourages us to further improveme the performance of Cs₃Bi₂I₉ PSCs by device engineering.

Overall, researchers have made tremendous efforts in improving both efficiency and stability of all inorganic leadfree perovskite devices. Further enhancement of efficiency of inorganic lead-free PSCs relies on material synthetic approaches, thin film preparation methods, material characterization techniques, interface engineering, and so on. Exploring new materials of lead-free perovskite with advanced opto-electronic properties and high stability will also accelerate the development of PSCs. We look forward to high efficiency and environmentally friendly lead-free PSCs making a big contribution to future renewable energy utilization.

This work was supported by the Programs for Professor of Special Appointment and Distinguished Visiting Professor (Eastern Scholar) at Shanghai Institutions of Higher Learning, and was sponsored by Shanghai Rising-Star Program (Grant No. 19QA1403800). This work was also supported by funding from the Energy Materials and Surface Sciences Unit of the Okinawa Institute of Science and Technology Graduate University, the OIST R&D Cluster Research Program, and the OIST Proof of Concept (POC) Program.

References

- 1 A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
- 2 H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, N.-G. Park, *Sci. Rep.* 2012, 2, 591.
- 3 L. K. Ono, Y. B. Qi, J. Phys. D: Appl. Phys. 2018, 51, 093001.

- 4 S. Wang, T. Sakurai, W. Wen, Y. B. Qi, *Adv. Mater: Interfaces* **2018**, *5*, 1800260.
- 5 L. K. Ono, Y. B. Qi, J. Phys. Chem. Lett. 2016, 7, 4764.
- 6 https://www.nrel.gov/pv/assets/pdfs/best-research-cellefficiencies-190416.pdf.
- 7 L. Qiu, L. K. Ono, Y. B. Qi, *Mater. Today Energy* 2018, 7, 169.
- 8 L. K. Ono, N.-G. Park, K. Zhu, W. Huang, Y. B. Qi, ACS Energy Lett. 2017, 2, 1749.
- 9 L. K. Ono, Y. B. Qi, S. Liu, Joule 2018, 2, 1961.
- 10 M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, D. Cahen, J. Phys. Chem. Lett. 2016, 7, 167.
- 11 J. K. Nam, S. U. Chai, W. Cha, Y. J. Choi, W. Kim, M. S. Jung, J. Kwon, D. Kim, J. H. Park, *Nano Lett.* **2017**, *17*, 2028.
- 12 S. Wang, Y. Jiang, E. J. Juarez-Perez, L. K. Ono, Y. B. Qi, *Nat. Energy* **2016**, *2*, 16195.
- 13 E. J. Juarez-Perez, Z. Hawash, S. R. Raga, L. K. Ono, Y. B. Qi, *Energy Environ. Sci.* 2016, *9*, 3406.
- 14 E. J. Juarez-Perez, L. K. Ono, M. Maeda, Y. Jiang, Z. Hawash, Y. B. Qi, J. Mater. Chem. A 2018, 6, 9604.
- 15 C. C. Stoumpos, C. D. Malliakas, M. G. Kanatzidis, *Inorg. Chem.* 2013, 52, 9019.
- 16 B. Yim, Y. Nagata, Y. Maeda, J. Phys. Chem. A 2002, 106, 104.
- 17 R. E. Brandt, V. Stevanović, D. S. Ginley, T. Buonassisi, *MRS Commun.* 2015, 5, 265.
- 18 V. M. Goldschmidt, Ber. Dtsch. Chem. Ges. 1927, 60, 1263.
- 19 A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M. K. Nazeeruddin, M. Grätzel, F. De Angelis, *Nano Lett.* 2014, 14, 3608.
- 20 W.-J. Yin, T. Shi, Y. Yan, Adv. Mater. 2014, 26, 4653.
- 21 C. C. Stoumpos, L. Frazer, D. J. Clark, Y. S. Kim, S. H. Rhim, A. J. Freeman, J. B. Ketterson, J. I. Jang, M. G. Kanatzidis, J. Am. Chem. Soc. 2015, 137, 6804.
- 22 B. Saparov, J.-P. Sun, W. Meng, Z. Xiao, H.-S. Duan, O. Gunawan, D. Shin, I. G. Hill, Y. Yan, D. B. Mitzi, *Chem. Mater.* 2016, 28, 2315.
- 23 F. Giustino, H. J. Snaith, ACS Energy Lett. 2016, 1, 1233.
- 24 A. Abate, Joule 2017, 1, 887.
- 25 D. Sabba, H. K. Mulmudi, R. R. Prabhakar, T. Krishnamoorthy, T. Baikie, P. P. Boix, S. Mhaisalkar, N. Mathews, *J. Phys. Chem. C* 2015, *119*, 1763.
- 26 I. Chung, J. H. Song, J. Im, J. Androulakis, C. D. Malliakas, H. Li, A. J. Freeman, J. T. Kenney, M. G. Kanatzidis, J. Am. Chem. Soc. 2012, 134, 8579.
- 27 I. Chung, B. Lee, J. He, R. P. H. Chang, M. G. Kanatzidis, *Nature* 2012, 485, 486.
- 28 Z. Chen, C. Yu, K. Shum, J. J. Wang, W. Pfenninger, N. Vockic, J. Midgley, J. T. Kenney, *J. Lumin.* 2012, *132*, 345.
- 29 Z. Chen, J. J. Wang, Y. Ren, C. Yu, K. Shum, *Appl. Phys. Lett.* 2012, 101, 093901.
- 30 M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. G. Mhaisalkar, N. Mathews, *Adv. Mater*. 2014, *26*, 7122.
- 31 S. Gupta, T. Bendikov, G. Hodes, D. Cahen, ACS Energy Lett. 2016, 1, 1028.
- 32 B. Wu, Y. Zhou, G. Xing, Q. Xu, H. F. Garces, A. Solanki, T. W. Goh, N. P. Padture, T. C. Sum, *Adv. Funct. Mater.*

2017, 27, 1604818.

- 33 N. Wang, Y. Zhou, M.-G. Ju, H. F. Garces, T. Ding, S. Pang, X. C. Zeng, N. P. Padture, X. W. Sun, *Adv. Energy Mater.* 2016, *6*, 1601130.
- 34 P. Zhu, C. Chen, S. Gu, R. Lin, J. Zhu, Sol. RRL 2018, 2, 1700224.
- 35 K. P. Marshall, M. Walker, R. I. Walton, R. A. Hatton, *Nat. Energy* 2016, 1, 16178.
- 36 J. H. Heo, J. Kim, H. Kim, S. H. Moon, S. H. Im, K.-H. Hong, J. Phys. Chem. Lett. 2018, 9, 6024.
- 37 T.-B. Song, T. Yokoyama, S. Aramaki, M. G. Kanatzidis, ACS Energy Lett. 2017, 2, 897.
- 38 W. Li, J. Li, J. Li, J. Fan, Y. Mai, L. Wang, J. Mater. Chem. A 2016, 4, 17104.
- 39 Y. Zhang, X. Hu, L. Chen, Z. Huang, Q. Fu, Y. Liu, L. Zhang, Y. Chen, Org. Electron. 2016, 30, 281.
- 40 K. P. Marshall, R. I. Walton, R. A. Hatton, J. Mater. Chem. A 2015, 3, 11631.
- 41 D. Moghe, L. Wang, C. J. Traverse, A. Redoute, M. Sponseller, P. R. Brown, V. Bulović, R. R. Lunt, *Nano Energy* 2016, 28, 469.
- 42 T.-B. Song, T. Yokoyama, C. C. Stoumpos, J. Logsdon, D. H. Cao, M. R. Wasielewski, S. Aramaki, M. G. Kanatzidis, J. Am. Chem. Soc. 2017, 139, 836.
- 43 M. Chen, M.-G. Ju, H. F. Garces, A. D. Carl, L. K. Ono, Z. Hawash, Y. Zhang, T. Shen, Y. Qi, R. L. Grimm, D. Pacifici, X. C. Zeng, Y. Zhou, N. P. Padture, *Nat. Commun.* 2019, 10, 16.
- 44 W. Li, Z. Wang, F. Deschler, S. Gao, R. H. Friend, A. K. Cheetham, *Nat. Rev. Mater.* **2017**, *2*, 16099.
- 45 T. Krishnamoorthy, H. Ding, C. Yan, W. L. Leong, T. Baikie, Z. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews, S. G. Mhaisalkar, J. Mater. Chem. A 2015, 3, 23829.
- 46 Z. Xiao, Z. Song, Y. Yan, Adv. Mater. 2019, 1803792.
- 47 D. Liu, Q. Li, H. Jing, K. Wu, RSC Adv. 2019, 9, 3279.
- 48 M. Roknuzzaman, K. Ostrikov, H. Wang, A. Du, T. Tesfamichael, *Sci. Rep.* 2017, 7, 14025.
- 49 L.-C. Tang, C.-S. Chang, L.-C. Tang, J. Y. Huang, J. Phys.: Condens. Matter 2000, 12, 9129.
- 50 W. Ming, H. Shi, M.-H. Du, J. Mater. Chem. A 2016, 4, 13852.
- 51 I. Kopacic, B. Friesenbichler, S. F. Hoefler, B. Kunert, H. Plank, T. Rath, G. Trimmel, ACS Appl. Energy Mater. 2018, 1, 343.
- 52 X. Wu, W. Song, Q. Li, X. Zhao, D. He, Z. Quan, *Chem.*-*Asian J.* 2018, 13, 1654.
- 53 S. F. Hoefler, G. Trimmel, T. Rath, *Monatsh. Chem.* 2017, 148, 795.
- 54 C. H. Ng, K. Nishimura, N. Ito, K. Hamada, D. Hirotani, Z. Wang, F. Yang, S. Iikubo, Q. Shen, K. Yoshino, T. Minemoto, S. Hayase, *Nano Energy* **2019**, *58*, 130.
- 55 M. Wang, P. Zeng, S. Bai, J. Gu, F. Li, Z. Yang, M. Liu, *Sol. RRL* 2018, *2*, 1800217.
- 56 E. Greul, M. L. Petrus, A. Binek, P. Docampo, T. Bein, J. Mater. Chem. A 2017, 5, 19972.
- 57 F. Igbari, R. Wang, Z.-K. Wang, X.-J. Ma, Q. Wang, K.-L. Wang, Y. Zhang, L.-S. Liao, Y. Yang, *Nano Lett.* **2019**, *19*, 2066.
- 58 W. Gao, C. Ran, J. Xi, B. Jiao, W. Zhang, M. Wu, X. Hou, Z. Wu, *ChemPhysChem* 2018, 19, 1696.

- 59 E. T. McClure, M. R. Ball, W. Windl, P. M. Woodward, *Chem. Mater.* **2016**, *28*, 1348.
- 60 R. Kentsch, M. Scholz, J. Horn, D. Schlettwein, K. Oum, T. Lenzer, J. Phys. Chem. C 2018, 122, 25940.
- 61 C. Zhang, L. Gao, S. Teo, Z. Guo, Z. Xu, S. Zhao, T. Ma, *Sustainable Energy Fuels* 2018, 2, 2419.
- 62 J. Xu, J.-B. Liu, B.-X. Liu, B. Huang, J. Phys. Chem. Lett. 2017, 8, 4391.
- 63 Z. Xiao, K.-Z. Du, W. Meng, J. Wang, D. B. Mitzi, Y. Yan, J. Am. Chem. Soc. 2017, 139, 9409.
- 64 H.-J. Feng, W. Deng, K. Yang, J. Huang, X. C. Zeng, J. Phys. Chem. C 2017, 121, 4471.
- 65 C. Wu, Q. Zhang, Y. Liu, W. Luo, X. Guo, Z. Huang, H. Ting, W. Sun, X. Zhong, S. Wei, S. Wang, Z. Chen, L. Xiao, *Adv. Sci.* 2018, *5*, 1700759.
- 66 W. Ning, F. Wang, B. Wu, J. Lu, Z. Yan, X. Liu, Y. Tao, J.-M. Liu, W. Huang, M. Fahlman, L. Hultman, T. C. Sum, F. Gao, *Adv. Mater.* **2018**, *30*, 1706246.
- 67 M. Pantaler, K. T. Cho, V. I. E. Queloz, I. García Benito, C. Fettkenhauer, I. Anusca, M. K. Nazeeruddin, D. C. Lupascu, G. Grancini, *ACS Energy Lett.* **2018**, *3*, 1781.
- 68 X. Qiu, B. Cao, S. Yuan, X. Chen, Z. Qiu, Y. Jiang, Q. Ye, H. Wang, H. Zeng, J. Liu, M. G. Kanatzidis, *Sol. Energy Mater*. *Sol. Cells* **2017**, *159*, 227.
- 69 Y. Jiang, H. Zhang, X. Qiu, B. Cao, *Mater. Lett.* 2017, 199, 50.
- 70 B. Lee, A. Krenselewski, S. I. Baik, D. N. Seidman, R. P. H. Chang, *Sustainable Energy Fuels* 2017, 1, 710.
- 71 L. Zhou, J.-F. Liao, Z.-G. Huang, X.-D. Wang, Y.-F. Xu,

H.-Y. Chen, D.-B. Kuang, C.-Y. Su, *ACS Energy Lett.* **2018**, *3*, 2613.

- 72 M.-G. Ju, M. Chen, Y. Zhou, H. F. Garces, J. Dai, L. Ma, N. P. Padture, X. C. Zeng, *ACS Energy Lett.* **2018**, *3*, 297.
- 73 M. Chen, M.-G. Ju, A. D. Carl, Y. Zong, R. L. Grimm, J. Gu, X. C. Zeng, Y. Zhou, N. P. Padture, *Joule* 2018, *2*, 558.
- 74 J.-H. Chang, T. Doert, M. Ruck, *Acta Crystallogr. C Struct. Chem.* **2016**, *72*, 966.
- 75 P. C. Harikesh, H. K. Mulmudi, B. Ghosh, T. W. Goh, Y. T. Teng, K. Thirumal, M. Lockrey, K. Weber, T. M. Koh, S. Li, S. Mhaisalkar, N. Mathews, *Chem. Mater.* **2016**, *28*, 7496.
- 76 B. Jiang, K. Kani, M. Iqbal, H. Abe, T. Kimura, M. S. A. Hossain, O. Anjaneyulu, J. Henzie, Y. Yamauchi, *Chem. Mater.* 2018, 30, 428.
- 77 F. Igbari, Z.-K. Wang, L.-S. Liao, *Adv. Energy Mater.* 2019, 9, 1803150.
- 78 B.-W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, E. M. J. Johansson, *Adv. Mater.* **2015**, *27*, 6806.
- 79 B. Ghosh, B. Wu, H. K. Mulmudi, C. Guet, K. Weber, T. C. Sum, S. Mhaisalkar, N. Mathews, ACS Appl. Mater. Interfaces 2018, 10, 35000.
- 80 F. Bai, Y. Hu, Y. Hu, T. Qiu, X. Miao, S. Zhang, *Sol. Energy Mater. Sol. Cells* 2018, 184, 15.
- 81 B. Saparov, F. Hong, J.-P. Sun, H.-S. Duan, W. Meng, S. Cameron, I. G. Hill, Y. Yan, D. B. Mitzi, *Chem. Mater.* 2015, 27, 5622.
- 82 A. Singh, K. M. Boopathi, A. Mohapatra, Y. F. Chen, G. Li, C. W. Chu, ACS Appl. Mater. Interfaces 2018, 10, 2566.