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ABSTRACT 

Presented herein are techniques that use multiple neural networks and segmentation 

of the traffic to detect the presence of applications or business processes within a noisy 

mixture of network traffic. In addition, the techniques presented herein provide a novel 

way to detect unusual, bad intentioned, and/or malicious activity, which is also a “process”,  

using recurrent and convolutional neural networks. The learning outcome can potentially 

identify compromised network infrastructure devices and/or telemetry collectors. 

 

DETAILED DESCRIPTION 

 

Data is being generated at high volumes, at high velocities, and with veracity by 

many different devices, applications, things, processes, etc.  Conventional approaches to 

analysis of data typically involves collection of the data from the sources using different 

collectors and then storing the data into centralized repositories. In some cases, data may 

be tagged or labeled indicating the source (e.g., device or process of origin). However, 

more often data is not labeled (for various reasons); and subsequently, the relationship 

between the data and its source (process or thing) is not obvious. Similarly, sequences from 

multiple processes are lost in the mix of large repositories full of untagged data. In addition, 

cyber attackers are using techniques for attacking modern applications and "end-to-end 

processes." 

As described further below, the techniques presented herein propose automated and 

smart methods for analyzing data within telemetry collectors to glean knowledge about the 

underlying "processes" and application interactions. By learning about the underlying 

process, it is possible to create a model the describes the "end-to-end process" behavior. 
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This information, in turn, allows the system to recognize bad intentioned and/or malicious 

activity from future data streams. 

Applications, Devices, Things or Processes (collectively and generally referred to 

herein as “processes”) generate sequential data streams (e.g., network flows) in high 

volume. Data Collectors aggregate such sequences of data from multiple source processes 

into a single repository.  In numerous cases, data streams are stored in a repository in a 

"blended" form or with a random mixture of multiple data sequences. In addition, in many 

cases, the elements of the data sequences are not tagged or labeled by the name of the 

source process generating the telemetry data stream.  For example, processes can use the 

same symbols when generating telemetry data.   

The proposed techniques automatically detect the presence of the known 

“processes” in a random mixture of "unlabeled" data sequences.  For example, as shown 

below in Figure 1, three processes each generate specific sequence of symbols. 

 

 
Figure 1 

 
In addition, as shown below in Figure 2, the flow collector captures “network and/or 

data flows” and saves the flows into a repository as an interlaced mixture in much less clear 

form. 

 

 
Figure 2 

 
As shown, each symbol does not carry any information about the source process 

(i.e., the process from which the symbol was originated).  Therefore, as shown below in 

Figure 3, the collector stores the data from Processes A, B, and C as an unlabeled sequential 

mixture of symbols. 

 
Figure 3 
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Figure 4, below, illustrates an application/business Process use case to detect te 

presence of the "Business Processes/Applications" in network flow data. 

 

 
Figure 4 

 

In Figure 4, the symbol "SMBLTJUK" represents conversation 

"152.15.40.215|52.21.9.111|443" (src, dst, dst_port), and it can be part of the traffic from 

different applications or business process.  

Once each of "Business Processes/Applications" are detected and categorized, 

unusual, bad intent, and malicious activity could be identified using recurrent and 

convolutional neural networks.  In addition, a similar approach can be taken to identify any 

potential malicious activity against a network infrastructure and/or telemetry collection 

device (e.g., if the network infrastructure device or collector is compromised). 

Figure 5, below, is an overview diagram illustrating aspects of the techniques 

presented herein.  

 

 
 

Figure 5 
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 Aspects of the techniques presented herein will be described below with reference 
to four (4) general steps, namely: (1) Learning and Modeling Processes, (2) Generation of 
Training Data, (3) Building a Classification Model, and (4) Detection. 
 
 
Step 1: Learning and Modeling Processes 

As the name suggests, during the learning phase, multiple streams of data sequences 

are collected and aggregated by one or multiple independent collectors into a central place, 

as shown below in Figure 6. 

 
Figure 6 

 
At this step, each process is discovered and modeled as a Stochastic Markov 

process. Each process is described by its flows transitioning matrix and flows 

distribution, as shown below in Figure 7. 

 
Figure 7 

 
 

5

Defensive Publications Series, Art. 2927 [2020]

https://www.tdcommons.org/dpubs_series/2927



 5 5950X 

Step 2: Generation of Training Data Using  

In the second step, training data is generated using the process models from Step 1, 

above.  For each process, training data may be generated using a 50/50 proportion of 

"Process"/"Non-Process."  A transitional matrix may be used for each discovered process 

to generate 5,000 training data sequences (samples) of the "process" (Traffic).  It may be 

possible to generate 5,000 total training samples from other processes, in order to keep 

50/50 ratio of process/non-process. 

These aspects may also include data augmentation to mix each sample with random 

noise (10-20%).  In on example, a permutation could be repeated ten (10) times.  In the end 

there will be 50,000 samples of the "process" and 50,000 samples of "Non-Process" for 

each process (e.g., repeat the above to generate a test data set for each process).  For 

example, if there are ten (10) discovered processes, there will be 10 Training Data sets and 

10 Test Data Sets. Each Training data set will have 100,000 samples in proportion 50/50 

of "Process"/"Non-Process" 

 

Step 3: Building a Classification Model  

In the third step, a classification model is built using shallow Neural Networks 

(CONV1D or Simple RNN) and the data from step 2, above (i.e., train classification models 

for each process).  Each classification model will classify only one process and provide a 

binary result of whether this is a process or not (One against-all).  As a classification model, 

the techniques presented can use a simple recurrent neural network as well as 

Convolutional 1D models, although more complex recurrent neural networks such as GRU 

or LSTM may not produce better results than simple networks. 

An example of a CONV 1D Network may be represented as: 

 

model = keras_model_sequential() %>% 
layer_embedding(input_dim = max_codes, output_dim = 64, name = 
"EMBEDDING") %>% 
layer_conv_1d(filters = 4, name = "CONV1D‐1", kernel_size = 7, 
activation = "relu") %>% 
layer_global_max_pooling_1d() %>% # this layer flattens 3D to 2D 
layer_dropout(0.5) %>% 
layer_dense(units = 1, activation = "sigmoid", name = "OUTPUT") 
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An example of a simple RNN network may be represented as: 

 
model = keras_model_sequential(name = "MODEL_RNN") %>% 
layer_embedding(input_dim = max_codes, output_dim = 64, name = 
"EMBEDDING") %>% 
layer_simple_rnn(units = 128, name = "RNN‐1", 
dropout = 0.1, recurrent_dropout = 0.1, 
return_sequences = FALSE) %>% 
layer_dense(units = 1, activation = "sigmoid", name = "OUTPUT") 
 

An example of a compile and train phase may be represented as: 

compile( 
model, 
optimizer = "rmsprop", 
loss = "binary_crossentropy", 
metrics = c("acc") 
) 
history = fit( 
model, 
train_set, train_labels, 
epochs = 10, 
batch_size = 128, 
validation_split = 0.2, 
callbacks = list(early_stop), 
shuffle = TRUE 
) 
 
Step 4: Detection 

A challenge with the use of neural network for the classification is that a neural 

network is trained using samples of the desired Class and samples of Non-Class.  If the 

classification model is to recognize a Process "Cat,” then the model was presented 

thousands of variations of this "Cat" (e.g.,  in one example, samples or "pictures" of traffic 

from the process "Cat" mixed with some noise).  A second model designed to recognize 

only the process "Dog" is trained in a similar manner using thousands of variations of the 

process "Dog.”  If the "Cat" model is presented traffic or "pictures" from process "Cat,” 

then they can be perfectly recognized as "Cat,” with the same result with the "Dog" model 

and process. 
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Moreover, even if pictures with "dog" and "cat" are presented next to each other, 

each model will be able to recognize what it has been trained to recognize (e.g., Model 

"Dog" will recognize "Dog", and Model "Cat" will recognize "Cat").  However, a problem 

arises from the fact that the real-life "pictures" of traffic are random mixtures/blends or 

double/triple/quadruple/etc. exposures of "dogs" and "cats", because collectors can mix the 

traffic. Such a mixed "picture" is neither a "dog" nor a "cat". Therefore neither of the 

models can recognize such mixed images.   Figure 8, below, illustrates examples of this 

image analogy (e.g., Cat + Dog = Neither Dog Nor Cat) which are on-recognizable by any 

model. 

 

 

Figure 8 
 

To address this issued, the techniques presented herein carved the "picture" of the 

traffic into multiple overlapping segments using a moving window of relatively small size 

and then attempt to classify each segment separately.  These small classifications can then 

be combined as a vote. The main idea behind this is that, if an image or sequence as a whole 

is recognizable as "dog", then the combination of classifications of multiple segments 
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should also be recognizable as "dog".  This idea has been verified and confirmed using 

CONV1D and Simple Recurrent Neural Networks.   Therefore, when there is a mixture, 

the system will try to classify each segment using the classification models, and then 

aggregate. The combined result will give us a distribution of what Signals/Processes where 

detected or recognized.  This is shown below in Figure 9. 

 

 
 

Figure 9 
 

When a mixture of sequences of processes A and B are presented, Classifier A will 

detect Process A in 50% of segments, and Classifier B will detect Process B in 50% of 

segments. Each segment is classified as A or B with 70-80% guarantee. In the end the 

detection mechanism will provide an answer that there are two Processes in this traffic, 

namely A and B, as shown below in Figure 10. 

 

 
Figure 10 
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The following provides a series of detailed steps for the proposed solution: 

 

#1 : Segment traffic sequence with overlapping segments, using moving window of 

W_len size and stride(shift) == 1. 

 

#2 : Classify each segment by each RNN_Model or CONV1D_Model 

p[3,2] : probability of Classifying Segment2 as Process3 by Neural Network RNN_Model3 

 Seg1 Seg2 Seg3Seg4Seg5Seg6Seg7 Seg8Seg9 
Process1 p[1,1] p[1,2]  0.45   0.745  p[1,9]
Process2 p[2,1] p[2,2]  0.8   0.75  p[2,9]
Process3 p[3,1] p[3,2]  0.81   0.3  p[3,9]
Process4 p[4,1] p[4,2]  0.47   0.56  p[4,9]
 

#3 : Apply credibility level threshold 0.75 (Configurable) 

C_level = 0.75 

If p[i,j] <= C_level then p[i,j] = 0 , then want the Classification Model to have 

high level of confidence. 

 Seg1 Seg2 Seg3Seg4Seg5Seg6Seg7Seg8Seg9 
Process1 p[1,1] p[1,2]  0   0  p[1,9]
Process2 p[2,1] p[2,2]  0.8   0  p[2,9]
Process3 p[3,1] p[3,2]  0.81   0  p[3,9]
Process4 p[4,1] p[4,2]  0   0  p[4,9]
 

#4 : Calculate ARGMAX, which process gives the highest probability to each 

segment 

If ALL probabilities are Zero, then assign Zero to argmax. 

 Seg1 Seg2 Seg3Seg4Seg5Seg6Seg7Seg8Seg9 
Process1 p[1,1] p[1,2]  0   0  p[1,9]
Process2 p[2,1] p[2,2]  0.8   0  p[2,9]
Process3 p[3,1] p[3,2]  0.81   0  p[3,9]
Process4 p[4,1] p[4,2]  0   0  p[4,9]
argmax(seg) p[4,1] p[4,2]  3   0   
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#5 : Mark <UNKNOWN> or undetectable segments 

If argmax(i) == 0 then Seg[i] == <UNKN> 

Hypothetical argmax(i): 

 Seg1 Seg2 Seg3Seg4Seg5Seg6Seg7 Seg8Seg9 
Process1 p[1,1] p[1,2]  0   0  p[1,9] 
Process2 p[2,1] p[2,2]  0.8   0  p[2,9] 
Process3 p[3,1] p[3,2]  0.81   0  p[3,9] 
Process4 p[4,1] p[4,2]  0   0  p[4,9] 
argmax(seg) 2 2 3 3 2 3 <UNKN> 3 1 
 

#6 : Calculate distribution of detectible processes 

Using argmax(seg): 

2 2 3 3 2 3 <UNKN> 3 1 

Calculate distribution of classification outcomes: 

1 2 3 <UNKN> 
0.11111110.33333330.44444440.1111111
 

#7 : Make conclusion(s)  

Excluding <UNKN> segments, conclude : 

1. Top One Process : Process 3 

2. Top Two Processes : Process 3 and 2 

3. There is trace of presence of Process 1, but it is too small to be considered. 

4. Process 4 is not detected at all. 

 

It is highly probable that data is generated by the Processes 2 and 3 out of four possible 

processes.  By performing these classification outcomes, unusual processes, bad intentions, 

and malicious activity could also be detected.  If these learning methodologies are applied, 

they could also be used to verify and perform attestation of abnormal behavior in network 

infrastructure devices and collectors (in the case that a network infrastructure device or 

telemetry collector is potentially compromised).   

11

Defensive Publications Series, Art. 2927 [2020]

https://www.tdcommons.org/dpubs_series/2927


	METHOD AND SYSTEM FOR DETECTING A PROCESS OR ACTIVITY USING RECURRENT AND CONVOLUTIONAL 1D NEURAL NETWORKS
	Recommended Citation

	Microsoft Word - 1149457_1

