
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

February 2020

METHOD AND SYSTEM FOR DETECTING A PROCESS OR METHOD AND SYSTEM FOR DETECTING A PROCESS OR

ACTIVITY USING RECURRENT AND CONVOLUTIONAL 1D NEURAL ACTIVITY USING RECURRENT AND CONVOLUTIONAL 1D NEURAL

NETWORKS NETWORKS

Andrey Kvasyuk

Hazim Dahir

Omar Santos

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Kvasyuk, Andrey; Dahir, Hazim; and Santos, Omar, "METHOD AND SYSTEM FOR DETECTING A PROCESS
OR ACTIVITY USING RECURRENT AND CONVOLUTIONAL 1D NEURAL NETWORKS", Technical Disclosure
Commons, (February 03, 2020)
https://www.tdcommons.org/dpubs_series/2927

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F2927&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/2927?utm_source=www.tdcommons.org%2Fdpubs_series%2F2927&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

 1 5950X

METHOD AND SYSTEM FOR DETECTING A PROCESS OR ACTIVITY USING
RECURRENT AND CONVOLUTIONAL 1D NEURAL NETWORKS

AUTHORS:

Andrey Kvasyuk

Hazim Dahir
Omar Santos

ABSTRACT

Presented herein are techniques that use multiple neural networks and segmentation

of the traffic to detect the presence of applications or business processes within a noisy

mixture of network traffic. In addition, the techniques presented herein provide a novel

way to detect unusual, bad intentioned, and/or malicious activity, which is also a “process”,

using recurrent and convolutional neural networks. The learning outcome can potentially

identify compromised network infrastructure devices and/or telemetry collectors.

DETAILED DESCRIPTION

Data is being generated at high volumes, at high velocities, and with veracity by

many different devices, applications, things, processes, etc. Conventional approaches to

analysis of data typically involves collection of the data from the sources using different

collectors and then storing the data into centralized repositories. In some cases, data may

be tagged or labeled indicating the source (e.g., device or process of origin). However,

more often data is not labeled (for various reasons); and subsequently, the relationship

between the data and its source (process or thing) is not obvious. Similarly, sequences from

multiple processes are lost in the mix of large repositories full of untagged data. In addition,

cyber attackers are using techniques for attacking modern applications and "end-to-end

processes."

As described further below, the techniques presented herein propose automated and

smart methods for analyzing data within telemetry collectors to glean knowledge about the

underlying "processes" and application interactions. By learning about the underlying

process, it is possible to create a model the describes the "end-to-end process" behavior.

2

Kvasyuk et al.: METHOD AND SYSTEM FOR DETECTING A PROCESS OR ACTIVITY USING RECUR

Published by Technical Disclosure Commons, 2020

 2 5950X

This information, in turn, allows the system to recognize bad intentioned and/or malicious

activity from future data streams.

Applications, Devices, Things or Processes (collectively and generally referred to

herein as “processes”) generate sequential data streams (e.g., network flows) in high

volume. Data Collectors aggregate such sequences of data from multiple source processes

into a single repository. In numerous cases, data streams are stored in a repository in a

"blended" form or with a random mixture of multiple data sequences. In addition, in many

cases, the elements of the data sequences are not tagged or labeled by the name of the

source process generating the telemetry data stream. For example, processes can use the

same symbols when generating telemetry data.

The proposed techniques automatically detect the presence of the known

“processes” in a random mixture of "unlabeled" data sequences. For example, as shown

below in Figure 1, three processes each generate specific sequence of symbols.

Figure 1

In addition, as shown below in Figure 2, the flow collector captures “network and/or

data flows” and saves the flows into a repository as an interlaced mixture in much less clear

form.

Figure 2

As shown, each symbol does not carry any information about the source process

(i.e., the process from which the symbol was originated). Therefore, as shown below in

Figure 3, the collector stores the data from Processes A, B, and C as an unlabeled sequential

mixture of symbols.

Figure 3

3

Defensive Publications Series, Art. 2927 [2020]

https://www.tdcommons.org/dpubs_series/2927

 3 5950X

Figure 4, below, illustrates an application/business Process use case to detect te

presence of the "Business Processes/Applications" in network flow data.

Figure 4

In Figure 4, the symbol "SMBLTJUK" represents conversation

"152.15.40.215|52.21.9.111|443" (src, dst, dst_port), and it can be part of the traffic from

different applications or business process.

Once each of "Business Processes/Applications" are detected and categorized,

unusual, bad intent, and malicious activity could be identified using recurrent and

convolutional neural networks. In addition, a similar approach can be taken to identify any

potential malicious activity against a network infrastructure and/or telemetry collection

device (e.g., if the network infrastructure device or collector is compromised).

Figure 5, below, is an overview diagram illustrating aspects of the techniques

presented herein.

Figure 5

4

Kvasyuk et al.: METHOD AND SYSTEM FOR DETECTING A PROCESS OR ACTIVITY USING RECUR

Published by Technical Disclosure Commons, 2020

 4 5950X

 Aspects of the techniques presented herein will be described below with reference
to four (4) general steps, namely: (1) Learning and Modeling Processes, (2) Generation of
Training Data, (3) Building a Classification Model, and (4) Detection.

Step 1: Learning and Modeling Processes

As the name suggests, during the learning phase, multiple streams of data sequences

are collected and aggregated by one or multiple independent collectors into a central place,

as shown below in Figure 6.

Figure 6

At this step, each process is discovered and modeled as a Stochastic Markov

process. Each process is described by its flows transitioning matrix and flows

distribution, as shown below in Figure 7.

Figure 7

5

Defensive Publications Series, Art. 2927 [2020]

https://www.tdcommons.org/dpubs_series/2927

 5 5950X

Step 2: Generation of Training Data Using

In the second step, training data is generated using the process models from Step 1,

above. For each process, training data may be generated using a 50/50 proportion of

"Process"/"Non-Process." A transitional matrix may be used for each discovered process

to generate 5,000 training data sequences (samples) of the "process" (Traffic). It may be

possible to generate 5,000 total training samples from other processes, in order to keep

50/50 ratio of process/non-process.

These aspects may also include data augmentation to mix each sample with random

noise (10-20%). In on example, a permutation could be repeated ten (10) times. In the end

there will be 50,000 samples of the "process" and 50,000 samples of "Non-Process" for

each process (e.g., repeat the above to generate a test data set for each process). For

example, if there are ten (10) discovered processes, there will be 10 Training Data sets and

10 Test Data Sets. Each Training data set will have 100,000 samples in proportion 50/50

of "Process"/"Non-Process"

Step 3: Building a Classification Model

In the third step, a classification model is built using shallow Neural Networks

(CONV1D or Simple RNN) and the data from step 2, above (i.e., train classification models

for each process). Each classification model will classify only one process and provide a

binary result of whether this is a process or not (One against-all). As a classification model,

the techniques presented can use a simple recurrent neural network as well as

Convolutional 1D models, although more complex recurrent neural networks such as GRU

or LSTM may not produce better results than simple networks.

An example of a CONV 1D Network may be represented as:

model = keras_model_sequential() %>%
layer_embedding(input_dim = max_codes, output_dim = 64, name =
"EMBEDDING") %>%
layer_conv_1d(filters = 4, name = "CONV1D‐1", kernel_size = 7,
activation = "relu") %>%
layer_global_max_pooling_1d() %>% # this layer flattens 3D to 2D
layer_dropout(0.5) %>%
layer_dense(units = 1, activation = "sigmoid", name = "OUTPUT")

6

Kvasyuk et al.: METHOD AND SYSTEM FOR DETECTING A PROCESS OR ACTIVITY USING RECUR

Published by Technical Disclosure Commons, 2020

 6 5950X

An example of a simple RNN network may be represented as:

model = keras_model_sequential(name = "MODEL_RNN") %>%
layer_embedding(input_dim = max_codes, output_dim = 64, name =
"EMBEDDING") %>%
layer_simple_rnn(units = 128, name = "RNN‐1",
dropout = 0.1, recurrent_dropout = 0.1,
return_sequences = FALSE) %>%
layer_dense(units = 1, activation = "sigmoid", name = "OUTPUT")

An example of a compile and train phase may be represented as:

compile(
model,
optimizer = "rmsprop",
loss = "binary_crossentropy",
metrics = c("acc")
)
history = fit(
model,
train_set, train_labels,
epochs = 10,
batch_size = 128,
validation_split = 0.2,
callbacks = list(early_stop),
shuffle = TRUE
)

Step 4: Detection

A challenge with the use of neural network for the classification is that a neural

network is trained using samples of the desired Class and samples of Non-Class. If the

classification model is to recognize a Process "Cat,” then the model was presented

thousands of variations of this "Cat" (e.g., in one example, samples or "pictures" of traffic

from the process "Cat" mixed with some noise). A second model designed to recognize

only the process "Dog" is trained in a similar manner using thousands of variations of the

process "Dog.” If the "Cat" model is presented traffic or "pictures" from process "Cat,”

then they can be perfectly recognized as "Cat,” with the same result with the "Dog" model

and process.

7

Defensive Publications Series, Art. 2927 [2020]

https://www.tdcommons.org/dpubs_series/2927

 7 5950X

Moreover, even if pictures with "dog" and "cat" are presented next to each other,

each model will be able to recognize what it has been trained to recognize (e.g., Model

"Dog" will recognize "Dog", and Model "Cat" will recognize "Cat"). However, a problem

arises from the fact that the real-life "pictures" of traffic are random mixtures/blends or

double/triple/quadruple/etc. exposures of "dogs" and "cats", because collectors can mix the

traffic. Such a mixed "picture" is neither a "dog" nor a "cat". Therefore neither of the

models can recognize such mixed images. Figure 8, below, illustrates examples of this

image analogy (e.g., Cat + Dog = Neither Dog Nor Cat) which are on-recognizable by any

model.

Figure 8

To address this issued, the techniques presented herein carved the "picture" of the

traffic into multiple overlapping segments using a moving window of relatively small size

and then attempt to classify each segment separately. These small classifications can then

be combined as a vote. The main idea behind this is that, if an image or sequence as a whole

is recognizable as "dog", then the combination of classifications of multiple segments

8

Kvasyuk et al.: METHOD AND SYSTEM FOR DETECTING A PROCESS OR ACTIVITY USING RECUR

Published by Technical Disclosure Commons, 2020

 8 5950X

should also be recognizable as "dog". This idea has been verified and confirmed using

CONV1D and Simple Recurrent Neural Networks. Therefore, when there is a mixture,

the system will try to classify each segment using the classification models, and then

aggregate. The combined result will give us a distribution of what Signals/Processes where

detected or recognized. This is shown below in Figure 9.

Figure 9

When a mixture of sequences of processes A and B are presented, Classifier A will

detect Process A in 50% of segments, and Classifier B will detect Process B in 50% of

segments. Each segment is classified as A or B with 70-80% guarantee. In the end the

detection mechanism will provide an answer that there are two Processes in this traffic,

namely A and B, as shown below in Figure 10.

Figure 10

9

Defensive Publications Series, Art. 2927 [2020]

https://www.tdcommons.org/dpubs_series/2927

 9 5950X

The following provides a series of detailed steps for the proposed solution:

#1 : Segment traffic sequence with overlapping segments, using moving window of

W_len size and stride(shift) == 1.

#2 : Classify each segment by each RNN_Model or CONV1D_Model

p[3,2] : probability of Classifying Segment2 as Process3 by Neural Network RNN_Model3

 Seg1 Seg2 Seg3Seg4Seg5Seg6Seg7 Seg8Seg9
Process1 p[1,1] p[1,2] 0.45 0.745 p[1,9]
Process2 p[2,1] p[2,2] 0.8 0.75 p[2,9]
Process3 p[3,1] p[3,2] 0.81 0.3 p[3,9]
Process4 p[4,1] p[4,2] 0.47 0.56 p[4,9]

#3 : Apply credibility level threshold 0.75 (Configurable)

C_level = 0.75

If p[i,j] <= C_level then p[i,j] = 0 , then want the Classification Model to have

high level of confidence.

 Seg1 Seg2 Seg3Seg4Seg5Seg6Seg7Seg8Seg9
Process1 p[1,1] p[1,2] 0 0 p[1,9]
Process2 p[2,1] p[2,2] 0.8 0 p[2,9]
Process3 p[3,1] p[3,2] 0.81 0 p[3,9]
Process4 p[4,1] p[4,2] 0 0 p[4,9]

#4 : Calculate ARGMAX, which process gives the highest probability to each

segment

If ALL probabilities are Zero, then assign Zero to argmax.

 Seg1 Seg2 Seg3Seg4Seg5Seg6Seg7Seg8Seg9
Process1 p[1,1] p[1,2] 0 0 p[1,9]
Process2 p[2,1] p[2,2] 0.8 0 p[2,9]
Process3 p[3,1] p[3,2] 0.81 0 p[3,9]
Process4 p[4,1] p[4,2] 0 0 p[4,9]
argmax(seg) p[4,1] p[4,2] 3 0

10

Kvasyuk et al.: METHOD AND SYSTEM FOR DETECTING A PROCESS OR ACTIVITY USING RECUR

Published by Technical Disclosure Commons, 2020

 10 5950X

#5 : Mark <UNKNOWN> or undetectable segments

If argmax(i) == 0 then Seg[i] == <UNKN>

Hypothetical argmax(i):

 Seg1 Seg2 Seg3Seg4Seg5Seg6Seg7 Seg8Seg9
Process1 p[1,1] p[1,2] 0 0 p[1,9]
Process2 p[2,1] p[2,2] 0.8 0 p[2,9]
Process3 p[3,1] p[3,2] 0.81 0 p[3,9]
Process4 p[4,1] p[4,2] 0 0 p[4,9]
argmax(seg) 2 2 3 3 2 3 <UNKN> 3 1

#6 : Calculate distribution of detectible processes

Using argmax(seg):

2 2 3 3 2 3 <UNKN> 3 1

Calculate distribution of classification outcomes:

1 2 3 <UNKN>
0.11111110.33333330.44444440.1111111

#7 : Make conclusion(s)

Excluding <UNKN> segments, conclude :

1. Top One Process : Process 3

2. Top Two Processes : Process 3 and 2

3. There is trace of presence of Process 1, but it is too small to be considered.

4. Process 4 is not detected at all.

It is highly probable that data is generated by the Processes 2 and 3 out of four possible

processes. By performing these classification outcomes, unusual processes, bad intentions,

and malicious activity could also be detected. If these learning methodologies are applied,

they could also be used to verify and perform attestation of abnormal behavior in network

infrastructure devices and collectors (in the case that a network infrastructure device or

telemetry collector is potentially compromised).

11

Defensive Publications Series, Art. 2927 [2020]

https://www.tdcommons.org/dpubs_series/2927

	METHOD AND SYSTEM FOR DETECTING A PROCESS OR ACTIVITY USING RECURRENT AND CONVOLUTIONAL 1D NEURAL NETWORKS
	Recommended Citation

	Microsoft Word - 1149457_1

