
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

January 2020

AUTOMATIC LINECARD (LC) CAPABILITY DETECTION AUTOMATIC LINECARD (LC) CAPABILITY DETECTION

Stefano Binetti

Richard Moses S

Davide Sirtori

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Binetti, Stefano; S, Richard Moses; and Sirtori, Davide, "AUTOMATIC LINECARD (LC) CAPABILITY
DETECTION", Technical Disclosure Commons, (January 14, 2020)
https://www.tdcommons.org/dpubs_series/2866

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F2866&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/2866?utm_source=www.tdcommons.org%2Fdpubs_series%2F2866&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

 1 5923x

AUTOMATIC LINECARD (LC) CAPABILITY DETECTION

AUTHORS:

Stefano Binetti
Richard Moses S
Davide Sirtori

ABSTRACT

Presented herein are techniques to reduce software development code and allow

software to automatically detect and adapt the code to the capabilities of a linecard (LC).

DETAILED DESCRIPTION

In the previous generations of software implementation for each new linecard (LC)

capability/functionality introduced, the associated RP PD code EA/MA had to be

rewritten/adapted based on the new capability of the LC. For example, if an LC has a

4x100GE port or 40x10GE, the complete software layering needs to be rewritten and

adapted to the new LC Muxponder functionality.

Given the limitations of conventional arrangements, there is a need for an operating

system (OS) agnostic abstract representation (abstract model) of Cross Ponder / Mux

Ponder / Transponder functional modules, as well as a need to support different methods

of configuration, such as “Static Muxponder,” “Mixed Service Muxponder,” “L1 Cross

Connection,” etc. There is also a need for the abstract model to provide a capability

learning method that embeds the modules port capability, layer capabilities, cross connect

restrictions, bandwidth restrictions, etc., as well as for the abstract model to define the

Static Structure of the hardware that enables simplification of recovery of the device

programming in warm reload conditions. The abstract model should also allow percolation

of high/upper level software entity mapping, such as interface name or handles, to the

driver layer, to enable single index to stitch debug data from different layers. Such

capabilities would require less effort to support new modules of the same functionality.

2

Binetti et al.: AUTOMATIC LINECARD (LC) CAPABILITY DETECTION

Published by Technical Disclosure Commons, 2020

 2 5923x

Accordingly, presented herein is a new software architecture based on the concept

of “Graph and Node.” More specifically, the traffic scheme of Muxponder / Cross-Ponder

/ Transponder modules is chosen to be represented as a graph. In addition, the Static

Muxponder scheme is represented as Static graphs defining the traffic flow from client port

to trunk port, where a unique graph is defined for each of the traffic modes. The Mixed

Service Muxponder scheme is represented as graphs with different branches from client

port to trunk port, where a unique graph is defined for each trunk type. The correct branch

connecting a client to the trunk can be chosen based on the client mode.

In addition, the L1 cross connection scheme is represented as graphs with open

links, where a unique graph is defined based on trunk type. The correct branch can again

be chosen based on the client mode and the client to trunk connections can be chosen based

on bandwidth and scope restrictions published in the graph node.

In addition, the graph contains a list of graph nodes that carry a unique static

unsigned 32bit identifier. Since the identifier is static, it remains unchanged over warm

reload. A graph node maps to a device and block within a device. The graph and graph

nodes defines the construct to carry the traffic capabilities, port mapping, layer capabilities,

resource restrictions. The initialization flow from high level software to the device driver

layer carries the needed high level software identifiers via a “Name/handle” mapped to

static identifiers of the device driver layer.

3

Defensive Publications Series, Art. 2866 [2020]

https://www.tdcommons.org/dpubs_series/2866

 3 5923x

FIG. 1, below, illustrates an example Muxponder Abstraction Model (abstract

model) in accordance with the techniques presented herein.

In FIG. 1, a “Node” is a configurable or/and monitorable entity in the data path.

The node can be of different types. All the layers are represented by nodes (e.g., optical,

ODU, OTU, Ethernet, DWDM-carrier, etc.). A node can have the property to operate on

one of given modes. The “Graph” is the relationship of Nodes that represents the data path.

In context of a Muxponder or transponder application, a graph defines the traffic flow from

the client port to the trunk port. The “Client Port” represents the entry point of the

Muxponder module. The Client Port can start with a Face Plate Optics Port or can be an

electrical interface (CAUI4 or CAUI10, etc.) in an IPoDWDM solution. If the Client Port

is optical, usually referred as a Grey Optics port, then there are some lower CWDM optics

that are also used on the client side. The “Trunk Port” represents the Exit Port of the

muxponder module. The output is one or more DWDM carriers. Finally, the “Slice” is an

autonomous muxponding entity, which can be a group of clients and trunk ports.

4

Binetti et al.: AUTOMATIC LINECARD (LC) CAPABILITY DETECTION

Published by Technical Disclosure Commons, 2020

 4 5923x

FIG. 2, below, illustrates a 2x100GE to 200G trunk overlaying a module.

FIG. 3, below, illustrates a 4x100GE to 400G trunk overlaying a module.

5

Defensive Publications Series, Art. 2866 [2020]

https://www.tdcommons.org/dpubs_series/2866

 5 5923x

FIG. 4, below, illustrates an example 6x100 client to 2x300 trunk graph.

FIG. 5, below, illustrates an example IOS XR: CMA Graph to XR interface

mapping.

As noted, presented herein is a new software architecture that is based on the

concept of Graph and Node. Each Muxponder and Transponder instance is always

represented by a Graph that represent the client to trunk relationship and a node that

represent the technology specific capability such as Ethernet, OTN, Fiber Channel, etc. In

addition, the adaptation function is represented as a Node to Node relationship. For

example 100GE mapped over an ODU4 via GMP mapping is represented as 100GE -->

6

Binetti et al.: AUTOMATIC LINECARD (LC) CAPABILITY DETECTION

Published by Technical Disclosure Commons, 2020

 6 5923x

ODU4, where 100GE and ODU4 are 2 distinct node and the mapping is a graph relationship.

This methodology is extremely flexible and allows the software representation of any

Muxponder/Transponder functionality, while also allowing easy integration of the XR

upper layer software entity. The upper layer software using this Graph/Node modeling

approach can always retain the same increase in the speed at which a new hardware

functionality will be supported by the platform. In essence, the techniques presented herein

provide the capability for the lower layer software, which is closest to the hardware and

has better knowledge of its capability, to the upper layer software in a programmatic and

efficient way to minimize the upper layer software development.

7

Defensive Publications Series, Art. 2866 [2020]

https://www.tdcommons.org/dpubs_series/2866

	AUTOMATIC LINECARD (LC) CAPABILITY DETECTION
	Recommended Citation

	Microsoft Word - 1137746_1

