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 We applied a multilayer artificial neural network (ANN) developed using a 

Lavenberg–Marquadt algorithm to predict the photodegradation activity of the 

Reactive Black 5 (RB5) dye. A copper-doped titanium dioxide was employed as a 

photocatalyst. A copper doped titanium dioxide was synthesized through a wet-

impregnation method. To optimize the network the operational parameters 

including the RB5 initial concentration, photocatalyst dose, irradiation time, 

hydrogen peroxide concentration, and visible light intensity were used as the input 

parameter. Removal efficiency of RB5 was selected as output. The number of 

neurons in the second hidden layer was optimized to determine the suitable ANN 

model structure for the RB5 removal. ANN based through Levenberg-Marquadth 

algorithm with structure 1-10-21-1 gave the best performance in this study. The 

criteria for the applicability of the model were the root mean square error (0.1) 

and coefficient of correlation (0.98275). 

Keyword: artificial neural network; Levenberg–Marquadt; copper-doped TiO2; 

photodegradation; Reactive Black 5. 
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 Multilayer artificial neural network (ANN) yang dikembangkan menggunakan 

algoritma Levenberg–Marquadt diterapkan untuk memprediksi potodegradasi dari 

Reactive Black 5 (RB5). Photocatalyst yang digunakan adalah titanium dioxide 

yang didoping dengan tembaga. Untuk mengoptimalkan pengoperasian parameter 

yang terdiri dari konsentrasi awal RB5, dosis photocatalyst, waktu iradiasi, 

konsentrasi hydrogen peroksida, dan intensitas visible light digunakan sebagai 

parameter input sedangkan effisiensi removal RB5 digunakan sebagai parameter 

output. Jumlah neuron di layer kedua dioptimalkan untuk menentukan struktur 

model ANN yang sesuai untuk potodegradasi dari RB5. ANN berdasarkan 

algoritma Lavenberg-Marquadth dengan struktur 1-10-21-1 memberikan performa 

terbaik pada penelitian ini. Kriteria untuk penerapan model adalah root mean 

square error (0.1) dan koefisien korelasi (0.98275). 

Kata kunci: artificial neural network; Levenberg–Marquadt; copper-doped TiO2; 

photodegradation; Reactive Black 5. 
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INTRODUCTION 

Industrial activities cause water pollution. Textile industries are one of the largest polluters 

in the world. The World Bank has estimated that 20% of industrial water pollution originates from 

textile dyeing and the finishing treatment of fabrics. 72 toxic chemicals in the water solely from 

textile dyeing, and 30 of these chemicals cannot be removed [1]. Majority of the dyes used in 

textile industries are classified as azo dyes, which are the most problematic pollutants in textile 

wastewater [2]. 

Photocatalytic oxidation, an advanced oxidation process, is a promising and environment-

friendly method for converting harmful organic dye substances into water and carbon dioxide [3]. 

Titanium dioxide (TiO2), a heterogeneous photocatalyst, is the most widely used photocatalyst 

because of its strong oxidizing abilities (in decomposing organic pollutants), superhydrophilicity, 

chemical stability, durability, nontoxicity, and low cost [4]. However, TiO2 responds only to 

ultraviolet irradiation and absorbs a limited  amount of visible light because of its wide band gap 

(3.2 and 3.0 eV for the anatase and rutile mineral forms, respectively). Copper is a widely used 

transition metal that modifies the band gap of TiO2, resulting in enhanced absorption of visible 

light [5].  

The process of a photocatalytic activity is complex. Moreover, the absorption efficiency of 

TiO2, despite its modified forms, tends to decline at high dye concentrations. Therefore, predicting 

photodegration data through computational models would be useful. Artificial neural network 

(ANN) is a performance prediction tool for photocatalytic processes characterized by complex 

photocatalytic reactions [6]. ANN modeling had reliable, robust, and salient characteristics suitable 

for nonlinear relationships between the variables in a complex system [7]. The process of 

photocatalytic activity consists of input variables and an output factor [8]. Each input is varied and 

optimized to achieve the maximum efficiency of output.  

In the present study, Reactive Black 5 (RB5), an azo dye, was used for modeling the dye 

degradation through ANN. For the first time, modeling of RB5 photodegradation by ANN using 

copper doped TiO2 were studied. Several input variables were considered—photocatalyst dose, 

amount of dye, hydrogen peroxide (H2O2) concentration, visible light intensity, and irradiation 

time. The efficiency of removing RB5 was the output factor. Levenberg–Marquardt algorithm was 

adopted because of its learning capability and high efficiency. The Levenberg–Marquardt 

algorithm (a standard technique) solve nonlinear least square problems [9]. Min-Max normalization 

was applied to convert the value of primary data into normalized numbers  (from −1 to 1). The 

result of normalized numbers was analyzed to determine the activation function. To obtain the 

optimum ANN model, the number of hidden layers (connection between input and output layers) 

was optimized through iteration until the minimum root mean square error (RMSE) was achieved. 

 

LITERATURE REVIEW 

Photocatalyst 

Photocatalytic oxidation, an advanced oxidation process, is a promising and environment-

friendly method for converting harmful organic dye substances into water and carbon dioxide. 

Most of the photocatalytic dye degradation studies reported have been with Titanium dioxide as a 

photocatalyst. However, the major disadvantage of TiO2 that it absorbs only in the UV region since 

it has a band gap of around 3.2 eV. Copper is a widely used transition metal that modifies the band 

gap of TiO2, resulting in enhanced absorption of visible light.  

 

Artificial Neural Network 

An artificial neuron network (ANN) is a computational model based on the structure and 

functions of biological neural networks. Information that flows through the network affects the 

structure of the ANN because a neural network changes - or learns, in a sense - based on that input 

and output. ANNs are considered nonlinear statistical data modeling tools where the complex 

relationships between inputs and outputs are modeled or patterns are found. 
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MATERIALS AND METHODS 

Materials 

All chemicals in the experiments were used without purification. Titanium isopropoxide 

(Ti[OCH(CH3)2]4; 98%, Aldrich), ethanol (99.5%, Nihon Shiyaku), acetic acid (CH3COOH; 95%, 

Scharlab), and HCl (95%, Aldrich) were used in synthesizing the photocatalyst. Copper nitrate 

(Cu(NO3)2.3H2O; 99.5%, Merck) was used as a copper source. Hydrogen peroxide (H2O2; 30%, 

Merck), TiO2 (P25) (anatase 80% and rutile 20%, 20 nm), and RB5 (C26H21N5Na4O19S6; 50%, 

Aldrich) were used in the photocatalytic experiments. Table 1 presents the structure and 

characteristics of RB5. Deionized water was used throughout the experiments. 

Table 1. Structure and characteristic of Reactive Black 5 

Chemical structure 

 
Formula 

IUPAC name 

C26H21N5Na4O19S6 

tetrasodium;(6Z)-4-amino-5-oxo-3-[[4-(2-

sulfonatooxyethylsulfonyl)phenyl]diazenyl]-6-[[4-(2-

sulfonatooxyethylsulfonyl)phenyl]hydrazinylidene]naphthalene-2,7-

disulfonate 

Molecular mass 991.82 

Maximum wavelegth of 

adsorption spectrum 

597 nm 

 

Photocatalyst synthesis and characterization 

TiO2 was synthesized through a modified sol-gel method [10]. A mixture of 3 mL titanium 

isopropoxide, 14 mL ethanol, and 1 mL acetic acid was stirred for 30 min. Afterward, 12 mL each 

of ethanol and acidified deionized water (pH was adjusted to 2 by using 1 M HCl) were added to 

this mixture, and it was then stirred continuously for 12 h. The resulting thickened mixture was 

dried in an oven at 80 ºC overnight; finally, it was calcined in a furnace at 500ºC for 2 h.  

A copper-doped photocatalyst (Cu/TiO2) was synthesized through a wet-impregnation 

method [11]. A mixture of 1 g TiO2 and 50 mL deionized water was stirred. A solution of 0.27% 

Cu was pepared by dissolving the desired amount of Cu(NO3)2.3H2O in 4 mL ethanol, and this 

solution was added to the aforementioned mixture. Afterward, the obtained mixture was placed in a 

water bath at 70 °C, which was continuously stirred, to evaporate most of the water. The resulting 

mass was dried in an oven at 80 ºC overnight and calcined in a muffle furnace at 500 °C for 5 h. 

The synthesized Cu/TiO2 was crushed in a mortar, and it was then sieved (50–80 mesh) to obtain a 

homogeneous powder. A composite Cu-doped TiO2 photocatalyst was finally synthesized. 

The structure and morphology of Cu/TiO2 were investigated using a scanning electron 

microscope (SEM, Hitachi S-4800, Japan) at an acceleration voltage of 30.0 kV. X-ray diffraction 

(XRD) analyses on a Bruker D8 Advance Eco diffractometer (40 kV, 40 mA) were performed to 

characterize TiO2 (P25) and Cu/TiO2. The XRD patterns were recorded from 20 to 80° at a scan 

rate of 0.2°/s. Energy dispersive X-ray (XRD) analysis was conducted to determine the Cu content 

in the doped TiO2 photocatalyst by using a Hitachi S-3000 N instrument. The absorbance of RB5 
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remaining in the test solution was measured using a Genesys 10s ultraviolet-visible (UV-Vis) 

spectrophotometer (Thermo-Scientific) at a wavelength of 597 nm. 

 

Photocatalytic degradation experiments 

The photodegration experiment was conducted using a batch reactor (250-mL Pyrex glass 

beaker) (Figure 1). A compact fluorescent lamp (13, 20, or 27 W) was installed 15 cm above the 

beaker. The experimental setup was covered using a box coated with an aluminum foil. Cu/TiO2 

was added to the beaker containing 100 mL of RB5 solution. H2O2 was also added as an oxidizing 

agent. After the addition of Cu/TiO2and H2O2, the solution under magnetic stirring at a constant 

rate was kept in the dark for 60 min to achieve adsorption-desorption equilibrium. Irradiation time 

started when the lamp was turned on; this point was taken as zero time. Afterward, the solution was 

irradiated with visible light for 180 min. Samples were taken using pipet every 30 min and 

analyzed using a Genesys 10s UV-Vis spectrophotometer (Thermo Fisher Scientific, US). The dye 

removal efficiency was calculated using the following equation: 

 
... (1) 

where At and A0 were the solution absorbance at time t and 0, respectively.  

Magnetic stirrer

Pyrex glass beaker

Dark box

Aluminum foil

Fluorescent lamp

Photocatalyst + RB5 + H2O2

 

Figure 1. Experimental setup. 

 

Development of artificial neural network 

ANN contains a series of mathematical equations used for simulating patterns based on 

learning and memory. In other words, ANN is patterned after the structure of the human brain [12]. 

In the present study, ANN was developed using Levenberg–Marquardt, a multilayer feedforward 

backpropagation algorithm. Experimental data were obtained using the ANN tool in MATLAB 

2013a. Figure 2 diagrams the architecture of ANN, which comprised an input layer, two hidden 

layers, and an output layer—these layers were all interconnected by parallel nodes. 

Interconnections of nodes were qualified by weighted connections. The nodes of the input layer are 

passive (i.e., they do not modify data). Each node receives a single value as an input and duplicates 

the value to its multiple outputs. In contrast, the nodes of both the hidden and output layers are 

active (they modify data). The variables (L11, L21, .... L212) hold the data to be evaluated. 
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Figure 2. Architecture of artificial neural network. 

In ANN, three steps must be underlined. First is the preparation of primary data, which are 

divided into training, validation, and testing data. Training data adjust the weights on the neural 

network. Validation data minimize overfitting. Testing data analyze the final solution to confirm 

the network predictive power. Second is the normalization. Min-Max normalization converts the 

original data into normalized ones, because the working value in the ANN structure is between −1 

to 1. Third is the determination of activation functions, which are crucial to ensure that the 

calculation of input and weight values is within the normalized range. If the activation function is 

incorrect, then RMSE is large. The logsig transfer function is used in ANN applications if the 

normalized range were between 0 to 1 and to use tansig if the range were between −1 to 1 [13]. 

Table 2 indicates the details of the transfer functions used in the Levenberg–Marquardt 

algorithm adopted by the present study. In a feedforward backpropagation neural network, the first 

layer (input) sends data via weights to the nodes of the second layer (hidden layer) and then to the 

third layer (output). If the predicted output has an error, where the error is a gap between the actual 

removal efficiency (target) and the predicted removal efficiency, then iterations are continued 

(weight value is updated) until the predicted is close enough to the target (depends on the error 

tolerance set before the training). In the present study, the number of neurons was modified several 

times, and the root mean square error was used as a criterion for choosing the optimum structure of 

the ANN. 

Table 2. Algorithms of the transfer functions used for developing the ANN model. 

Transfer function Algorithm 

purelin purelin (n) = n, for all n 

logsig logsig (n) = 1 (1 + exp(−n)) 

 

RESULTS AND DISCUSSION 

Photocatalyst Characterization 

Figure 3 illustrates the SEM morphology of the synthesized photocatalyst, which 

comprised agglomerated nanosized particles of Cu/TiO2. Each particle exhibited a nanoplate-like 
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shape. On average, the particle sizes were uniform. The SEM analysis did not confirm the presence 

of Cu, probably because the Cu metal dopant may have been integrated into the basic structure of 

TiO2 [14]. 

 

Figure 3. Scanning electron microscopic image of copper-doped titanium dioxide. 

XRD was measured to describe the photocatalyst crystalline structure. Figure 4 compares 

the XRD patterns of TiO2 (P25) and Cu/TiO2. Peaks in Cu/TiO2 were observed at the following 2θ 

values: 25.26, 37.77, 48.0, 53.84, 55.02, 62.62, 68.67, 70.25, and 75.00°. These peaks agree with 

those of the standard spectrum (JCPDS no 01-075-2246). However, the two XRD patterns differed 

at 2θ = 27.4, which describes the rutile polymorph in TiO2 (P25). The sample crystallinity was 

influenced by the annealing temperature [15]. No characteristic peaks were attributed to the Cu 

metal, which is probablly due to the low metal concentration in the TiO2 matrix. 
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Figure 4. X-ray diffraction patterns of commercial titanium dioxide and copper-doped titanium 

dioxide. 

Figure 5 presents the EDX analysis of the Cu-doped TiO2. The quantitative analysis reveals 

the presence of Ti (55.68%), O (44.05%), and Cu (0.27%). No other components were observed, 

indicating that the synthesized photocatalyst contained no impurities. 
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Figure 5. Spectral data of copper-doped titanium dioxide. 

 

Mechanism of photocatalytic activity 

When the synthesized photocatalyst (Cu/TiO2) was illuminated under a visible light during 

the photocatalytic degradation process in the presence of an oxidizing agent, an electron migrated 

from the valence band to the conduction band and formed electron–hole (e-–h+) pairs. The 

generated hole in the valence band can produce hydroxyl radicals that attack organic pollutants, 

resulting in a complete decomposition of toxic compounds into harmless molecules. The 

photogenerated e- and h+ are vigorous oxidizing and reducing agents, respectively; their reactions 

are given as follows: 

H2O +h+→OH+H+ ...(2) 

e− + H2O2→OH+OH−  ...(3) 

e− + O2→O2−, H2O2 +O2−→OH+OH− +O2 ...(4) 

Eq. 2 generates hydroxyl radicals through the oxidation step, as a result of the reaction 

between the positive holes and the absorbed water. The reduction step leading to the hydroxyl 

radical generation can occur either by direct or indirect routes. H2O2 can react with electrons (Eq. 

3) to generate hydroxyl radicals directly. The indirect route (Eq. 4) is composed of two steps: (1) 

O2 adsorbed on Cu/TiO2 reacts with e− to produce super oxide anions (O2
−); (2) O2

− reacts with 

H2O2, resulting in the hydroxyl radical generation. When reduction and oxidation do not occur 

simultaneously, electrons would accumulate in the conduction band. Therefore, this would cause 

increased rate of e− and h+ recombination. Because recombination leads to energy waste, it should 

be prevented to ensure efficient photocatalysis. The role of a dopant in photocatalysis is to keep the 

charges separate by trapping the electrons of TiO2; consequently, the recombination of e− and h+ 

would be suppressed. Cu2+ions, which are absorbed on the TiO2surface, can act as electron trapping 

centers. Hence, Cu2+ ions increase the electron-hole pair separation efficiency [16].  

A preliminary experiment was conduced to determine the effect of Cu-doped TiO2 on 

photocatalysis. Figure 6 compares the photocatalytic activities of TiO2 (P25) and Cu/TiO2. The 

experimental conditions were as follows: initial dye concentration = 20 mg L-1, photocatalyst 

concentration = 0.55 g L-1, H2O2 solution concentration = 0.5 M, irradiation time = 180 min, and 

visible light intensity = 360 Wm-2. The RB5 degradation efficiency was 56.43 % for TiO2 (P25) 

and 87.98 % for Cu/TiO2. The higher performance of Cu/TiO2 is caused by doping TiO2 with the 

Cu metal. 
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Figure 6. Comparison of photocatalytic activities of commercial titanium dioxide and copper-doped 

titanium dioxide. 

 

Effect of operational parameters on photodegradation efficiency 

Effect of the initial dye concentration 

We determined the effect of the initial concentration of RB5 on the dye degradation. 

Except for the initial dye concentration, which was varied from 10 to 50 mg L-1, the other 

operational parameters were held constant: 0.55 g L-1 Cu/TiO2, visible light irradiation at 360 W 

m-2, and 0.5 mol L-1 H2O2 solution added. At a given irradiation time, Figure 7 indicates that the 

dye removal efficiency decreased as the initial dye concentration increased, which is generally the 

case. For 10 mg L-1 initial dye concentration, the dye removal efficiency was 100% at 180 min. 

When the dye concentration was twice as much (20 mg L-1), the efficiency was lower at 93.97% 

at the same irradiation time of 180 min. When the conconcentration was much higher at 50 mg L-

1, the efficiency dropped to 57.25% at 180 min irradiation time. At increased dye concentrations, 

the photocatalyst active sites would not be enough to accommodate the dye adsorption [17]. 
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Figure 7. Effect of initial dye concentration on the removal of Reactive Black 5. 

 

 

 



ISSN:1411-7010 Jurnal IPTEK 

e-ISSN:2477-507X Vol.23 No.2, Desember 2019 

 

109 

 

Effect of the photocatalyst dosage 

Figure 8 plots the data on the influence of varying the amount of Cu/TiO2—from 0.25 to 

0.55 g L-1—in the presence of 10 mg L-1 of dye and 0.5 mol L-1 H2O2 and under a visible light 

intensity of 360 W m-2. At 180 min irradiation time, the dye removal efficiency increased from 

80.63 to 100% with increasing photocatalyst dose from 0.25 to 0.55 g L-1. The photocatalytic 

activity was enhanced because of the greater number of actives sites at higher photocatalyst dose, 

in addition to possible light scattering and screening effects [17]. 
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Figure 8. Effect of photocatalyst concentration on the removal of Reactive Black 5. 

 

Effect of the H2O2 concentration 

The influence of varying the H2O2 concentration (from 0.1 to 0.5 mol L-1) on the dye 

removal was investigated, with the other parameters held constant: 10 mg L-1 of dye, 0.55 g L-1 

Cu/TiO2, and 360 W m-2 light intensity. H2O2 is a stronger electron acceptor than oxygen 

according to its high oxidation potential and electrophilicity [18]. The presence of H2O2 led to a 

more efficient generation of hydroxyl radicals and inhibition of electron–hole pair recombination; 

hence, the photodegradation of compound was enhanced [19]. The maximum photodegradation 

was observed using 0.5 mol L-1 of H2O2 (100% dye removal at 180 min irradiation time) (Figure 

9). 
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Figure 9. Effect of hydrogen peroxide concentration on the removal of Reactive Black 5. 

 

Effect of visible light intensity 
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Figure 10 illustrates the effect of changing the visible light intensity on the dye removal. 

Three different light intensities (173.39, 270, and 360 W m-2) were employed for the following 

photodegradation conditions: 10 mg L-1 dye, 0.5 mol L-1 H2O2, and 0.55 g L-1 Cu/TiO2. The dye 

removal efficiency increased with the visible light intensity. This is due the generation of more 

free hydroxyl radicals on the photocatalyst surface under the irradiation of visible light at a higher 

intensity [20]. 

 

Figure 10. Effect of visible light intensity on the removal of Reactive Black 5. 

 

Model for the photodegradation data  

Artifical neural network model development 

Table 3 indicates the units and range of values of independent variables as input 

parameters. Experimental data set at different operational parameters were used to train, validate, 

and test the artificial neural network model. To develop an optimum ANN model, the type of 

ANN must be specified. The ANN used in the present study was a feedforward backpropagation 

neural network. The training method used the Levenberg–Marquardt algorithm, which is 

commonly applied to model highly nonlinear data. The Levenberg–Marquardt training method 

was more suitable for modeling photocatalytic degradation than the other methods such as 

conjugate gradient, scaled conjugate, resillent backpropagation, and even gradient descent [17]. 

Table 3. Units and range of values of various input variables. 

Input variables Unit Range 

Photocatalyst dose g L-1 0.25  0.55 

Dye concentration mg L-1 10  50 

Irradiation time min 0   180 

Visible light intensity W m-2 173.33  360 

H2O2 concentration mol L-1 0.1  0.5 

 

Normalization of experimental data 

A total of 192 sets of data—obtained from the photodegradation experiments—were 

divided into training data (75%), validation data (10%), and testing data (15%). Each set of data 

was normalized using the Min-Max normalization, which is a simple technique for fitting specific 

data in a predefined boundary. The normalization refers to the process of dividing the data with 

the data range (maximum data − minimum data); the following equation was used [21]: 

minmax

min0

xx

xx
xx nn






 .... (5) 

where xn = normal data, x0 = experimental data, xmin = minimum experimental data, and xmax = 

maximum experimental data. 

The normalized value ranged between 0 and 1. The logsig transfer function was applied 

by following the procedure in a previous research [13], which proved that logsig was the most 



ISSN:1411-7010 Jurnal IPTEK 

e-ISSN:2477-507X Vol.23 No.2, Desember 2019 

 

111 

 

suitable transfer function for modelling the RB5 photodegradation. Training and testing data were 

used as a criterion to end the iteration when the RSME was stabilized. These data were used to 

compute and ensure robustness of the network parameter. 

 

Appropriate combination of transfer functions 

In the present study, the logsig transfer function was tested in the hidden layer and 

combined with the purelin transfer function in the output layer to determine the best coefficient of 

correlation (R2). The combination of logsig in the hidden layer and purelin in the output layer in 

the Levenberg–Marquadt algorithm yielded a higher R2 compared with that of the other 

combination of transfer functions [17]. The transfer function is one of the parameters in ANN that 

can optimize the model. Calculating the normal data and weight in the hidden layer produces a 

large number, which must be converted into a working value by using a transfer function, because 

the ANN system has a working value from −1 to 1. An incorrect transfer function would lead to a 

prediction number that deviates from the target (R2< 1). A correct transfer function would lead to 

convergence of the predicted number and the target (R2 ͠1). 

 

Optimization of the number of neurons 

The number of neurons in the first hidden layer was selected as 10. In the second hidden 

layer, the number was varied from 1 to 25. On the basis of the minimum RMSE for the training 

and prediction, the optimum number of neurons was determined. For 21 neurons, the RMSE was 

0.1. Figure 11 reveals the optimum number of neurons. The RMSE decreased with increasing 

hidden neuron sizes and increased when the number of hidden neurons was greater than 21. 

Accordingly, the optimum layer structure for modeling the RB5 photodegradation consisted of 

the following parameters and the corresponding optimum numbers: input layer = 5, first hidden 

layers = 10, second hidden layers = 21, and output layer = 1. 

 

Figure 11. Relationship between the number of neurons and the root mean square error. 

 

Validation and testing of the artificial neuron network model 

Figure 12 is a regression plot of the target values compared with the predicted output. To 

validate the ANN model performance, the neutral network toolbox in MATLAB was used. The 

optimum model structure was attained by modifying the number of neurons in the hidden layers. 

In the present paper, the minimum RMSE was obtained from 10% of the data from validation and 

15% of the data from testing. The data interpretation is given in the next section (section 3.4.6).    
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Figure 12. Comparison between the predicted and experimental output values. 

 

Results of the artificial neuron network model 

Figure 13 presents the regression analyses for training, validation, and testing and for the 

overall data. R values are 0.99925, 0.95731, and 0.97579 for the training, validation, and testing, 

respectively. Therefore, the ANN model can predict the experimental data accurately in the 

training and testing stages. 

 

Figure 13. Comparison between predicted and experimental values (training, validation, 

and testing). 

Figure 14 indicates the RMSE for each data division (training, validation, and testing). 

The iteration in the training was terminated when the network converged and the RMSE for 

validation and testing divisions was constant at the 74th iteration. In the present study, thebest 

validation was obtained at the 24th iteration, where the RMSE was 4.7021 . The mininum RMSE 

for the testing division was 4.4609. 
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Figure 14. Artificial neural network performance plot. 

Figure 15 summarizes the ANN model results. The network was trained using the 

‘trainlm’ (Levenberg–Marquadt) algorithm, and the RMSE was minimized to 110-5. The 

network was trained for 1000 iterations. The final result indicates that the training perfomance 

had an RMSE of 0.1. This means that the average error between the target and the predicted 

removal efficiency in the model was 0.0111. In this research, the RMSE was comparable with the 

RMSE criterion; therefore, the ANN model could predict accurately the dye removal efficiency 

from highly nonlinear input data. 

 

Figure 15. Summary of artificial neural network modeling. 
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CONCLUDING REMAKS 

ANN using the Levenberg–Marquadt approach was applied to model the RB5 degradation 

over the Cu/TiO2 photocatalyst. The results indicate that the copper-doped TiO2 (composite 

photocatalyst) synthesized through calcination at a high temperature exhibited higher absorption of 

visible light compared with TiO2 (P25). The effect of operational parameters, such as the RB5 

initial concentration, photocatalyst dose, irradiation time, concentration of H2O2, and visible light 

intensity, on the RB5 removal efficiency was investigated. The experimental and predicted values 

were compared. The optimum hidden layer structure for the ANN model comprised 10 neurons in 

the first layer and 21 neurons in the second layer. A logsig-purelin transfer function was used. For 

the RB5 removal, the RMSE was 0.1  and R2 was 0.98275 . 
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