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In 1817, the London surgeon and pharmacist James
Parkinson published a 66-page-long booklet entitled ‘‘An
Essay on the Shaking Palsy’’, which contains the first
detailed, clinical description of the shaking palsy, or
‘‘paralysis agitans’’, which is currently known as Parkinson’s
disease (PD) (1). Two important facts James Parkinson
probably did not consider at that time include the scientific
progress of neuroscience over the past two centuries and the
changes in the world’s population aging since then (2). In
fact, the world’s population is steadily becoming older. From
2015 to 2030, the number of individuals in the world aged
X60 years is estimated to grow by 56%, from 901 million to
1.4 billion, and by 2050, it is estimated to be more than double
the size of that of 2015, reaching approximately 2.1 billion (3).
Unfortunately, aging is the main risk factor for major human
diseases, such as neurological and cardiovascular disorders
(4). Thus, the concluding remarks of the ‘‘Global Burden of
Diseases, Injuries, and Risk Factors’’ (GBD) report are clear
in stating that neurological disorders are a main cause of
disability and death worldwide. Globally, the burden of
neurological conditions has increased substantially over the
past 25 years because populations are getting older (5).
PD affects millions of people globally, but there is no cure,

and its prevalence will double by 2030 (6-8). Although PD
is not considered a ‘‘malignant‘‘ or even a ‘‘fatal’’ disease,
mortality is not a negligible matter among patients with PD.
Recently, we analyzed mortality in PD. Of the approximately
97,000 scientific articles on PD analyzed in our study, 1650
articles related to mortality in PD were found (9). Data from
several well-designed studies suggest that mortality in PD

patients is higher than that seen in the general population
(9-12,14). A large prospective cohort study clearly demon-
strated that mortality in PD is not increased in the first
5 years after onset but increases thereafter, with a relative risk
of 3.5 after 10 years (12,13). The leading causes of death
in PD are pneumonia and cardiovascular diseases (14,15).
Approximately 60% of PD patients have cardiovascular
disorders (9,15). These disorders are present in almost all
stages of PD, and heart rate variability seems to be a key
feature, becoming less variable before any motor symptoms
suggest PD (9,15).
The neuroscientific community has recently recognized

that an increasing number of PD patients has died suddenly
and unexpectedly, referred to as ‘‘sudden unexpected death
in Parkinson’s disease’’ (SUDPAR) (9,15-19). SUDPAR has
been defined as an unexpected death in a patient with PD
without any satisfactory explanation for death as determined
by autopsy studies (9,15). So far, a number of risk factors
may be associated with SUDPAR, such as age at onset,
duration of PD, sex, motor severity, and type and duration of
drug therapy (polypharmacy) (9,10,16,17,20-22). Although
sudden cardiac death rates range from 50 to 100 per 100,000 in
the general population (9,15), the true incidence of SUDPAR
is completely unknown. While the specific risk factors and
mechanisms of SUDPAR are not fully understood, its preven-
tion is crucial (9,15-19).
Considering that SUDPAR is a rare phenomenon, difficult

to diagnose, and only rarely reported, it is a phenomenon
that has attracted the interest of the neuroscientific commu-
nity since the late 1970s (15). More recently, experimental and
clinical evidence has suggested that autonomic and myo-
cardial dysfunctions could directly be involved in SUDPAR
(9,16-18,21,23-26). Some evidence suggests that autonomic
dysfunctions are variable and caused by the deregulation of
both the sympathetic and parasympathetic mechanisms
involved in the neurogenic regulation of cardiac activity
(15,22-24). Although sympathetic hypoactivity and para-
sympathetic hyperactivity have been associated with cardiac
dysfunctions in PD (15,22-24), cellular and molecular
mechanisms involved in these dysfunctions remain unclear.DOI: 10.6061/clinics/2020/e1299
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PD-related cardiac dysfunction may manifest as ventricu-
lar arrhythmias due to the collapse of cardiac excitation-
contraction coupling (CECC), primarily caused by persistent
ionic deregulation in cardiomyocytes (9,15,17,22,24). This
deregulation is mainly caused by the abnormal activity of
proteins and cytoplasmic organelles involved in the precise
adjustment of cytosolic Ca2+ concentration ([Ca2+]c) and
energy production in cardiomyocytes, such as Ca2+ chan-
nels, Ca2+-ATPases, the sarcoplasmic reticulum (SR), and
mitochondria (MIT) (24,27,28). In mammalian cardiomyo-
cytes, the mitochondrial network occupies approximately
30% of the cell volume and accounts for approximately 95%
of the cellular production of energy stored as adenosine
triphosphate (ATP) molecules (27,28). MIT also play a key
role in the contractile activity of these cells due to their
involvement in Ca2+ homeostasis (27,28).
The heart rate depends on the electrical and mechanical

properties of the myocardium, and these depend on CECC.
When stimulated by the electrical impulses generated and
transmitted by the specialized cardiac cells, the plasma
membrane of cardiomyocytes is depolarized, allowing Ca2+

influx from the extracellular medium to the cytosol through
L-type voltage-dependent Ca2+ channels (VDCCs) (27,28).
This Ca2+ influx stimulates Ca2+-release (CICR) from the SR
via ryanodine-sensitive Ca2+ channels (RyRs), generating a
transient elevation in the [Ca2+]c and consecutive activation

of the myosin-actin contractile myofilaments. This transient
elevation in [Ca2+]c simultaneously increases the Ca2+

uptake by MIT and the Ca2+ concentration in the mitochon-
drial matrix ([Ca2+]m), which stimulates ATP production by
the activation of the dehydrogenases in the tricarboxylic acid
(TCA) cycle. To generate contractility for the ejection of blood
from the heart, the activation of myosin by energy-stored
ATP molecules is required to shift the head pulling on the
actin filament and to shorten the sarcomere. The strength of
myocardial contraction is directly related to the local Ca2+

concentration surrounding the myosin-actin myofilaments.
Thus, the synchronization of [Ca2+]c transients throughout
the myocardium is crucial for synchronous cardiac contrac-
tion (27,28). However, the deregulation of [Ca2+]c induces
mechanical desynchrony, which induces cardiac arrhythmias
(27,28). In some circumstances, these arrhythmias can be
extremely severe or even fatal.

In mammalian cardiomyocytes, Ca2+ uptake by MIT is
mainly mediated by the mitochondrial uniporter of Ca2+

(MUC), while its efflux is mainly mediated by the mitochon-
drial Na+/Ca2+-exchange channel (mNCE) (Figure 1). Thus,
the functions of MIT strongly depend on the activity of the
MUC and mNCE to maintain the dynamic equilibrium
between the Ca2+ influx/efflux and [Ca2+]m (27-30). How-
ever, pathophysiological processes that cause ionic dereg-
ulation, such as cardiac ischemia and reperfusion (IR)

Figure 1 - Role of the MUC in Ca2+ homeostasis and energy production in cardiomyocytes. This figure illustrates that Ca2+ influx
through L-type VDCCs stimulates the release of Ca2+ from the SR through the RyR, increasing the [Ca2+]c. Ca

2+ binds to TnC and
promotes the interaction of TnC with TnI, causing TnI to move from the active site of the actin, allowing the displacement of TmT and
TnT and muscle contraction (systole). This increase in [Ca2+]c increases the Ca2+ influx into mitochondria via the MCU, stimulating ATP
synthesis due to Ca2+-dependent activation of TCA cycle dehydrogenases. The increase in [Ca2+]c is restored to basal levels (resting) by
Ca2+ sequestration in the SR via SERCA and Ca2+ extrusion via PMCA and NCX, and this reduction in [Ca2+]c promotes the relaxation of
cardiac cells (diastole). Ionic and energetic collapse deregulates CECC, leading to heart failure. This collapse could be attenuated or
prevented by selective MUC blockers, such as ruthenium red (RR) and their analogs. Adapted from Bers (28).
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injury, produce sustained increases in [Ca2+]c and [Ca2+]m,
culminating in the collapse of the functions of MIT that
dramatically affect ATP production (24,27-29). The collapse
of MIT in cardiomyocytes compromises the functioning of
ATP-dependent cellular processes, such as transmembrane
transport of Ca2+, Na+ and K+, aggravating mechanical
desynchrony and increasing the incidence of cardiac arrhyth-
mias (27-29).
It has been shown that mutations in genes causing PD, such

as PINK1, parkin, DJ-1, alpha-synuclein, and LRRK2, cause
mitochondrial dysfunctions, which is one of the reasons why
they are called mitochondrial nigropathies (31). Mitochondrial
disorders associated with PD may also result from oxidative
stress or exogenous toxins (31). To date, there are no consistent
data in the scientific literature to establish whether the risk of
developing SUDPAR is increased in these genetic forms of PD
(31). More detailed studies are needed to elucidate this issue.
It is important to highlight that ionic and energetic

collapse in cardiomyocytes deregulates CECC, leading to
systolic dysfunction and heart failure, and increases the
production of free radicals, stimulates the persistent opening
of the MPTP, and favors the formation of Ca2+ phosphate

crystals that severely compromise the functional integrity of
MIT (27-29). Some studies suggest that the collapse of MIT
caused by Ca2+ overload could be attenuated or prevented
by drugs capable of selectively blocking the MUC (29,32,33).
Recently, we demonstrated in our laboratory that cardiac

arrhythmias due to the collapse of MIT generated by Ca2+

overload can be attenuated or prevented by treatment with
selective MUC blockers (32). As previously mentioned,
cardiac IR injury produces severe arrhythmias due to the
collapse of MIT generated by Ca2+ overload in cardiomyo-
cytes (24,27-29). Thus, we evaluated the effects of the MUC
blocker ruthenium red (RR) on the incidence of ventricular
arrhythmias, especially atrioventricular blockade (AVB) and
lethality (LET), in rats subjected to cardiac IR injury (32).
For this experimental protocol, rats were anesthetized and
subjected to cardiac ischemia for 10 min followed by
reperfusion for 75 min (32). One group of rats was treated
intravenously with RR (0.1 and 3 mg/kg) 5 min before
ischemia (RR group), while another group (control group)
was treated in the same conditions with saline solution
(0.9%). A high incidence of AVB (79%) and LET (70%) was
observed in the control group (Figure 2A and 2B) (30%).
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Figure 2 - Histogram showing that the incidence of atrioventricular blockade (AVB) (A) and lethality (B) in healthy animals subjected to
CIR injury was significantly lower in animals treated with the selective MUC blocker ruthenium red (RR, 1 mg/kg, IV, before IR, n=16)
than in corresponding controls treated with saline solution (n=33). Histogram showing that the incidence of AVB (C) and lethality (D) in
the animals subjected to CIR injury was discretely higher in the animal model of PD induced by 6-OH-dopamine (PD, n=14) than in
control animals (n=17). *po0.05 (exact test of Fisher). (Results obtained by Caricati-Neto, Rodrigues-Menezes, Errante and Scorza,
unpublished).
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However, the incidence of AVB (25%) and LET (25%) was
significantly lower in rats treated with 1 mg/kg RR than in
the control group (Figure 2A and 2B) (32). Similar results
were obtained when RR was administered before reperfu-
sion (32). RR was well tolerated by laboratory animals, with
no cardiotoxic effects in the tested dose range. It is important
to mention that RR is an S-benzyl N,N-dipropylcarbamothio-
ate compound used as an inorganic dye in microscopy and
as a diagnostic reagent (32). These experimental findings
confirmed our hypothesis that cardiac arrhythmias due to
the collapse of MIT generated by Ca2+ overload can be
attenuated by treatment with selective MUC blockers (32).
Interestingly, other studies have confirmed our hypothesis.

For example, it was shown that Ru360 (an analog derived
from RR) also prevented cardiac arrhythmias and hemody-
namic dysfunctions in laboratory animals exposed to cardiac
IR injury (33). It has been proposed that the binding of
selective MUC blockers to specific sites of the molecular
structure of the MUC decreases the opening probability of
this Ca2+ channel, thereby reducing the influx of Ca2+ into
MIT (27,28,32,33). This action results in the cardioprotective
effect of MUC blockers due to the attenuation of the Ca2+

overload in the mitochondrial matrix that preserves ATP
production and the functional integrity of the MIT in
cardiomyocytes (27,28,32,33). Thus, selective MUC blockers
can be important tools for reducing the incidence of cardiac
arrhythmias associated with PD and other neurological
disorders in humans (27,28,32,33).
Several studies suggested that myocardial dysfunctions

similar to those induced by cardiac IR can be involved in
SUDPAR (9,15,17,22,24). It is possible that ionic and energetic
collapse in cardiomyocytes that dramatically compromises
the CECC leading to heart failure could be involved in
SUDPAR pathogenesis (27,31-34). Thus, these findings
reinforce our proposal that treatment with MUC blockers
could efficiently reduce the incidence of fatal cardiac
arrhythmias and SUDPAR incidence in humans. Curiously,
our studies have shown in an animal model of PD (rats
with nigrostriatal lesions caused by 6-OH-dopamine) that
the incidence of AVB induced by cardiac IR injury was
higher (90%) than that in control animals (79%) (Figure 2C).
As a consequence, the incidence of LET in these animals
was higher in the PD model (92%) than in control animals
(70%) (Figure 2D). These findings suggest that PD animals
are highly susceptible to fatal cardiac arrhythmias. This
phenomenon could occur similarly in patients with PD
(15,24,27,32-34). In conclusion, our experimental studies
allow us to propose that treatment with drugs that preserve
the functional integrity of the MIT in cardiomyocytes, such as
selective MUC blockers, could be a new hope for reducing
the fatal cardiac arrhythmias responsible for SUDPAR in
humans.
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