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ABSTRACT 

Protein kinase C epsilon (PKCε) activation is a central mediator of the cardioprotection 

conferred by myocardial ischemic preconditioning (IPC). PKCε activation via PKCε 

peptide activator (PKCε+, HDAPIGYD) prior to ischemia is a pharmacologic mimic of 

IPC. However, native PKCε+ requires the use of cell permeabilization methods, such as 

conjugation to known carrier peptides, for effective intracellular targeting to mitigate 

cardiac damage. Our study compares PKCε+ conjugated to either myristic acid (Myr- 

PKCε+) or transactivating (TAT) carrier peptide (YGRKKRRQRRR-CC- PKCε+) with 

native PKCε+ pretreatment and untreated control I/R hearts to evaluate the efficacy of 

these cell permeable peptide analogs in attenuating contractile dysfunction and infarct 

size after MI (30min)/R (90min). Infarct size was assessed by 1% triphenyltetrazolium 

chloride staining of heart tissue, which was evaluated using NIH ImageJ software pixel 

analysis and weight dissection analysis. ImageJ pixel analysis showed significantly 

reduced infarct size in the Myr-PKCε+ (29±1%, p<0.05) and TAT-PKCε+ (25±2%, 

p<0.01) pretreated hearts compared to native PKCε+ pretreated (34±2%) and control I/R 

hearts (35±2%). By contrast, only TAT-PKCε+ pretreated hearts (26±2%, p<0.01) 

exhibited significant difference from native PKCε+ pretreated hearts (35±2%) and 

control hearts (36±2%) when evaluated via weight dissection. Despite significant 

improvement in infarct size, there was no significant improvement in post-perfused 

cardiac function across all groups. These results indicate that PKCε+ conjugation to 

either Myr or TAT significantly improved its efficaciousness in attenuating infarct size 

when given before ischemia. Further, this improvement was independent of cardiac 
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function. These results suggest that Myr- or TAT-conjugated PKCε+ may be an effective 

treatment to attenuate cell death in coronary bypass or organ transplantation settings.  
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INTRODUCTION 

 

1.1 Background 

1.1.1 Preconditioning and protein kinase C 

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality for adults in 

developed countries. Among these diseases myocardial infarction remains a major contributor to 

the healthcare burden of CVD [1]. This damage is initiated by complete or partial blockage of a 

coronary artery resulting in ischemia, a decrease in blood flow. Although timely reperfusion, or 

restoration, of blood flow into the ischemic myocardium is necessary for survival, the rapid 

restoration of physiological pH and generation of reactive oxygen species (ROS) by 

dysfunctional mitochondria and uncoupled endothelial nitric oxide synthase (eNOS) results in 

ischemic injury [2]. Attempts to reduce ischemic injury, characterized by irreversible 

cardiomyocyte damage and compromised heart function, have provided insight into several 

cardioprotective molecular mechanisms.  

The cardioprotective effects of myocardial ischemic preconditioning (IPC), or brief nonlethal 

intervals of ischemia followed by intermittent reperfusion, prior to prolonged ischemia have been 

well established. IPC was first identified in 1986 by Murry et al. as an exogenous method to 

delay cell death and reduce infarct size [3]. Myocardial IPC is characterized by several cycles of 

brief ischemia (i.e. less than 4 min x3) followed by intermittent periods of reperfusion (i.e. less 

than 6 min x3) prior to prolonged ischemia (i.e. greater than 30 min) [4]. This is an adaptive 

response to protect the heart from the deleterious effects of prolonged ischemia during the final 

reperfusion phase.  
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Although initially poorly understood, over 20 years of research has identified diacyl glycerol 

(DAG) or ROS mediated activation of protein kinase C epsilon (PKC) as a key effector 

involved in preconditioning (Figure 1) [5]. PKC is an important enzymatic isoform of protein 

kinase C (PKC) with paradoxical roles before and after prolonged ischemia. While PKC 

inhibition is cardioprotective only at the time of reperfusion, PKC activation is cardioprotective 

prior to prolonged ischemic insult and serves as a means to mimic preconditioning [6, 7]. PKC 

is necessary and sufficient to increase cellular resistance to ischemic injury [8, 9]. The 

observation that PKC-/- knockout mice do not benefit from IPC while cardiac-specific PKCε 

overexpression confers cardioprotection similar to that of IPC have confirmed the central role of 

PKC in preconditioning [8, 9].  

The PKC family consists of several isoforms of Ser/Thr kinases with varying expression and 

differential activation. All PKC isoforms are activated in a G protein-mediated (Gq) signaling 

cascade resulting in the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) and inositol 

trisphosphate (IP3) to produce DAG and release Ca2+ from the endoplasmic reticulum, 

respectively (Figure 1) [10]. While conventional PKC  isoforms (cPKCs; , I, II, and ) 

require Ca2+ and DAG for activation, novel PKC isoforms (nPKCs; , , , and ) are activated 

by DAG independently of Ca2+. Further, PKC atypical isoforms (nPKCs; / and ) are activated 

by sphingomyelins (lipid rafts) and are DAG and Ca2+ independent [10]. All PKC isoforms are 

variably expressed in many tissue of the body. In particular, PKC is constitutively expressed in 

the heart, cerebellum, pancreas, ovaries, lungs, spleen, and adrenal glands (rats) [11]. Moreover, 

PKC is highly expressed in human cardiac muscle and therefore suggests understanding this 

mechanism would be of high value clinically in heart attack and organ transplant patients [12]. 
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Within cardiomyocytes, inactive PKC is found in the cytosol and mitochondrial inner 

membrane [13]. While PKC plays a role during cardiomyocyte differentiation and development, 

its targets within the adult rat heart are the focus of this study [14]. There are more than 36 

known targets of PKC. Of these PKC activation of eNOS and cardiac mitochondria are 

putative targets for cardioprotection [13]. Regarding the mitochondria, basal levels of 

mitochondrial PKC (mPKC) located in the inner mitochondrial membrane are augmented by 

cytosolic PKC which translocates to the mitochondria following activation [13, 15]. PKC 

import into the mitochondria is mediated by heat shock protein 90 (HSP90) and proceeds via a 

mitochondrial import receptor, translocase of the outer membrane (Tom20) [16]. Whether 

already located in the mitochondria or imported in, PKC phosphorylates mitochondrial KATP 

channels (mitoKATP) which results in opening of mitoKATP. This mechanism is helpful for ATP 

preservation and inhibition of mitochondrial permeability transition pore (MPTP) formation to 

prevent rupturing of the mitochondria [17]. While PKC also translocates to cardiac sarcomeres 

acting as a key mediator in maladaptive hypertrophy,  sarcomeric KATP (sarcoKATP) channel 

opening is not related to the cardioprotective mechanism of PKC in I/R injury [18, 19]. 

1.1.2 Sources of oxidative damage during I/R central to the preconditioning mechanism  

The finding that diazoxide, an mitoKATP channel agonist, acts as a IPC mimetic while 5-

hydroxydecanoate (5-HD), an mitoKATP channel antagonist, eliminates preconditioning led to the 

hypothesis that mitoKATP channels were involved in preconditioning [20]. A link between PKC 

and mitoKATP channels was confirmed when it was found that PKC activation augments and 

accelerates channel opening [21]. Further, the cardioprotective effects of mitoKATP channel 

opening are blocked in the absence of PKC indicating that mitoKATP channels may be 
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downstream of PKC [20]. However, the ROS released by opened mitoKATP channels directly 

activate PKC through oxidation of its regulatory domain creating a positive feedback loop of 

activation and channel opening [22]. 

A second part of the mitochondrial preconditioning signal transduction system is the MPTP. 

This nonspecific pore spanning the inner and outer mitochondrial membranes opens during 

reperfusion leading to mitochondrial swelling, uncoupling of oxidative phosphorylation, and 

cytochrome c release. Unchecked mitochondrial permeability transition results in the collapse of 

mitochondrial membrane potential and cell death [23]. PKC has been found to directly and 

indirectly inhibit MPTP opening via phosphorylation of key pore components and mitoKATP 

channel opening, respectively [24, 25]. Prevention of pore inhibition significantly attenuates the 

cardioprotective effects of PKC, indicating that the MPTP plays at least a partial role in the 

mechanism of PKC mediated preconditioning [25].  

Although the full mechanisms by which mitoKATP channels and the MPTP are involved in 

preconditioning have yet to be elucidated, PKC appears to be an essential effector. Costa and 

Garlid proposed a unique mechanism of PKC induced cardioprotection effectively linking 

mitochondrial inner membrane associated PKC with both mitoKATP channels and the MPTP. 

Once the cardioprotective signaling pathway begins, activated cGMP-dependent protein kinase 

(PKG) transmits the signal to the mitochondria via phosphorylation of an unknown 

mitochondrial outer membrane protein (MOM). This signal is presumably transmitted to a first 

pool of mitochondrial PKC (mPKC1) in the mitochondrial inner membrane resulting in 

mitoKATP opening which in turn stimulates ROS release from complex I of the respiratory chain. 
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The increase in ROS then activates a second pool of PKC (mPKC2) via oxidative modification 

of its regulatory domain which then phosphorylates and inhibits the MPTP (Figure 1) [17]. 

 

 

Figure 1. Schematic representation of PKCε activation and end effectors.  

PKCε activation via DAG. ROS from dysfunctional mitochondria, and PKCε+ peptide activator. Activated PKCε then 

phosphorylates mitochondrial KATP channels (mKATP) and mitochondrial transition permeability pore (MPTP). 

Adapted from [17]. 

 

In addition to mitochondrial derived ROS, uncoupled eNOS is one of the major sources 

of damaging ROS during reperfusion [26]. PKC is known to increase eNOS activity via 

phosphorylation at ser1177 [27]. Regarding cardiac activation of endothelial derived NO release 

in cardiac tissue, it has been shown that reducing NO release will decrease the coupling 

efficiency of mitochondrial O2 consumption and ATP production, whereas increasing NO release 
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improves the coupling efficiency of the electron transport chain to produce the same amount of 

ATP with less O2 consumption [28]. Therefore there would be less mitochondrial derived ROS 

produced from complexes I and III under conditions of NO synthesis which would occur prior to 

prolonged ischemia where eNOS is in its coupled state. However, this mechanism may not be 

helpful during reperfusion when the oxidation of eNOS cofactor tetrahydrobiopterin (BH4) leads 

to dihydrobiopterin (BH2) production which competes with BH4 with equal affinity at the 

oxygenase domain of eNOS. Under these conditions eNOS cannot produce NO and instead 

produces superoxide which contributes to oxidative stress during reperfusion injury and 

increases in hydrogen peroxide (H2O2) in tissues [28, 29]. 

1.1.3 PKC activator peptide 

A pharmacological method by which to activate PKC is an isoform-specific PKC 

activator peptide (PKC+), also known as RACK peptide (Figure 1). PKC function is known 

to be mediated by anchoring proteins known as receptors for activated C kinase (RACK). Each 

PKC isozyme has a RACK-selective recognition site distinct from its substrate binding site. 

Activated PKC binds with high affinity to RACK, which translocates PKC to phosphorylate 

substrates at specific intracellular sites to produce a physiologic response [30, 31, 32]. This study 

utilizes several modifications of a well-established PKC+ peptide (HDAPIGYD), also known as 

pseudo-RACK (RACK), as a chemical modality to mimic IPC [31]. Western blots and 

immunofluorescence have confirmed PKC+-induced selective translocation of PKC from 

cytosolic to particulate subcellular fractions which indicates PKC activation. In PKC+/+ 

overexpressed transgenic mice, PKC+ improved cardiac function and reduced levels of creatine 

phosphokinase (CPK), a marker of cardiac damage in I/R hearts [33]. 
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Although the mechanism of action of PKC+ has yet to be elucidated, the predominant 

theory states that PKC+ binds to inactive PKC rendering it active, or in an “open” 

conformation that facilitates RACK binding [10]. This occurs via PKC+ binding to the 

RACK binding site on PKC, effectively disrupting the auto-inhibitory intramolecular 

interaction between its RACK-binding site and pseudo-RACK (RACK) binding site. This 

interaction is due to PKC+ homology to amino acids 85-92 (HDAPIGYD) on the V1 domain of 

PKC. The transient conformational opening induced by PKC+ is then stabilized by PKC-

RACK binding (Figure 2). This switch may be due to the partial homology between PKC+ and 

RACK amino acids 285–292 (NNVALGYD) [32]. Once RACK is bound to PKC, PKC is 

anchored in position to phosphorylate its intracellular targets. 

 

 

Figure 2. PKCε+ activates PKCε to facilitate RACK binding.  

Proposed mechanism for PKCε activation by PKCε+ in which PKCε+ binds to the εRACK binding site to activate PKCε. 

εRACK then binds to stabilize PKCε. Adapted from [32]. 
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However, unconjugated or native PKCε+ requires the use of cell permeabilization 

methods (i.e., saponin treatment) for efficacious intracellular targeting to exert cardioprotective 

effects [34]. This provides challenges in ex vivo and in vivo models where the integrity of the 

organs must be maintained for analysis. Therefore, conjugating PKCε+ to known intracellular 

delivery moieties may be a method to effectively activate PKCε for cardioprotection. Two 

empirically successful modifications of PKC+ native peptide are myristic acid- (Myr) and 

transactivating peptide- (TAT) conjugated PKC+ [6, 7].  

TAT was originally an HIV-derived 86 amino acid peptide capable of penetrating the cell 

membrane [35]. It has since been discovered that residues 49-57 of TAT (RKKRRQRRR) are 

necessary and sufficient for internalization and serve as an efficient transduction domain [36]. 

The positively charged amino acid peptide presumably targets negatively charged proteoglycans 

on the plasma membrane and enters the cell through endocytosis [37] (Figure 3). While the 

complete mechanism by which TAT enters the cell has yet to be elucidated, there is evidence 

that the basic arginine-rich peptide uses three endocytic pathways simultaneously: 

macropinocytosis, clathrin-mediated endocytosis, and caveolar endocytosis [37]. Moreover, the 

unique shape and bonding capabilities of the positively charged guanidinuim group on arginine 

is essential in these endocytic processes [38]. Our study employs a undecapeptide conjugation 

(YGRKKRRQRRR) from residues 47-57 of TAT with a reducible C terminus disulfide bond 

(CC) to facilitate cargo release upon cellular internalization [39, 40]. Further, the hydrophilic 

nature of this moiety provides great potential for therapeutic applications. [24, 25]. 

The TAT transduction domain has been widely used as a method to enhance cellular 

uptake of PKC+ in MI/R experiments to mimic IPC. In cardiac myocytes, TAT-conjugated 
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PKC+ showed selective PKC activation and translocation resulting in reduced adult cardiac 

myocyte damage and increased cell viability after prolonged hypoxia [32]. In ex vivo models, 

TAT-PKC+ pretretament has been shown to decrease CK release, improve left ventricular 

developed pressure (LVDP), and reduce infarct size in Langendorff perfused rat hearts [7, 41]. 

The above studies used TAT-conjugated scrambled PKC+, native PKC+, and TAT alone as 

controls, all of which had no cardioprotective effects [7, 32, 41]. In regards to in vivo 

experiments, TAT-PKC+ administered via intraperitoneal (IP) injection showed PKC 

translocation in the heart, brain, liver, lung, and kidney in mice. Further, no signs of systemic 

toxicity were observed when TAT-PKC+ was administered once a day for 14 days [42]. 

Collectively, these results suggest that TAT is an effective cellular delivery moiety for PKC+. 

By contrast, Myr is a lipophilic saturated fatty acid chain that enters the cell through 

simple diffusion [43] (Figure 3). The attached cargo then enters the cell through simple diffusion 

and is either released by an unknown cleavage mechanism or remains tethered to the fatty acid. It 

is also possible that transbilayer exchange allows the myristoylated peptide to enter the cell 

where it is targeted to other cellular membranes [44]. Although myristic acid-conjugated 

peptides are less soluble than TAT-conjugated peptides in physiologic buffers, they provide an 

efficacious mode of entry into various cell types due to their ability to enter the lipid bilayer 

independently of any supplemental moieties [44, 45]. Additionally, Myr conjugated peptides 

show rapid membrane association and homogenous distribution within cells which may provide 

an advantage over the slower process of endocytosis and endosomal release [44].  

The effective cellular uptake of myristoylated peptides has also been demonstrated in 

several MI/R studies. In Langendorff perfused hearts, Myr-PKC+ pretreatment showed 
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improved postreperfused LVDP and reduced polymorphonuclear leukocyte (PMN) infiltration 

after MI(20min)/R(45min +PMNs) [6]. By contrast, when given at reperfusion, myristoylated 

PKC peptide inhibitor (Myr-PKC-) showed reduction in infarct size and concentration 

dependent improvement in postreperfused LVDP [46]. Additionally, an Myr-conjugated 

mitochondrial fission inhibitor (Myr-P110) was effective in restoring of postreperfused cardiac 

function and reducing infarct size in MI(30min)/R(90min) [47]. In toto, these results suggest that 

Myr-conjugation facilitates the intracellular targeting of small peptides. 

 

Figure 3. Mode of entry for PKCε+ 

Native peptide (left), TAT-conjugated peptide (middle), and Myr-conjugated peptide (right). Native PKCε+ 

presumably enters via facilitated diffusion, TAT-conjugated PKCε+ enters via endocytosis, and Myr- PKCε+ enters 

via simple diffusion. 

 

While both moieties have been empirically proven to be effective in delivering cargo 

sequences to interact with intracellular targets, there are a limited number of studies directly 

comparing the effectiveness of cargo sequence delivery through these differing mechanisms in ex 

vivo MI/R.  
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1.2 Goal 

Our study aims to use one MI(30min)/R(90min) model to directly compare the effects of native 

PKC+, Myr-PKC+, and TAT-PKC+ pretreatment on cardiac contractile function and infarct 

size. Further, we wanted to assess whether any differences between these moieties exist in 

regards to infarct size reduction and restoration of postreperfused cardiac function. 

1.2.1 Evaluating an extended reperfusion period for Myr-PKC+ 

Additionally, this study will evaluate whether cell permeable PKC+ would improve 

postreperfused cardiac function within a longer reperfusion time period (i.e. 90 min) than a 

previous study from our lab that used Myr-PKC+ in MI(30 min)/R(45 min) [48].  

1.2.2 Examining inter-method reliability between pixel and weight based infarct measurement 

Previous studies in our lab have isolated and weighed infarcted versus viable tissue to determine 

infarct size (percent weight). While this method has been proven to be reliable, we wanted to 

explore a method in which we could minimize researcher bias and create an image archive that 

would allow for retrospective analysis. In this study, we began using NIH software ImageJ to 

trace pixels of infarcted area versus viable tissue to determine infarct size (percent pixels). We 

wanted to compare the reliability of using ImageJ pixel analysis to the previously used weight 

dissection analysis [46, 48]. 

1.3 Hypothesis 

We hypothesize that pretreatment with Myr-PKCε+ and TAT-PKCε+ will attenuate infarct 

size using either percent weight or ImageJ pixel analysis, compared to native PKCε+ pretreated 

and untreated control hearts in MI(30 min)/R(90 min). This comparison has great therapeutic 
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value, as efficient intracellular drug delivery is central to improved histological and functional 

outcomes in heart attack/coronary bypass patients and organ transplant recipients. 

In regards to infarct size measurement technique, we predict that ImageJ pixel analysis will 

yield potential for multiple and retrospective analyses to evaluate reproducibility of infarct size 

measurement. However, we expect that weight- and pixel-based analyses will show similar inter-

method reliability.
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METHODS 

 

2.1 Heart isolation & Langendorff heart preparation to examine contractile function 

Male Sprague-Dawley rats (275-325g, Charles River, Springfield MA) were anesthetized 

intraperitoneally with sodium pentobarbital (60 mg/kg) and anticoagulated with 1000 

units heparin. The heart was then isolated from the rat and perfused through the 

ascending aorta with oxygenated Krebs’ buffer (25mM NaHCO3, 17 mM dextrose, 5.9 

mM KCl, 120 mM NaCl, 0.5 mM EDTA, 2.5 mM CaCl2, and 1.2 mM MgCl2) 

maintained at 36.5°C as previously described [46]. The aorta was secured onto the 

perfusion needle using surgical suture and was lowered into a reservoir filled with 

warmed Krebs’ buffer. A constant pressure of 80mmHg, pH of 7.35-7.45, and a 

temperature of 36.5°C was maintained throughout the experiment. Following a stable 15 

minute equilibration period, hearts were pretreated with 5mL of buffer plus vehicle 

(0.028% DMSO)  for the control hearts or 5 mL of drug pretreatment (PKCε+, Myr-

PKCε+, TAT-PKCε+; 10M) dissolved in buffer at 1 mL/min infusion rate for 5 min 

immediately prior to 30 minutes of global ischemia. After 30 minutes of ischemia, the 

buffer flow was resumed for a 90-minute reperfusion period. A recording was taken 

every 5 min throughout the experiment (baseline, pretreatment infusion, ischemia, 

reperfusion) (Fig 3). Left ventricular end systolic pressure (LVESP), left ventricular end 

diastolic pressure (LVEDP), heart rate, coronary flow, and maximum (+dP/dtmax) and 

minimum (-dP/dtmin) rate of pressure change in the left ventricle were measured using a 

microtip pressure catheter (SPR-524; Millar Instruments, Inc., Houston, TX) inserted into 
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the left ventricle every 5 minutes throughout the equilibration, infusion, and reperfusion 

period. LVDP was calculated as the difference between LVESP and LVEDP. 

Figure 4. Experimental protocol in the Langendorff perfused heart. 
MI(30min)/R(90min)followed a 15 min equilibration period and 5 min infusion period. 

 

2.1.1 Peptide formulations 

Activator peptides Myr-PKCε+, TAT-PKCε+, and native PKCε+ were purchased from 

Genemed Synthesis Inc., San Antonio TX. Native PKCε+ (HDAPIGYD) octapeptide is a 

linear amino acid sequence. Myr is a saturated fatty acid, also known as 1-tetradecanoic 

acid (CH3(CH2)12COOH), which was conjugated to the octapeptide PKCε+. TAT 

(YGRKKRRQRRR) is conjugated to PKCε+ via a cysteine-cysteine double bond to 

facilitate free cargo delivery (Table 1). 

Table 1. PKCε activator peptide purity, sequence, and molecular weight. 

Peptide Purity (%) Sequence 
Molecular weight 
(g/mol) 

Myr-PKCε+ >95% CH3(CH2)12COOH-HDAPIGYD 1097 

TAT-PKCε+ >95% YGRKKRRQRRR-CC-HDAPIGYD 2632 

Native PKCε+ >95% HDAPIGYD 887 

Baseline
.

15 min

Pretreatment
.

PKCε+, Myr-
PKCε+, or TAT-
PKCε+ (10 M)

.

5min

Global 
ischemia 

30 min

Reperfusion
.

90 min
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2.1.2 Determination of drug concentration 

10M final infusion concentration was chosen based on its ability to maximally stimulate 

coupled eNOS activity as pretreatment therefore increasing NO release [6, 29]. Further, 

the 10M concentration was used in previous studies in our lab assessing pretreatment 

with Myr-PKC+ in an MI(30min)/R(45min) model [48]. 

2.1.3 Drug dose/preparation 

100 L drug stock solutions were prepared for pretreatment infusion. Myr-PKCε+, TAT-

PKCε+, and native PKCε+ (HDAPIGYD, MW= 887 g/mol) were solubilized separately 

in 28% DMSO, 1% 1N HCl, and 71% diH2O. This drug preparation was based on the 

empirically-determined minimum solubility requirements of the myristic acid-conjugated 

peptide (Myr-PKC+). Drug stock was further solubilized in 5mL of Kreb’s buffer for 

infusion and adjusted for coronary flow for a final 10 M drug concentration upon 

infusion prior to global ischemia. Final vehicle concentration was 0.028% DMSO and 

0.001% HCl. 

2.1.4 MI/R hearts: Untreated control 

Following a 15 minute equilibration period, 5mL of buffer containing 28 L DMSO, 1 

L 1N HCl, and 71 L diH2O was infused into the heart, followed by 30 minutes of 

global ischemia. The untreated MI/R control group allows one to analyze cardiac 

function and infarct size data for hearts that are treated with and without PKCε+ peptides 

and confirms negligible effect of vehicle on the heart. 
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2.1.5 MI/R hearts: drug treated (PKCε+, Myr-PKCε+, TAT- PKCε+) 

Drug treated hearts were subjected to the same I/R periods and conditions as untreated 

control hearts with the exception of the 5 mL buffer pretreatment containing PKCε+, 

Myr-PKCε+, or TAT- PKCε+ at a final concentration of 10 M in the perfusate. 

2.1.6 Animal Care 

Lab animals were from Charles River Laboratories Inc., Springfield MA. They were 

12:12-h light:dark cycle and given 24 hour access to food and water. Male Sprague 

Dawley rats were fed normal chow ad libitum and used for experiments at 275-325g. All 

experiments were performed in accordance with the PCOM IACUC protocols A15-001 

and A18-004. 

2.2 Histological TTC staining to measure infarct size 

After the 90 min reperfusion period, hearts were removed from the perfusion needle, and 

frozen at -20°C for 30 minutes. The hearts were then dissected into 2 mm pieces in rat 

heart slicer matrix with 2 mm transverse section slice intervals from apex to base and 

stained with 1% Triphenyltetrazolium chloride (TTC) in Tris buffer (pH = 7.41) at 37°C 

for 5 minutes. Viable tissue was stained red and necrotic tissue remained unstained. 

Afterward, the tissue was fixed in 4% paraformaldehyde overnight to enhance contrast of 

the stain.  

2.2.1 ImageJ pixel analysis 

For image analysis assessment, the infarcted area was calculated using NIH ImageJ 

software. Heart sections were partially flattened between plexiglass slides with 2mm 

spacers and photographed on both sides (superior and inferior). Infarcted area was traced 
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to measure pixels on both the superior and inferior portions of each heart section and 

averaged to get the infarcted pixel area of each section. Infarcted area was normalized to 

the total pixel area of each heart. Multiple analyses of infarcted pixel area were 

conducted for each experiment and calculated values were averaged. 

2.2.2 Weight dissection analysis 

For weight analysis assessment, sections viable and dead tissue were weighed (total). The 

necrotic tissue was weighed and divided by the total weight to determine the infarct size 

as previously described [22]. 

2.3 Statistical Analysis 

All data in the figures are presented as means ± S.E.M. ANOVA analysis using Student-

Neuman-Keuls test was used to assess statistical difference in infarct size and cardiac 

function between untreated control I/R and PKCε+ I/R hearts. The same statistical 

analysis was used to evaluate measurements of individual assessments by ImageJ pixel 

analysis and weight analysis of TTC stained hearts. Probability values of < 0.05 were 

considered statistically significant. 
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RESULTS 

 

3.1 Examination of infarct size in response to PKC+ pretreatment 

When assessed using NIH ImageJ software to determine percent of infarcted pixel 

area compared to total pixel area of the heart after TTC staining, hearts pretreated with 

Myr-PKC+ or TAT-PKC+ showed significant reduction in infarct size to 29±1% 

(p<0.05, n=6) or 25±2% (p<0.01, n=6) respectively compared to untreated control 

(35±2%, n=6) or native PKC+ pretreated I/R hearts (34±2%, n=6). By contrast, native 

PKC+ pretreated I/R hearts did not show significant reduction in infarct size and 

exhibited similar infarct size to that of untreated controls (Figure 5). This analysis was 

done in a single-blind manner in which the treatment group was withheld from research 

assistants analyzing the stained images of heart sections. Further, multiple researchers 

were assigned to each experiment and their infarct analyses were averaged to determine a 

mean infarct size for each experiment. 
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Figure 5. Percent pixel area infarct size. 

Percent infarct size of Myr-PKCε+ (10 μM) I/R  (red), TAT-PKCε+ (10 μM) I/R  (yellow), native PKCε+ (10 

μM) I/R (green), and untreated control I/R (blue) expressed as percent pixels of total heart pixel size using 

NIH ImageJ software after TTC staining. Myr-PKCε+ and TAT-PKCε+ pretreatment significantly reduced 

infarct size to 29±1% and 25±2% respectively compared to untreated control hearts, 35±2%. Myr-PKCε+ 

and TAT-PKCε+ pretreated hearts also showed significant reduction in infarct size compared to native 

PKCε+. Native PKCε+ pretreated hearts showed similar infarct size to untreated controls and was not 

significantly different, 34±2%. *p < 0.05 vs. untreated control I/R, ** p < 0.01 vs. untreated control I/R, #p 

< 0.05 vs. native PKCε+,  ##p < 0.01 vs. native PKCε+ 

 

 When assessed by dissection to determine percent infarcted weight of total heart 

weight after TTC staining, only TAT-PKC+ pretreatment significantly reduced infarct 

size to 26±2% (p<0.01, n=6) compared to native PKC+ pretreatment and untreated 

control I/R hearts which showed infarct size of 35±2% (n=6) and 36±2% (n=6) 

respectively. Myr-PKCε+ pretreatment reduced infarct size to 30±2% (n=6), but this was 

not significantly different from untreated controls. Native PKC+ pretreated hearts 

showed similar infarct size to untreated control I/R hearts, 35±2% (n=6) and 36±2% 
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(n=6) respectively (Figure 6). This analysis was not blinded and percent infarcted weight 

was determined by only one researcher who performed the dissection 24 hours after each 

experiment after heart sections had been photographed. 

 

 

 

Figure 6. Percent weight infarct size. 

Percent infarct size of Myr-PKCε+ (10 μM) + I/R  (red), TAT-PKCε+ (10 μM) + I/R  (yellow), native PKCε+ (10 

μM) + I/R (green), and untreated control I/R (blue) expressed as percent of total heart weight after TTC 

staining. TAT-PKCε+ pretreatment significantly reduced infarct size to 26±2% compared to untreated 

control and native PKCε+ hearts which exhibited a 36±2% and 35±2% reduction in infarct size respectively. 

Myr-PKCε+ and native PKCε+ pretreatment did significantly reduce in infarct size, 30±2% and 35±2% 

respectively, compared to untreated controls. ** p < 0.01 vs. untreated control I/R, ##p < 0.01 vs. native 

PKCε+ 

 

3.2 Comparison of % pixel vs. % weight methods based on either total pixels or 

total weight 

 To assess inter-method reliability between the pixel and weight based methods we 

performed an ANOVA analysis using Student-Neuman-Keuls test. TAT-PKC+ 
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pretreated exhibited 25±2% (n=6; % pixels) and 26±1% (n=6; % weight) reduction in 

infarct size and was significantly different from both untreated control and native PKC+ 

pretreated I/R hearts in both analyses (p<0.01). Similarly, Myr-PKCε+ pretreatment 

reduced infarct size to 29±1% (n=6; % pixels) and 30±2% (n=6; % weight) but was only 

determined to be significantly different from untreated control and native PKC+ 

pretreated I/R hearts in the ImageJ analysis of pixel area method (p<0.05). By contrast, 

native PKC+ pretreated showed 34±2% (n=6; % pixels) and 35±2% (n=6; % weight) 

infarct which was not significantly different from untreated controls, 35±2% (n=6; % 

pixels) and 36±2% (n=6; % weight), using either method of infarct size analysis. In 

general, the ImageJ analysis yielded slightly lower infarct size for all groups when 

compared to the dissection analysis. Although these two methods presented slightly 

different significance in results, they were not significantly different from each other 

(Figure 7). 
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Figure 7. Comparison of infarct size analysis using dissection to determine percent infarct of 

total weight and ImageJ to determine percent pixels of total pixel area. 

Infarct size is shown as both percent weight (black) as determined by dissection and percent pixels (white) 

measured using ImageJ. Myr-PKCε+ (10 μM) I/R, TAT-PKCε+ (10 μM) I/R, native PKCε+ (10 μM) I/R, and 

untreated control I/R showed no significant difference within groups using either method. 

 

3.3 Examination of cardiac performance in response to PKCε+ pretreatment 

Despite differences in infarct size, there was no significant difference in +dP/dtmax,           

-dP/dtmin, or LVDP across all groups tested (Table 2). Myr-PKCε+, TAT-PKCε+, native 

PKCε+, and untreated control hearts restored post-reperfused LVDP to 35±7%, 40±9%, 

32±5%, and 38±5%  of baseline values respectively (Figure 8). Interestingly, Myr-

PKCε+ pretreatment exhibited significant improvement in post-reperfused LVEDP to 

4910 mmHg (p<0.05, n=6) compared to TAT-PKCε+, native PKCε+, and untreated 

control I/R hearts which restored LVEDP to 65±6 (n=6), 71±4 (n=6), and 71±4 mmHg 

(n=6) respectively. Myr-PKCε+ pretreatment also exhibited significant reduction of 

LVESP to 79±8 mmHg (p<0.05, n=6) compared to TAT-PKCε+, native PKCε+, and 

untreated control hearts which restored LVESP to 99±4 (n=6), 101±2 (n=6), and 105±4 

mmHg (n=6) respectively (Table 2). These differences in LVEDP and LVESP did not 

result in a significant difference in LVDP (i.e., LVESP – LVEDP) because while LVEDP 

was significantly lowered, LVESP was significantly raised compared to other groups. 
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Table 2. Cardiac function values for all groups. 

Cardiac function initial (baseline) and final values for Myr-PKCε+ (10 μM) I/R  (red), TAT-PKCε+ (10 μM) I/R 

(yellow), native PKCε+ (10 μM) I/R (green), and untreated control  I/R (blue) hearts. Myr-PKCε+ 

pretreatment exhibited significant improvement in post-reperfused LVEDP to 49±10 mmHg compared to 

TAT-PKCε+, native PKCε+, and untreated control I/R hearts which restored LVESP to 65±6, 71±4, and 71±4 

mmHg respectively. Myr-PKCε+ pretreatment also exhibited significant reduction of LVESP to 79±8 mmHg 

compared to TAT-PKCε+, native PKCε+, and untreated control I/R hearts which restored LVESP to 99±4, 

101±2, and 105±4 mmHg respectively. *p < 0.05 vs. untreated control I/R, TAT-PKCε+ I/R and PKCε+ I/R 

 
Myr-PKCε+ 

(10M) I/R (n=6) 

TAT-PKCε+ 

(10M) I/R (n=6) 

PKCε+ 

(10M) I/R 

(n=6) 

Control I/R 

(n=6) 

Initial LVESP 

(mmHg) 
95.4 ± 2.8 92.7 ± 2.4 101.5 ± 5.4 97.9 ± 2.5 

Initial LVEDP 

(mmHg) 
8.6 ± 0.8  8.4 ± 1.6 9.6 ± 2.9 9.9 ± 1.6 

Initial LVDP 

(mmHg) 
86.9 ± 2.6 84.3 ± 1.8 92.0 ± 3.5 88.0 ± 3.0 

Final LVESP 

(mmHg) 
*79.4 ± 7.6 98.8 ± 3.9 100.4 ± 2.0 104.7 ± 3.6 

Final LVEDP 

(mmHg) 
*48.8 ± 9.8 64.9 ± 6.4 70.7 ± 4.3 71.3 ± 4.3 

Final LVDP 

(mmHg) 
30.6 ± 5.8 33.9 ± 8.1 29.7 ± 4.9 33.4 ± 4.6 

Initial +dP/dtmax 

(mmHg/s) 
2335.1 ± 101.3   2083.3 ± 46.0 2176.1 ± 90.9 2287.5 ± 61.8 

Final dP/dtmax 

(mmHg/s) 
607.6 ± 135.9 694.8 ± 204.9 591.5 ± 85.0 743.2 ± 98.6 

Initial dP/dtmin 

(mmHg/s) 
-1620.9 ± 88.0 -1375.7 ± 42.6 -1527.1 ± 67.2 -1557.7 ± 34.9 

Final -dP/dtmin 

(mmHg/s) 
-403.4 ± 80.6 -517.6 ± 96.7 -501.8 ± 58.5  -484.1 ± 62.4 

Initial Coronary 

Flow (mL/min) 
21.8 ± 1.3 20.5 ± 1.9 22.6 ± 2.0 21.0 ± 1.2 

Final Coronary 

Flow (mL/min) 
6.3 ± 0.6  6.6 ± 0.9  7.4 ± 1.1 6.5 ± 0.9 

Initial Heart 

Rate (BPM) 
311.1 ± 16.2 284.0 ± 9.5 282.3 ± 10.2 294.0 ± 10.1 

Final Heart 

Rate (BPM) 
227.0 ± 20.9 245.8 ± 15.5 249.8 ± 15.5 249.1 ± 9.6 
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Figure 8. Initial and final LVDP values showed no difference across all groups. 

Initial (black) and final (white) LVDP expressed in mmHg from isolated perfused rat hearts during stable 

baseline recordings before pretreatment and ischemia (initial) and after 90 min reperfusion (final). Myr-

PKCε+, TAT-PKCε+, and native PKCε+ pretreatment I/R hearts recovered to 35±7%, 40±9%, and 32±5% of 

baseline values respectively. No group exhibited a significant improvement in final LVDP compared to 

untreated controls which recovered to 38±5% of baseline values. 
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DISCUSSION 

 

4.1 Summary of results 

4.1.1 TAT-PKC+ and Myr-PKC+ attenuate infarct size 

TAT-PKC+ pretreatment showed significant reduction in infarct size compared 

to native PKC+ pretreatment and untreated control I/R hearts in both pixel and weight 

analyses. Similarly, Myr-PKC+ pretreatment I/R hearts showed a significant reduction 

in infarct size when assessed by pixels (29%) when compared to native PKC+ 

pretreatment and untreated control I/R hearts. However, the reduction in infarct size 

conferred by Myr-PKC+ pretreatment was not significant in the weight analysis (30%). 

These results indicate that PKC activation is cardioprotective before prolonged 

ischemia. Moreover, native PKC+ did not significantly reduce infarct size (pixels=34%, 

weight=35%) compared to untreated I/R controls by either mode of infarct analysis (see 

Figures 5 and 6). Our results confirm that PKC+ (HDAPIGYD) requires a cell 

permeable moiety for effective intracellular delivery and activation of PKC to attenuate 

necrosis after prolonged ischemia. Further, TAT-conjugated  PKCε+ may be superior to 

Myr-PKC+ in reducing infarct size and facilitating PKCε preconditioning effects in 

MI/R.  

By contrast, Nelson et al. would suggest that Myr conjugation is more efficacious 

than TAT conjugation for cargo sequence delivery, particularly in non-TAT permeant 

lymphocyte derived cells. However, their study looked at a murine B lymphocyte cell 

line (BA/F3) versus isolated organ preparations [44]. By comparison Patel et al. also 
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showed that Myr-conjugated Nox2 peptide inhibitor (Myr-peg gp91ds) was more 

efficacious in reducing PMN superoxide release compared to TAT-gp91ds [49]. 

Regarding whole organ preparation, Benjamin et al. showed that Myr-P110, a 

mitochondrial fission inhibitor, was more effective than TAT-P110 in restoring 

postreperfused cardiac function and reducing infarct size [47]. It should be noted that 

Benjamin et al. looked at specifically inhibiting a component of mitochondrial fission 

which is more limited in its targets than the many targets (i.e., 36) of PKC [13]. It is 

plausible to speculate that the Myr-P110 may have had better permeabilization and 

efficient targeting due to the smaller size of P110 and being localized to one specific 

target (Drp1/fis1 interaction) which is localized on the outer mitochondrial membrane 

versus Myr-PKC+ which has many targets, which are not all localized to cellular 

membranes.  

In regards to the translocation mechanism of TAT, it is possible that processes 

other than endocytosis contributed to rapid intracellular delivery. Interestingly, Ter-

Avetisyan et al. showed TAT transduction into BHK21 (C-13) fibroblasts in clathrin-

mediated and caveolin-mediated endocytosis knock-outs as well as in fibroblasts 

incubated at 4C. These results suggest that TAT is taken up into the cell in a process 

independent of endocytosis, presumably through direct penetration of the plasma 

membrane [50]. There are other reports showing that highly cationic peptides (R6-8) may 

enter the cell through spontaneous translocation through the plasma membrane. However, 

these studies require high peptide concentrations above a minimum threshold or 

conditions in which strong membrane binding occurs [37]. Taken together, the multiple 
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mechanisms by which TAT may enter the cell may have contributed to the efficient and 

effective uptake of TAT-PKC+ in our experiments. 

4.1.2 ImageJ pixel analysis versus dissection weight analysis of infarct size 

Collectively, infarct size across all groups was slightly reduced when analyzed 

using ImageJ compared to the weight dissection analysis, but this difference was not 

significant. This may be attributed to the uneven distribution of infarcted area between 

the superior and inferior side of each transverse myocardial cross-section. ImageJ pixel 

area was calculated as the average of infarcted area on the superior and inferior portions 

of each section. Interestingly, the ImageJ pixel analysis of infarct size more accurately 

supports our working hypothesis that cell permeable conjugated PKC+ (i.e. Myr-PKC+ 

and TAT-PKC+) exhibited a greater reduction in infarct size than native PKC+ which 

was no different than untreated control hearts. By contrast, the weight dissection analysis 

of infarct size showed that only TAT-PKC+ pretreatment significantly reduced infarct 

size when compared to native PKC+ and untreated control I/R hearts. In this regard, the 

data from the weight based infarct analysis did not completely support our hypothesis. 

Regardless, the results from this study would suggest that both methods are a reliable 

way for which to measure infarct size after TTC staining since they did not differ from 

each other. This supports our original hypothesis that both methods of measuring infarct 

size show similar inter-method reliability (Figure 7).  

One of the advantages of doing pixel reading is that images are archived and 

multiple analyses of the data are possible in a single-blind manner. This allows for a 

retrospective study analysis in which current data may be reanalyzed and compared to 

other agents in future studies. By contrast, weight infarct analysis sometimes, but not 
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always, entails a person who is familiar with the conditions of the experiment and is 

therefore prone to researcher bias. Moreover, this method can only be performed one 

time and, although it is designed that the same person will isolate the infarct versus viable 

tissue, that is not always the case. As scientists try to do their best to be accurate, the fact 

that we have limited people analyzing the weight method is limiting in itself and perhaps 

could have contributed to the lack of significant reduction in infarct size after Myr-

PKC+ pretreatment versus the total blinded pixel based method (i.e., ImageJ). In 

conclusion, the pixel method may be superior to the weight method because there is less 

bias, there are more opportunities (i.e. number of people) to analyze the infarct area, it 

allows for comparison across studies, and it is not time sensitive. 

4.1.3 Cardiac Function 

Despite reduction in infarct size, none of the PKC+ treated groups showed 

significant recovery of cardiac function throughout the reperfusion period compared to 

untreated control hearts. Interestingly, Myr-PKC+ pretreated exhibited significantly 

improved LVEDP compared to TAT-PKC+, native PKC+, and untreated control 

hearts, but this did not manifest in an improved LVDP due to significantly reduced 

LVESP (see Table 2 and Figure 8). These results indicate that the infarct sparing effect of 

pretreatment with PKC is independent of function recovery. These results are also 

consistent with an earlier pilot study from our lab which showed that Myr-PKC+ 

reduced infarct size to 23% but did not restore cardiac function compared to untreated 

controls using a similar ischemic time period (i.e. 30min) and a shorter reperfusion time 

period (i.e. 45min) [48]. Our study was aimed at resolving whether cardiac function could 

be restored at a longer reperfusion time modality. Our recently published work using 
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Myr-PKC peptide inhibitor (Myr-PKC-, 20 M) showed a delayed improvement in 

cardiac function from 60 to 90 min [46]. This led us to explore the length of the 

reperfusion timecourse in this study to see if there could be an improvement in cardiac 

function that was not seen during the 45 min reperfusion period. 

4.1.4 The dichotomy between infarct size and cardiac function 

Interestingly, Saurin et al. reported no difference in LVDP in PKC-/- knockout 

mice and mice with the full complement of PKC protein (PKC+/- heterozygous) in 

MI(45 min)/R(90 min). Although PKC-/- mice were resistant to the cardioprotective 

effects of IPC (i.e. infarct size reduction), postreperfused LVDP was preserved and 

similar to that of IPC preconditioned PKC+/- mice [4]. Although PKC deficient mice 

recovered LVDP, these results support our conclusion that the infarct sparing effects of 

PKC may be independent of contractile recovery. 

Myocardial stunning provides another possible explanation for lack of contractile 

recovery despite reduction in infarct size. Kloner et. al showed that mitochondrial 

directed antioxidant (SS-31) given at reperfusion reduced infarct size in three different 

animal models. However, one of the animal models did not show restoration in cardiac 

function despite showing reduction in infarct size [51]. Their explanation for this is that 

the heart may have been stunned. Myocardial stunning is a phenomenon during which 

asynchrony in the stunned myocardium impedes the ability of the organ to recover. 

However, this contractile deficit is reversible as cardiomyocytes salvaged by reperfusion 

are still viable [52]. It is quite plausible in this ischemia model that stunning could persist 

throughout the timecourse in these experiments. It is also possible that diminished 
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coronary flow at reperfusion leads to hibernation. This type of postischemic dysfunction 

is defined as chronic depression of function and is thought to be an alternative protective 

mechanism in which the heart responds to reduced O2 supply by downregulating cardiac 

function and metabolism [53]. 

Nevertheless, reduction in infarct size is of great clinical relevance. Scar tissue, 

measured by late gadolinium-enhanced (LGE) magnetic resonance imaging (MRI), has 

been shown to be a better predictor of future events than contractile reserve in patients 

with chronic MI [54]. In regards to acute MI, Wu et al. demonstrated that acute infarct 

size relates to LV remodeling and is a better predictor of long-term prognosis than 

cardiac function measurements (i.e. LV systolic performance) [55]. Therefore, infarct 

size reduction via cell permeable PKC+ could improve the prognosis for patients who 

suffer from chronic and acute myocardial infarction. 

4.1.5 Length of ischemic period and recovery of cardiac function 

Another rationale for the disparity between infarct size and cardiac function in our 

experiments is the length of prolonged ischemia which plays a role in the extent to which 

the heart may recover at reperfusion. Inagaki et. al showed recovery of cardiac function 

when hearts were pretreated with TAT-PKC+ during MI(20min)/R(40min), but did not 

report function data in their MI(40min)/R(120 min) model. It is plausible that the hearts 

did not recover after the 40 min ischemic period even though there was still a reduction in 

infarct size [7]. Teng et. al also used a MI(20min)/R(45min + PMNs) to simulate PMN 

mediated I/R dysfunction to mimic in vivo conditions where PMN infiltration is 

significant 3-4 hours post-reperfusion in regional MI/R injury [56, 57]. In this model, 
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hearts pretreated with Myr-PKC+ (5M) exhibited improved postreperfused LVDP and 

reduced PMN infiltration.  

Taken together with our results in which cardiac function did not recover after 30 

min of ischemia, it is plausible that 20 min of ischemia may not have been sufficient to 

irreversibly depress contractile function before the end of the reperfusion period. By 

contrast, going longer in ischemia (i.e., 30 min) cardiac function recovery was not 

observed with either cell permeable moiety despite reduction in infarct size. Extending 

the ischemic time period by 10 min may have caused prolonged myocardial stunning that 

cell permeable PKC+ could not correct during the reperfusion time. Collectively, the 

lack of function recovery after a longer ischemic time periods (i.e., > 30min) highlights 

the importance of clinical timing of intervention (i.e. angioplasty) in patients with acute 

myocardial infarction. 

4.1.6 PKC before prolonged ischemia and at the onset of reperfusion 

Various studies have demonstrated that PKC activation prior to prolonged 

ischemia, and not at reperfusion, is cardioprotective. Inagaki et. al demonstrated that 

TAT-PKC+ (500 nmol/L) decreased CPK release and improved LVEDP, LVDP, and  

coronary vascular resistance (CVR) when administered prior to prolonged ischemia (i.e. 

20 min) but not when administered at the onset of reperfusion in isolated perfused rat 

hearts [7]. Along the same lines, Teng et. al observed that Myr-PKC+ (5 μM) 

pretreatment restored postreperfused LVDP to 90±10% of baseline values in isolated 

perfused rat hearts after 20 min  ischemia with PMNs. This effect was not seen when 

Myr-PKC+ was applied during reperfusion which restored LVDP to 75±7% of baseline 
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values and was not significantly different from untreated control hearts [6]. We therefore 

limited our study using PKC+ only as pretreatment to determine which cell permeable 

moiety (i.e. TAT or Myr) provides more efficacious intracellular targeting. 

Paradoxically, PKC inhibition by PKC- has been shown to be cardioprotective 

when administered at the onset of reperfusion [6, 29, 46, 48]. In the same study in which 

Myr-PKC+ was used, Teng et. al demonstrated that Myr-PKC- (5 μM) administered at 

the onset of reperfusion significantly attenuated cardiac contractile dysfunction and PMN 

adherence/infiltration after the 45 min reperfusion period [6]. In another study from our 

lab, Myr-PKC- (5, 10, and 20 μM) given at reperfusion significantly reduced infarct size 

and Myr-PKC- (10 and 20 μM) improved postreperfused LVDP during MI(30 

min)/R(90 min) [46]. Although treatment at reperfusion may be more clinically relevant 

during acute myocardial infarction, pretreatment may be valuable when the timing of the 

ischemic event can be predicted such as during organ transplantation or coronary bypass.  

4.2 Study Limitations 

 Although the Langendorff perfused heart provides a low cost, efficacious 

screening method to study a wide range of compounds to mitigate reperfusion injury, 

there are limitations. Organ isolation minimizes the number of confounding variables that 

can effect in vivo studies in which organ systems are integrated. However, ex vivo studies 

are less clinically relevant than in vivo studies. Although this preparation allows the study 

of the heart over the course of several hours which was sufficient for our MI(30 

min)/R(90 min) experiments, it would be advantageous to monitor the heart for a longer 

period of time to determine if contractile function can be restored in the case of 

myocardial stunning. Moreover, Sutherland and Hearse report that there is a 5-10% 
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deterioration of contractile function per hour while being perfused in the Langendorff 

model [58]. Regardless of the above limitations, the Langendorff perfused heart 

preparation is highly reproducible, cost-effective, and well-suited to gain insightful data 

in pilot studies. 

4.3 Future Studies 

4.3.1 PKC+ as pretreatment and PKC- at reperfusion 

It would be interesting to explore the opposite roles of PKCε in MI/R by 

pretreating hearts with cell permeable PKCε+ followed by PKCε- treatment at the onset 

of reperfusion. Small amounts of protective ROS are necessary to initiate an adaptive 

cardioprotective response before prolonged ischemia. PKC activation as a 

preconditioning stimulus results in opening of mKATP channels and subsequent ROS 

release, which in turn activates a second pool of PKC in the inner mitochondrial 

membrane to phosphorylate and close the MPTP [17]. However, these cardioprotective 

mechanisms are overwhelmed by increased ROS generation as a result of life-preserving 

reperfusion. Therefore, PKC inhibition at reperfusion acts to inhibit uncoupled eNOS 

and further mKATP channel opening which attenuates ROS release [29, 60]. We predict 

PKCε activation as pretreatment and inhibition at reperfusion would have an additive 

effect and may result in improved cardiac function and even lesser infarct size in the 

Langendorff perfused heart. 
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4.3.2 Would promotion of eNOS coupling or eNOS uncoupling yield similar results to 

20min ischemia model? 

Perkins et. al demonstrated that promoting eNOS activity while simultaneously 

promoting eNOS coupling via Myr-PKCε+ and BH4 respectively at reperfusion resulted 

in increased NO release from rat femoral veins and improved postreperfused LVDP and 

+dP/dtmax in Langendorff perfused hearts. By contrast, when Myr-PKCε+ was applied at 

reperfusion to stimulate uncoupled eNOS activity in combination with BH2, there was 

increased H2O2 endothelial release and cardiac function did not recover [29]. While 

Perkins et. al evaluated the stimulation of coupled and uncoupled eNOS at reperfusion in 

MI(20min)/R(45min + PMNs), it would be interesting to use PKCε+ in combination with 

either BH4 or BH2 as pretreatment in MI(30 min)/R(90 min) to evaluate the role of 

coupled versus uncoupled eNOS activity. We are interested in evaluating whether 

promoting eNOS coupling before prolonged ischemia would still result in restoration of 

postreperfused cardiac function in this longer I/R protocol. The reason that this may be of 

value is that what we have recently learned from our research group that inhibiting 

uncoupled eNOS via Myr-PKC- at reperfusion was still effective in MI(30 min)/R(90 

min). However, the degree of restoration of postreperfused cardiac function was 

diminished from ~100% seen after 20 min ischemia by Perkins et. al to ~56% after 30 

min ischemia [29, 46].  

While NO release from coupled eNOS improves the coupling efficiency of the 

electron transport chain under normal conditions, it is possible that stimulation of 

uncoupled eNOS prior to prolonged ischemia results in small amounts of protective ROS 

[28]. Wang et. al found that sufficient concentrations of H2O2 pretreatment (i.e. 10-
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100M) are necessary to stimulate prosurvival pathways while low concentration H2O2 

pretreatment (1M) further aggravated I/R injury during MI(30min)/R(45min) [59]. 

Therefore, PKC+ and BH2 induced stimulation of uncoupled eNOS and subsequent 

superoxide release may propagate a protective signaling cascade which includes 

downstream PKCε activation in the inner mitochondrial membrane to open mitoKATP and 

prevent MPTP pore formation [17]. If this mechanism is helpful at longer ischemia times, 

this may be helpful for organ transplantation. 

4.3.3 Visualizing native PKC+, Myr-PKC+, and TAT-PKC+ within cardiomyocytes 

 In this study, efficacious intracellular targeting of PKC+ and subsequent PKC 

activation yielding cardioprotection was extrapolated by measuring physiological 

endpoints (i.e. contractile function and infarct size). Monitoring cargo translocation via a 

well-designed cellular assay would confirm successful intracellular delivery of these 

peptides and provide data on cellular distribution. Previous studies have used fluorescein 

peptide conjugations and fluorescence microscopy to visualize mechanism of entry and 

cellular distribution of cargo [44]. However, fluorescein would increase the size and 

hydrophobic characteristic of these molecules which could influence mode of entry into 

cells. Regardless, elucidating the mechanisms by which cell permeable peptides (i.e. Myr 

and TAT) enter the cell are of value due to their great therapeutic potential. 

 In regards to successful PKC activation, a cellular assay measuring protein 

expression of phosphorylated eNOS in human umbilical vein endothelial cells (HUVECs) 

via western blot analysis could be used. HUVECs provide potential translation to human 

tissue, and eNOS is a known PKC substrate which serves as principal ROS source in 

MI/R [6, 29]. This is described as being a key mechanism in mediating reperfusion 
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injury. Assessing differences in phosphorylated eNOS expression would be an effective 

method to determine how well PKC+ is being delivered to cells and to assess potential 

differences between Myr- and TAT-conjugated PKC+ delivery.  

4.4 Significance of Findings 

These results suggest that increasing cellular permeability of PKCε+ via 

conjugation to either Myr or TAT significantly improved its efficaciousness in 

attenuating infarct size when given prior to ischemia as a pharmacologic mimic of 

ischemic preconditioning. The results also suggest that  Myr- or TAT-conjugated PKCε+ 

may be an effective treatment to attenuate cell death in coronary bypass, angioplasty, or 

organ transplantation settings. 
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