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ABSTRACT 
 

Surveillance of Ranavirus and Bacterial Microbiome Characterization of False Map  
Turtles (Graptemys pseudogeographica) Along the Lower Missouri River, USA 

 
Maddie Butterfield 

 
Director: Dr. Jake Kerby, Ph.D. 

 
 
 

Graptemys pseudographica, or the False Map Turtle, is a state-threatened species 

in South Dakota. The False Map Turtle, a river-dwelling species, is susceptible to the 

viral pathogen Ranavirus, leading to the deadly ranavirosis, which is a systemic infection 

transmitted through the water that can cause severe epizootics in turtles (Johnson et al. 

2008).  We trapped for False Map Turtles in July of 2017 at three different spots along 

the Missouri River between Yankton, SD and Vermillion, SD and describe the Ranavirus 

infection status of all 79 False Map Turtles trapped in this area.  Additionally, being a 

river-dwelling species, the bacterial microbiome within the cloaca of False Map Turtles is 

presumed to vary along different geographic locations within the river and is largely 

understudied.  The bacterial microbiome within the cloaca of an animal has been shown 

to have significant effects on the overall health of the animal (Ringo et al. 2010).  From 

the 79 individuals sampled this summer, 21 were analyzed for the bacterial genera 

present within the bacterial community of their gut microbiome by 16S rRNA gene 

sequencing and the major bacterial genera were identified.  Community structure based 

on taxonomic relationships between bacterial genera based on similarity of 16S rRNA 



   

gene sequence is also presented.  We conclude that there is no Ranavirus present in any 

individuals sampled this summer and that bacterial microbiome composition among the 

cloaca of False Map Turtles differs by geographic location, and that urination during 

cloacal swabbing does not significantly impact the efficacy of the bacterial community 

sample. 

 

KEYWORDS: False Map Turtle, Ranavirus, Microbiome, Cloacal Microbiome, MNRR, 

Missouri River  
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PREFACE 
 

Literature Review of Graptemys pseudogeographica, the  
False Map Turtle 

 
 
 
INTRODUCTION 
 

All taxa of animals have been experiencing population declines in recent years.  

In 2018, nearly 28% of over 96,900 described species of animals from taxa including 

vertebrates, invertebrates, plants, fungi, and protists were considered to be threatened 

(Numbers 2018).  While amphibian population declines have been widely publicized, 

lesser-covered reptiles like chelonians have been experiencing extreme population 

declines of their own (E.O. Moll and D. Moll 2000).  Chelonians are aquatic reptiles, 

comprised of two suborders and thirteen families of aquatic tortoises and turtles.  Based 

on the 2018 IUCN Red List of Threatened Species, 56.2% of 332 turtle and tortoise 

species are threatened and 85.7% of chelonian species are threatened (Rhodin et al. 

2018).  Additionally, testudines are the second-most threatened vertebrate group (56.2% 

of species considered threatened), bested only by primates (64.3%) and followed closely 

by caudates (ie. salamanders, 55.4%) (Rhodin et al. 2018).  Causes of reptilian population 

declines are similar to those threatening amphibian population, including habitat loss and 

degradation, global climate change, invasive species, and environmental pollution.  

Anthropogenic causes aside, infectious diseases and parasitism are also cited as major 

sources of population decline in reptiles (Gibbons et al. 2000).  Reptiles on whole are 



   2 

susceptible to infection from a wide range of infectious agents, including bacteria, 

parasites, viruses, and fungi (Jacobson 1993); though a comprehensive list of pathogens 

that are infective to reptiles has not been made.  Among important pathogens affecting 

chelonians, aerobic bacteria (Mycoplasma) have caused population reductions in desert 

tortoises (Gopherus agassizii) and gopher tortoises (Gopherus polyphemus, Jacobson 

1993) and tortoise herpesvirus infection has become increasingly prevalent in captive 

chelonian populations and pet trade (Origgi et al. 2004, Johnson et al. 2005).  

 Graptemys pseudogeographica, the False Map Turtle, is a riverine turtle of the 

family Emydidae among the order Chelonia that is endemic to North America, more 

specifically to Missouri-Mississippi river system and the accompanying river tributaries 

(Fig. 1).  False Map Turtles inhabit along the river system spanning from as northern as 

North Dakota to the southern parts of Louisiana and Texas (Conant et al. 2016).  The 

species itself can be split into two subspecies, differentiated by habitat location and some 

morphological markings: Graptemys pseudogeographica pseudogeographica, or the 

Northern False Map Turtle, and Graptemys pseudogeographica kohnii, or the Mississippi 

Map Turtle (Fig. 2).  The Northern False Map Turtle is native to the northern Missouri 

River system predominantly through the states of Minnesota, Wisconsin, North and 

South Dakota, Iowa, Illinois, Missouri, and Kansas (Fig. 3); thus is the focus of this 

thesis.  

 False Map Turtles are relatively small for river turtles, with significant sexual 

dimorphism.  Females are usually between 15-27 cm and males are usually between 9-15 

cm in carapace length (Conant et al. 2016).  The size difference between male and female 

False Map Turtles is one of the most dramatic cases of sexual dimorphism in vertebrate 
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tetrapods, with males usually measuring half the carapace length and width as their 

female counterparts and usually one-tenth the weight (Lindeman 2013).  Being overall 

smaller than other river turtles or members of Emydidae may be an evolutionary 

advantage since areas inhabited by False Map Turtles are usually smaller or less turbulent 

river systems than those that their larger counterparts may inhabit (E.O. Moll and D. Moll 

2000).  False Map Turtle reproduction follows that of most riverine turtles, considered 

Type I by E.O. Moll (1979) where females lay multiple relatively large clutches of small 

eggs in ancestral nesting locations during a definitive nesting season (E. O. Moll 1979).  

Clutch size varies significantly among riverine species, ranging from 178 or 150 eggs in 

the Chitra spp. and Podocnemis expansa, the giant South American river turtle, 

respectively; to less than 20 eggs in larger species including Bagatur borneoensis, the 

painted terrapin (E.O Moll and D. Moll 2000). 

 In terms of diet, False Map Turtles are largely opportunistic omnivores as well as 

scavengers: an adaptation to accommodate highly varying levels of animal and plant 

materials available during a given season, location, or ecosystem (E.O Moll and D. Moll 

2000).  Their diet is largely dependent on available resources but consistently includes 

aquatic vegetation, mollusks, and insects as both adults and larvae (Vogt 1981). They 

feed both underwater and on the surface of water.  Scavenging provides False Map 

Turtles a stable protein source, since hunting for live prey is not an adaptation lent to the 

False Map Turtle.  Additionally, the False Map Turtle has a unique feeding method called 

“benthic bulldozing”, where turtles will indiscriminately eat river bottom detritus and the 

prey therein (D. Moll 1976).  
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Freshwater turtles such as the False Map Turtle play integral roles in aquatic 

ecosystems and are threatened with alteration due to human intervention, namely 

agricultural expansion and habitat loss (Quesnelle et al. 2013).  A threatened species in 

the state of South Dakota (Ashton and Dowd 2008), the False Map Turtle plays a critical 

role in maintaining a healthy riverine ecosystem in the Missouri and Mississippi rivers as 

an endemic species. Understanding the disease load on threatened populations and 

understanding how external factors such as water quality impacts organism health is 

imperative to maintaining the health of both the species and their ecosystem on whole. In 

this thesis, we examine two facets of conservation research associated with the False Map 

Turtle population of the lower Missouri River: surveillance of deadly viral pathogen 

Ranavirus and characterization of cloacal bacterial microbiome with relation to 

geographic location and water quality. 
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FIG. 1: Adult male Graptemys pseudogeographica pseudogeographica from the Missouri 

River in southeast South Dakota. Catalogued and photographed by Drew R. 
Davis.  
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FIG. 2: Sample specimen of both subspecies of Graptemys pseudogeographica: the 

Mississippi Map Turtle (G. p. kohnii, no female shown) and the Northern False 
Map Turtle (G. p. pseudogeographica). From Conant et al. 2016, p. 179. 

 



   7 

 
FIG. 3:  False Map Turtle (Graptemys pseudogeographica geographica; Graptemys 

pseudogeographica kohnii) population distribution in the United States as of 
2016. From Conant et al. 2016, p. 208.  
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CHAPTER I 
 

Surveillance of Ranavirus Among G. pseudogeographica Along the 
Lower Missouri River, USA 

 
 
 
INTRODUCTION 
 
A. Ranavirus as a Pathogen 

Among pathogens plaguing conservation efforts today, the multihost pathogen 

Ranavirus has proven debilitating to amphibian and reptilian populations alike (Daszak et 

al. 1999; Duffus et al. 2015).  Ranavirus is one of five genera among the virus family 

Iridovirus, which also includes Iridovirus, Chloriridovirus, Megalocytivirus, and 

Lymphocystivirus (Schock et al. 2008).  Iridoviruses were first discovered in 1954 in 

crane fly larvae (Xeros 1954), studied first for the hallmark blue iridescence it created 

just below the epidermis in larvae. Of the five genera, Iridovirus and Chloriridovirus 

both infect invertebrates including insects.  Genera Megalocytivirus, Lymphocystivirus, 

and Ranavirus in contrast, infect cold-blooded vertebrates: lymphocystiviruses and 

megalocytiviruses can infect fish, and ranaviruses can infect fish, amphibians, and 

reptiles (Mao et al. 1997, Williams et al. 2005).  Detection of infected populations and 

mass-mortality events have increased in frequency since the advent of Iridovirus 

research, particularly in the early 1990’s (ie. Bradford 1991, Fellers and Droft 1993): 

most likely a combination of improvement of detection methods and increasing exposure 

to vulnerable or isolated populations (Earl and Gray 2014).  However, due to the cryptic 
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nature of species at risk and that Iridovirus infection is not always symptomatic 

(Williams et al. 2005, Johnson et al. 2007, Price et al. 2015), geographic distribution and 

disease surveillance efforts are most likely underestimated. 

 
B. Iridoviruses 
 

Iridoviruses are large icosahedral viruses (ranging from 120-300 nm in diameter, 

Fig. 5) that are constructed in the cytoplasm of infected cells (Darlington 1966).  

Internally, the virus is comprised of a lipid-bound capsid and core, where the most 

abundant protein is the major capsid protein (MCP), an important structure in 

identification of iridoviruses (Williams 1996).  The genome is a linear double-stranded 

DNA virus that is terminally redundant, thus circularly permutated (Goorha and Murti 

1982) – a rarity in animal viruses.  Upon infection, the virus shuts down host cell 

macromolecule production (including RNA transcription and translation), leading to a 

halt of host cellular DNA synthesis (Willis et al. 1985).  Viral DNA replication occurs in 

the host nucleus and viral protein synthesis and assembly occurs in the host cytoplasm, 

preceding virion budding for viral exit (Williams et al. 2005).  This method of utilizing 

both host nucleus and cytoplasm for replication and assembly varies from the poxvirus 

family, in which only the cytoplasm is used (Schramm and Locker 2005).  Ranavirus and 

Megalocytivirus are causative agents for the most serious infections, where 

Megalocytivirus has in recent years proven deleterious in marine aquaculture species in 

Southeast Asia (Williams et al. 2005) and Ranavirus has been the causative agent for 

mass die-offs in amphibians and reptiles (Johnson et al. 2008, Brenes et al. 2014, Price et 

al. 2014). 
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Genus Ranavirus is currently separated into four or five distinct groups based on 

genomic analysis (Jancovich et al. 2015), but three groups have particular significance in 

amphibian and other ectothermic populations.  The three groups of viruses of much study 

are frog virus 3 (FV3)-like, common midwife toad virus (CMTV)-like, and Ambystoma 

trigrinum virus (ATV)-like (Price et al. 2017).  Viral taxonomy of Ranavirus shifts with 

increasing genomic analysis of the virus, so the systems of classification are expected to 

be revised over time.  FV3 has undergone the most research of all iridoviruses and infects 

the most taxonomically diverse group of organisms and is therefore frequently used as a 

model for iridoviruses in general (Williams et al. 2005). 

The host species able to be infected by different groups of Ranavirus are 

relatively stable, thus making further viral study and identification in infected animals 

simpler. Experimental infective studies in Granoff et al. (1965) and Clark et al. (1968) 

first introduced data suggesting that FV3-like viruses are infective to amphibians, 

reptiles, and bony fish, while all endotherms were not susceptible to infection of FV3-like 

viruses.  Currently, ATV-like viruses are only known to infect tiger salamanders in 

western North America (Jancovich et al. 2005) and CMTV-like viruses have caused mass 

mortalities in six different amphibian species in Europe (Price et al. 2014).  Coinciding 

with a diverse range of susceptible species, Ranavirus has been detected in organisms 

across the globe.  This includes fish in the context of ornamental fish from Southeast Asia 

(Hedrick and McDowell 1995), sturgeon in the United States (Kurobe et al. 2011), 

sheathfish and catfish in Europe (Ahne et al. 1997); amphibians in the context of frogs 

from every continent except Antarctica and Africa (reviewed in Duffus et al. 2015, Price 

et al. 2017); and salamanders from 25 countries, including every continent except 
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Antarctica (reviewed in Duffus et al. 2015).  Ranavirus has also impacts reptilian 

populations, where species of turtles and snakes have both been infected in Europe, 

Australia, Asia, and North America (Marschang et al. 1999, Chen et al. 1999, Hyatt et al. 

2002, Goodman et al. 2013).  Transmission of Ranavirus between taxonomic classes has 

occurred (ie. from amphibian species to reptilian species), which may give rise to 

increasing infections in previously uninfected species (Mao et al. 1999, Schock et al. 

2008).  

 
C. Ranavirus in Turtles 

 Because Ranavirus infections were more common among amphibians historically, 

reptilian infection with Ranavirus was considered a relatively sporadic event.  Among 

chelonians, the first reported infection was in 1982 in a Hermann’s tortoise (Testudo 

hermanni, Heldstab and Bestetti 1982), followed years after with an infection among a 

group of captive Hermann’s tortoises (Muller et al. 1988).  Years later, infection in 

captive Hermann’s tortoise populations in Switzerland would confirm via PCR that the 

Ranavirus in question was in fact an FV3-like virus (Marschang et al. 1999).  Since then, 

FV3-like Ranavirus infection in chelonians has been present in species including the 

Horsfield’s tortoise (Testudo horsfieldii) and the Common Box Turtle (Terrapene 

Carolina, Mao et al. 1997), the Chinese Softshell Turtle (Trionyx sinensis, Chen et al. 

1999), the Eastern Box Turtle (Terrapene carolina carolina, DeVoe et al. 2004, Allender 

et al. 2011, Kimble et al. 2017), the Painted Turtle (Chrysemys picta, Goodman et al. 

2013), and the European Pond Turtle (Emys orbicularis, Blahak and Uhlenbrok 2010).  

Ranavirosis, the disease caused by pathogenic viruses of the genus Ranavirus, is a 

highly virulent systemic infection (Daszak et al. 1999; Duffus et al. 2015).  Generally, 
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Ranavirus infection in turtles is characterized externally by the presence of cutaneous 

abscesses, nasal or ocular discharge, oral plaque, or unenergetic behavior (Allender 

2012).  Internally, Ranavirus infection in turtles can cause systemic blood clotting and 

hemorrhagic necrosis of kidneys, liver, heart, spleen, and the alimentary tract, ultimately 

leading to death (Johnson et al. 2007).  When characterized among Chinese Softshell 

Turtles, the FV3-like viral disease was also called the “red neck disease,” due to external 

swelling and hemorrhaging of the neck and internal hemorrhaging of the liver (Chen et 

al. 1999). 

Covert infection is also possible in infected organisms, where no external 

symptoms would indicate Ranavirus infection.  Usually, these cases are due to an 

infection of low virulence instead of being early in the life cycle of a systemic and lethal 

infection (Williams et al. 2005).  When external symptoms are not shown, infective status 

can still be obtained via electron microscopy of tissue (Tonka and Weiser 2000), qPCR of 

tissue centered around detection of major capsid protein (Forson and Storfer 2006), or 

end-point dilution in cell cultures for insects (Constantino et al. 2001).  

Though ranaviruses have been detected across the United States, little is known 

about their geographic and host distribution in the Midwestern United States (Duffus et 

al. 2015).  To our knowledge, no turtles in the region have been screened for ranaviruses, 

though recent efforts have detected ranaviruses in amphibians along the Missouri River in 

Nebraska (Davis and Kerby 2016) and in South Dakota (Davis 2018) as well as in 

sturgeon in the Missouri River at the Gavin’s Point National Fish Hatchery in Yankton, 

South Dakota (Kurobe et al. 2011).  Despite the presence of ranaviruses in the region, 

nothing is known about whether they occur locally in reptile species.  Given the detection 
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of ranaviruses in amphibians from Nebraska and South Dakota and the ability for 

pathogen transmission to occur among vertebrate classes, there is concern over the 

potential transmission of ranaviruses to False Map Turtles.  Here, we investigated the 

prevalence and infection load of ranaviruses in False Map Turtles from the lower 

Missouri River between South Dakota and Nebraska. 
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MATERIALS AND METHODS 

A. Study Population 

In this study, False Map Turtles were collected at different sites along the 59-mile 

stretch of the Missouri National Recreation River (MNRR) between Yankton and Elk 

Point, South Dakota, USA from 2015-2017 (Fig. 5).  Sampling was done with the joint 

intent of testing for prevalence of Ranavirus (Butterfield et al. 2019) and collecting 

cloacal bacterial samples for microbiome composition analysis.  Samples were taken at 

three distinct sections of the MNRR: the James River, Goat Island within the Missouri 

River, and the Vermillion River, from west to east respectively (Fig. 5). 

During collection of False Map Turtles along the MNRR between 2015 and 2017, 

turtles were primarily collected using partially submerged hoop traps baited with 

sardines, but individuals were also opportunistically collected by hand.  Traps were left 

submerged near basking surfaces (e.g., fallen trees) for 24–48 h and captured individuals 

were weighed, measured, and given a unique identifying notch on their marginal scutes 

(following Ernst et al. 1974).   

 

B. Sample Collection 

Before turtles were released, Ranavirus surveillance samples were obtained by either: 

1) collecting a blood sample from the caudal vein using a sterile insulin syringe 

(EXELINT International Co., Redondo Beach, California, USA), or 2) collecting a small 

skin tissue sample (ca. 5 mm2) from the webbing on the hind foot.  Tissue collecting 

equipment (e.g., scissors, forceps) was sterilized with a 10% bleach solution between 

individuals and sites to prevent cross contamination and gloves were worn throughout.  
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All tissue samples were stored in individual tubes containing 95% ethanol and kept at -

20°C until processing. 

We also collected three individual False Map Turtles as voucher specimens during 

this study.  We euthanized these individuals via an overdose of sodium pentobarbital 

injected through the caudal vein and collected a muscle tissue sample from the right hind 

limb.   

 

C. Quantitative PCR 

All tissue samples were stored in individual tubes containing 95% ethanol and kept at 

-20°C until processing.  DNA was extracted from tissue samples using DNeasy Blood 

and Tissue Kits (Qiagen, Hilden, Germany) and following kit protocols.  Extracted 

samples were then analyzed for Ranavirus infection via quantitative PCR (qPCR) 

following methods outlined in Forson and Storfer (2006).  Numerous other studies have 

used this method successfully and have verified that this method provides reliable 

detection down to a single viral copy (Whitfield et al. 2012; Davis and Kerby 2016).  

Each qPCR plate included a negative control (water) and a 1/10 serial dilution series (1e2-

1e5) of gBlocks (IDT, Coralville, Iowa, USA) containing a target sequence of a sequence 

of DNA known to be shared between Ranavirus strains, the major capsid protein.  This 

series of dilutions was done in order to create a standard curve to quantify sample 

infection loads.  Each sample that was analyzed was run in triplicate and Ct (cycle 

threshold level) values were used to determine absence/presence of Ranavirus; a sample 

was considered positive if at least two wells amplified with a Ct < 45.  All analyses were 
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run on an ABI 7300 Real-time PCR System using Real-time PCR System Sequence 

Detection Software v1.2.3 (Applied Biosystems, Foster City, California, USA).  
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RESULTS AND DISCUSSION 

A. Results 

A total of 123 False Map Turtle genetic tissue samples were collected from 10 sites 

along the MNRR (Fig. 2; Table 1) including blood, skeletal muscle, and skin webbing.  

All samples were negative for Ranavirus presence (Table 1).   

 
B. Discussion 

While the negative results are promising for the conservation of the False Map Turtle 

in the region, transmission of ranaviruses from infected hosts still may occur.  With 

Ranavirus known from sites <1.5 km away (Davis and Kerby 2016), the lack of infected 

False Map Turtles in this study may also suggest that ranavirosis progresses quickly, with 

high mortality of infected individuals.  To test the vulnerability of False Map Turtles to 

the pathogen and ranavirosis, an experimental infection study may be a future direction to 

pursue. For this reason, additional research and continued surveillance for Ranavirus in 

the region, in both the False Map Turtle and other likely host species, is imperative to 

maintaining population health profiles and informing future conservation action for the 

surrounding aquatic and terrestrial ecosystems.  

Lack of positive Ranavirus samples may have been influenced by a number of 

factors, including water temperature.  Water temperatures are known to affect the 

persistence of Ranavirus in infected animals but do not fully explain lack of Ranavirus 

detection.  In 2017, the water temperature at sampled sites where 93 of the total 123 False 

Map Turtles sampled was 26.1 ± 0.3°C (mean ± 1 SE).  Allender (2012) found that 

Ranavirus in semi-aquatic turtles has a higher and faster mortality at lower temperatures 

(22°C) when compared to higher temperatures (28°C).  Therefore, given that Ranavirus 
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has been historically present in the region, elevated water temperatures may reduce the 

likelihood of infection in False Map Turtles, though further studies should investigate this 

possibility. 

Also potentially contributing to the negative test results, Ranavirus may not be as 

persistent within erythrocytes, muscle, or skin tissue (Johnson et al. 2007, Allender et al. 

2013).  While Ranavirus is a systemic infection with viral copies detectable in various 

tissues including the liver, kidney, spleen, esophagus, stomach, and both small and large 

intestine, infection status in muscle and epithelial skin cells was not confirmed (Johnson 

et al. 2007).  Moreover, due to the virulence of the disease (experimental intramuscular 

infection caused death or euthanasia between 8 and 23 days, Johnson et al. 2007), 

inoculation of more superficial tissues including skin and skeletal muscle may happen 

after much more time had passed after infection.  For this reason, it is possible our turtles 

sampled were infected with Ranavirus that would be detectable in other tissue types, but 

due to the time of sampling in relation to the disease onset, viral copies may not yet be 

detectable in the muscle or skin.  

 Similarly, a symptom of ranavirosis in chelonians is lethargy, continuous basking, 

and anorexia (Johnson et al. 2007).  Another potential cause for negative results was 

sampling error due to animal behavior.  First, infected turtles would most likely be 

basking continuously, instead of being in the water where the submerged hoop traps were 

located.  Second, infected turtles would not be enticed to enter sampling traps by bait if 

they were experiencing anorexic symptoms.  Finally, general lethargy would make 

infected animals less likely to enter traps in the first place, particularly when traps were 

set against the current of the river. Should infected animals exhibit classical behavioral 
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symptoms of Ranavirus infection, their behavior would be as such to reduce their 

likelihood of being trapped. For this reason, our data could potentially be skewed towards 

healthy turtles due to the behavioral components of Ranavirus infection.  

Ranavirus is a deadly pathogen with a wide host range and a poorly-understood 

transmission method. While much study is required on transmission methods, infectivity, 

and reservoir species, measures such as increased surveillance sets the preliminary 

framework for greater connections to be made between Ranavirus infection and biotic 

and abiotic factors.  Negative results for Ranavirus infection in a state-threatened species 

is overall a positive sign for conservation efforts, but much further study is required to 

ensure that these findings were not due to confounding variables or nuances of 

ranavirosis.  Despite the lack of explanation as to the lack of Ranavirus in the population, 

continued surveillance of the region in all susceptible species is integral to maintain 

health and stability of the ecosystem. 
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FIG. 4: Locations where False Map Turtles (Graptemys pseudogeographica) were 
sampled for Ranavirus along the lower Missouri River between South Dakota and 
Nebraska, USA. Sampling localities correspond to site numbers in Table 1. 
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FIG. 5:  Electron micrograph showing the epidermis of the pectoral fin of  
juvenile pallid sturgeon with iridovirus from Missouri River. 
Hexagonal virions show double envelope and icosahedral shape 
(bar=500 nm). From Kurobe et al. 2011, Fig. 2, (B). 
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CHAPTER II 

 
Characterization of the Cloacal Bacterial Microbiome of G. 

pseudogeographica 
 
 
 

INTRODUCTION 

A. Microbiomes 

 Within and on the tissues of most animals on earth, host organismal cells occupy 

the same space as a greater number of foreign bodies: bacterial cells, viruses, fungal and 

archaeic cells (Qin et al 2010).  These microbes (collectively microbiota) together create 

highly diverse and complex communities (microbiomes) on the tissues of most vertebrate 

organisms.  Largely understudied historically in scientific literature, these communities 

have quietly caused the evolution of organisms, and themselves, for millennia.  The 

ability to share genomic information between both individual microbes and entire 

communities for greater survival has allowed for the creation of novel and diverse 

microbial communities all over the biosphere.  Additionally, when microbial 

communities inhabit surfaces on or within vertebrate hosts, genetic and physiological 

interaction between the microbiota and the vertebrate host occur, playing a pivotal role in 

the survival and evolution of vertebrate species for billions of years (Woese 2002).  The 

role of microbiota within the development and adult physiology of the organism they 

inhabit is vast and varying, ranging from development, structure and function of the gut; 

immune response, energy metabolism, and undoubtedly other undiscovered impacts 
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(Backhed et al. 2005, Kelly et al. 2005, Rohde et al. 2007).  Moreover, the term, 

“hologenome” has been coined as a representation of the genetic information of both the 

host and its corresponding microbial community as a unit of selection in evolution 

(Zilber-Rosenberg and Rosenberg 2008) due to the highly symbiotic nature of the 

relationship between a host and the microbial communities it supports.  Microbiota of all 

kinds have allowed the survival of vertebrate life on earth. 

 Most of the research into the interaction and evolution between a microbiome and 

its host has been within the gut of animals, particularly in mammals (Savage 1977, Drasar 

1974), though the importance of microbiomes within non-model species has become 

apparent and the subject of much study recently.  In humans, members of the domain 

Bacteria predominate the microbiome, though members of Archaea and Eukaryota are 

also present (Eckberg et al. 2003).  For this reason, the study of microbiome effect on 

host physiology and development is largely contained to the bacterial microbiome. 

The microbiomes of organisms are structured largely during the early portion of 

an organism’s life and may be passed down through generations (Bright and Bulgheresi 

2010).  The mechanism as to how microbiota are passed down varies among taxa.  While 

many mammals develop core microbiomes through close parental interaction, reptiles 

infrequently have much postnatal contact and may ingest fecal material from parents to 

seed the gut microbiota (Troyer 1984).  Microbiotas will stay relatively stable over the 

course of a lifetime, fluxuating in accordance with factors such as diet, environment, or 

infection status (Lu et al. 2014).  Aquatic animals in particular have significant 

interaction between their assorted microbiomes and factors of the external aquatic 

environment, especially in the case of water salinity, pH, and temperature (Lozupone and 
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Knight 2007).  Due to the frequent ingestion of water, the microbiome on the skin and the 

various diverse microbiomes along the gastrointestinal tract are impacted by the aquatic 

environment they inhabit (Hentschel et al. 2012).  In a large proportion of animals 

including turtles, the gastrointestinal tract ends in a cloaca instead of a rectum, providing 

a direct connection between the surrounding environment as well as urogenital tract and 

the gastrointestinal tract.  The structure of a cloaca provides an interesting and short 

bridge between abiotic environmental and internal bodily factors that influence the 

microbiome of the adjoining gut.  While the microbiome of an animals is altered largely 

based on survival needs and homeostatic conditions of the animal based on internal 

indicators, having a direct external connection from the environment to the bacterial 

community means that the environment has the ability to profoundly alter the community 

structure of the gut microbiome, creating a community that is likely to be much more 

diverse than it would be otherwise.  This influence complicates the overall 

characterization of a base microbiome a particular species may hold due to phylogenetic 

history, for microbiome comparison between species or across phyla.  It does, however, 

allow comparisons to be made between organisms in different environments, thereby 

characterizing the impact that certain abiotic factors may have on species health.  For this 

reason, and that samples of the microbiome from the cloaca can be collected without 

requiring the organism in question to be euthanized, the bacterial microbiome from the 

cloaca is the subject of study for this thesis.  
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B. Cloacal Microbiomes 

 The study of cloacal microbiomes has received much attention as a way to study 

the distal section of the gastrointestinal tract as a ecosystem with high efficacy, 

particularly in nonmammals.  An analysis done by Vo and Jedlicka (2014) comparing 

metagenomic sequencing results from fecal samples and cloacal swab samples in 

nonmammalian animals revealed that cloacal swabs performed better than fecal samples 

in displaying a clearer picture of microbial community complexity when there was little 

large-matter fecal debris (ie. arthropod exoskeletal remains, bones).  The cloacal 

microbiome has been studied extensively in birds, with many species being characterized 

and specific studies into research areas such as horizontal transfer of microbiota from 

parent to offspring (Lucas and Heeb 2005) as well as between sexual partners (Westneat 

and Rambo 2000).  The cloacal microbiomes of young, growing turkeys (Meleagris 

gallopavo) were also characterized with respect to time by Wilkinson et al. (2017) as well 

as in model marsupial species Macropus eugenii, the tammar wallaby (Chhour et al. 

2008) and Phascolarctos cinereus, the koala (Alfano et al. 2015). 

In nonbird reptiles, the cloacal microbiome is a rapidly growing field of study.  

The community structure of oral and cloacal microbiomes was characterized among wild 

crocodiles (Crocodylus acutus and Crocodylus moreletii, Charruau et al. 2012) as well as 

three kinds of British snakes (Nutrix natrix, Vipera berus, and Anguis fragilis, Cooper et 

al. 1985), crocodile lizards (Shinisaurus crocodilurus, Jiang et al. 2017), and the Burmese 

python (Python bivittatus, Costello et al. 2010).  In turtles, cloacal bacterial microbiome 

research is an understudied but growing field.  Green Turtles (Chelonia mydas) have been 

studied most extensively in this regard: the cloacal bacterial microbiome community 



   27 

structure has been characterized and compared across types of habitat (Price et al. 2017), 

the microbiomes have been compared pre- and post-hospitalization (Asahan et al. 2018), 

and the role of diet on microbial community structure has been analyzed (Campos et al. 

2018). Additionally, the Loggerhead Sea Turtle (Carretta carretta L.) cloacal bacterial 

microbiome has been characterized (Abdelrhman et al. 2016).  Within the False Map 

Turtle, the cloacal bacterial microbiome has been briefly characterized and the impact on 

it of exposure to glyphosate contaminants has been explored (Madison et al. 2018).  This 

study is the first of its kind in analyzing the role of geographic location in differences in 

microbial community structure.  It also significantly adds to the body of knowledge 

regarding cloacal bacterial microbiomes in not only the False Map Turtle, but also for 

turtles and reptiles in general. 

 Here, we investigate the cloacal bacterial microbiome of the False Map Turtle 

(Graptemys pseudogeographica) and factors that alter the microbial community structure 

based on location of populations within the Missouri National Recreation River (MNRR) 

of the lower Missouri River (SD, USA).  Because of the variety in diet and feeding styles 

that emphasize the consumption of large quantities of water and detritus, the gut bacterial 

microbiome has a high level of interaction with the external environment.  We are 

hypothesizing that varying geographic locations of the river will have significantly 

different water quality characteristics from one another. For this reason, we are theorizing 

that there will be significant difference between community structure of the cloacal 

bacterial microbiome from False Map Turtles inhabiting different locations within the 

lower Missouri River. 
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MATERIALS AND METHODS 

A. Study Population and Sample Collection 

In this study, False Map Turtles were collected at different sites along the 59-mile 

stretch of the Missouri National Recreation River (MNRR) between Yankton and Elk 

Point, South Dakota, USA from 2015-2017 (Fig. 5).  Sampling was done with the joint 

intent of testing for prevalence of Ranavirus (Butterfield et al. 2019) and collecting 

cloacal bacterial samples for microbiome composition analysis.  Samples were taken at 

three distinct sections of the MNRR: the James River, Goat Island within the Missouri 

River, and the Vermillion River, from west to east respectively (Fig. 5). 

During collection of False Map Turtles along the MNRR between 2015 and 2017, 

turtles were primarily collected using partially submerged hoop traps baited with 

sardines, but individuals were also opportunistically collected by hand.  Traps were left 

submerged near basking surfaces (e.g., fallen trees) for 24–48 h and captured individuals 

were weighed, measured, and given a unique identifying notch on their marginal scutes 

(following Ernst et al. 1974).   

 

B. Sample Collection 

Cloacal microbiome community samples were also collected prior to turtle release.  

To collect the sample, a sterile cotton swab (#MWE113, Medical Wire & Equipment, 

Corsham, Wiltshire, UK) was inserted into the cloaca, rotated in three full circles, and 

gently removed.  The act of inserting the cotton swab into the cloaca occasionally 

triggered a release of the urinary bladder, causing urine to also coat the swab.  Turtles 

that urinated were noted in data collection and were included for analysis to compare 
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with data from other turtles from the same location that had not urinated.  Samples were 

stored individually in sterile microcentrifuge tubes and held on ice in the dark while in 

the field until transported to a -20°C freezer, where they stayed until analysis.  Water 

sample data was taken at each site using a YSI meter for quantitative habitat comparison 

(Table 4).  

We also collected three individual False Map Turtles as voucher specimens during 

this study.  We euthanized these individuals via an overdose of sodium pentobarbital 

injected through the caudal vein and collected a muscle tissue sample from the right hind 

limb.   

 

C. DNA Extraction and Purification  

DNA extractions from all collected samples from Summer 2017 were completed 

in Winter 2018 using DNeasy Blood and Tissue kit (Qiagen, Hilden, Germany).  Protocol 

included an overnight tissue digestion and proteinase K digestion at 56°C.  After 

extraction, DNA clean-up and concentration was completed using R-9 Genomic DNA 

Clean & Concentrator-5 kit (Zymo Research, Irvine, CA) by using standard provided 

protocol. 

 

D. Library Preparation and High-Throughput Sequencing 

 21 turtle samples were chosen from the 78 extracted samples for continued 

analysis.  Samples were chosen based on turtle sex, location, and whether they had 

urinated upon sampling.  An equal balance of male and female turtle samples was 

attempted, despite previous data suggesting a sex-ratio bias towards females in False Map 
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Turtles in the lower Missouri River (Lindemann 2013).  Turtles that urinated were 

preferentially chosen against, though in populations where most available turtles had 

urinated, such as the James River, we added equal numbers of turtles that had urinated 

and had not to have a point of comparison for its effect.  

 16S rRNA sequencing was completed at the Westcore facility at Black Hills State 

University (Spearfish, SD).  Extracted DNA from each sample was quantified using the 

Qubit dsDNA HS Assay Kit (quantitation range: 0.2-100 ng) on a Qubit 2.0 Fluorometer 

(Thermo Fisher Scientific, Waltham, MA).  Using a modified dual-indexing protocol 

developed by Illumina (Illumina 16S Metagenomic Sequencing Protocol [15044223 Rev. 

B]), up to 15 ng of DNA from each sample was used to produce a library for high-

throughput sequencing.  During the first round of amplification, primers targeted the V4 

region of the 16S rRNA gene and each sample was run in duplicate using 2x KAPA HiFi 

HotStart Ready Mix (KAPA Biosystems, Wilmington, MA).  Illumina overhang adapters 

were added to the 515F and 806R primers (V4_515F: 5’–TCG TCG GCA GCG TCA 

GAT GTG TAT AAG AGA CAG GTG YCA GCM GCC GCG GTA A–3’ and 

V4_806R: 5’–GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GGG ACT 

ACH VGG GTW TCT AAT–3’; 515F and 806R base primers in bold).  System cycling 

protocol was followed: initial denaturation at 95°C for 3 min, followed by 25 cycles of 

98°C for 20 s, 55°C for 15 s, and 72°C for 30 s, and a final extension at 72°C for 5 min 

on a Veriti Thermal Cycler (Thermo Fisher Scientific).  All reactions were purified prior 

to indexing using Agencourt AMPure XP beads (Beckman Coulter, Brea, CA).  For 

indexing and subsequent purifications, a bead solution/PCR product ratio of 0.8 (20 µL of 

bead solution with 25 µL of PCR product).  
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A secondary amplification was completed using 2x KAPA HiFi HotStart Ready 

Mix and a combination of two unique Nextera XT Index primers (N7xx and S5xx) on a 

Veriti Thermal Cycler (Thermo Fisher Scientific).  The secondary amplification protocol 

was followed: initial denaturation at 95°C for 3 min, followed by 8 cycles of 98°C for 20 

s, 55°C for 15 s, and 72°C for 30 s, and a final extension at 72°C for 5 min.  The libraries 

were purified with Agencourt AMPure XP beads and quantified using Qubit dsDNA HS 

Assay Kit on a Qubit 2.0 Fluorometer, normalized, and pulled together.  The final library 

was gel re-purified using the Wizardä SV Gel and PCR Clean-Up System (Promega 

Corporation, Madison, WI).  Paired-end sequencing was performed on a MiSeq 

instrument using the MiSeq Reagent Kit v3 600 cycles (Illumina Inc., San Diego, CA). 

 

E. Sequence Data and Statistical Analysis 

Initial processing and analysis of high-throughput sequencing data was completed 

by using the Mothur bioinformatics software tool (version 1.39.5; Schloss et al., 2009).  

Briefly, a standard MiSeq SOP was followed starting with generating contigs from 

paired-end reads, clean-up steps (including screening, filtering, and chimera removal), 

alignment to the Silva database (1.32), and generation of OTUs for statistical analysis 

(Kozich et al., 2013; corresponding webpage accessed 29 January 2018).  Community 

abundance, alpha diversity, unconstrained ordination, and constrained ordination were all 

calculated and visualized with the R statistical language (version 3.5.1; R Core Team, 

2018).  R packages used included Phyloseq, ggplot2, Vegan, dplyr, Scales, Grid, and 

Reshape2. 
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RESULTS  

 Microbial community composition varied between locations as well as individuals 

(Fig. 6).  Unconstrained non-metric multidimensional scaling was used to visualize 

ordinal distances of community beta-diversity using the Bray-Curtis distance in two-

dimensional Euclidean space with a square root transformation and Wisconsin double-

standardization (Fig. 8, stress of fit = 0.115). 

There were significant differences between microbial community composition 

and trapping location (PERMANOVA: pseudo-F = 2.099, R2 = 0.23068, p = 0.001).  A 

permutation test for homogeneity of groups was also conducted and yielded significant 

results (F = 41.936, number of permutations = 999, p = 0.001) although PERMANOVAs 

are robust to this assumption (Anderson 2017).  A second PERMANOVA was completed 

excluding Goat Island observations as only a single data point was obtained from Goat 

Island.  This was done in an attempt to obtain a more direct comparison between the two 

trapping sites where enough data was available to be able to draw conclusions with more 

certainty. There were significant differences between the microbial communities based 

on location (PERMANOVA: pseudo-F = 3.0108, R2 = 0.17699, p = 0.001).  A second 

permutation test for homogeneity of groups was conducted and did not yield significant 

results (F = 4.9691, number of permutations = 999, p = 0.051), which increases the 

confidence in which we can state that there are differences in microbial communities 

between trapping sites.  

Significant differences in microbial community structure were found between 

trapping sites (Fig. 6).  Overall, Proteobacteria dominated the microbial community 

across all locations, followed by Bacteroidetes in percent composition.  Microbial 
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community composition variation occurred between individuals as well as geographic 

location, so some variability is due to individual age, diet, health, and interaction with the 

external environment.  Phylum Proteobacteria was the most abundant phyla in all 

samples and was present across all sampling locations (averages: Vermillion River = 

60.801%, James River = 52.275%, Goat Island = 43.818%).  Actinobacteria, present in 

all samples, were relatively stable in abundance across samples and locations, yet not 

statistically different between locations (averages: Vermillion River: 4.8303%, James 

River: 5.5328%, Goat Island: 6.3582%).  Phylum Verricomicrobia was only found in the 

Vermillion River and was identified in six samples.  While the abundance of 

Verricomicrobia was low (average = 2.6068%), its exclusivity to presence in samples 

strictly in Vermillion River is intriguing.  

There was no significant difference in microbial community when compared 

across samples from the same trapping site but differed in whether the turtle had urinated 

during sample collection (Fig. 7; ANOVA, Table 2).  All samples were from the James 

River trapping site and were taken from the same day.  Not all phyla of bacteria were 

present in all samples, but the phyla present and their proportions therein were not 

significantly different from one another. 

Water quality variables included water temperature, conductivity, pH, barometric 

pressure, and dissolved oxygen under two scales (Table 4).  All water quality variables 

were all assessed individually against sampling location (Fig. 9) and all were statistically 

significantly different across locations (ANOVA, Table 3).  Only the Vermillion River 

and James River were compared, as Goat Island’s singular data point would merely act as 

an outlier.  Significant differences in water quality are encouraging, suggesting possible 
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explanations for differences in microbial community structure between locations. That 

beings said, other variables need to be taken into consideration as possible causes for 

microbial community diversity including habitat variation, agricultural runoff, individual 

diet, predation, and immune stress. 
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DISCUSSION  

The patterns of community compositions of the cloacal bacterial microbiome in 

the False Map Turtles at each of the trapping sites were unique to one another based on a 

PERMANOVA completed comparing microbial composition and water quality data 

between locations.  Sample data was compared once against collected samples from all 

trapping sites, and then a second time where samples from Goat Island were excluded.  

Comparing samples without Goat Island decreased how robust the PERMANOVA had to 

be, eliminating the need to accommodate a trapping site with n = 1 sample, thereby 

increasing the power of the test and strengthening the conclusion that the microbial 

communities between the James River and Vermillion River differ from one another.  

While microbiomes differ between individuals, to have significant differences in 

community structure when compared to a neighboring population less than 30 miles away 

may lend itself to further explaining the impact of local habitat on microbial fauna within 

aquatic species, particularly in a riverine habitat.  While a similar study had been done 

regarding the Green Turtle (Chelonia mydas) regarding variation in cloacal microbiome 

based on habitat, therefore feeding differences (neritic, ie. herbivorous versus pelagic, ie. 

omnivorous) and had found significant differences between the populations based on this 

factor, this study is the first to examine the impact of geographic location on such a small 

scale and to find significant differences.  While we can state that there are significant 

differences between the James River and Vermillion River in terms of microbial 

communities harbored there, the conclusions drawn regarding Goat Island’s stark 

differences from the other trapping sites are speculatory, due to insufficient data to draw 

powerful conclusions.  There were significant differences in proportions of 
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Patescibacteria (two-sample t test: t-value = 3.0444, df = 14, p-value = 0.02267, Table 6; 

averages: Vermillion River = 2.5562%, James River = 4.4142%, Goat Island = 0%).  

Additionally, some phyla of bacteria were only found in a certain location: 

Verrucomicrobia, for example, was only found in the Vermillion River, but was found in 

six of the 13 samples. Proteobacteria dominated the bacterial communities regardless of 

location (averages: Vermillion River = 60.801%, James River = 52.275%, Goat Island = 

43.818%): the second-most common phyla in terms of proportion, Bacteroidetes, 

comprising less than half of the amount of the present Proteobacteria (averages: 

Vermillion River = 18.7870%, James River = 18.6409%, Goat Island = 25.0822%).  

While Goat Island’s proportion of Bacteroidetes is much higher than the other two 

trapping sites, it only consisted of a singular data point.  For this reason, we can only 

speculate as to the cause of its irregularity in abundance. 

We also found there were no significant differences in community composition 

and structure across urination patterns.  Individuals were sampled from the same location, 

the James River, on the same day.  Besides demographic differences attributable to the 

individual turtles, the only significant difference between the turtles that were sampled 

was that some turtles urinated during the sample collection process and some did not.  

Urination during sample collection has historically been a cause for concern when taking 

cloacal bacterial samples: as the cloaca acts as an end to the urinary tract as well as the 

gastrointestinal tract, there is question as to whether the presence of urine during sample 

collection would in any way contaminate or alter the bacterial community on the sample, 

thus decreasing the efficacy of swab sampling for the cloacal microbiome.  Our findings 

show there was no significant difference between bacterial phyla present and their 
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proportions therein between turtles that did urinate during sample collection and those 

that did not.  Though further laboratory study should be completed confirming this, our 

data suggests that urination during sample collection should not be considered a 

contaminant and should not impact the sample’s ability to represent the individual’s 

cloacal bacterial community. 

This study aimed to examine the potential impact of water quality differences on 

bacterial microbiome composition.  Previous work has found that water quality factors 

are highly impactful to determining community structure and predicting presence of 

specific bacterial phyla.  Water salinity was determined to be the most divisive in terms 

of differences in microbial communities found within (Lozupone and Knight et al. 2006), 

which cannot be used to account for the differences in microbial communities between 

trapping sites as found in this study, as all samples were taken from turtles in a freshwater 

riverine system.  pH and water temperature were also found to have an effect on the 

microbiomes found within these environments (Lozupone and Knight et al. 2006).  

Analysis of water quality data collected at each trapping site revealed significant 

differences in both water temperature and water pH between trapping sites (ANOVA, 

Table 3), thus acting as potential explanations for the significant differences in 

microbiome composition between samples of separate trapping sites. A small geographic 

region such as that in the MNRR lends itself to the idea that all turtles collected from 

different locations are of the same population and that differences in microbial diversity 

is not as simple as water quality data differences.  Water quality characteristics may also 

be impacted by external environmental factors including atmospheric inputs, human 

interaction, or climate conditions (Bricker and Jones 1995).  Factors impacting river 
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water quality may also remain relatively constant throughout the year, including 

wastewater discharge (Singh et al. 2004) or seasonal variations, including interflow, 

groundwater runoff, precipitation, or surface runoff (Vega et al. 2008).  For this reason, 

the potential relationships described here need continued surveillance of water quality 

data to increase confidence in the conclusions being drawn. 

Water quality overall along the MNRR was average when compared to the state 

of South Dakota’s minimum surface water quality standards.  State criterion for water 

conductivity is a daily maximum of 7,000 micromhos/cm (mh/cm, Criteria for fish and 

wildlife propagation, recreation, and stock watering waters); water sampled in the James 

River was measured at 15.8 mh/cm and water sampled in the Vermillion River was 

measured to 19.23-19.37 mh/cm. The significant increase in water conductivity in the 

Vermillion River suggests an increase in dissolved solids in the Vermillion River in 

comparison to the James River. Higher water conductivity denotes a higher proportion of 

solid particles in the water, thus electrical conductance to a higher degree than water with 

lower conductivity.  The Vermillion River is downstream to the James River, so a 

potential cause of increased dissolved solids includes an accumulation of riverine 

material in the span of the river between the two confluences. River discharge speed may 

also impact dissolved solid concentration: faster flowing water would dilute dissolved 

solids further than a more stagnant river (Shrestha and Kazama 2007).  pH at both 

locations also fell within water quality standards as administered by the state: the state 

criterion for water pH is between 6.0-9.5.  Water sampled from the James River had a pH 

of 8.19 and water sampled from the Vermillion River had a pH range of 8.48-8.51.  

Dissolved oxygen minimums for warmwater permanent fish life is set by the state of 
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South Dakota at greater than 5 mg/L (Criteria for warmwater permanent fish life 

propagation waters), which both the Vermillion and James rivers surpass handily. Water 

from the James River had dissolved oxygen measuring 70.7 mg/L and water from the 

Vermillion River had dissolved oxygen ranging from 188.7-218.2 mg/L. The observed 

pH values are within the upper portion of the acceptable range and dissolved oxygen is 

well above minimums necessary for warmwater fish propagation, which contradicts the 

idea of high levels of organic dissolved solids in the water. Organic solids reduce oxygen 

in the river and, when the solids are hydrolyzed, reduce the pH of the water to create a 

more acidic environment (Shrestha and Kazama 2007).  If the Vermillion River, which 

had a higher conductivity than the James River, also had lower dissolved oxygen levels 

and a lower pH, further conclusions may be drawn regarding organic solids in the water 

and their effect. However, this is not the case, as the Vermillion River has a higher pH 

and higher dissolved oxygen levels than the James River despite a greater conductivity.  

Characterization on whole of the False Map Turtle cloacal bacterial microbiome 

exhibited present phyla that would be expected of an aquatic reptile.  Phylum 

Proteobacteria was the most abundant phyla of bacteria across all samples, a pattern that 

is in agreement with studies done on other aquatic reptiles including the Green Turtle 

(Chelonia mydas, Price et al. 2017), the Loggerhead Sea Turtle (Carretta carretta 

Loggerhead, Abdelrhman et al. 2016), and the American alligator (Alligator 

mississippiensis, Keenan et al. 2013).  Phylum Bacteroidetes was also identified in all 

samples collected, again coinciding with results found in the Green Turtle and 

Loggerhead Sea Turtle.  Interestingly, phylum Firmicutes were only identified in four 

samples out of 20 across two of the three sampling locations, despite being a well-known 
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and abundant member of reptilian fauna (Abdelrhman et al. 2016, Keenan et al. 2013, 

Costello et al. 2010) and human gut microbiome (Ley et al. 2008).  Many other phyla 

were found in community composition analysis in very low abundance, but were found 

across all trapping sites, including Actinobacteria, Chloroflexi, and Deinococcus-

Thermus.  These phyla, as well as those found in higher abundances including 

Proteobacteria, Bacteroidetes, Firmicutes, and Verrucomicrobia, were in part to be 

expected to be members of the microbial communities within our samples.  These 

comprise some key phyla commonly found in microbial community samples from natural 

habitats (Costello and Schmidt 2006, Fierer et al. 2007, Bergmann et al. 2011, and 

Santhanam et al. 2017); as maintaining animals in captivity has been shown in multiple 

species to cause differences in microbiome composition when compared to samples from 

their wild-caught counterpart (Kohl et al. 2014, Loudon et al. 2014, Madison et al. 2018). 

 High abundance of phylum Proteobacteria across all samples is partially expected, 

as Proteobacteria dominate intestinal and cloacal microbiomes of previously-studied 

species (Keenan et al. 2013, Abdelrhman et al. 2016, Price et al. 2017) as well as within 

environmental microbial communities (Costello and Schmidt 2006, Fierer et al. 2007, 

Tian et al. 2009).  Its high abundances in reptilian microbiomes is intriguing, as 

Proteobacteria as a phylum includes many pathogenic genera, including Escherichia, 

Helicobacter, Salmonella, Vibrio, and Yersinia. High abundances in G. 

pseudogeographica are not as concerning on a pathogenic level due to the similarity in 

relative abundance of Proteobacteria in other reptiles. Phyla Proteobacteria also contains 

many legume-symbiotic nitrogen-fixing species (Chen et al. 2003); agricultural farms in 

the regions surrounding our riverine trapping sites may give some rationale into the 
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consistently dominant relative abundance of Proteobacteria in G. pseudogeographica 

microbial communities within the region. 

Phylum Bacteroidetes is a common and prominent member of reptilian intestinal 

microbial communities as well as in human populations in the Western hemisphere (Qin 

et al. 2010, Human Microbiome Project Consortium 2012). In mammals, members of 

Bacteroidetes are associated with digestion of polysaccharides, providing the intestine 

with absorbable short-chain fatty acids, aiding in energy metabolism and has been related 

to obesity in mammals (Ley et al. 2005). Bacteroidetes are found in varying 

environments, including intestinal, epidermal, marine, or soil habitats (Johnson et al. 

2017) and on whole as a phyla function in breakdown of polysaccharides (Backhed et al. 

2005). Genes within Bacteroidetes are largely unaffected by genetic transfer from the 

host, leaving internal environmental conditions to regulate abundances within a 

community (Davenport et al. 2015, Goodrich et al. 2016). Despite environmental factors 

impacting abundances, in G. pseudogeographica, we cannot confirm that water quality is 

the exclusive cause for the variations of abundances of Bacteroidetes in communities of 

different trapping sites, in part due to a lack of significant differences in abundances as 

well as other environmental factors that impact bacterial community composition. 

Bacteria in phylum Firmicute are largely associated with energy storage in animal 

gut microbiomes and for this reason, the ratio of Bacteroidetes, associated with energy 

metabolism, and Firmicutes is the subject of much study in humans in relation to obesity 

(Mariat et al. 2009). The phyla includes notable bacterial taxa such as Clostridia and 

Bacilli. Clostridia has been noted to have cellulolytic function within the gut bacterial 

microbiome (Zhu et al. 2011) and species within both genera of Clostridia and Bacilli are 
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associated with fermentation (Pryor 2008, Endo et al. 2010). While Firmicutes are 

commonplace in reptilian microfauna, the diminished representation of the phyla among 

samples may be caused by a multitude of factors, including the detritivore diet of the 

False Map Turtle or overall resource availability.  A potential direction of research is a 

comparison of Firmicute abundances throughout different seasons of the year, to 

investigate whether the less-active winter months would stimulate a higher abundance of 

the energy storage-related phyla. 

Verrucomicrobia, the phyla of bacteria only found in the Vermillion River, is of 

particular interest.  The facultative or obligate anaerobic phylum (Chin et al. 2001) is 

typically found in soils yet is very difficult to cultivate in a lab, leading to its 

underrepresentation in public databases (Bergmann et al. 2011).  While the specific cause 

for Verrucombicrobia’s presence exclusively in the Vermillion River is unknown, there is 

a significant increase in water conductivity in the Vermillion River when compared to the 

James River (averages: Vermillion River = 1926.69 S/m, James River = 1580 S/m; 

Tables 3 and 4).  For this reason, a possible speculation for the presence of 

Verrucomicrobia in the Vermillion River is a heightened presence of soil in the water as 

indicated by a higher water conductivity than the James River, which may seed 

Verrucomicrobia in the environmental microbial community. 

 We have therefore shown that geographic location and water quality factors may 

have an impact on the cloacal microbiome composition of wild-caught G. 

pseudogeographica and that urination during cloacal sampling does not have a significant 

impact on cloacal microbiome composition, therefore increasing the efficacy of cloacal 

swabbing for microbiome sampling.  The exact methods that water quality factors impact 
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microbiome composition remain unclear, but showing an association between the two 

variables acts as a first step for further study into this relationship.  Other environmental 

impacts that would affect community composition include individual diet, available 

habitat resources, agricultural runoff, and comorbid infections.  In addition, further 

controlled study of the impact of urination during sampling on the efficacy of microbial 

community sampling is required to be sufficiently confident of the relationship between 

urination and sample effectiveness. This study is also one of the first of its kind to 

characterize the cloacal bacterial microbiome of G. pseudogeographica, adding to bodies 

of knowledge regarding the species, reptiles, and aquatic vertebrates.  Data presented 

therein could be used for comparative analyses of vertebral cloacal microbiomes.  We 

suggest that further study should be done into the impact that specific water quality 

factors have on microbial community composition on wild-caught turtles, taking into 

consideration the differences noted in community structure between captive and wild 

turtles as noted previously.  As we learn more about the impact the microbiome has on 

the health of organisms and the habitats and ecosystems they are a part of, research 

concerning the microbiome and both its effects and what it is impacted by, is of critical 

importance for the conservation of endangered species such as G. pseudogeographica 

and the health of ecosystems across the biosphere.    
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FIG. 5: Locations where False Map Turtles (Graptemys pseudogeographica) were  
sampled for Ranavirus along the lower Missouri River between South Dakota and 
Nebraska, USA. Sampling localities correspond to site numbers in Table 1. 
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FIG. 6: Gut microbiome composition shown with each bar representing one sample. Samples  
are separated into trapping location – including Goat Island (“Goat”), James River 
(“JimRiver”), and Vermillion River (“Vermillion”). Each color is representative of a 
corresponding phyla (or in the case of “Bacteria_unclassified”, unidentified members 
of the Bacteria). Bars do not fully reach 1.00 as low representation groups (<2% of 
total abundance) were excluded from the analysis for ease of interpretation. 
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FIG.7: Gut microbiome composition shown with each bar representing one sample.  
Samples are all from the James River and are separated into urination status –  
whether the turtle urinated while the cloacal sample was being taken (“Yes” or 
“No”). Each color is representative of a corresponding phyla (or in the case of 
“Bacteria_unclassified”, unidentified members of the Bacteria). Bars do not fully 
reach 1.00 as low representation groups (<2% of total abundance) were excluded 
from the analysis for ease of interpretation. 
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FIG. 8: Non-metric multidimensional scaling (NMDS) calculated with the Bray-Curtis  
distance metric using a square root transformation and Wisconsin double-
standardization. Location is represented by color. Stress of fit for the ordination is 
reported at 0.115. Axis titles represent the two dimensions to which the data have 
been ordinated. 
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TABLE 2: Two-sample T-tests investigating the effects of urination during sampling on  
relative prevalence of specific phyla of bacteria. All samples are from the James  
River. Significance: p = 0.05 

 
Phyla t-value df p-value 
Actinobacteria 0.49899 4 0.644 
Bacteroidetes -0.47853 4 0.6573 
Chloroflexi -0.17339 4 0.8708 
Deinococcus -0.60297 4 0.579 
Firmicutes 1.984 4 0.1183 
Fusobacteria -1 4 0.3739 
Patescibacteria -2.0255 4 0.1128 
Proteobacteria 0.56155 4 0.6044 
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TABLE 3: Analysis of Variance table investigating the effects of different trapping  
locations (two trapping sites, Vermillion River and James River) on various water 
quality factors.  

 

 
 
  

Water Quality 
Factor 

Sums Sq Df F-value p-value R² 

Temperature 128.39 1 157.4 5.09E-10 0.9025057 
pH 0.3619 1 2962 2.00E-16 0.9942943 
Conductivity 493434 1 18776 2.00E-16 0.9990954 
Barometric 
Pressure 

133.4 1 1.46E+27 2.00E-16 1 

Dissolved O₂ 67811 1 591.5 1.20E-14 0.972064 
Dissolved O₂ 
(mg/c) 

477.9 1 978.2 2.00E-16 0.9829188 



TABLE 4: Water quality factors associated with each turtle sample from all three trapping sites.  
Water quality samples were taken on a YSI meter. 

 

Sample 
ID 

Date Location Temp, 
°C 

pH Conductivity, 
S/m 

Barometric, 
psi 

Dissolved 
O2, mg/L 

Dissolved 
O2, mg/c 

Sex Carapace 
Length. 
mm 

Urination 

6000 7/18/17 James River 29.4 8.19 1580 731.2 70.7 5.37 F 189 Yes 

6001 7/18/17 James River 29.4 8.19 1580 731.2 70.7 5.37 M 128 No 

6002 7/18/17 James River 29.4 8.19 1580 731.2 70.7 5.37 F 166 Yes 

6004 7/18/17 James River 29.8 8.19 1580 731.2 70.7 5.37 F 187 Yes 

6005 7/18/17 James River 29.8 8.19 1580 731.2 70.7 5.37 M 146 No 

495 7/18/17 James River 29.8 8.19 1580 731.2 70.7 5.37 F 190 No 

6033 7/27/17 Goat Island 26 
     

M 121 No 

5032 6/30/17 Vermillion 
River 

24.1 8.48 1923 725.5 188.7 75.82 M 134 No 

6400 6/30/17 Vermillion 
River 

25.4 8.48 1937 725.5 218.2 17.72 M 142 No 

6700 6/30/17 Vermillion 
River 

22.4 8.51 1921 725.5 204.8 16.95 M 124 No 

5027 6/30/17 Vermillion 
River 

24.1 8.48 1923 725.5 188.7 15.82 M 133 No 

5031 6/30/17 Vermillion 
River 

24.1 8.48 1923 725.5 188.7 15.82 M 134 No 

5015 6/30/17 Vermillion 
River 

25.4 8.48 1937 725.5 218.2 17.72 F 206 No 

5017 6/30/17 Vermillion 
River 

25.4 8.48 1937 725.5 218.2 17.72 F 219 No 

1224 6/30/17 Vermillion 
River 

22.4 8.51 1927 725.5 204.8 16.95 F 232 No 

5020 6/30/17 Vermillion 
River 

22.4 8.51 1927 725.5 204.8 16.95 F 192 No 

7702 6/30/17 Vermillion 
River 

24.1 8.48 1923 725.5 188.7 15.82 F 227 No 

5025 6/30/17 Vermillion 
River 

24.1 8.48 1923 725.5 188.7 15.82 F 217 No 

5026 6/30/17 Vermillion 
River 

24.1 8.48 1923 725.5 188.7 15.82 F 240 No 

5029 6/30/17 Vermillion 
River 

24.1 8.48 1923 725.5 188.7 15.82 F 223 No 



 
TABLE 5: Two-sample T-tests investigating the effects of trapping site location (James  

River and Vermillion River) on relative prevalence of specific phyla of bacteria.  
Phyla without tests did not have a large enough sample size for adequate analysis  
(cutoff: n = 3). Significance: p = 0.05 

 

 
 
  

Phyla t-value df p-value 
Actinobacteria 0.74015 14 0.4714 
Bacteroidetes -0.055998 14 0.9561 
Chloroflexi -0.56391 11 0.5841 
Deinococcus 2.2928 7 0.05558 
Patescibacteria 3.0444 6 0.02267 
Proteobacteria -2.1098 14 0.05335 
Firmicutes NA NA NA 
Fusobacteria NA NA NA 
Verrucomicrobia NA NA NA 
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