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ABSTRACT 

 

An Integrative and Comparative Analysis of Transcriptome and Targetome Data of 

Medulloblastoma  

 

Blaine Nelson 

 

Director: Dan Van Peursem, Ph.D. 

 

 

Medulloblastoma (MB) arises in the cerebellum and is the most common brain 

tumor seen in the field of pediatrics. Primary and recurrent MBs are often found to 

contain deregulated Atonal Homolog 1 (ATOH1) expression among SHH/PTCH signals. 

Therefore, mice models were generated for research by inducing expression of the Atoh1 

transgene in the cerebellum of Ptch1+/- mice. The overexpression of the Atoh1 transgene 

in the animals transform the non-metastatic brain tumor to a metastatic tumor that 

disseminates to the spinal cord and other parts of the brain. In order to understand the 

molecular and cellular events involved in the cascade of metastatic MB, statistical 

analysis of the transcriptome and targetome were applied. RNA-Sequencing was run first 

to generate a common list of shared differentially expressed genes and then followed by 

the addition of chromatin immunoprecipitation sequencing. From the data obtained, 

pathway analysis was applied. The data from the mice were then subject to comparison to 

a cohort of human data on MB to further investigate the similarities and differences in the 

biological causes for the formation of the disease. 

 

 Das Medulloblastom entstammt im Kleinhirn und ist der häufigste pädiatrische 

Gehirntumor. Es wird häufig festgestellt, dass primäre und rezidivierende 

Medulloblastome deregulierte atonale Homolog 1 (ATOH1)-Expression unter SHH-

PTCH-Signalen enthalten. Darum wurden Mäusemodelle in der Forschung erstellt, indem 

die Expression des Atoh1-Transgens im Kleinhirn von Ptch1+/ - Mäusen induziert wurde. 

Die Überexpression dieses Transgens in den Tieren wandelt den gutartigen Gehirntumor 

in einen metastatischen Tumor um, der sich auf das Rückenmark und andere Teile des 

Gehirns verbreitet. Um die molekularen und zellulären Ereignisse nachzuvollziehen, die 

an der Kaskade metastatisches Medulloblastoms beteiligt sind, wurden statistische 

Analysen des Transkriptoms und des Targetoms durchgeführt. Die RNA-Sequenzierung 

wurde zuerst durchgeführt, um eine gemeinsame Liste von differentiell exprimierten  

Genen zu erstellen, gefolgt von dem Zusatz der Chromatin-

Immunopräzipitationssequenzierung. Von den erhaltenen Daten wurde eine Weganalyse 

durchgeführt. Die Daten der Mäuse wurden dann einem Vergleich mit einer Kohorte 

menschlicher Daten zum MB unterzogen, um die Ähnlichkeiten und Unterschiede in den 

biologischen Ursachen für die Entstehung der Krankheit weiter zu untersuchen. 

 

KEYWORDS: Medulloblastoma, RNA-Sequencing, genetics, immunoprecipitation
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I. Introduction 

Medulloblastoma (MB) constitutes nearly 20% of all childhood brain tumors making it 

the most common pediatric brain malignancy. MB stems from the posterior fossa, a region of 

the brain located at the base of the skull, or more specifically within the cerebellum, which is the 

part of the posterior fossa controlling coordination and balance (St. Jude, 2019). The malignant 

tumor disseminates through the cerebrospinal fluid (CSF) to the area of the meninges and 

subarachnoid space sheathing the brain and spinal cord termed the leptomeninges. 

Leptomeningeal metastases, which are often discovered at the time of diagnosis or during 

recurrence, are associated with a poor clinical prognosis. In order to treat the tumor, an 

aggressive treatment plan including the use of surgery, craniospinal radiation, chemotherapy, or 

a combination of the aforementioned is used to resect or destroy the malignancy; however, in 

spite of the aggressive treatments, improvement in the survival of patients with the metastatic 
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disease has progressed slowly, which may be due to the expanse and intricacy of the condition. 

This cancerous tumor is further categorized into one of four molecular subgroups, each of which 

are based on different types of gene mutations and are distinguished from one another by their 

aberrations, transcriptional profiles, and clinical outcomes. These subgroups that compose the 

entirety of medulloblastoma include: wingless (WNT), Sonic Hedgehog (SHH), Group 3, and 

Group 4; however, little is known about the last two groups. While each subgroup of 

medulloblastoma is distinct from one another, the extent of the effects on the cellular 

mechanisms resulting in medulloblastoma formation is not clear. It is important to explore the 

molecular and cellular events involved in the ATOH1-driven cascade of metastatic MB so that 

potential therapeutics may be safer and more effective, assuring that there will be no 

detrimental effects on the developing brain.   

 

II. Methods 

II.1 Overview 

A previous study performed by Sanford Research has shown that Atonal homolog 1 

(ATOH1) not only plays a vital role in normal development of the cerebellum, but also plays a 

critical role for murine models in the initiation and progression of MB in the SHH subgroup. The 

research demonstrated an acceleration of MB development in mice with the protein patched 

homolog 1 gene (Ptch1+/-) when Atoh1 expression was induced, transforming the benign tumors 

into highly metastatic tumors. Further research for the transgenic overexpression of Atoh1 in 

different mice strains has been conducted by Sanford Research to understand the role of Atoh1 

in leptomeningeal dissemination and metastasis.  

Dr. Haotian Zhao, a former researcher in the Sanford Health’s Research Center at 

Sanford Research now located at the New York Institute of Technology, provided the gene 
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expression profiles with a set of 22,557 genes for statistical analysis of the mice models. There 

were three strains of mice taken into account for this project in order to investigate the 

molecular cascade of MB. These strains include medulloblastomas from transgenic mice with an 

overexpression of Atoh1 and Ptch1+/- and thus present with a metastatic tumor (these mice are 

designated with a T), mice with overexpressed Ptch1+/- only (these mice are designated with a P), 

and the control group, or wild-type mice (designated with a C). Each strain of mice had three 

replicates, ensuring validity and accounting for error that may have arisen during a trial. 

In this study, functional genomic statistical analyses of RNA-Sequencing (RNA-Seq) and 

chromatin immunoprecipitation sequencing (ChIP-Seq) data from the obtained gene expressions 

values from Sanford were run and applied to uncover differentially expressed genes (DEGs) of 

the MB SHH subgroup in the mice models. By doing such procedures, we are able to unveil the 

cellular and molecular mechanisms involved in MB formation. RNA-Seq is biomedically relevant 

as this sequencing is used to interpret the function of the genome as well as to understand how 

the disease develops at the level of gene expression, otherwise known as the transcriptome. 

Meanwhile, ChIP-Seq was applied to reveal the DNA binding sites of the transcription factors 

and ultimately the gene regulation events. ChIP-Seq allowed us to assess the targetome, or all 

the microRNA targets of an organism. The results of the targetome and transcriptome were 

compared and integrated, and enriched pathways were detected and analyzed using Ingenuity 

Pathway Analysis (QIAGEN®, 2017).  

We applied multiple RNA-Seq statistical analysis tools using R to identify the significant 

DEGs from the data. The tools used include baySeq (Hardcastle et al, 2010), Cuffdiff (Trapnell, 

2017), DESeq (Anders et al, 2010), edgeR (McCarthy et al, 2012), limma (Ritchie et al, 2015), and 

PoissonSeq (Li, 2011). 
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II.2 baySeq 

 The Bioconductor package baySeq uses empirical Bayesian methods to identify 

differential expression in high-throughput data. This package is able to find the identification for 

differential expression by calculating estimated differential expression posterior likelihoods 

(Hardcastle, 2009). This method assumes a negative binomial distribution and estimates priors. 

BaySeq begins by defining the set of data in terms of similarities and differences between the 

samples and their replicates. For a given set of data, baySeq then seeks to analyze which 

samples behave similar to one another and which sets of samples behave identifiably different. 

Because baySeq uses numerical methods with an empirical Bayesian approach, this allowed the 

real data to be retained and the library size to be used as a scaling factor. The library size can be 

defined as the total number of mapped reads during a run of data (Hardcastle et al, 2010). As a 

package, baySeq is not intended for use with normalized data; therefore, raw count data were 

used as the input. The samples were then paired up with one another [ex: the control group 

with the overexpressed Ptch1+/- group (CP), the control group with the mice who have the 

metastatic tumor (CT), and the overexpressed Ptch1+/- group with the mice who have the 

metastatic tumor (TP)] in order to investigate the differences and similarities between gene 

expression. Each replicate of the same sample [ex: C1, C2, C3] share the same set of underlying 

parameters, but the sets of parameters between two different samples are not identical, 

allowing for pairwise comparison. 

 

II.3 Cuffdiff 

Not only does Cuffdiff find differently expressed genes and transcripts through 

substantial changes in the expression of the transcript, splicing, and promoter use, but the 

program also finds genes being differentially regulated at the level of transcription. The program 
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identifies genes that are differentially regulated at the transcriptional level by grouping 

transcripts into groups of biological meaning. In order to find which genes or transcripts are 

differentially expressed, Cuffdiff tests the expression of an observed log-fold change against that 

of the null hypothesis with no change; however, Cuffdiff must also measure the significance of 

comparison because an observed change that is nonzero may occur on the behalf of variability 

within both technical and cross-replicate biological aspects though the gene or transcript is not 

actually differentially expressed (Trapnell, 2014). This package takes SAM files that contain data 

from two or more samples as the input. By accepting and analyzing the data from two or more 

biological conditions, Cuffdiff aids in the exploration of transcriptional regulation under differing 

conditions (Ghosch et al, 2016).  

 

II.4 DESeq 

DESeq is another Bioconductor package. This package is able to estimate variance-mean 

dependence using raw count data from high-throughput sequencing assays. Like baySeq, DESeq 

also uses a negative binomial distribution to test for differential expressions (Anders et al, 2010); 

however, while DESeq does make the assumption of negative binomial distribution, the package 

also adds an assumption that there is a local linear relationship between the mean expression 

levels and an over-dispersion of the data (Hardcastle et al, 2010). With DESeq, digital gene 

expression analysis is performed on raw read counts, not transformed or normalized data for 

sequencing depth. If anything other than raw read counts is used, nonsensical results may 

occur; therefore, raw count data were used as the input. Comparisons between the different 

conditions were run using the respective codes and then analyzed. 
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II.5 edgeR 

 Another tool that was utilized in this project to discover DEGs was edgeR, which is 

described as an empirical analysis of DGE in R. This program was designed for analyzing 

expression data of replicated counts. EdgeR is able to find changes between two or more groups 

by implementing a large quantity of statistical methodologies as long as one of the groups has a 

phenotypical or experimental condition that has been replicated (Robinson et al, 2010). These 

methodologies are based on a negative binomial distribution and include but are not limited to 

an empirical Bayes estimation, exact tests, generalized linear models, and quasi-likelihood tests. 

The quasi-likelihood tests account for the uncertainty in the dispersion estimation and thus, give 

this package a stronger and firmer control on error rates (Chen et al, 2019). Currently, pairwise 

comparisons are supported by edgeR to test for differential expression. We therefore had to 

specify which two groups we were going to compare at a time, though the end result was still a 

comparison between CP, CT, and TP. When keyed into the statistical tool, rows of the data 

corresponded to genes, while the columns corresponded to the independent libraries, or the 

replicates. Just like the other packages, raw read counts were used as the original input.  

 

II.6 limma 

As a Bioconductor software tool, limma analyzes data from a variety of platforms. These 

include experiments that involve microarrays, protein arrays, and high-throughput polymerase 

chain reaction (PCR). Rather than breaking the treatments down individually and then making 

piece by piece comparisons between pairs of samples, limma analyzes experiments on an 

integrated whole level using linear models (Ritchie et al, 2015). This approach is useful as the 

technique provides us the ability to model correlations that may exist between samples with 

differences in their transcriptome. Limma also has the unique ability to incorporate quantitative 
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weights into all its levels of analysis. Power to detect differently expressed genes is increased 

with the usage of weights. RNA-seq read counts are able to be analyzed through limma with 

high precision. This works through the function voom, which converts the read counts that have 

been processed to the log-scale, thus estimating the mean-variance relationship in an empirical 

fashion (Ritchie et al, 2015). Because this software package accepts RNA-seq data in the form of 

a matrix and thus operates on a matrix of expression values, data was input with the rows 

accounting for the genomic features, otherwise known as genes, and the columns 

corresponding to RNA samples. However, if any problems arise with how data is plugged in, it is 

possible for limma to accept results, specifically the DGE list, from edgeR so that the analysis 

may be properly run. 

 

II.7 PoissonSeq 

PoissonSeq is an R package for RNA-sequencing data, implementing statistical methods 

like normalization, estimation of false discovery rate, and testing to recall a list of significant 

genes as well as a list for the possibility of a false discovery. Like the binomial distribution, the 

Poisson distribution is discrete; however, the distribution only has a single parameter, which is 

composed of both the mean and the variance. The Poisson distribution gives a good 

approximation to binomial distribution when the sample size, n, is larger (Larget, 2005). In 

general, the usage of PoissonSeq can be quite useful in data analysis as it can be used not only 

for data with two types of outcomes, but also for data with multiple-class outcomes. Doing so 

provides a more complete sense of comparison. PoissonSeq uses the Poisson goodness-of-fit 

test to estimate sequence depth (Li, 2011). Sequencing depth, which not only characterizes the 

importance of inference data founded on sequencing data but also serves as a scaling factor 

between experiments, may be estimated through the implementation of PoissonSeq. 
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II.8 Statistical Analysis of the Differential Expressed Genes 

Each RNA-Seq statistical tool resulted in their own respectable selective number of 

DEGs. The lists of DEGs from each software were then integrated into new data sets that were 

then analyzed with R to compute the q-values. Originally, p-values were obtained for 

comparison; however, because each software package contain different normalization factors 

that need to be taken into consideration, the p-values were converted to q-values to justly 

compare.  

Often in statistical analysis, there will be the possibility of obtaining a false positive due 

of chance. The false discovery rate (FDR) refers to a proportion of false positives that are 

expected among the hypotheses of significance, or the likelihood of a gene to be deemed falsely 

positive among the entire pool of significant genes (Nonlinear Dynamics, n.d). Q-values use an 

FDR method to adjust p-values, resulting in fewer false positives. For example, a q-value of 0.01 

suggests that 1% of significant tests will actually result in a false positive. Therefore, q-values 

were used because fewer false positives result with q-values. 

The goal of differential analysis is to figure out what could be involved in the biological 

process of interest by finding compounds and molecular events that show a great quality of 

difference between experimental groups. Therefore, a q-value of 0.05 was used as the cut-off. 

Later, a cut-off q-value of 0.01 was used in order to be more selective. 

 

II.9 Visualization and Ingenuity Pathway Analysis 

 Once the q-values were set, the lists of DEGs used for the comparison were finalized. 

The identified DEGS from each analytical tool were then subject to comparison using 

InteractiVenn (Heberle et al, 2015). Comparisons were made between overexpressed Atoh1 
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induced mice and the control, the expression of Ptch1+/- mice and the control, as well as the two 

groups of mice with the tumors (Atoh1 vs. Ptch1+/-). Using this program results in the number 

and the identity of DEGs shared between each RNA-Seq tool and between different conditions, 

thus narrowing in on what genes, or as equally important, what pathways may be affected in 

the grand scheme of metastatic tumor formation of medulloblastoma with the overexpression 

of Atoh1 or Ptch1+/-. 

In order to analyze, integrate, and interpret the omics data, Ingenuity Pathway Analysis 

(IPA) was applied (QIAGEN®, 2017). Using IPA allowed us to return gene pathways that were 

significantly enriched within each group of DEGs. IPA, through powerful analysis, identifies 

targets or biomarkers of biological systems and reveals the significance of the data. The program 

is able to do so through algorithms that discover mechanisms, functions, and pathways that are 

relevant to those changes being observed in an analyzed dataset. IPA also makes use of 

BioProfiler, a component identifying potential therapeutic targets by surfacing molecules 

relevant to the disease of interest or the phenotype of interest (QIAGEN®, 2017). The IPA 

analysis provides a greater interpretation of the impact DEGs have on phenotypic effects. 

 

II.10 Comparative Analysis of Metastatic Medulloblastoma between Mus musculus 

and Homo sapiens 

Comparative genomics allows researchers to compare the genomic features of different 

organisms to one another. In this project, comparative analysis was performed between tumor 

samples obtained from humans and mice as a way to explore the potential affected genes that 

may be similar or different among the different subgroups. A large cohort of primary 

medulloblastoma samples that was uploaded to the National Center for Biotechnology 

Information (NCBI) website by The Hospital for Sick Children in Toronto, Canada was obtained 
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from NCBI under Accession number GSE85212 for a comparative genomic analysis (Cavalli et al, 

2017). Comparative genomics allowed us to study the biological similarities and differences 

between humans and mice and can be used as a way to understand the underlying causes of 

disease formation. This cohort dataset consists of a total of 763 samples comprised of the four 

distinct subgroups of medulloblastoma: WNT, SHH, Group 3, and Group 4. The samples were 

divided into their respective subtypes and an ANOVA test was used to identify the significant 

differentially expressed genes. After the DEGs of each subgroup were returned, the genes were 

integrated for comparison to study the degree of overlap between the tumor subgroups and 

later the overlap between mice and humans. 

 

III. Results 

III.1 Comparisons of DEGs returned by the statistical tools 

Statistical analysis is important to understanding how phenotypes are affected by 

molecular and cellular mechanisms as the analysis is able to detect DEGs between different 

conditions. As mentioned in section II, six methods of statistical methods for RNA-Seq data were 

applied, each resulting in their respectable amount of DEGs identified. The DEGs from each 

package were then placed into the InteractiVenn program to be compared to one another on 

the basis of their experimental conditions (Heberle, 2015). 

We have created Venn diagrams representing the shared DEGs between the transgenic 

Atoh1 model and the control (Figure 1, Figure 4), between the Ptch1+/- model and the control 

(Figure 2, Figure 5), and between the transgenic Atoh1 model and the Ptch1+/- model (Figure 3, 

Figure 6). As we have previously known, there are similarities and differences between the two 

tumor groups and the control group. Observing the Venn diagrams confirms our thoughts even 

more as they show a great number of DEGs were identified between the Atoh1 model and the 
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control, the Ptch1+/- model and the control, but relatively few DEGs between the Ptch1+/- model 

and the Atoh1 model. This information suggests that metastatic tumors and primary tumors are 

similar to each other for they retain similar gene expression profiles 

Originally, DEGS were identified using a q-value of less than 0.05; however, the value 

was decreased to a cut-off of 0.01 in order to be more precise. 

 
Figure 1: Venn diagram presenting the comparison of DEGs between transgenic mice models 
Atoh1 and wild-type mice. DEGs were obtained from the previously mentioned six RNA-Seq 
statistical analysis tools. Results are from those DEGs with a q-value<0.05.  
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Figure 2: Venn diagram showing the comparison of DEGs between transgenic mice models 
Ptch1+/- and wild-type mice. DEGs were obtained from the previously mentioned six RNA-Seq 
statistical analysis tools. Results are from those DEGs with a q-value<0.05.  

 
Figure 3: Venn diagram displaying the comparison of DEGs between transgenic mice models 
Atoh1 and Ptch1+/-. DEGs were obtained from the previously mentioned six RNA-Seq statistical 
analysis tools. Results are from those DEGs with a q-value<0.05.  
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Figure 4: Venn diagram presenting the comparison of DEGs between transgenic mice models 
Atoh1 and wild-type mice. DEGs were obtained from the previously mentioned six RNA-Seq 
statistical analysis tools. Results are from those DEGs with a q-value<0.01. 
 
 

 
Figure 5: Venn diagram showing the comparison of DEGs between transgenic mice models 
Ptch1+/- and wild-type mice. DEGs were obtained from the previously mentioned six RNA-Seq 
statistical analysis tools. Results are from those DEGs with a q-value<0.01. 
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Figure 6: Venn diagram displaying the comparison of DEGs between transgenic mice models 
Atoh1 and Ptch1+/-. DEGs were obtained from the previously mentioned six RNA-Seq statistical 
analysis tools. Results are from those DEGs with a q-value<0.01. 

   

III.2 Implementation of ChIP-Seq and the comparison of DEGs between the 

transcriptome and targetome 

For this study, we desired not only to understand how the transcriptome is affected in 

MB, but also how the tumor affects the targetome. Therefore, ChIP-Seq was applied. ChIP-Seq 

captures DNA targets for transcription factors across the entire genome of any organism and 

reveals gene regulatory networks with RNA sequencing (Illumina, 2015). After ChIP-Seq was run 

and significant genes were found, the observed data were placed into a comparison with the 

data from the transcriptome, originating from the RNA-Seq analyses previously conducted, in 

order to better understand the cascade of the cancer.  

Primarily, the data obtained for ChIP-Seq were organized by ATOH1 targets in the 

metastatic tumor and the ATOH1 targets in the primary tumor and thus, were compared to one 

another to get a general sense of what ChIP-Seq originally discovered (Figure 7). Through this 
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comparison, we found 1446 DEGs were shared between the two tumors. ChIP-Seq data, as 

mentioned above, was then incorporated into the comparison from the DEGs of RNA-Seq. In 

order to carry out this procedure, two of the RNA-Seq packages were dropped using the false 

discovery rate calculated by the number of unique genes of the package divided by the total 

number of genes, or 
𝑈

𝑇
. By calculating the FDR of each package using that expression, limma and 

Cuffdiff were exempted from the analysis with the ChIP-Seq as they provided the highest 

number of false positives. When ChIP-Seq data was added, it resulted similarly to the outcomes 

from the transcriptome analysis. Many genes were significant between the metastatic tumor 

and the control (Figure 9), the primary tumor and the control (Figure 8), while few genes were 

found between the two tumors (Figures 10-12).  

 
Figure 7: Venn diagram displaying the comparison between two sets of ATOH1 associated genes 
in the metastatic tumor group and the primary tumor group of medulloblastoma. The genes 
used were the results from ChIP-Seq. 
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Figure 8: Venn diagram showing the comparison of DEGs from RNA-Seq (involved with the 
transcriptome) and of ChIP-Seq (involved with the targetome) between mice models Ptch1+/- 
and the control.  

 
Figure 9: Venn diagram presenting the comparison of DEGs from RNA-Seq (involved with the 
transcriptome) and of ChIP-Seq (involved with the targetome) between transgenic mice models 
Atoh1 and the control.  
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Figure 10: Venn diagram showing the comparison of DEGs from RNA-Seq (involved with the 
transcriptome) and of ChIP-Seq (involved with the targetome) between transgenic mice models 
Atoh1 and Ptch1+/-. The ChIP-Seq data used was that of the primary tumor. 

 
Figure 11: Venn diagram showing the comparison of DEGs from RNA-Seq (involved with the 
transcriptome) and of ChIP-Seq (involved with the targetome) between transgenic mice models 
Atoh1 and Ptch1+/-. The ChIP-Seq data used was that of the metastatic tumor. 
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Figure 12: Venn diagram displaying shared DEGs from the Transcriptome and Targetome from 
both the primary tumor and the metastatic tumor among different tools. 
 

III.3 Comparison of Transcriptome and Targetome between the metastatic tumor and 

the primary tumor with Pathway Analysis 

To understand the genetic effects medulloblastoma has, it is critical to run an analysis 

between the tumors using both transcriptome and targetome data. Doing so provides a general 

overview of the genes commonly affected as well as the function of such genes as pathways 

become compromised. Here, we propose comparing the primary tumor vs. the control and the 

metastatic tumor vs. the control with one another using the results from the analysis of the 

transcriptome (RNA-Seq) and the results from the analysis of the targetome (ChIP-Seq) that 

were obtained (Figure 13). A comparison using different sets of DEGs obtained from different 

tools provides true differentially expressed genes. From each tool used in this analysis, we also 

compared the pathways found to be enriched by IPA (QIAGEN®, 2017). Comparing enriched 

pathways provides information on the overlap and differences between the two tumors and is 
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biologically meaningful as enriched pathways signify biological functions or processes (Figure 

14). Because biological information is provided by pathways, interpretation of the overlap of 

enriched pathways provides insight to the molecular cascade of the cancer. Genes and pathways 

can be incorporated into a disease and developmental function table signifying their roles in the 

development of the disease (Figure 15). From Figure 14, 202 enriched pathways were identified 

among the transcriptome and targetome of the two tumors. 

Using Figures 13 and 14, we suggest that gene set analysis through IPA has more 

strengths to discover hypotheses deemed to be biologically significant. This is indicated in Table 

1 as the number of EPs is significantly reduced compared to the number of DEGs.  

 
Figure 13: Venn diagram representing the difference between the primary and metastatic 
tumors. DEGs identified in the Transcriptome and Targetome of transgenic mice model Ptch1+/- 

vs. the control and transgenic mouse model Atoh1 vs. the control. Only edgeR, DESeq, and ChIP-
Seq were used. 
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Figure 14: Venn diagram presenting the shared enriched pathways between three tools in both 
transgenic mouse model Ptch1+/- vs. the control and transgenic mouse model Atoh1 vs. the 
control.  
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 # of DEGs # of Unique 

DEGs 

Ratio of 

Unique DEGs 

(%) 

# of EPs # of Unique 

EPs 

Ratio of 

Unique EPs 

(%) 

ChIP-Seq 

(Primary) 

1665 140 8.41 366 13 3.55 

ChIP-Seq 

(Metastatic) 

2828 981 34.69 404 18 4.66 

DESeq 

(Primary) 

4563 29 0.64 388 1 0.26 

DESeq 

(Metastatic) 

3874 13 0.34 411 5 1.22 

edgeR 

(Primary) 

6380 998 15.64 417 8 1.92 

edgeR 

(Metastatic) 

5233 451 8.62 441 7 1.59 

 
Table 1: Unique DEGs and enriched pathways (EPs) in Primary and Metastatic Tumors models 
compared to the control. The DEGs and the EPs were observed among three statistical analysis 
tools. 
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Figure 15: A Disease and Developmental Function table affected by DEGs identified by edgeR in 
MB Metastatic Tumor vs. the control. The darker violet represents more gene involvement. 
 
 

III.4 Comparative Genomic Analysis of Medulloblastoma for Homo sapiens and Mus 

musculus 

Because MB is complex with its separation into subgroups, each subgroup has to be 

taken into consideration in order to properly understand the molecular and cellular events that 

are occurring and that are affected by overexpression. An ANOVA analysis was performed on 

the data obtained for each subgroup to acquire the respective differentially expressed genes. 

For each tumor group, the top 1000 genes (based on the relative q-values) were selected for 

comparison to the rest of the groups (Figure 16).  

In the first evaluation, the results of each subgroup from the human primary tumors 

were compared to one another and results indicated zero intercorrelated genes, suggesting 

heterogeneity as characterized by each of the subgroups having discrete somatic aberrations, 

activated pathways, and clinical outcomes. The SHH Mus musculus data was then integrated 



23 
 

into the comparison for a second evaluation to figure out any possible overlap between Mus 

musculus and Homo sapiens (Figure 17). Although there was overlap between three or four of 

the five types included in this study, there were zero DEGs common among all five.  

We then decided to observe the similarities and differences of the DEGs in Homo 

sapiens and Mus musculus categorized under the SHH group. Looking at Figure 18, 142 similar 

DEGs were uncovered. These genes were loaded into IPA to reveal the enriched pathways 

(Figure 19), which can provide reference for future research. 

 
Figure 16: Venn diagram presenting the top 1000 returned medulloblastoma DEGS within the 
different subgroups. 



24 
 

 
Figure 17: Venn diagram presenting the top 1000 returned medulloblastoma DEGS within the 
different subgroups in human data with the addition of mouse data. 

 
Figure 18: Venn diagram showcasing the Top 1000 returned DEGs in the SHH subgroup of 
medulloblastoma found in Homo sapiens and in the SHH subgroup of medulloblastoma found in 
Mus musculus. 
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Figure 19: Enriched Canonical Pathways in DEGs identified from the overlap between the SHH 
subgroup in Homo sapiens and in Mus musculus. 
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IV. Conclusion and Discussion 

Observing all the Venn diagrams shows that each statistical tool has its own advantages 

and limitations as each resulted in not only a different amount of DEGs, but also a variation in 

the overlap of DEGs. Therefore, to obtain as accurate results as possible, multiple tools have to 

be used when performing an integrative analysis as no single statistical tool can be ruled a 

favorite and outed as the best. 

Overall, baySeq discovers the fewest number of DEGs for the Atoh1 and wild type 

comparison, DESeq detects the smallest amount of DEGs for the Ptch1+/- and wild type 

comparison, and limma reveals the greatest amount of DEGs in both. While limma does discover 

the largest amount of DEGs, as seen in the Venn diagrams, there are quite a few DEGs not 

discovered within the other packages, thus resulting in no overlap for those genes. PoissonSeq 

and Cuffdiff also tend to retain unique DEGs. Meanwhile, baySeq, DESeq, and edgeR share the 

most DEGs with all the other methods, resulting in very close to 100% of their DEGs being 

shared.  

Using the expression 
𝑈

𝑇
, where U stands for the number of unique genes of the package 

and T refers to the total number of genes, the FDR value for each statistical package was 

calculated. This method was applied to the data from q-values less than 0.05. In the comparison 

between the Ptch1+/- model and the wild-type model, baySeq resulted in an FDR of 0%, Cuffdiff 

with 5.8%, DESeq with 0%, edgeR with approximately 0%, limma with 7.6% and PoissonSeq with 

5.6% FDR. The comparison between the Atoh1 and wild-type models had similar results, with 

only limma and PoissonSeq increasing their values (baySeq had 0%, Cuffdiff had 0.055%, DESeq 

had approximately 0%, edgeR had 0%, limma had 14% and PoissonSeq had 8.9%). From this 

information, we determined to exempt limma and PoissonSeq from analysis with the targetome 

because of their high FDR values, thus making room for the ChIP-Seq data.  
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ChIP-Seq data was added to the respective comparison for each experimental condition. 

We found 332 common DEGs identified by all the packages among the comparison between the 

primary tumor vs. the control groups (Figure 8) and 423 common DEGs identified for the 

metastatic tumor vs. the control (Figure 9). We observed that the ratio of uniquely identified 

DEGS is consistently low when the RNA analysis tools DESeq and edgeR were used, making them 

seem somewhat stronger than the other methods. Therefore, we used the data from those two 

packages as incentive to compare the transcriptome and targetome even further between the 

metastatic tumor and the primary tumor. When we analyzed the two tumors together, with 

their respective differences from the control, we detected 231 shared DEGs (Figure 13). The 

pathways from each statistical tool were obtained and compared. As seen in Figure 14, 202 

similar pathways were revealed to be enriched. Looking at these pathways may give us better 

information about the targets and the effects of MB. 

Applying comparative genomics to this study allowed us to study the biological 

similarities and differences between humans and mice, which could then help us apprehend the 

underlying causes of disease formation for MB. Part of the project was to organize human data 

into their respective subgroups (WNT, SHH, Group 3, and Group 4) to then be applied to the 

data we obtained from our mice models. While we were hoping to find DEGs shared between all 

the subgroups of MB, the analysis came back with zero similarities among all subgroups. 

Analyzing the subgroups to one another first confirmed our thoughts to the complexity of the 

development of the disease and suggests heterogeneity. This is thought to be the case as each 

type of MB has its own discrete somatic aberrations, activated pathways, and clinical outcomes; 

however, when we compared the SHH subgroup from both the human data and the mouse 

data, we detected 142 shared DEGs (Figure 18). Detailed investigation to these genes and their 

pathways will provide the next step in our research. 
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We have focused on the integrative and comparative analysis of transcriptome and 

targetome data for medulloblastoma, while also adding the component of comparative analysis 

between two species. By doing so, we have examined the molecular mechanisms of the cancer 

and have obtained hypotheses relating to the biological problem itself, thus pointing us in the 

next step forward. For example, we identified a set of genes that may contribute to the 

metastasis of medulloblastoma and we determined potential pathways and targets that may be 

involved in the development of the cancer. The purpose of the latter part of the project was to 

detect the similarities and differences in the gene expressions and cellular pathways affected in 

the different tumor subgroups and the similarities and differences in the gene expressions and 

cellular pathways targeted by the cancer in Mus musculus and Homo sapiens. Comparative 

analysis elucidates the dissimilarities between the respective subgroups and organisms, though 

the extent of similarities are still in need of further investigation 

The future plan of this project will be to create a network visualization of the obtained 

results. Afterwards, we will investigate the data of other subgroups of MB cancer and run RNA-

Seq analysis for the other subgroups in a similar fashion. Finally, we will perform a comparative 

study among all MB subgroups to reveal the molecular and cellular mechanisms for the overall 

formation of MB. Since the tumor data of humans was obtained from primary tumors, a further 

step in this research would be to attain gene expression data for metastatic tumors in human 

samples and perform a comparative analysis between the primary and metastatic tumors of 

Homo sapiens and Mus musculus. Doing so may enlighten development of a safer and more 

effective therapy. 
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