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Abstract—In the article, a validation module, being a com-
ponent of an integrated system supporting routing in software
defined networks (SDNRoute), is proposed and thoroughly ex-
amined. The module allows for the verification of the results
provided by the optimization module before these results are de-
ployed in the production network. Routing policies are validated
for their impact on the network quality parameters and against
the threat of overloading (congestion).
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I. INTRODUCTION

THE rapid advancement of broadband networks has cre-
ated challenges in the design of modern network mecha-

nisms and architectures. A non-flexible architecture and com-
plex distributed management are making it increasingly diffi-
cult for traditional techniques to cope with growing network
requirements. Software defined networks (SDNs) are perceived
as a solution to these problems. Their basic advantage over tra-
ditional techniques is the centralized management architecture
and the separation of the network control plane from the data
plane [1]. In such networks, the central controller is respon-
sible for managing data switching while network devices are
only carrying out its commands (unlike in the traditional IP
architecture, they do not make their own decisions regarding
packet routing). Such the mode of operation simplifies the
control over the network and allows flexible reconfiguration.
Additionally, it allows to choose any routing algorithm and
ensures quality of service (QoS).

The validation module proposed in this article is a compo-
nent of the SDNRoute system [2], which goal is to support
routing decisions in SDNs. The system is developed as a
part of the LIDER project financed by the National Center
for Research and Development. The system’s architecture is
presented in Fig. 1.

The SDNRoute system prepares routing policies for the next
time window in advance. The operation takes into account the
data gathered from many different sources. These encompass
the following: (a) information on the current state of the
network acquired from the network controller, (b) historical
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Fig. 1: Architecture of the SDNRoute system

data, and (c) additional information provided by network
applications. Then, the pieces of data are used to predict the
traffic matrix in the upcoming time window.

The optimization module is responsible for preparing rout-
ing policies that will minimize the risk of network conges-
tion and ensure effective usage of available resources. The
optimization is based on the predicted traffic matrix. The
SDNRoute system also allows to reduce power consumption
of a network infrastructure.

Before being deployed in the production environment, the
effectiveness of routing policies is verified in the validation
module, which is a part of the Emulator (shown in Fig. 1). Its
main task is to select the most adequate statistical measures
calculated on the basis of the predicted traffic matrix. Assum-
ing the parameters of the traffic matrix, the optimization mod-
ule propose the most suitable routing policies. Subsequently,
these policies are deployed in the production network by a
central SDN controller. In the article, we focus on the selection
of the most adequate parameters used to feed the traffic matrix,
in order to obtain the most useful results.

The remaining part of the paper is organized as follows.
State-of-the-art is presented in the next section. Section III
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provides a brief description of the prediction module. Sec-
tion IV introduces the optimization task. The main part of
the paper, dealing with the validation module, is presented
in Section V. The obtained results are carefully studied in
Section VI, whereas the last section concludes the paper.

II. RESULTS REPORTED IN RELATED WORK VS. OUR
PROPOSAL

Per-subnet routing, which was and still is the predominant
approach, imposes significant limitations on implementable
routing policies. However, per-flow forwarding provides more
freedom for traffic engineering than per-subnet wildcard rout-
ing. This stems from the fact that due to per-flow forwarding
multiple paths can be utilized simultaneously without the loop-
ing risk [3]. Nevertheless, the related requirement for keeping
the system distributed poses significant challenges. That is
the reason why research on distributed traffic engineering
systems has been limited. The most prominent examples of
such systems are MPLS-based MATE [4] and TeXCP [5], as
well as flow-based FAMTAR [6].

The situation changed with the emergence of centralized
per-flow software-defined networking paradigm. When the
distributed control requirement is relaxed, we can simplify
the system architecture by using a single central controller.
Additionally, a centralized controller has a view of the whole
network and, thus, possesses a comprehensive knowledge
about the current and previous network state. This can result
in better routing decisions. That is why the introduction of
hardware and software implementing the SDN concept (i.e.,
OpenFlow switches and controllers) resulted in a boom of
various routing and traffic engineering systems proposals.
Since it is impossible to review all of them here, we only
provide an overview of the most prominent examples.

Hedera [7] was proposed as a dynamic SDN flow scheduling
system for data centers, aimed at going beyond ECMP lim-
itations of the traditional IP routing. In the Hedera system,
at the beginning all flows are load-balanced onto ECMP
paths. Such paths are used until flows grow and meet a
predefined threshold rate. After reaching the threshold, such
flows (which are now considered as elephants) are rerouted in
mid-connection onto flow-specific paths, which are computed
dynamically by the controller. The path are computed using
global first fit or simulated annealing algorithms.

Another influential proposal is DevoFlow [8]. Its key con-
cept also consists in the reduction of OpenFlow overhead by
focusing on significant flows. Unlike in the case of Hedera,
the proponents of DevoFlow focus on implementation and
scalability aspects. They propose a modified OpenFlow switch
architecture in order to keep as much operation in the data
plane as possible. They consider the usage of decreasing best-
fit bin packing algorithm or oblivious routing precomputed
according to a given demand matrix to reroute detected
significant flows.

Another similar proposal is OpenSample [9], a traffic en-
gineering system based on the rerouting of elephant flows,
which are detected, similarly as in SDNRoute, by sampling
packet headers on switches with sFlow. The authors claim that

by using sFlow with TCP sequence numbers, the OpenSample
system can achieve a low latency of measurements with a high
degree of accuracy. OpenSample can be implemented without
end host modifications and, unlike Hedera, it does not require
the use of expensive OpenFlow counters.

Even though being most noticeable, the examples presented
above are targeted and evaluated on data center networks.
The SDNRoute system, which is the subject of this paper, is
designed to operate in networks with irregular topologies and
predictable traffic patters, such as wide area networks (WAN).
SDN WAN systems are less popular as a research topic than
data center systems. The most prominent papers related to
SDN WANs are reports of real-world deployments in big inter-
datacenter corporate networks, which prove the feasibility of
proposed solutions. Nevertheless, they lack specific details.

SWAN [10] is a centralized traffic engineering solution
designed by Microsoft and used to transfer data between data
centers. It performs network-wide traffic engineering basing
on a global network view. The path assignments for various
services are calculated using a global optimization algorithm.
Similarly as SDNRoute, SWAN performs the optimization on
traffic matrices predicted for future time windows. It predicts
the interactive traffic in 5-minutes periods. The authors of [10]
claim that by doing so, the need for over-subscription is
drastically reduced, and resources are used more effectively.

B4 [11] is a Google’s traffic engineering solution deployed
in their inter-datacenter wide area network. B4 adopts a two-
level hierarchical control plane to execute the global traffic
scheduling. Each switch is associated with a low-level con-
troller, which performs distributed routing, similarly as with
classical routers. The central high-level network controller
dynamically reallocates bandwidth for specific applications
by creating flow-specific entries and also provides dynamic
rerouting in the case of link or switch failures. Unlike SWAN
or SDNRoute, which perform global resources allocation
based on linear programming, B4 uses fast and easy-to-
implement heuristics. Google claims that it is able to drive
links to near 100% utilization in practice, which is comparable
to the capability of SWAN.

Surveys [12], [13] provide a general overview of SDN traffic
engineering systems. SDN systems similar to SDNRoute,
targeted specifically to WAN deployments, are dealt with
in [14], [15].

III. PREDICTION

SDNRoute works independently of underlying network
topologies. Thus, the prediction module has to provide infor-
mation on expected traffic in the upcoming window in a time-
efficient manner. In addiction, the prediction module should
be able to accurately forecast traffic in contemporary networks
that are characterized with highly variable traffic patterns.

The prediction algorithm and its evaluation are described
in details in [16]. The proposed solution is based on the
Fourier series. The proposal selects the proper coefficients
for each harmonic of a trigonometric function, i.e., important
harmonics are selected in order to forecast traffic, while
insignificant harmonics are zeroed to avoid overestimation.
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Moreover, the adaptive selection of the coefficient threshold
allows to predict not only a few future points at a satisfactory
time but also many more.

The achieved results have proven that this approach is not
only faster than the known models (such as ARMA, ARIMA,
etc.), but simultaneously achieve prediction accuracy at a
comparable level. It is worth noticing that the solution is up
to fifty times faster in same cases. This result is particularly
important for complex systems, such as SDNRoute, where
prediction is just one element, and the associated computation
time with the obtained accuracy level strongly affect the speed
of new routing policies enforcement in the network.

At the output of the prediction module, we get the matrix
P of the expected traffic in the upcoming window. Each row
in this matrix represents the predicted traffic volume over time
for a single demand. Thus, the number of rows in this matrix is
equal to the number of flow demands in the network (which we
denote as D, see the details in Sec. IV). For a given demand d,
the subsequent values of hd1, hd2, . . . , hdt, . . . , hdT estimate
the traffic volume at a given time (where the time samples
are numbered by t = 1, 2, . . . , T ). In our research case, we
assume 120 samples per 24-hour window (T = 120), so the
interval between successive samples is 12 minutes. This way,
we obtain the following sample matrix:

P =


h11 h12 h13 . . . h1T
h21 h22 h23 . . . h2T

...
...

...
. . .

...
hD1 hD2 hD3 . . . hDT


At the input of the optimization module we can get only

one value, known as the traffic volume for each demand (see
Sec. IV below). Hence the aggregation of a traffic vector
related to a demand into a single value to be fed in the
optimization problem. This way, the demand matrix H is
obtained as the transformation of the matrix P with use of
a statistical function f , such as mean, `th percentile, etc.:

H =


f(h11, . . . , h1T )
f(h21, . . . , h2T )

...
f(hD1, . . . , hDT )


IV. OPTIMIZATION

The results obtained from the prediction module are treated
as the input data for the optimization module. The latter mod-
ule receives aggregated data on expected network traffic. There
can be up to one aggregated flow with a given traffic volume
(a single value for the entire time window) between any pair
of nodes in the network. This volume can be represented
by various statistical measures calculated on the basis of the
predicted traffic vector. For the purposes of this study, several
different statistical measures were used: mean value (average),
median, maximum value, as well as some percentiles. As a
result of minimizing the objective function, the optimization
module produces routing policies, which are then passed to
the validation module.

The optimization module performs the task of static opti-
mization with a multi-criteria objective function. This model

uses the node-link formulation and was briefly introduced in
our previous work [2]. It is given below.
Indices

v = 1, 2, . . . , V the nodes in a network;
d = 1, 2, . . . , D the demands (flows) between pairs of

nodes;
e = 1, 2, . . . , E the interfaces in the network (net-

work arcs/links);
k = 1, 2, . . . ,K the linear segments approximating a

convex function of link delay vs. traf-
fic volume.

Constants
A(e, v) = 1 if link e starts in node v; otherwise 0;
B(e, v) = 1 if link e finishes in node v; otherwise 0;
S(d) the source node of demand d;
T (d) the destination node of demand d;
H(d) the predicted traffic volume of a flow demand

d to be satisfied;
C(e) the capacity of link e;
Ψ(e) the energy cost of switching on (opening) link

e;
Ξ(e) the fixed unit cost of energy for link e;
F (e, k) the slope of the k-th linear segment approx-

imating a convex function of link delay vs.
traffic load on link e;

G(e, k) the intercept of the k-th linear segment ap-
proximating a convex function of link delay
vs. traffic load on link e.

Continuous non-negative variables
xe,d the volume of a flow satisfying demand d on

link e (provides information about a fraction of
a new flow that should be switched to a selected
router interface);

ye the total capacity allocated on link e to serve
the existing and new flows;

y∑ the total amount of resources used in the net-
work;

we the capacity utilization on link e;
wmax the maximum value over all link capacity uti-

lizations;
ze the delay experienced by packets transmitted via

link e;
zmax the maximum value over all link delays;
z∑ the aggregated link delays;
n the total amount of energy used in the network.

Binary variables
ue = 1 if link e should be switched on, otherwise 0.

Constraints

∑
e

A(e, v)xe,d −
∑
e

B(e, v)xe,d = H(d) if v = S(d)
0 if v 6= S(d), T (d)
−H(d) if v = T (d)

d = 1, 2, . . . , D v = 1, 2, . . . , V

(1)

ye =
∑
d

xe,d e = 1, 2, . . . , E (2)
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y∑ =
∑
e

ye (3)

we =
ye
C(e)

e = 1, 2, . . . , E (4)

wmax ≥ we e = 1, 2, . . . , E (5)

ze ≥ F (e, k)ye +G(e, k) e = 1, 2, . . . , E k = 1, 2, . . . ,K
(6)

z∑ =
∑
e

ze (7)

zmax ≥ ze e = 1, 2, . . . , E (8)

ue ≥ we e = 1, 2, . . . , E (9)

n =
∑
e

[Ψ(e)ue + Ξ(e)ye] (10)

Eq. (1) represents basic constraints which are the core
of the node-link formulation. The constraints are responsible
for enforcing flow conservation in intermediate nodes, and
satisfying demands from the viewpoint of its source and
destination nodes. Eq. (2) represents link constraints used to
find an aggregated volume of traffic. According to Eq. (3),
the sum of all traffic loads in the network provides a value of
the total resource use. Link utilizations are found with help
of Eq. (4) as a fraction of link capacity occupied by assigned
flows. The maximum link utilization is determined according
to Eq. (5).

In the packet networks with statistical multiplexing the
larger is link utilization, the larger delays are experienced by
packets. We decided to cover this aspect in order to introduce
quality improvements to the system. We use a model based
on the M/M/1 queue to map the traffic loads to the link
delays, followed by linearization using the Fortz and Thorup
approach (see [17]). The model approximates the delay with
the linear segments according to Eq. (6). We can use a standard
linearization procedure without necessity of applying non-
continuous variables as the convexity of the problem is not
disturbed. Eq. (7) and Eq. (8) determine the summarized and
maximum delays, respectively.

Non-continuous variables represent the decision to switch
on some links in the network. Eq. (9) enforces that the link
must be switched on if only some non-zero traffic is going
to be sent through it. Eq. (10) finds the total energy usage
cost based on the costs of switching on the links (interfaces)
and the variable (proportional) cost relative to the link loads.
We assume that the energy cost of switching port on equals
180 W (watts), while every single Mb/s of load adds 0.02 W
according to models given in [18] and [19].

In our approach, we use the aggregated (weighted sum)
multi-objective optimization. The following criteria are in-
cluded in the goal function: y∑, wmax, z∑, zmax, n. Each
criterion is normalized by a coefficient β(i), which takes the
minimum objective value of a single-criterion optimization
(with respect to i, where i = y∑, . . . ) to ensure that all criteria
are equally valid. The goal function takes then the following
form: ∑

i∈{y∑,wmax,z∑,zmax,n}

i

β(i)
(11)

and the final optimization task is to minimize its value.

V. VALIDATION

It is not easy to determine which of the statistical measures
used at the input of the optimization module will provide
the best routing policies. By ‘the best’ we mean ‘the most
adequate from the traffic control viewpoint’. Therefore, a
decision to introduce a validation module was made. Its role
is to verify the policies proposed by the optimizer in terms of
their impact on the quality parameters of the network. The final
decision regarding the paths used in the production network
is made based on the results from the validation module.

The outcome of the prediction module is a traffic matrix
that specifies the estimated traffic volume over time for each
demand. An example of the traffic envelope for the selected
demand is shown in Fig. 2 (the polska network was used, for
details see Section VI). On the basis of this traffic envelope,
we are able to calculate all the statistical measures mentioned
earlier (mean, etc.). Subsequently, the optimization process is
started and key performance indicators (KPI) are calculated
separately for each statistical measure being the basis for the
input data.
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Fig. 2: Expected amount of the traffic over time (example for
the Krakow–Gdansk demand)

Based on the routing policies for a given statistical measure
proposed by the optimizer and the traffic volume demand
between each pair of nodes in the network, it is possible to
calculate the load on each link at a given moment. Further-
more, the link load can be used to determine network quality
parameters. Fig. 3 shows the load on the selected link in the
polska network and the delay it caused.

Seven different network quality indicators (KPI) were
adopted for testing. The first five are directly related to the
criteria used in the objective function of the optimization task.
These KPIs are defined as follows: (1) the total resource usage,
(2) the maximum link utilization level, (3) the summarized
delay, (4) the maximum delay, and (5) the energy consumption.
The calculations of them were based on models consistent with
those assumed in the optimization model (see Section IV).

The next two indicators are related to congestion occurrence
in the validated network. The KPIs are given as follows: (6) A
congestion is assumed by us as a situation in which the link
load exceeds 80% of the available bandwidth. An environment
with no congestion in the network can be considered as the
one with redundant resources allocated. In order to determine
it, a new indicator was introduced: (7) It describes how much
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Fig. 3: Load on the Gdansk–Bialystok link and the resulting
delay

the network traffic (percentage) could be increased without
creating any congestion.

VI. RESULTS

The research was carried out for three topologies selected
from the SNDlib library [20]. The selected networks are:
(a) polska (number of nodes V = 12, number of links
E = 18, number of demands D = 132); (b) nobel-eu
(V = 28, E = 41, D = 756), and (c) germany50 (V = 50,
E = 80, D = 1324). Most of the results presented in this
paper concern the polska network. However, a summary
of the results for other networks is also presented in Fig. 5
to show the repeatability of the results. The generated traffic
was varying over time in accordance with the adopted daily
envelope (see Fig. 2). The distribution of the length and size
of network flows (defined as flows in the transport layer,
the so-called 5-tuples) corresponds to the distribution models
presented in [21].

Fig. 4 presents the values of subsequent KPIs over time for
the polska network. The results are based on optimization
using average traffic values at its input. It can be observed
that the summarized resources usage and power consumption
are correlated. They differ only by the constant energy cost
associated with the need to switch on interfaces. Delays
are heavily dependent on the load. Their value increases
significantly when the maximum capacity of a given link is
approached. In the figure, we can also observe that the network
was overloaded (i.e., congested) three times on one of the links
and this state lasted for almost three hours in total.

Table I presents a comparison of all indicators for sub-
sequent statistical measures that are used on the input of
the optimization module. The first three indicators are the
averages of the results in time (means of instantaneous values
from the entire time window). The next two represent the
maximum value that occurred in the time window. It can be
observed that the values of latency and maximum link load
are much higher for optimization based on average volumes
than for optimization based on maximum values. On the other
hand, optimization based on maximum values causes a small
increase in energy consumption, which is the result of the need
to switch on additional links.

The results of the most favorable statistical measure chosen
for optimization are very interesting. It turns out that the 90th
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Fig. 4: Values of subsequent KPIs over time for optimization
at average traffic values

percentile is best for the polska network. If routing policies
optimized based on volumes calculated using this percentile
vale were implemented into the production network, there was
no congestion in the network. Furthermore, the volume of the
traffic transmitted was even slightly increased. The decrease
in the value of delays and the number of occurring congestion
events (overloads) is associated with the related increase in
energy consumption. However, this increase is less relevant
when compared with the mentioned significant network quality
gains. This result is much better than for the optimization
based on average traffic values, in which case there were three
overloads with a total duration of 167 minutes. The median
value results are even worse.



82 P. JAGLARZ, G. RZYM, P. JURKIEWICZ, P. BORYŁO, P. CHOŁDA

TABLE I: Values of KPIs for various statistical measures, as observed in the polska network

Resource usage
[Mbps]

Energy usage
[Wh]

Summarized
delay [ms]

Max. delay
[ms]

Max. usage
Number

of overloads
Time

of overloads [min]
Redundancy

Mean 1266 6140 21.86 6.20 0.90 3 167 0%

Median 1260 5958 22.11 7.24 0.93 4 410 0%

75th percentile 1275 6502 21.44 5.60 0.85 3 44 0%

85th percentile 1278 6503 21.49 4.84 0.80 0 0 0%

90th percentile 1274 6502 21.45 4.68 0.78 0 0 2%

95th percentile 1275 6503 21.49 4.78 0.79 0 0 1%

Max. 1273 6502 21.54 4.96 0.81 2 10 0%
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Fig. 5: Total values of KPIs for different percentile degrees,
as observed in various networks

Fig. 5 presents the total value of all indicators (KPIs) for dif-
ferent percentiles used at the input of the optimization module.
These results were normalized in accordance to the procedure
used in the optimization module before being summed. As
expected, the best results for the polska network (Fig. 5a)
were achieved for the 90th percentile. Slightly worse results
were obtained for percentiles from the range [78, 98]. The
results for the other two networks are very similar. In the
case of the nobel-eu network (Fig. 5b), the best quality
parameters were achieved for the 94th percentile, and in the
range [80, 96] they did not differ much from the best result.
For the germany50 network (Fig. 5c), the best statistical

measure passed to the optimization module appeared to be
the 92th percentile. Slightly different results were obtained for
the range [82, 96].

The presented analysis shows that percentiles in the range
[90, 95] provide the best results. Their use at the input of
the optimization module guarantees achieving the best quality
parameters in the network. Using average or median values
gives much worse results of reduction even up to 50%. The
maximum value in most cases gives about 6% worse results.

VII. CONCLUSION

The article presents a concept of the integrated system
supporting routing in software defined networks (SDNRoute)
and describes in detail the functioning of the validation
module. Based on the collected results, it can be concluded
that in the case when routing policies are optimized for
networks with dynamically changing traffic, the best option
concerning the input values feeding the optimization module
is to use percentiles in the range of [90, 95] calculated based
on the predicted traffic matrix. Due to the high amplitude of
the traffic volume transferred at different times of the day,
the optimization based on average values does not provide
satisfactory outputs and may result in network congestion. The
results obtained for median are at the similar unsatisfactory
level. The research was carried out for cases where the peak
hour traffic resulted in using almost as much as 100% of the
available network capacity. As the future work, it is planned
to verify the impact of the network load on the selection of
optimal statistical measures.
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