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Analyzing the linearity of some operators 

Faton Kabashi, Azir Jusufi, Hizer Leka, Flamure Sadiku 

UBT – Higher Education Institution, Lagjja Kalabria, 10000 p.n., Prishtine, 

Kosovo 

Abstract. Linear operators occupy an important place in functional analysis and linear algebra, 
which are among the most important and substantive disciplines of mathematics, whose 
methods and results have created an indispensable apparatus for the development of numerical 
mathematics, theory of approximations, equations differential and especially mathematical 
physics and applied mathematics. Also, linear operators are a central object of study in vector 
space theory. A linear operator is a function which satisfies the conditions of additivity and 

homogeneity. Not every function is linear operators. We will try to explore some functions 
which are also linear operators. 
 
Keywords: Function, linear operators, vectors, vector spaces  

Vector spaces 

Often in analytical geometry, mechanics, physics, etc., we come across object oriented objects 
called vectors. Those objects define linear actions, vector collection, and scalar vector 
multiplication. [1,4]  

Thus, the set of free vectors in a straight line, plane, or ordinary three-dimensional space, with 
respect to the said actions, form special algebraic structures, which enjoy certain properties. 
These structures are called vector spaces. In the general case, by taking abstract objects, actions 
are defined and the conditions are formulated which must satisfy them [3]. 
A vector space X is an aggregate of elements, called vectors, u, v,... for which linear operations 

(addition u  v of two vectors u, v and multiplication  u of a vector u by a scalar  are defined 

and obey the usual rules of such operations. The scalars are assumed to be complex numbers 

unless otherwise stated (complex vector space).  u is also written as u  whenever convenient, 

and 1u is often written as u  . The zero vector is denoted by 0 and will not be distinguished 

in symbol from the scalar zero. Vectors u1,..., un are said to be linearly independent if their 

linear combination  only if  otherwise they are 
linearly dependent [2]. 

The dimension of X , denoted by dim X , is the largest number of linearly independent vectors 

that exist in X . If there is no such finite number, we set dim X  . A subset M of X is a linear 

manifold or a subspace if M is itself a vector space under the same linear operations as in X .  
The dimension of M does not exceed that of X . For any subset S of X , the set M of all possible 
linear combinations constructed from the vectors of S is a linear manifold; M is called the linear 
manifold determined or spanned by S or simply the (linear) span of S . According to a basic 
theorem on vector spaces, the span M of a set of n vectors u1,..., un is at most n - dimensional; 
it is exactly n -dimensional if and only if u1,..., un are linearly independent. There is only one 
0-dimensional linear manifold of X , which consists of the vector 0 alone and which we shall 

denote simply by 0 [1,2].  
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Example 1.1. The set of all complex-valued continuous functions u : x  uxdefined on an 

interval I of a real variable x is an infinite-dimensional vector space, with the obvious 

definitions of the basic operations  u  v . The same is true when, for example, the u are 

restricted to be functions with continuous derivatives up to a fixed order n . Also the interval R 
may be replaced by a region' in the m dimensional real euclidean space R m [6].  
Example 1.2. The set of all solutions of a linear homogeneous differential equation  

 
with continuous coefficients a j x is an n -dimensional vector space, for any solution of this 

equation is expressed as a linear combination of n fundamental solutions, which are linearly 
independent [3]. 
Definition 1.1. Let X be an N -dimensional vector space and let x1,..., xN be a family of N 

linearly independent vectors. Then their span coincides with X , and each u  X can be 

expanded in the form  

 
in a unique way. In this sense the family x jis called a basis of X , and the scalars j are called 

the coefficients (or coordinates) of u with respect to this basis.  

The correspondence u j is an isomorphism of X onto C N (the set of numerical vectors) in 

the sense that it is one to one and preserves the linear operations, that is, u j  and v  

jimply  As is well known, any family x1,..., x p of linearly independent 

vectors can be enlarged to a basis x1,..., x p , x p1,..., xN by adding suitable vectors x p1,..., xN . 

Definition 1.2. For any subset S and S ' of X , the symbol S  S' is used to denote the (linear) 

sum of S and S ' , that is, the set of all vectors of the form u  u' with u  S and u' S' . If S 

consists of a single vector u , S  S' is simply written u  S' . If M is a linear manifold, u  M is 

called the inhomogeneous linear manifold (or linear variety) through u parallel to M .  

The totality of the inhomogeneous linear manifolds u  M with a fixed M becomes a vector 

space under the linear operation . This vector space is called 

the quotient space of X by M and is denoted by X / M . The elements of X / M are also called 

the cosets of M . The zero vector of X / M is the set M , and we have u  M  v  M if and only 

if u  v  M . The dimension of X / M is called the codimension or deficiency of M (with 

respect to X ) and is denoted by codim M . We have dim M  co dim M  dim X [4,6]. 

Linear operators. Matrix representations 

Definition 2.1. Let X be a vector space. A complex-valued function   is 

called a linear form or a linear functional if  for all u, v of X and all 

scalars  

Example 2.1. If X  C N (the space of N -dimensional numerical vectors), a linear form on X 

can be expressed in the form: . It is usual to represent f as a row vector 

with the components  j , when u is represented as a column vector with the components  j . 

The  is the matrix product of these two vectors. 
Example 2.2. Consider whether linear operations from ℝ2 ℝ2 are linear operators: 
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a)  )  (( ,  )) = (sin  ,  ) 

b)  )  (( ,  )) = (  −  , 0) 

Solution: We try additives and homogeneity: 

 

 
Although (−1,1) ≠ (1,1), thus  ( 1 + U2) ≠  ( 1) +  ( 2) 
then the given operation is not linear operators. 

 

 
Thus, (  ) =  (  ) 

Since additive and homogeneity are met then we say that it is linear operators [3]. 
Definition 2.2. Let X , Y be two vector spaces. A function T that sends every vector u of X into 

a vector v  Tu of Y is called a linear transformation or a linear operator on X to Y if T 

preserves linear relations, that is, if  for all u1, u2 of X and all scalars 

 . X is the domain space and Y is the range space of T . 
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If Y  X we say simply that T is a linear operator in X . In this book an operator means a linear 

operator unless otherwise stated. For any subset S of X , the set of all vectors of the form Tu 

with u  S is called the image under T of S and is denoted by TS ; it is a subset of Y . If M is a 

linear manifold of X , TM is a linear manifold of Y . In particular, the linear manifold TX of Y 

is called the range of T and is denoted by RT  . The dimension of RT  is called the rank of T 

; we denote it by rank T . The deficiency (codimension) of RT  with respect to Y is called the 

deficiency of T and is denoted by defT . 

Thus rank T + def T = dim Y . For any subset S ' of Y , the set of all vectors u  X such that Tu 

 S' is called the inverse image of S ' and is denoted by T 1S' . The inverse image of 0  Y is 

a linear manifold of X ; it is called the kernel or null space T of N T . The dimension of N T  

is called the nullity of T , which we shall denote by nul T . We have rank T + nul T = dim X . 

To see this it suffices to note that T maps the quotient space X / N T  (which has dimension 

dim X - nul T ) onto RT  in a one-to-one fashion. If both nul T and def T are zero, then T 

maps X onto Y one to one. In this case the inverse operator T 1 is defined; T 1 is the operator 

on Y to X that sends Tu into u . Obviously we have T  T. T is said to be nonsingular if T 1 

exists and singular otherwise. For T to be nonsingular it is necessary that dim X = dim Y . If 
dim X = dim Y , each of nulT = 0 and def T = 0 implies the other and therefore the 
nonsingularity of T [2,6].  

Linear operations on operators 

Definition 3.1. If T and S are two linear operators on X to Y , their linear combination  

is defined by  for all uX , and is again a linear operator on X to Y . 

Let us denote by X ,Y the set of all operators on X to Y Y; X ,Y  is a vector space with 

the linear operations defined as above. The zero vector of this vector space is the zero operator 

0 defined by 0u  0 for all u  X . 

Problem 3.1. rankS T  rankS rankT .  

The dimension of the vector space X ,Y  is equal to NM , where N  dim X and M  dimY . 

To see this, let be bases of X and Y , respectively, and let Pjk be the operator on X 

to Y such that  

 
These MN operators Pjk , are linearly independent elements of X ,Y , and we have from 

, M = dim Y, yelds . Thus  is a basis of X ,Y , which proves 

the assertion.  will be called the basis of X ,Y  associated with the bases of 

X and Y , respectively. The last result shows that the matrix elements  jk are the coefficients of 

the "vector" T with respect to the basis . 

The product TS of two linear operators T , S is defined by TSu  T Sufor all u  X , where 

X is the domain space of S , provided the domain space of T is identical with the range space Y 
of S [4,5]. The following relations hold for these operations on linear operators :  

TSR  T SR, which is denoted by TSR  
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The algebra of linear operators 

If S and T are operators on X to itself, their product TS is defined and is again an operator on X 

to itself. Thus the set X X , X  of all linear operators in X is not only a vector space 

but an algebra. X  is not commutative for dim X  2 since TS  ST is in general not true. 

When TS  ST , T and S are said to commute (with each other). We have T 0  0T  0 and T1 

 1T  T for every T X , where 1 denotes the identity operator (defined by 1u  u for 

every u  X ). Thus 1 is the unit element of X . The operators of the form 1 are called 

scalar operators and in symbol will not be distinguished from the scalars  . A scalar operator 

commutes with every operator of X  

We write TT  T 2 , TTT  T 3 and so on, and set T 0  1 by definition. We have  

 

For any polynomial  in the indeterminate z , we define the 

operator p T T nT0 1  . The mapping pz pT  is a homomorphism of the 

algebra of polynomials to X  ; this means that pz qz rz or pzqzrz inplies pT 

 qT  rT  or pT qT  rT  respectively. In particular, it follows that pT  and qT  

commute. 

If  is nonsingular, the inverse T 1 exists and belongs to X ; we have T 1T  TT 

1  1. If T has a left inverse T ' (that is, a T 'X  such that T 'T  1 ), T has nullity zero, 

for Tu  0 implies u  T 'Tu  0 . If T has a right inverse T ' ' (that is, TT ''  1), T has 

deficiency zero because every u  X lies in RT  by u  TT ''u . If dim X is finite, either of 

these facts implies that T is nonsingular and that T '  T 1 or T ''  T 1 , respectively [4]. If S 

and T are nonsingular, so is TS and  For a nonsingular T , the negative powers 

T n , n  1,2,... can be defined by  . In this case 

 
is true for any integers m, n . 
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