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We consider the problem of inferring a causality structure from multiple binary time series by using the
kinetic Ising model in datasets where a fraction of observations is missing. Inspired by recent work on mean
field methods for the inference of the model with hidden spins, we develop a pseudo-expectation-maximization
algorithm that is able to work even in conditions of severe data sparsity. The methodology relies on the Martin-
Siggia-Rose path integral method with second-order saddle-point solution to make it possible to approximate the
log-likelihood in polynomial time, giving as output an estimate of the couplings matrix and of the missing
observations. We also propose a recursive version of the algorithm, where at every iteration some missing
values are substituted by their maximum-likelihood estimate, showing that the method can be used together
with sparsification schemes such as lasso regularization or decimation. We test the performance of the algorithm
on synthetic data and find interesting properties regarding the dependency on heterogeneity of the observation
frequency of spins and when some of the hypotheses that are necessary to the saddle-point approximation
are violated, such as the small couplings limit and the assumption of statistical independence between
couplings.
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I. INTRODUCTION

Ising-like models and their countless variations have been
used throughout recent decades to describe data or model
systems with the most diverse nature [1–5] and to increase our
understanding of how natural, artificial, social, and economic
systems work.

On the one hand, these models, studied in their original
physical formulation, can be manipulated to generate a wide
range of behaviors mimicking the features of these systems
[2,6], and use a deductive approach to explain the stylized
properties of data that we observe in the real world. On the
other hand, one can use these models in the fashion of descrip-
tive and forecasting models [1,4,5,7], by using maximum-
likelihood (ML) and maximum a posteriori (MAP) techniques
to fit the model to the data, inductively working towards an
explanation of the observations. This is typically regarded as
the inverse formulation of the model, while the former is the
direct formulation.

A model of this family has recently been revamped for
time-series data, i.e., the nonequilibrium or kinetic Ising
model [8,9], describing a set of binary units—named “spins”
in the physics literature—that influence each other through
time. The simplicity of the model makes it extremely flexible
in the kinds of systems it can represent, ranging from networks
of neurons in the brain [10] all the way to traders in a financial
market [6,11]. Recent work on the inverse kinetic Ising model
has led to the development of exact solutions [12], cavity
methods [13], and mean field (MF) [14] techniques for the
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inference of the parameters, and the latter have been used to
work with partially observed systems linking to the realm of
(semi)restricted Boltzmann machines [15].

This latest stream of literature sparked our interest for
the model applied to time series of financial data at high
frequency, where we typically encounter problems related to
the lack of homogeneously frequent and synchronized observ-
ations [16–18]. The literature on the kinetic Ising model has
previously considered mainly the inference problem in the
presence of hidden nodes [15], i.e., part of the spins are never
observed, but it is known that they exist and interact with the
visible nodes (i.e., spins). This setting is of particular interest
in neuroscience where an experiment typically monitors the
firing activity of a subset of neurons. In other domains, such
as in economics, finance, and social sciences, another type of
missing data is often present, namely, the case where even
for the visible agents (nodes), observations are missing for a
significant fraction of the time. Moreover, in these cases, there
is a strong heterogeneity of the frequency of observations,
i.e., some nodes are frequently observed while other are rarely
observed. There are different sources for this lack of data: in
some cases, it might be due to the fact that the observation is
costly for the experimenter, whereas in other cases it is intrin-
sic to the given problem. Consider, for example, the problem
of inferring the opinion of investors from their trading activity.
When an investor buys (sells), it is reasonable to assume that
she believes the price will increase (decrease), but in many
circumstances the investor will not trade, leading to missing
observations for her belief. Using a suitable inference model,
as the one proposed in this paper, it is possible to estimate
her belief from the inferred structure of interaction among
investors and the observed state of the set of visible ones. We
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will also include external fields (for example, the market price
in the previous example) that can influence spins (investors’
opinion).

Missing data is a common problem in many fields of
science, and several techniques have been developed to over-
come this issue. Starting with the historical paper by Rubin
[19], the interest in the problem has grown and different kinds
of deletion [20], imputation [21], and estimation [22–24]
methods have been developed, each answering questions for
specific classes of missing data problems. Our contribution
fits in the family of maximum-likelihood estimators and
the expectation-maximization (EM) method, which has been
proved to provide bias-free estimates as long as the data are
missing at random [25].

Taking inspiration from the work by Dunn et al. [15], we
extend the formulation of the inference procedure to cases
where the missing observations are unevenly cross-sectionally
distributed, meaning that time series are sampled at a con-
stant rate and whenever no observations are found between
two time stamps a missing value is recorded. The result is
an algorithm closely related to an expectation-maximization
(EM) method [22], iteratively alternating a step of log-
likelihood gradient ascent [26] and the self-consistent resolu-
tion of Thouless-Anderson-Palmer (TAP) equations [14], that
gives as output both a coupling matrix and an approximated
maximum-likelihood estimate of the missing values.

To evaluate the algorithm performance, we devise a series
of tests stressing different characteristics of the input, simulat-
ing synthetic datasets with several regimes of intrinsic noise,
observation frequency, heterogeneity of variables, and model
misspecification. We thus define some performance standards
that can be expected given the quality of data fed to the
method, giving an overview of how flexible the approach is.

The paper is organized as follows: in Sec. II, we define
the considered kinetic Ising model, we explain the inference
method in detail, and describe the approximations needed to
make the algorithm converge in feasible time. In Sec. III,
we present results on synthetic data and give an overview
of the performance that can be expected with different data
specifications. Section IV concludes the article.

II. SOLVING THE INVERSE PROBLEM
WITH MISSING VALUES

The kinetic Ising model (or nonequilibrium Ising model)
[8] is defined on a set of spins y ∈ {−1,+1}N , whose dynam-
ics is described by the transition probability mass function,

p[y(t + 1)|y(t )] = Z−1(t ) exp

⎡
⎣∑

〈i, j〉
yi(t + 1)Ji jy j (t )

+
∑

i

yi(t + 1)hi

]
, (1)

where 〈i, j〉 is a sum over neighboring pairs on an underly-
ing network, Ji j are independent and identically distributed
couplings, h is the vector of spin-specific fields, and Z (t ) is a
normalizing constant also known as the partition function.

In our treatment of the problem, we will adopt a mean field
(MF) approximation, which relies on the assumption that the

dynamics of a spin i depends only on an effective field locally
“sensed” by the spin rather than on the sum of the single
specific interactions with others. The result of this picture
is that the topology of the underlying network is considered
irrelevant and assumed fully connected—although the goal
of the inference would be the reconstruction of the network
nonetheless—thus the sum on neighbors is substituted by a
sum on all the other spins. This recasts the transition proba-
bility into the following form:

p[y(t + 1)|y(t )] = Z−1(t ) exp

[
N∑

i=1

yi(t + 1)g̃i(t )

]
, (2)

where g̃i(t ) =∑N
j=1 Ji jy j (t ) + hi is the local effective field of

spin i, and J is now a square and fully asymmetric matrix
with normally distributed entries Ji j ∼ N (0, J2

1 /N ), where the
assumption on the distribution and the scaling of the variance
with N−1 will be necessary in the forthcoming calculations.

Consider observing only a fraction M(t )/N of spins at
each time step, and define G(t ) as the M(t ) × N matrix
mapping the configuration y(t ) into the observed vector
s(t ) ∈ {−1, 1}M(t ). Also define F (t ) as the [N − M(t )] ×
N matrix mapping y(t ) into the unobserved spins vector
σ (t ) ∈ {−1, 1}N−M(t ). We require that both matrices are right-
invertible at all t , and thus they must have full rank, which
implies that observations are not linear combinations of the
underlying variables as our interest is in a partially observed
system rather than a low-dimensional observation of a high-
dimensional system. For the sake of simplicity, we assume
that the entries are either 0 or 1, meaning observation is not
noisy or distorted and the right-inverse matrices will coincide
with the transpose.

In the upcoming calculations, we will use some simpli-
fying custom notation in order to reduce what can be some
cumbersome equations. We will thus denote

∑′
i as the sum

over indices i at time t + 1, while the regular
∑

i indicates a
sum over indices i at time t and

∑−
i is a sum at time t − 1.

Accordingly, we will indicate with si spin i at time t , with s−
i

at time t − 1, and with s′
i at time t + 1, and the same applies

for g, σ , and any other variable. Also, indices i, j, k, l are used
for observed variables, whereas indices a, b, c, d will identify
unobserved variables.

In this notation, the probability mass function is rewritten
as

p[{s′, σ ′}|{s, σ }] = Z−1 exp

[∑
i

′
s′

ig
′
i +
∑

a

′
σ ′

ag′
a

]
. (3)

Defining the matrices Joo(t + 1) = G(t + 1)JGT (t ),
Joh(t + 1) = G(t + 1)JF T (t ), Jho(t + 1) = F (t + 1)JGT (t ),
and Jhh(t + 1) = F (t + 1)JF T (t ), the local fields are

gi =
∑

j

Joo
i j s−

j +
∑

b

Joh
ib σ−

b + hi,

ga =
∑

j

Jho
a j s−

j +
∑

b

Jhh
ab σ−

b + ha, (4)

and the partition function or normalization constant is

Z =
′∏

i,a
2 cosh(g′

i )2 cosh(g′
a).
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The ultimate purpose of this work is to devise an approx-
imate method to obtain the maximum-likelihood estimates
(MLE) for the parameters J, h and the unobserved spins σ .
The likelihood function is just the product through time of
the independent transition probabilities expressed in Eq. (3),
taking the trace over the missing values,

p[{s}] = Trσ

∏
t

p[{s′, σ ′}|{s, σ }]. (5)

To solve the problem, our approach is closely related to the
one developed by Dunn et al. [15], where the authors investi-
gate a system where only a subset of spins is observable. The
extension to our case is presented below.

The trace of Eq. (5) is computationally intractable for large
systems with many hidden variables. However, the Martin-
Siggia-Rose (MSR) path integral formulation [27] allows
one to decouple spins and perform the trace at the cost of
computing a high-dimensional integral. Define the functional

L[ψ] = ln Trσ

∏
t

exp

[∑
a

ψaσa

]
p[{s′, σ ′}|{s, σ }]. (6)

Notice that this is equivalent to the log-likelihood if ψa(t ) = 0
∀a, t , and thus the goal of the calculation will be to efficiently
maximize L[ψ] in the J, h coordinates considering the limit
when ψ → 0. As will become clear in the next steps, the
introduction of these so-called auxiliary fields is necessary
to switch from the unknown values σ to their posterior
expectations m, thus smoothing the log-likelihood function,
eliminating unknown binary variables from its formula. Let

Q[s, σ ] =
∑

t

∑
i

sigi +
∑

t

∑
a

σaga

−
∑

t

∑
i

ln 2 cosh(gi ) −
∑

t

∑
a

ln 2 cosh(ga),

� =
∑

t

∑
i

iĝi

⎡
⎣gi −

∑
j

Joo
i j s−

j −
∑

b

Joh
ib σ−

b − hi

⎤
⎦

+
∑

t

∑
a

iĝa

⎡
⎣ga −

∑
j

Jho
a j s−

j −
∑

b

Jhh
ab σ−

b − ha

⎤
⎦,

where e�, integrated over the ĝ′s, is the integral representation
of the Dirac δ function. Then, one obtains

L[ψ] = ln
∫

DG exp[�], (7)

where G = {gi, ga, ĝi, ĝa}t and

� = ln Trσ exp

[
Q + � +

∑
t

∑
a

ψaσa

]
. (8)

Now the trace can be easily computed since the introduction
of the δ function has decoupled the σ ′s by fixing the value of
the local fields g.

As mentioned, the cost is computing the integral of Eq. (7),
which can be solved via the saddle-point approximation,
where the saddle point is obtained by the extremization of �

with respect to the coordinates in G.

The missing part of the puzzle is the posterior mean
E[σa(t )], for which L acts as the generating functional,

E[σa(t )] = ma(t ) = lim
ψa(t )→0

μa(t ) = lim
ψa(t )→0

∂L
∂ψa(t )

,

where the expectation is performed under the posterior mea-
sure p[{σ }|{s, J, h}].

This zero-order approximation is rather rough; nonethe-
less, the saddle-point method can be solved at higher orders
of approximation.

The second-order (i.e., Gaussian) correction to the saddle-
point solution of the integral in Eq. (7) is

δL = − 1
2 ln det[∇2

GL],

where ∇2
GL is the Hessian matrix in the G space of L evaluated

at the saddle point. The resulting structure of the matrix,
shown in the Appendix for the sake of space, is sparse and
almost block diagonal.

We are interested in the determinant and, in particular, its
logarithm. Dividing the Hessian in the matrices α containing
block-diagonal elements and β containing the rest, we find

ln det(α + β ) = ln det(α) + ln det[I + α−1β]

= ln det(α) + Tr ln[I + α−1β]

≈ ln det(α) + Tr[α−1β]

+ 1
2 Tr{[α−1β]2} + · · · . (9)

Given that α is block diagonal, so will α−1; then, Tr[α−1β] =
0 and we ignore higher-order terms assuming the off-diagonal
part of the Hessian matrix is small compared to the diagonal
one. In our initial assumption, the couplings Ji j are Gaussian
random variables with mean of the order of 1/N and variance
of the order of J2

1 /N , which means ln det(α) is quadratic in
J1 (see the Appendix). The determinant now can be computed
and a weak couplings expansion (i.e., J1 → 0) can be made to
eliminate the logarithm, leading to the final approximate form
of the correction,

δL ≈ − 1

2

∑
t

∑
i

′
{[

1 − tanh2(g′
i )
]∑

b

[
Joh′

ib

]2(
1 − μ2

b

)}

− 1

2

∑
t

∑
a

′
{[

μ′ 2
a − tanh2(g′

a)
]∑

b

[
Jhh′

ab

]2(
1− μ2

b

)}
.

Given the new form of L1 = L0 + δL, we need to recal-
culate the self-consistency relation for ma(t ) and the learning
rule for J . As for ma(t ), we can easily see that it is going to
coincide with ma(t ) = limψa(t )→0 μa(t ) + la(t ), where

la(t ) = ∂ (δL)

∂ψa(t )
. (10)

Implementation of the MSR method has introduced an
explicit dependence of the L functional from the auxiliary
fields ĝ and ψ , which, however, make little sense in terms of
the model itself. Now that we have solved the integral at the
saddle point and in its immediate neighborhood, the auxiliary
fields can be absorbed back into the original variables by
performing a Legendre transform of L, exploiting the fact that
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L is convex and that we would rather have it depend on the
conjugate field of ψ , that is, μ. The transform is


[μ] = L −
∑

t

∑
a

ψa(t )μa(t ) s.t . − ψa(t ) = ∂
[μ]

∂μa(t )
,

(11)

and so we can adopt 
 as the functional to be maximized in
the learning process instead. At zero order, this is easily found
to be


0[μ] =
∑

t

{∑
i

′[
s′

ig
0 ′
i − ln 2 cosh

(
g0 ′

i

)]

+
∑

a

′[
μ′

ag0 ′
a − ln 2 cosh

(
g0 ′

a

)]+
∑

a

S[μa]

}
,

(12)

where S[x] = − 1+x
2 ln( 1+x

2 ) − 1−x
2 ln( 1−x

2 ) is the entropy of an
uncoupled spin with magnetization x. It is relevant to mention
that so far the functional is expressed in terms of μ, while we
have already highlighted that after the Gaussian correction, a
new term l is introduced in the formula for m. However, since
we are restricting to second order in J , the terms containing
l in 
 are all of superior order and are thus negligible in
this approximation; then, 
0[m] ≈ 
0[μ]|μ=m. Performing the
exact same steps on the correction term δL, one finds the
corrected functional,


1[m] = 
0[m] + δL[m].


1 is the functional to be optimized through an expectation-
maximization-like algorithm, recursively computing the self-
consistent magnetizations m given J, h and then climbing the
gradient ∇J,h
1 to obtain a new J matrix and h vector.

Once this approximate log-likelihood is maximized and
the final iteration of the expectation part of the algorithm is
finished, the result is an (approximated) maximum-likelihood
estimate of the couplings as well as a maximum a posteriori
estimate of the hidden spins σ , given by σ̂ (t ) = sign(mt ).

Summarizing, the procedure is the following:

Algorithm

• Initialize J , h, m(t ).
• Until convergence is reached:

− compute the self-consistent magnetizations m(t ),
− compute the gradient ∇J,h
1,
− apply the gradient ascent step, i.e., in our case, Nesterov’s II

method proximal gradient ascent with backtracking line
search.

• Possibly involve lasso �1-norm regularization or pruning
techniques to obtain a sparse model.

III. TESTS ON SYNTHETIC DATA

We perform a series of tests on the algorithm in order
to assess its performance in several diverse conditions of
data availability. We particularly focus on how we select the
observed spins and on the structure of the coupling matrix J
in the data generating model. To construct the G(t ) and F (t )
matrices, we assign to each spin a probability pi of being

observed, meaning that yi(t ) is observed with probability pi

for all t .
We explore how the performance of the inference depends

on the following model specifications:
(1) The average observation frequency, taking the

Bernoulli probabilities pi = p, ∀i = 1, . . . , N .
(2) The heterogeneity of the Bernoulli probabilities pi,

which we choose to be distributed according to a beta distribu-
tion B[a(K ), b(K )], with given mean K and shape parameters
a and b.

(3) The scale J1 of the J entries, which are distributed as
Ji j ∼ N (0, J2

1 /N ).
(4) The structure of the J matrix, specifically whether

the underlying network is fully connected or an Erdős-Rényi
random network of varying density, adopting either the lasso
�1 regularization [28] or the decimation procedure [29] to
select the links.

(5) The asymmetry of the J matrix. One of the key as-
sumptions in the calculation is that Ji j �= Jji and that they
are independent and identically distributed, and we investigate
how far one can violate it up to the case of a symmetric J
matrix.

(6) The dependency on the length of the time series relative
to the number of units involved, T/N , to check the estimate
asymptotic efficiency.

In Test 1, we study the performance of the algorithm in
a very simple setting of missing information, where each
variable has the same probability of being observed and the
generating model is a fully connected kinetic Ising model.
This is intended to study the effect that the average amount
of missing information in the sample has on the inference,
without considering the possibility of having heterogeneous
types of nodes. In this setting, we also introduce a procedure
we call Recursive EM (R-EM): by properly iterating the al-
gorithm multiple times, it allows one to boost data artificially,
thus achieving good performances even when the fraction of
missing values is particularly high.

In Test 2, we explore the possibility that spins have hetero-
geneous observational properties. We sample the {pi} from a
beta distribution, varying parameters to probe different levels
of heterogeneity. The beta distribution allows a range from
a sharply peaked unimodal distribution to a sharply peaked
bimodal distribution, tuning the shape parameters α and β,
while keeping the mean K constant: the former case is a
situation of perfect homogeneity in the frequency of obser-
vations calling back to Test 1, while the latter is the extreme
heterogeneity of having some units that are (almost) always
hidden while the others are (almost) always observed. We
select some intermediate cases to characterize how hetero-
geneity in observation frequency affects the identification of
the model parameters.

Test 3 aims to assess whether there is a minimal interaction
strength to have the inferential process converging and how
the approximations necessary to develop the method impact
the accuracy of the inference. Indeed, while J1 in the physical
model is proportional to the ratio between the strength of
the magnetic coupling interaction and the temperature at
which the system is observed, from a modeling perspective
it is inversely proportional to the impact of the noise on the
dynamics. Given the approximation of Eq. (9), if J1 gets too
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large, the precision with which the parameters are identified
should get worse. We thus expect to find an optimal region
for the inference to be accurate, bounded from below by an
identifiability threshold and from above by the limit of validity
of the expansion.

In Test 4, we pursue the goal of making the methodology
useful for real-world scenarios, where it is highly unlikely that
all spins interact among themselves and the underlying net-
work is probably sparse. We compare the performance of two
well established techniques, the lasso �1 regularization and
the decimation procedure, and explore how these two methods
perform paired with our algorithm by simulating data on a set
of Erdős-Rényi random networks with different densities.

In a similar spirit, in Test 5, we study how the inde-
pendent and identically distributed (i.i.d.) assumption made
in Eq. (9) affects the performance in situations where cou-
pling coefficients are pairwise correlated or even symmet-
ric, a condition we envision to be more realistic in social
and economic environments [30]. We vary the correlation
parameter Cor(Ji j, Jji ) = ρ for i �= j between 0 and 1, with
the symmetric case being also of special interest because the
model transforms into a dynamical form of the Sherrington-
Kirkpatrick model, thus connecting to the extensive literature
on the topic.

Finally, a sanity check is made in Test 6 by looking at the
dependency of performance metrics on the ratio T/N , which is
the ratio between the number of observations and the number
of spins, to characterize the convergence rate of the estimator
towards the true value and its consistency.

We test the algorithm and evaluate the performance mainly
using two metrics, one relative to the reconstruction of the
couplings and one to the reconstruction of missing values:

(1) The root-mean-square error (RMSE) on the elements
of the matrix J , RMSE =

√
〈(Ĵi j − Ji j )2〉i j , suitably rescaled

when comparing experiments with different J1;
(2) the ‘reconstruction efficiency” (RE), namely, the frac-

tion of spins that are correctly guessed among the hid-
den ones averaged throughout the time series or, RE =
〈 1

N−M(t )

∑
a δσ̂a (t ),σa(t )〉t , where σ̂a(t ) is the sign of the self-

consistent magnetization ma(t ) calculated using the inferred
coupling matrix Ĵ .

A. Test 1: Dependency on a homogeneous pi

The algorithm is outstandingly resilient to cases with few
observations available. We simulate a system of N = 100

spins, for T = 10 000 time steps, with Ji j
iid∼ N (0, 1/N ) lying

on a fully connected network, and we give a probability of
observation to each variable pi = p, with p ranging from 0.1
to 0.9. As can be seen from Fig. 1(a), showing the linear
regression coefficient a of Ĵi j = aJi j + c, with one iteration of
the method we get a very reliable result for the couplings for
p � 0.8, although below this value the lack of data reduces the
quality of the estimation and moves the estimates towards 0.
To overcome this issue, we propose the aforementioned R-EM
procedure as a further enhancement of our algorithm: once a
maximum of the approximate likelihood has been reached, a
fraction of hidden spins is substituted with their maximum-
likelihood estimates σ̂a = sign(ma) and the inference is run

FIG. 1. (a) Angular coefficient of the linear fit Ĵi j = aJi j + c
before and after R-EM varying the average observation density p.
(b) Root-mean-squared error on the couplings. (c) Reconstruction
efficiency.

again on the new, artificially boosted data. Since m is propor-
tional to the probability of the spin being up, we choose the
missing values to be substituted at every t as the ones with
the most polarized magnetization, i.e., for which m is closer
to ±1. This artificial boosting on the data shows promising re-
sults since with a few recursions the performance is noticeably
better, even in cases with severe lack of observations, as is
also reflected in Figs. 1(b) and 1(c). We defer a more rigorous
treatment of this recursive method to future work, while still
proposing it here as we find it surprisingly accurate.

Figure 1(c) shows the reconstruction efficiency, which gets
worse almost linearly as the number of observations decreases
and on which the R-EM has a smaller effect, albeit still being
a clear improvement. It is evident from all panels that when a
large fraction of data is missing (p � 0.2), the inference fails
to identify any of the parameters and the model is no better
than a coin flip at reconstructing configurations.

In the following paragraphs, we will always show results
obtained with the R-EM procedure, as the performance is
typically better or not significantly different from the single-
iteration method.

B. Test 2: Heterogeneous pi

In Test 2, we want to highlight how our model is a
generalization of the one studied extensively by Dunn et al.
[15] and to characterize the impact of heterogeneity on the
inference performance. To give a better comparison with the
aforementioned paper, we realize simulations morphing from
our initial specification of pi = p ∀i, studied in Test 1, to a
case very close to the one of Dunn et al. where pi ∈ {0, 1},
that is, some variables are always observed and some are
always hidden. We choose to take the probabilities distributed
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FIG. 2. (a) Reconstruction efficiency as a function of K with
different beta parameters. Inset: the probability density function of
the adopted beta distributions with K = 0.5 (color coding is the same
as in the main panel). (b) Root-mean-square error on the couplings
as a function of K with different beta parameters.

according to a beta distribution, pi ∼ B(a(K ), b(K )), giving
us the possibility of leaving the average number of obser-
vations constant while skewing the distribution between a
fully bimodal small b(K ) and a sharp quasi-δ function large
b(K ). We choose the parameters a and b such that the mean
E[pi] = K is constant, so that different tests can be compared
and the role of heterogeneity is highlighted. This binds the
values of a and b through a = Kb

1−K .
The results of Fig. 2 clearly show that when the distribution

is bimodal, that is, when some variables are very rarely
observed, the performance of the algorithm is worse. With
a sample size of T = 104 and N = 40, the Dunn et al. [15]
model approximated by B[a(K ), 0.1] is identified with rea-
sonable performance only when K � 0.8. This is extremely
mitigated when the observations are more homogeneously
distributed, particularly in the case of the coupling coefficients
whose estimation seems to require a rather homogeneous
distribution of observations among variables in order to be
reliable. On the other hand, the reconstruction efficiency is far
less demanding in terms of data quality and a reasonable per-
formance is achieved even with sparse data and heterogeneous
observations.

In Fig. 3, we plot the root-mean-square error on couplings
conditional on the probability of subsequently observing the
spins at their ends. This probability is simply given by pi j =
pi p j since observations are independently sampled, and the
RMSE is

RMSE(p) =
√

〈(Ĵi j − Ji j )2〉pi j=p,

where the mean is taken on links that have (close to) the same
joint observation probability. The plots highlight how for pairs
with less frequent joint observations the precision of the fit
is significantly worse; however, it is also clear that the error
grows for the more frequently observed couplings too. This is
partially mitigated when one looks at the linear fit between the
inferred J ′s and the true ones, meaning that the error is mostly
affected by the variance component rather than the bias one.

The overall effect of heterogeneity is thus a decrease in the
quality of the inference, with a stronger effect on couplings
that are between the least observed pairs of spins and an
important loss in accuracy, but with a bias component that is
mitigated for the most frequently observed pairs.

FIG. 3. Quality of inference varying the probability of observing
the end nodes at subsequent times. (a) RMSE for different values of
the beta b parameter with mean K = 0.7. (b) Linear fit coefficient for
different values of the b parameter, K = 0.7.

C. Test 3: Dependency on J1

So far, we have dealt with elements of J drawn i.i.d. from
a N (0, 1/N ) distribution. We want to relax this hypothesis
and, while changing the mean value of the distribution would
not be particularly meaningful in that it would just shift
the correlation patterns between variables, it makes sense
to investigate the behavior as one changes the variance and
thus the strength of the interactions. While there is no phase
transition in the underlying model as long as the Ji j are i.i.d.,
we want to check how weak the couplings can be in order to
be correctly inferred and give a reliable reconstruction of the
data. In other words, we are trying to identify a threshold in
the interaction strength below which the algorithm is unable
to converge.

We report results for an experiment with N = 100, T =
10 000, pi = p = 0.8, and J1 ranging from 0.05 to 13. We
see from Fig. 4 that increasing the typical size of couplings
positively affects the quality of the inference, as should be
expected since the dynamics is less affected by randomness.
In Fig. 4(a), we plot the reconstruction efficiency which has
a steady increase and saturates towards 1 after J1 
 5. Fig-
ure 4(b) shows the relative RMSE, that is RMSE/J1, and we

FIG. 4. (a) Reconstruction efficiency as a function of J1.
(b) Rescaled RMSE (by J1) on the couplings as a function of J1.
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see that it drops below 5% for J1 > 0.5. It is rather surprising
to see how, regardless of the small couplings expansion we
utilize in Eq. (9), the algorithm seems to work efficiently, even
in cases where the variance of the couplings J2

1 /N is of the
order of 1, albeit a region of optimality for the inference of
the couplings seems to lie within 0.5 � J1 � 7.

D. Test 4: Impact of network structure

We test the algorithm performance on a more realistic
network structure than the fully connected one. It is indeed
known that real networks, and particularly social networks,
are typically sparse and thus network models have to im-
plement some pruning mechanism permitting one to dis-
criminate between noise, spurious correlations, and actual
causal relations. We generate our data simulating the kinetic
Ising model on one of the simplest random network models,
the Erdős-Rényi model, with edges that have weights Ji j

normally distributed with variance 1/N , N = 100 and T =
10 000, and with a probability of observing the variables of
p∈ {0.8, 0.6, 0.4}. One then needs to adjust the algorithm to
give sparse solutions, as the mean field approximation will
tend to return fully connected J matrices. The adjustments we
make are the lasso regularization and the decimation proce-
dure of Decelle et al. [29]. The first is the well known �1-norm
regularization of the objective function, which projects the
maximum-likelihood fully connected solution on a symplex
of dimensions determined by a free parameter λ (which has to
be validated out of sample).

The second is a recently proposed technique that selects
parameters starting to decimate them from the least significant
ones and repeating the process until a so-called tilted
log-likelihood function shows a discontinuity in the first
derivative.

To briefly describe the procedure, call Lmax the value
of the log-likelihood provided by the maximum-likelihood
algorithm without any constraint, and then call x the fraction
of parameters Ji j that are being set to 0. Finally, call L(x) the
log-likelihood of the model with the fraction x of decimated
parameters and L1 the log-likelihood of a model with no
couplings, that is, in the case hi = 0 ∀ i, L1 = −∑t M(t ) ln.
The tilted log-likelihood takes the form

Ltilted(x) = L(x) − [(1 − x)Lmax + xL1],

that is, the difference between a convex combination of the
original log-likelihood with the log-likelihood of a system
with no parameters and the log-likelihood of the decimated
model. This function is strictly positive and is 0 only for
x = 0, 1, since L(0) = Lmax and L(1) = L1, and thus there
has to be a maximum. The decimation process thus consists in
gradually increasing the fraction of pruned parameters x until
the maximum of the tilted log-likelihood is found, giving the
optimal set of parameters of the model.

We show, in Figs. 5 and 6, the results of the test. We
observe how the Receiver Operating Characteristic (ROC)
curves seem to lean strongly in favor of the decimation
approach, which tends to score perfectly on the false-positives
ratio (FPR)–true-negatives ratio (TNR) plane. However, the
maximum of the tilted likelihood does not always correspond
to the optimal score in the ROC diagram, both in the case of

FIG. 5. (a),(b) Results from the lasso with 80% observations:
(a) RMSE on couplings as a function of the lasso parameter; (b) ROC
curves. (c),(d) Results from the decimation procedure with 80%
observations: (c) Tilted likelihood evolution through the decimation
process, where vertical lines show the correct number of null ele-
ments; (d) ROC curves through the decimation process with different
network densities. The circle identifies the point at which the tilted
likelihood is maximized.

a nonsparse network and when the data have a large number
of missing values. While the former case is not particularly
interesting in that a dense network model fitted on real data
would be prone to overfitting and of disputable use, the
latter is much more of a concern, albeit the process is still
surprisingly efficient even when data is extremely sparse.

Even if the decimation procedure is consistently outper-
forming the lasso, there is reason to still hold the �1 regular-
ization as a viable option. Indeed, when one introduces local
fields h of non-negligible entity, the decimation procedure
is no longer reliable in that the tilted likelihood becomes
nonconvex, as shown in Fig. 6, and the maximum is not in
the correct position. This is due to the underestimation of the
h parameters during the log-likelihood maximization of the
fully connected model, where part of the role of the local fields
is absorbed in couplings that should be pruned. However,
these couplings are still relevant to the model since they
compensate for the underestimated h parameters, giving the
tilted likelihood a nonconvex form and shifting its maximum
towards a more dense network model. This situation does not
occur with the lasso regularization as the pruning is performed
at the same time as the maximization, giving the lasso the
advantage of a much more reliable fit of the local fields, albeit
with an overall worse performance in the inference of the
nonzero couplings.

E. Test 5: Impact of asymmetricity assumption

Another assumption we made to perform the calculations
in Eq. (9) was that the Ji j are i.i.d. Gaussian random variables.
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FIG. 6. (a),(b) Results from the decimation procedure with 80%,
60%, and 40% observations available and a network density of 0.05:
(a) Tilted likelihood evolution through the decimation, where the
vertical line shows the correct number of null elements; (b) ROC
curves through the decimation process with different observation
densities. (c),(d) Results from the decimation introducing local fields
h: (c) Tilted likelihood, where the vertical lines show the correct
number of null elements; (d) ROC curves. The introduction of local
fields makes the tilted likelihood nonconvex and seriously affects the
performance.

In the case of social networks and trade networks, reciprocity,
which is the correlation between Ji j and Jji, is often found
to be much higher than what would be expected in an i.i.d.
setting [30]. We ask ourselves how impactful this assumption
is on the outcome of the inference and we test the algorithm
on data generated from a model with N = 100, T = 10 000,
pi = p = 0.8, J1 = 1 and such that Cor(Ji j, Jji ) = ρ, i �= j.
We show the results for this series of tests in Fig. 7. What
we find is that the ρ parameter barely affects the perfor-
mance and even makes it easier to infer the hidden variables,

FIG. 7. (a) Reconstruction efficiency varying the correlation be-
tween symmetric elements of J . (b) RMSE on the couplings.

FIG. 8. (a) Reconstruction efficiency as a function of J1 in the
SK model. (b) Rescaled RMSE on couplings as a function of J1.

albeit marginally. Indeed, we only used the assumption to
approximate the determinant of the Hessian in the second-
order correction to the saddle-point solution, and letting the
couplings not be reciprocally independent should affect the
approximation slightly by having some elements of J2 that
vanish slower than others in the sums. It is possible that
having a large enough N facilitates the inference then, since
the amount of those slowly vanishing terms grows with N ,
while the number of entries of J grows with N2. We then
turn our attention to the extreme case of ρ = 1, corresponding
to the well-known Sherrington-Kirkpatrick (SK) model [31],
one of the first and most studied spin glass models in the
literature. The SK model has the peculiarity of undergoing a
phase transition at J1 = 2 in our notation for the Hamiltonian
(since we have not included a factor 1/2 to remove double
counting), where for J1 > 2 the spin glass phase arises and
multiple equilibrium states appear such that the model is no
longer easy to infer. It is thus interesting to see whether
this affects the inference from dynamical configurations and
how the identifiability transition is reached. We perform the
experiment of varying J1 in this framework and show the
results in Fig. 8. We find the expected increase in rescaled
error (that is, RMSE/J1) marking the transition, surrounded
by a finite-size scaling noisy region, while the reconstruction
efficiency of the configurations remains very good. This fits
in the narrative of the phase transition of the SK model
since in the spin glass phase an equilibrium configuration of
the model can be generated by multiple—and, in principle,
indistinguishable—choices of parameters which we indeed
struggle to identify with our methodology.

F. Test 6: Sample size and convergence

We finally devolve our attention to the convergence prop-
erties of our estimator and how they are affected by finite
sample sizes. The relevant parameter to be varied is the ratio
between the length of the time series T and the number of
units that are modeled, N . We run simulations with N = 100,
J1 = 1, pi = p = 0.8 and varying T between 100 and 25 000,
and report the results in Fig. 9. It can be seen that the RMSE
on Ji j diminishes, after T/N = 20, with what might look like
a power-law behavior with exponent close to 0.5, although we
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FIG. 9. (a) Reconstruction efficiency as a function of the T/N
ratio. (b) RMSE as a function of the T/N ratio. The area in green is
one standard deviation from the mean over 30 repetitions.

do not provide an exact law for the convergence. The RMSE is
below 5% of J1 when T/N is larger than 20 and is steadily con-
verging towards 0. Regarding the reconstruction efficiency, we
see that it saturates quickly towards 90% and then it keeps
increasing towards 100%. This evidence is a heuristic proof
that the estimator is converging and is important to estimate
how reliable a result might be, given the T/N ratio of the data.
Although a more rigorous law would be much more appealing
for the task, it would require being able to write the posterior
of J, σ given s, which to the best of our knowledge is not a
feasible calculation in this setting.

G. Additional parameters: Exogenous drivers

The model can be easily extended to a version in which
an exogenous driver (or multiple ones), observed at all times,
affects the dynamics of the variables. In a financial setting,
the first external driver would be given by the log-returns rt

and the associated parameter would be the typical reaction
of a trader to price changes, typically categorized between
contrarians and chartists, i.e., whether they go “against” the
flow (i.e., sell when the price rises and vice versa) or follow
the trend. In the model, this is introduced by adding a set of
linear parameters β in the local fields that couple the variables
to the driver,

gk (t ) =
∑

l

yl (t ) + hk + βkrt .

The introduction of the parameter does not complicate the
inference process at all and is particularly important if one
wants to use the model to describe and possibly forecast order
flows in financial markets. We omit the results for this section

for the sake of space and because no significant dependency
on the size of the βk parameters is found for our performance
metrics.

IV. CONCLUSIONS

In this article, we develop a methodology to perform
inference of kinetic Ising models on datasets with missing
observations. We successfully adapt a known approximation
from the mean-field literature to the presence of missing
values in the sample and devise several performance tests
to characterize the algorithm and show its potential. We
also propose a recursive methodology, R-EM, that gradually
reconstructs the dataset with inferred quantities and tries to
refine the inference, and show its efficacy on synthetic data.

The main results are that it is indeed possible to infer
kinetic Ising models from incomplete datasets and that our
procedure is resilient to noise, heterogeneity in the nature
of data and in the frequency of missing values, and overall
quantity of missing data. We make the algorithm ready for
real-world applications by implementing pruning techniques
in the form of lasso and decimation, and give a brief overview
of what we think are the better uses for each.

The methodology lends itself to applications on many
diverse datasets, but our main focus for future research will be
on opinion spreading in financial markets where transactions
occur at high frequency, such as the foreign exchange or the
cryptocurrency markets. We indeed envision that our algo-
rithm can identify significant structures of lagged correlations
between traders, that in turn can be mapped to a network
of lead-lag relations. Such a network would be particularly
useful to get a quantitative picture of how possible speculative
or irrational price movements can occur due to voluntary
or involuntary coordination between traders and to devise
appropriate strategies to counteract them.
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APPENDIX A: ZERO-ORDER SADDLE-POINT
APPROXIMATION

We start from Eq. (8) in the main text, where we have
introduced the Dirac δ function to obtain a functional form
of L for which the trace can be calculated. The result is the
functional � of Eq. (8), which, once the trace is done, reads

� =
∑

t

⎧⎨
⎩
∑

i

[sigi − ln cosh(gi )] −
∑

a

ln cosh(ga) +
∑

i

iĝi

⎡
⎣gi −

∑
j

Joo
i j s−

j − hi

⎤
⎦

+
∑

a

iĝa

⎡
⎣ga −

∑
j

Jho
a j s−

j − ha

⎤
⎦+

∑
a

ln cosh

[
g−

a −
∑

i

iĝiJ
oh
ia −

∑
b

iĝbJhh
ba + ψ−

a

]⎫⎬
⎭.
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This is the function to be extremized to find the saddle point
around which the integral is to be computed. Setting ∇G� = 0
gives

g0
i = hi +

∑
j

−
Joo

i j s−
j +

∑
a

−
Joh

ia m−
a ,

g0
a = ha +

∑
j

−
Jho

a j s−
j +

∑
b

−
Jhh

ab m−
a ,

iĝ0
i = tanh(gi ) − si,

iĝ0
a = tanh(ga) − ma,

which, substituted in �, give the zero-order solution to the
saddle-point integral. The other ingredient is the vector of
magnetizations m which, as stated in the main text, is obtained
by exploiting the property of L being the moment generating
functional for σ . Thus, we find

lim
ψa→0

∂L
∂ψa

= ma = tanh

[
g0

a −
∑

i

′
iĝ0′

i Joh
ia −

∑
b

′
iĝ0′

b Jhh
ba

]
.

APPENDIX B: SECOND-ORDER SADDLE-POINT
APPROXIMATION

The second-order approximation requires the calculation
of the determinant of the Hessian of the log-likelihood, ∇2

GL,
taken at the saddle-point coordinates. This is a forbidding task
to tackle numerically since the matrix has (4NT )2 elements,
but, with a few algebraic manipulations, the computations

become feasible. The Hessian matrix elements can be sum-
marized in the following submatrices Att ′

, . . . , Gtt ′
, given by

∂2�

∂gi(t )∂g j (t ′)
= Att ′

i j = −δi jδtt ′
{
1 − tanh2 [g0

i (t )
]}

,

∂2�

∂ ĝi(t )∂ ĝ j (t ′)
= Btt ′

i j = −δtt ′
∑

a

−
Joh

ia (t )Joh
ja (t )

[
1 − μ2

a(t − 1)
]
,

∂2�

∂ga(t )∂gb(t ′)
=Ctt ′

ab = −δabδtt ′
{
μ2

a(t ) − tanh2 [g0
a(t )
]}

,

∂2�

∂ ĝa(t )∂ ĝb(t ′)
= Dtt ′

ab = −δtt ′
∑

c

−
Jhh

ac (t )Jhh
bc (t )

[
1 − μ2

c (t − 1)
]
,

∂2�

∂ ĝi(t )∂ ĝb(t ′)
= Ett ′

ib = −δtt ′
∑

a

−
Joh

ia (t )Jhh
ba (t )

[
1 − μ2

a(t − 1)
]
,

∂2�

∂ ĝi(t )∂gb(t ′)
= Ftt ′

ib = −iδt−1,t ′Joh
ib (t )

[
1 − μ2

b(t − 1)
]
,

∂2�

∂ga(t )∂ ĝb(t ′)
= δabδtt ′ + Gtt ′

ab = δabδtt ′ − iδt+1,t ′

× Jhh
ba (t + 1)

[
1 − μ2

a(t )
]
,

∂2�

∂gi(t )∂ ĝ j (t ′)
= δi jδtt ′ ,

∂2�

∂gi(t )∂gb(t ′)
= ∂2�

∂gi(t )∂ ĝb(t ′)
= 0 ∀ t, t ′, i, b,

and in matrix form it has the following almost block-diagonal
form (we show the submatrix for times t, t + 1):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Att iI 0 0 0 0 0 0
iI Btt 0 Ett 0 0 0 0
0 0 Ctt iI 0 [Ft+1,t ]T 0 Gt,t+1

0 [Ett ]T iI Dtt 0 0 0 0

0 0 0 0 At+1,t+1 iI 0 0
0 0 Ft+1,t 0 iI Bt+1,t+1 0 Et+1,t+1

0 0 0 0 0 0 Ct+1,t+1 iI
0 0 [Gt,t+1]T 0 0 [Et+1,t+1]T iI Dt+1,t+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is thus clear that the determinant of this matrix, under the approximation in Eq. (9) of the main text, is

det
[∇2

GL
] ≈

∏
t

(det Att det Btt + I)(det Ctt det Dtt + I),

which leads to the form of the correction reported in the main text.
As mentioned in Eq. (10) in the main text, introducing the Gaussian correction shifts the magnetizations by a quantity

la(t ) = ∂ (δL)

∂ψa(t )

= μa(1 − μ2
a)

(∑
i

′{[
1 − tanh2(g′

i )
][

Joh′
ia

]2})

+ μa(1 − μ2
a)

{∑
b

′[
Jhh

ab

]2
(1 − μ− 2

b ) +
∑

b

′[
μ′ 2

b − tanh2(g′
b)
][

Jhh′
ba

]2}
.
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Thus we rewrite both 
0 and δL, substituting μa(t )|ψa(t )=0 = ma(t ) − la(t )|ψa(t )=0 in the functional and in the saddle-point
solutions for g, and obtain


0[m] =
∑

t

{∑
i

′[
s′

ig
′
i − ln cosh(g′

i )
]+

∑
a

′[
m′

ag′
a − ln cosh(g′

a)
]+

∑
a

S[ma]

−
∑

i

′[
s′

i − tanh(g′
i )
]∑

a

Joh ′
ia la −

∑
a

′[
m′

a − tanh(g′
a)
]∑

b

Jhh ′
ab lb −

∑
a

′
l ′
a

[
g′

a −
∑

b

Jhh ′
ab lb

]
+
∑

a

la tanh−1(ma)

}
,

where, in this last formula, g(t ) have become the fields of Eq. (4) in the main text with m in place of σ . Given this last expression,
it can be seen that since la(t ) is already quadratic in J and always multiplies an object of the order of one, all terms involving
la(t ) are higher order and can be neglected in the current approximation.

Skipping to Eq. (12) in the main text and adding the Gaussian correction to the 
0 functional, we obtain the final form of the
approximated log-likelihood to be maximized,


1[m] = 
0[m] − 1

2

∑
t

∑
i

′
{

[1 − tanh2(g′
i )]
∑

b

[
Joh ′

ib

]2(
1 − m2

b

)}

− 1

2

∑
t

∑
a

′
{[

m2 ′
a − tanh2(g′

a)
]∑

b

[
Jhh ′

ab

]2(
1 − m2

b

)}
.

The final result is the formulas necessary for the EM-like algorithm, namely, the log-likelihood gradient and the self-consistent
relations for the magnetizations. The first takes the form

∂
1

∂Jkl
=
∑

t

(∑
i

′
{

∂g′
i

∂Jkl

[
s′

i − tanh(g′
i )
]}+

∑
a

′
{

∂g′
a

∂Jkl

[
m′

a − tanh(g′
a)
]}+

∑
i

′
[

tanh(g′
i )

cosh2(g′
i )

∂g′
i

∂Jkl

∑
bmn

G′
imJ2

mnF T
nb

(
1 − m2

b

)]

+
∑

i

′
{

−[1 − tanh2(g′
i )
]∑

b

G′
ikJkl F

T
lb

(
1 − m2

b

)}+
∑

a

′
[

tanh(g′
a)

cosh2(g′
a)

∂g′
a

∂Jkl

∑
bmn

F ′
amJ2

mnF T
nb

(
1 − m2

b

)]

+
∑

a

′
{

−[m2 ′
a − tanh2(g′

a)
]∑

b

F ′
akJkl F

T
lb

(
1 − m2

b

)})
,

where the fields g and their derivatives are given by

g′
i =
∑

j

∑
kl

G′
ikJkl G

T
l js j +

∑
b

∑
kl

G′
ikJkl F

T
lb mb + hi,

g′
a =

∑
j

∑
kl

F ′
akJkl G

T
l js j +

∑
b

∑
kl

F ′
akJkl F

T
lb mb + ha,

∂g′
i

∂Jkl
=
∑

j

G′
ikGT

l js j +
∑

b

G′
ikF T

lb mb,

∂g′
a

∂Jkl
=
∑

j

F ′
akGT

l js j +
∑

b

F ′
akF T

lb mb.

The self-consistency equations for the magnetizations m are then obtained by imposing ∂
1/∂ma(t ) = 0, finding

ma = tanh

(
ga + ma

{∑
i

′
[1 − tanh2(g′

i )]
∑

kl

G′
ikJ2

kl F
T

la +
∑

b

′[
m2 ′

b − tanh2(g′
b)
]∑

kl

F ′
bkJ2

kl F
T

la
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c
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ikJkl F

T
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+
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m′
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b)
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bkJkl F

T
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∑
i
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ioJoqF T
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T
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+
∑
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∑
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coJoqF T
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(
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T
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⎞
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