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Autophagy protein NRBF2 has reduced
expression in Alzheimer’s brains and
modulates memory and amyloid-beta
homeostasis in mice
Véronik Lachance1, Qian Wang1,2, Eric Sweet1,3,4, Insup Choi1, Cui-Zan Cai5, Xu-Xu Zhuang5, Yuanxi Zhang1,
Jessica Li Jiang1, Robert D. Blitzer3, Ozlem Bozdagi-Gunal6,7, Bin Zhang2, Jia-Hong Lu5* and Zhenyu Yue1*

Abstract

Background: Dysfunctional autophagy is implicated in Alzheimer’s Disease (AD) pathogenesis. The alterations in
the expression of many autophagy related genes (ATGs) have been reported in AD brains; however, the disparity of
the changes confounds the role of autophagy in AD.

Methods: To further understand the autophagy alteration in AD brains, we analyzed transcriptomic (RNAseq)
datasets of several brain regions (BA10, BA22, BA36 and BA44 in 223 patients compared to 59 healthy controls) and
measured the expression of 130 ATGs. We used autophagy-deficient mouse models to assess the impact of the
identified ATGs depletion on memory, autophagic activity and amyloid-β (Aβ) production.
Results: We observed significant downregulation of multiple components of two autophagy kinase complexes
BECN1-PIK3C3 and ULK1/2-FIP200 specifically in the parahippocampal gyrus (BA36). Most importantly, we
demonstrated that deletion of NRBF2, a component of the BECN1-PIK3C3 complex, which also associates with
ULK1/2-FIP200 complex, impairs memory in mice, alters long-term potentiation (LTP), reduces autophagy in mouse
hippocampus, and promotes Aβ accumulation. Furthermore, AAV-mediated NRBF2 overexpression in the
hippocampus not only rescues the impaired autophagy and memory deficits in NRBF2-depleted mice, but also
reduces β-amyloid levels and improves memory in an AD mouse model.

Conclusions: Our data not only implicates NRBF2 deficiency as a risk factor for cognitive impairment associated
with AD, but also support the idea of NRBF2 as a potential therapeutic target for AD.

Background
Alzheimer’s disease (AD) is the leading cause of
dementia affecting our elders and the seventh cause of
death worldwide. While genetic variants contribute to a
subset of AD cases, aging persist to be the primary risk
factor for AD. In addition, the pathological hallmarks
of AD are the excessive β-amyloid deposits (Aβ) and
intraneuronal neurofibrillary tangles containing
hyperphosphorylated-tau (pTau) [1–3]. The aberrant

accumulation of Aβ and pTau suggests a failure of pro-
tein handling system during the course of the disease.
In fact, loss of the proteostasis network — including
the autophagy pathway — is implicated in the patho-
genesis of AD [4–8].
Over the past decades, many studies have documented

the dysregulation of autophagy in AD postmortem
brains and experimental models. Early ultrastructural
analysis of AD brains showed accumulation of autopha-
gic vacuoles (AVs) in dystrophic neurites [9] and exam-
ination of autophagy pathway showed upregulation of
mTOR activity, a negative regulator of autophagy signal-
ing [10], and reduced expression of Beclin 1, a core
component of class III PI3-kinase (PIK3C3) that controls
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autophagy initiation [11], therefore suggesting that
autophagy is impaired in AD. However, a genome-wide
analysis indicated a transcriptional upregulation of
autophagy in entorhinal cortex of AD patients [12], and
others reported hyperactivation of AMPK, a positive
autophagy signaling kinase, thus supporting an enhanced
autophagic activity in AD [13–15]. A recent finding
showed that hippocampal neurons isolated from AD
subjects contained greater expression of genes or pro-
teins related to autophagosomes and lysosomes biogen-
esis. However, the same study suggests an impediment
of autophagy flux despite the enhanced autophagy bio-
genesis [16]. Thus, the available evidence for autophagy
alteration in AD appears conflicting, obscuring the role
of autophagy in the disease’s onset and progression. It is
conceivable that multiple factors may contribute to the
discrepancies in these results, such as the small sample
size, the disease stages, the distinct brain regions and the
ATGs examined. Hence, studies with increased sample
size and improved approaches are necessary to compre-
hend the precise function of autophagy in AD. Herein,
we examined the expression of over 100 autophagy re-
lated (ATG) genes in multiple brain regions from more
than 200 AD postmortem brains. Our analysis revealed
significant downregulation of genes encoding autophagy
kinase complexes in the parahippocampal gyrus and
hippocampus. Our data suggest that loss of NRBF2 func-
tions in the hippocampus impairs memory in mice and
may contribute to the cognitive impairment associated
with AD. Our study also supports NRBF2 as a potential
therapeutic target.

Methods
Bioinformatics analysis
A list of 130 core ATGs was manually curated based on lit-
erature reviews [17, 18] and public database (www.tanpaku.
org/autophagy/) [19]. Expression of these genes was exam-
ined at the mRNA level in multiple brain regions of healthy
control and AD patient samples from the Mount Sinai Brain
Bank https://www.synapse.org/#!Synapse:syn3157743) [20].
Differential gene analysis was performed using Bioconductor
R Limma Package [21] with Benjamini-Hochberg correction
for multiple testing. Spearman correlation analysis was per-
formed to examine the relationship between ATG expres-
sion and CDR score. Adjusted p value< 0.05 was considered
statistically significant.

Animals
Subjects were housed in groups of two to five. Food and
water were supplied ad libitum in an animal facility with
a regular 12 h light/dark cycle (light on at 7:00 A.M.).
Tails were cut and ears were notched when pups were
7–14 days for genotyping and identification purposes re-
spectively. NRBF2-KO mouse genotyping was performed

as mentioned in [22] and the standard protocol of Jack-
son Laboratory was used for the 5XFAD mouse genotyp-
ing (stock number 008730). Mice were weaned at 21
days. Unless mentioned, mice used in this study were
from three different cohorts, aged around 3–4months.
For all test conditions, the male:female ratio was ~ 1:1
and compare to WT littermate controls.

Reagents
NuPAGE® MOPS SDS Running Buffer (20X), (#NP0
001–02), NuPAGE® MES SDS Running Buffer (20X),
(#NP0002–02), NuPAGE™ 4–12% Bis-Tris Protein Gels,
1.0 mmX15well, (#NP0323BOX), NuPAGE™ 4–12% Bis-
Tris Protein Gels, 1.0 mmX26well, (#WG1403BOX) and
PierceTM BCA Protein Assay Kit (#23225) and ProLong
Diamond antifade mountant with or without DAPI
(#P36962 or #P36961) were from Thermo Scientific.
Western Lightning Plus ECL (#NEL105001EA) was from
PerkinElmer. Immobilon®-FL Transfer membrane 0.45
um, Polyvinylidene Difluoride (PVDF) membrane (#ISE
Q00010) was from Merck Millipore. HyBlot CL films
(#E3012) were from Denville Scientific, Inc. Non-fat dry
milk (#M0841) was from Lab Scientific. Protease and
Phosphatase inhibitors tablets (#88669) were from
Thermo Scientific. Dynabeads Protein G was from
Novex (Life Technologies, #10004D). Ponceau S Solu-
tion (#P7170) was from Sigma-Aldrich. OCT compound
(#23–730-571) and microscope slides (# 12–550-15)
were from Fisher Scientific. Liquid blocker pap pen
(#71310) was from Electron Microscopy Sciences (EMS).

Antibodies
Immunoblotting
AMPKα (D5A2) Rabbit mAb (#5831, 1:1000), phospho-
AMPKα (Thr172) (40H9) Rabbit mAb (#2535, 1:500), Rap-
tor (24C12) Rabbit mAb (#2280, 1:500), phospho-Raptor
(Ser792) Rabbit polyclonal antibody (pAb) (#2083, 1:500),
mTOR (7C10) Rabbit mAb (#2983, 1:500), phospho-
mTOR (Ser2481) Rabbit pAb (#2974, 1:500), 4E-BP1
(#9452, 1:500), phospho-4E-BP1 (Thr37/46) (236B4) Rabbit
mAb (#2855, 1:1000), ULK1 (D8H5) Rabbit mAb (#8054, 1:
500), FIP200 (D10D11) Rabbit mAb (#12436, 1:250), LC3B
Rabbit pAb (#2775, 1:1000) and Rabbit (DA1E) mAb IgG
XP® Isotype Control (#3900) were from Cell Signaling
Technology. Goat anti-Rabbit IgG-HRP pAb (sc-2004, 1:
1000) were from Santa Cruz Biotechnology, Inc. NRBF2
Rabbit pAb (A301-851A) was from Bethyl Laboratories,
Inc. P62 Guinea pig pAb (#GP62-C, 1:4000) was from
PROGEN. P62 Guinea pig pAb (PM066, 1:4000) was from
Medical and Biological Laboratories Co., LTD. (MBL). Goat
anti-Mouse IgG-HRP (#A28177, 1:1000), goat anti-Guinea
Pig IgG-HRP (#A18775, 1:1000) antibodies were from
Thermo Scientific. PSD95 (6G6-1C9) mAb (#MA1–045, 1:
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1000) was from Thermo Scientific. VAMP2 Rabbit pAb
(#104202, 1:5000) was from Synaptic Systems.

Immunohistochemistry
Phophos- AMPKα (Thr172) Rabbit pAb (#AP0432, 1:200
IHC) was from ABclonal Technology. β-Amyloid (D54D2)
Rabbit monoclonal antibody (mAb) (#8243, 1:500) and
cleaved Caspase-3 (Asp175) Rabbit pAb (#9661, 1:100)
were from Cell Signaling Technology. Goat anti-Rabbit
IgG-Alx647 (#A21246, 1:500) antibody was from Thermo
Scientific.

Perfusion and Cryo-sectioning
Mice were transcardially perfused with 25–30ml (6–7
ml/min.) of ice-cold PBS 1X to remove excess blood,
then perfused with 25–30ml of ice-cold 4% paraformal-
dehyde. After perfusion, the brain was removed from the
skull and fixed overnight at 4 °C in 15ml falcon tube
filled with 4% PFA. The next morning, the brain were
washed 3x with 15ml of ice-cold PBS 1X and incubate
with 15ml of 30% sucrose solution for at least 24 h or
up until the brain has sunk at the bottom of the tube.
Left and right sagittal hemisphere were divided, embedded
in OCT compound, gradually froze in liquid nitrogen, and
stored at − 80 °C. Cryo-sectioning was performed using
Leica CM3050 S cryostat. 40 μm sagittal sections were con-
served at − 20 °C in anti-freezing medium (25% glycerol,
30% ethylene glycol, 50mM phosphate buffer pH 7.4).

Heat-induced epitope retrieval
The protocol used is based on the following reference
[23]. Briefly, sections were wash 3 × 10 min. With 500 μl
PBS 1X at RT on microscope slides and allowed to dry
for 20–30 min. in the dark. Next, we incubate the slides
in pre-warmed citrate buffer (10 mM Sodium Citrate
dihydrate pH 6.0, 0.05% Tween 20) in a water bath
heated at 65 °C for 45 min. After incubation, slides were
washed 3 × 10 min. at RT with PBS 1X while shaking. A
final wash was executed for 10 min. at room temperature
(RT) with PBS 1X containing 0.1% Triton-X-100.

Immunofluorescence and confocal imaging
Brain sections were encircled with liquid blocker pap
pen and blocked with 150 μl/section PBS containing 5%
goat serum and 0.1% Triton X-100 for 1 h at RT. Sec-
tions were incubated in a humid chamber with 100 μl of
primary antibody diluted in blocking buffer overnight at
4 °C. After washing 3 × 10 min. With 150 μl PBS, sections
were incubated with 100 μl Alexa-conjugated secondary
antibody for 1 h at RT. After 4 washes with PBS, sections
were mounted with ProLong Diamond antifade reagent.
Sections were examined under Carl Zeiss upright con-
focal microscope (LSM780 system). Images were taken
sequentially with 40X oil immersion objective lens at

RT. Single or tile scan acquisitions were performed by
Zen2012 software.

Confocal image analysis
Basic Intensity Quantification was performed with Image
J. RGB pictures were converted into single 16-bit gray-
scale images. A duplicate of the grayscale picture was
generated and further processed into a binary picture.
The background was subtracted with the rolling ball (ra-
dius of 50.0 pixels) tool with light background and slid-
ing paraboloid options selected. The threshold was
finally adjusted to highlight all the structures having
signal. Next, we calibrated the scale, set the measure-
ments, and redirect it to the original grayscale image.
The particles were analyzed and stated as mean gray in-
tensity over the total area (μm2). We finally normalized
these data to the WT mean values and reported the fold
change.

Tissue homogenization
Once the tissue harvested and flash frozen, 400 μl of
homogenization buffer (0.32M sucrose, 1 mM NaHCO3,
20 mM HEPES, 0.25 mM CaCl2, 1 mM MgCl2 and prote-
ase/phosphatase inhibitors) were added to 0.1 g of tissue
and homogenized with blue pestle and cordless pestle
motor in 1.5 or 2.0 ml Eppendorf tube. Using insulin
syringe, 20 up and down were performed to disrupt the
tissue. The homogenates were incubated for 30 min. at
4 °C using end over end mixing. Then the samples were
centrifuged at 1500×g for 10 min. at 4 °C, the super-
natant harvested, and the pellet discarded. Samples were
diluted 1:10 and protein concentration was measured.

Immunoprecipitation
Immunoprecipitations (IPs) were performed using 150 μg
of proteins extracted from hippocampal homogenates di-
luted in 300 μl of homogenization buffer. Anti-ULK1 anti-
body (1:150, v/v) or isotype control (same concentration
than ULK1 Ab) were added to each tube and incubated
overnight at 4 °C with end over end agitation. The next
morning, 30 μL of Dynabeads Protein G was added,
followed by an 1 h. incubation at 4 °C. Samples were then
centrifuge 1min at 4000 RPM in a microcentrifuge and
washed three times with 1mL of homogenization buffer,
immunoprecipitated proteins were eluted by addition of
30 μL of 4X SDS sample buffer, followed by a 10min. In-
cubation at 95 °C. Initial lysates and immunoprecipitated
proteins were analyzed by SDS-PAGE and immuno-
blotting with specific antibodies.

Immunoblotting
All biological samples have been analyzed at least in
duplicate in two independent experiments. Samples were
diluted to 1mg/ml with buffer and SB4X denaturation
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buffer (200 mM 4X Tris-HCl/SDS ph 6.8, 8% SDS, 400
mM DTT, 40% glycerol (v/v) 0.4% Bromophenol Blue)
diluted to 1X. Samples were denatured at 95 °C for 10
min and spin at RT for 30s at 14000 rpm. 10μg of protein
samples were separated on 4–12% Bis-Tris NuPAGE gels
for 70-80min. at 150 V at room temperature (RT) using
1X MOPS or 1X MES buffer (Invitrogen). The proteins
were transferred to a PVDF membrane for 1 h at 100 V at
4 °C. The membranes were dried and stained for 10min.
With Ponceau S. Excess stain was removed for 2min.
With Milli-Q water. The membranes were scanned, cut
and block in TBS 1X containing 0.1% Tween 20 (TBST)
and 5% non-fat dry milk for 1 h at RT. Primary antibodies
were applied, and membranes were incubated overnight at
4 °C. The membranes were washed 3 × 8min. With TBST.
Secondary antibodies were applied, and membranes were
incubated for 1 h at RT. The membranes were washed 3 ×
8min. With TBST and twice with TBS 1X. The proteins
were visualized using ECL detection kit.

Immunoblot membrane stripping
After phospho-antibodies detection, membranes were
washed once during 10min. in distilled water to remove
ECL. Membranes were incubated 3 × 10min. in NaOH
(0.2M) solution to strip off the antibodies. Membranes
were finally incubated in TBST buffer for 10 min. and
the blotting procedure was started over.

Densitometry analysis
Western blot quantification was performed based on the
recommendations of Gassmann et al. [24]. All quantified
immunoblots were revealed using the same type of films
and carefully exposed to avoid saturation. Films were
scanned using an Epson Perfection v500 or v800 Photo
scanner. Acquisition was performed at 600 dpi in 16-bits
grayscale with auto-exposure and colour-correction op-
tions turned off. Images were analyzed using the ImageJ
software. Lanes were selected and plotted using the ‘Gel
analyzer’ functions. Peaks on the plots were individually
closed to the background level of each lane using the
Straight line’ tool and the enclosed area was measured
using the ‘Wand’ tool.

Stereotaxic surgery
Stereotaxic delivery of recombinant adeno-associated
virus, serotype 9 (AAV) for expression of a mCherry or
NRBF2-mCherry fusion protein under control of the
CMV promoter was done as follows: mice were anesthe-
tized with 2% isoflurane and 1 μl of virus for each hemi-
sphere (∼5.8 × 1010 viral genomic copies) was injected at a
rate of 0.2 μl/min using a Hamilton syringe, a micro
pump, and stereotaxic instrument (Stoelting). Syringe
remained in place for an additional 2min. After comple-
tion of the injection. Coordinates for injection were as

follows: − 2.0mm anterior/posterior, ±1.5mm medial/lat-
eral, and − 1.75mm dorsal/ventral. Viruses were produced
and purified by Vigene Biosciences Inc. (Rockville, MD,
USA).

Mouse Aβ42 ELISA
Aβ42 level was quantify from hippocampal extracts. Frac-
tions were analyzed in duplicate. Same protein amount
was loaded into each well, and the plate was incubated
overnight at 4 °C with gentle agitation. ELISA was per-
formed according to the manufacturer’s instructions
(#KMB3441, Thermo Scientific).

Behavior studies
Object Location Task (OLT) [25]
On habituation day (day 1), mice were individually
placed into an open-field box (40 × 40 cm) surrounded
by 40 cm high walls made of transparent plastic and
allowed to freely explore the arena for 5 min in an
infrared-lit room. On training day (day 2), mice were
placed into the previously explored box now containing
two similar objects and allowed to explore for 10 min.
On testing day (day 3), one object was moved forward,
and the mice were placed back into the arena and allowed
to explore for 10min. Videos were recorded by the Etho-
Vision video tracking system (Noldus, Wageningen, The
Netherlands) and were manually scored. Object explora-
tions were counted once the following criteria have been
met: the snout of the mouse is oriented toward and close
to the object and the animal’s body is beyond the object
(no climbing). To assess object bias we evaluate the time
spent sniffing each object on day 2 relative to the total
time spent exploring (Time spent sniffing object 1/ Total
time spent sniffing object 1 and 2 X 100%). Mice exhibit-
ing an object bias score below 0.2 or above 0.8 were ex-
cluded. Discrimination ratio was calculated as follows:
time spent sniffing the object divided by the total time
spent sniffing both objects, Score equivalent to 0.5 indi-
cates equal time spent exploring the displaced and familiar
objects.

Contextual fear conditioning (CFC)
CFC experiments were conducted in sound attenuating
chambers with automated stimulus delivery software
(Med Associates, St. Albans, VT, USA). On training day,
mice were exposed to a 218 s period of acclimation to
the conditioning arena (context A) followed by three
consecutive foot shocks (0.5 mA, 2 s, 100 s interval be-
tween shocks) and a final 30 s resting period. On testing
day, mice were re-exposed to context A for 3 min. One
hour after re-exposure to context A, mice were placed in
a modified arena (context B) and allowed to explore for
3 min. Percentage time freezing was quantified by
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automated motion-sensitive software (Video Freeze;
Med Associates).

Radial-arm maze (RAM) [26]
The maze consisted of eight arms (7.5 × 35 cm, 17.5 cm
high walls) assembled radially around a circular starting
platform. Mice were placed onto the starting platform
and were free to enter the arms. Mice were tested until
all eight arms were visited once. Each repeated entry in
arm was counted as an error. Mice were trained on day
1 and tested on day 2.

Spontaneous Alternation Task (SAT) [25]
The Y-Maze (Maze Engineers) consisted of three gray
acrylic closed arms measuring 35 cm L × 5 cmW×20 cm
H. Mice were placed in the center of the maze and were
free to explore for 10min. The number of alternation and
the number of entries were recorded and scored by the
EthoVision video tracking system (Noldus, Wageningen,
The Netherlands). Percentage of alternation was calculated
as the number of alternation/ (total number of entries
- 2) × 100. Total number of entries was reported to
control any potential hyperactivity.

Hippocampal slice preparation and field
electrophysiology
Hippocampal slices (350–400 μm) were prepared from
NRBF2-deficient mice and wild type littermates. Slices were
perfused with Ringer’s solution containing (in mM): NaCl,
125.0; KCl, 2.5; MgSO4, 1.3; NaH2PO4, 1.0; NaHCO3, 26.2;
CaCl2, 2.5; glucose, 11.0, and bubbled with 95% O2/5% CO2,
at 32 °C during extracellular recordings. Slices were main-
tained for 1–2 h prior to establishment of a baseline of field
excitatory postsynaptic potentials (fEPSPs) recorded from
stratum radiatum in area CA1, evoked by stimulation of the
Schaffer collateral-commissural afferents (100 μs pulses every
30 s) with bipolar tungsten electrodes placed into area CA3
[27]. The EPSP initial slope (mV/ms) was determined from
the average waveform of four consecutive responses. After

determining the input/output relationship, long-term po-
tentiation (LTP) was induced by a high-frequency stimulus
(four trains of 100Hz, 1 s stimulation separated by 5min)
with a success rate > 90%. Field EPSP initial slopes from aver-
aged traces after LTP induction were normalized to baseline.

Statistical analysis
Statistical analyses were performed using GraphPad
Prism version 8.1 for Windows (GraphPad Software)
using the unpaired one- or two-tailed Student’s t test
and Regular or Row-Matched Two-way ANOVA test
followed by Bonferroni’s multiple comparisons test. Data
were considered significant when P values were < 0.05
(*), < 0.01(**) or < 0.001 (***).

Results
Analysis of AD brains reveals autophagy alterations and
reduced NRBF2 expression in the parahippocampal gyrus
and hippocampus
We performed differentially expressed gene (DEG) ana-
lysis and examined the fold change of ~ 130 ATGs in
multiple brain areas by analyzing transcriptomic datasets
collected from late-onset AD (LOAD) postmortem brains
(Mount Sinai Brain Bank, MSBB) [20] and laser-capture
microdissected (LCM) neuron-enriched extracts from AD
brains (GSE5281) [28] (Table 1 and Additional file 1:
Table S1), thus greatly enhancing the statistical power of
this study compared to others [11, 12, 16]. The DEG
analysis of the MSBB cohort showed only one out of 4
brain regions, i.e. parahippocampal gyrus (PHG), with
significant changes in more than 50 ATGs (Fig. 1a and
Additional file 2: Figure S1A-B). The upregulated genes
are functionally clustered as upstream autophagy regula-
tors, while the downregulated genes are enriched for core
autophagy machinery including autophagosome biogen-
esis, such as GABARAPL1, ATG5, NRBF2, BECN1-PIK
3C3 complex, ULK1/2-ATG13-RB1CC1/FIP200 complex
and a few signaling molecules of autophagy. Of note,
downregulation of NRBF2 and a few other proteins are

Table 1 Description of the dataset used in this study

Sample Brain Bank (Template) Brain Region Control AD

Tissue MSBB (RNAseq) BA10-Anterior prefrontal cortex 59 223

BA22-Superior Temporal Gyrus

BA36-Parahippocampal Gyrus

BA44-Inferior Frontal Gyrus

LCMed Neurons GSE5281 (Array) Entorhinal Cortex 13 10

Hippocampus 13 10

Medial Temproral Gyrus 12 16

Posterior Cingulate 13 9

Superior Frontal Gyrus 11 23

Visual Cortex 12 19
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also statistically significant in hippocampal neurons of AD
brains, as well as in medial temporal gyrus and posterior
cingulate, based on the GSE5281 data (Fig. 1a-c). Expres-
sion pattern of these 50 ATGs correlates either positively
or negatively with the clinical dementia rating (CDR)
score (Fig. 1d). Interestingly, NRBF2, BECN1, PIK3C3 and
PIK3R4, which encode different protein subunits of the
same lipid kinase complex, are all significantly reduced,
and their expression inversely correlate with the CDR
score in the PHG (Fig. 1e-h). Given the functional rela-
tionship of these proteins in the PIK3C3 kinase complex,
the above data suggest that a progressive decline of the

NRBF2-associated BECN1-PIK3C3 kinase activity might
occur during the course of AD in the PHG and hippocam-
pus. In fact, we recently reported that NRBF2 and Beclin 1
expression were also reduced in hippocampus of 5XFAD
mouse model [29]. Thus, we decided to further investigate
the role of NRBF2 in AD related symptoms.

NRBF2 depletion reduces autophagy, causes memory
deficits, and impairs long-term potentiation
Previous studies have shown the scaffolding role of NRBF2
in BECN1-PIK3C3 and ULK1 complexes assembly in cell
lines [22, 30–34]. We have shown that NRBF2 deletion

Fig. 1 ATGs expression is altered in PHG and hippocampus of AD postmortem brains. a Heatmap of the Log FC and adjusted p values of the
significantly up- and down-regulated ATG expressions found in PHG (BA36) and their counterpart expression in GSE5281 and other MSBB
datasets. b-c Pie charts representing the autophagy gene functions associated to the upregulated or downregulated ATGs identified in (a). d
Heatmap representing the mean z-score expression of each significant ATGs at different CDR stages within the PHG (MSBB-BA36). e-h NRBF2,
BECN1, PIK3C3 and PIK3R4 gene expressions are progressively reduced in the PHG as a function of CDR score
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reduces BECN1-PIK3C3-lipid kinase activity in the brain
[22] and further demonstrated that ULK1-FIP200 complex
stability is also compromised (Additional file 2: Figure S2A-
D). Therefore, we evaluated the autophagy flux in different
brain regions and AD-related phenotypes in these KO mice.
First, we noticed a higher expression of NRBF2 in the
hippocampus and striatum compared to other brain
regions of wild-type (WT) mice. Upon NRBF2 deletion,
autophagy markers, p62 and LC3-II, accumulated most
significantly in the hippocampus (Additional file 2: Figure
S3A-D, F) [35]. We observed little change in p62 and
LC3A/B mRNA levels in NRBF2-KO hippocampus
(Additional file 2: Figure S3E), suggesting that p62 or
LC3A/B protein increase is caused by autophagy im-
pairment rather than enhancement of their gene expres-
sion. We next performed multiple behavioral tasks to test
hippocampal-associated functions. Using open field (OF),
light-dark (LD) box and elevated-plus maze (EPM) tasks,

we observed that anxiety-related behavior was unchanged
in young NRBF2-KO animals (Additional file 2: Figure
S4A-C), suggesting that ventral hippocampal functions are
unaffected in these mice [36]. Second, we performed an
object-location task (OLT) to specifically assess spatial
memory, known to rely on proper dorsal hippocampus
function [37]. After habituation and training, we found
that NRBF2-KO mice performed poorly in discrimin-
ating the new location of a familiar object, thus
suggesting spatial memory deficits in the mutant mice
(Fig. 2a). Third, we performed contextual fear condi-
tioning (CFC) test. On the testing day, we observed
that the freezing behavior of NRBF2-KO mice in the
training-context A is reduced when compared to the
WT littermates, while no significant change in observed in
the context B, thus supporting that loss of NRBF2 causes
memory deficits (Fig. 2b). Fourth, we performed a radial-
arm maze (RAM) test. NRBF2-KO mice showed an

Fig. 2 Loss of NRBF2 causes memory and LTP deficits in mice. a Discrimination ratio obtained from OLT task. Results are mean ± SEM of 3
months old WT (n = 15) and KO (n = 14) mice. b Freezing behavior recorded during CFC experiments. Results are mean ± SEM of 3 months old
WT (n = 12) and KO (n = 10) mice. c Percentage of errors measured during RAM experiments. Results are mean ± SEM of3 months old WT (n = 15)
and KO (n = 14) mice. The statistical significance was determined using row-matched two-way ANOVA test followed by Bonferroni’s post-test. d
fEPSP slope measured from Schaffer collateral path. Results are mean ± SEM of 3 months old WT (n = 6) and KO (n = 6) slices from three different
mice per group. The statistical significance was determined using regular two-way ANOVA on the last hour of recording. e Basal synaptic
transmission measured from WT and KO mice. Results are mean ± SEM of 3 months old WT (n = 3) and KO (n = 3) slices from three different mice
per group
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impairment in remembering previously visited arm, as
revealed with an increase percentage of errors made
on the testing day when compared to the littermate
controls (Fig. 2c). We also observed that loss of
NRBF2 expression in 5XFAD mice enhances their
memory deficits using OL, CFC and RAM behavioral
task (Additional file 2: Figure S5A-C).
To further understand the basis of the memory deficits

in NRBF2-KO mice, we examine long-term potentiation
(LTP), a well-known cellular mechanism linked to learn-
ing and memory. Results of the field recordings from the
Schaffer collateral pathway showed a reduced mainten-
ance of LTP in NRBF2-KO animals when compared to
WT (Fig. 2d), while no change in basal synaptic trans-
mission (Fig. 2e) or expression of pre- and post-synaptic
markers (Additional file 2: Figure S6A-C) were observed.
Given that AMPK signaling modulates autophagy [38],
memory and LTP processes [14, 39, 40], we decided to
examine the phosphorylation of AMPK-Thr172 as well
as the phosphorylation of Raptor-Ser792 — an AMPK sub-
strate [41] — to understand further the molecular changes
occurring in NRBF2-KO hippocampus that could relate to
LTP deficit. Western blot analysis showed higher phos-
phorylation levels of AMPK-Thr172 and Raptor-Ser792 in
NRBF2-KO animals, whereas no change of their total pro-
tein levels was detected (Additional file 2: Figure S7A-C).
We also performed immunofluorescence imaging experi-
ments and showed that CA1 and CA3 pyramidal neurons

of NRBF2-KO mice had enhanced phospho-AMPK-T172
signal, thus validating the hyperactivation of AMPK in
NRBF2-KO hippocampus (Additional file 2: Figure S7D-E).
While increased phosphorylation of Raptor-Ser792 is
known to inhibit mTOR kinase function, we examined
mTOR catalytic activity through assessment of its auto-
phosphorylation site, i.e. Ser2481, [42] and phosphorylation
of 4E-BP1-Thr37/46 [43], a known mTOR substrate, while
both are crucial for LTP and memory consolidation [44–
46]. Immunoblot analysis demonstrated that phosphoryl-
ation of mTOR-Ser2481 and 4E-BP1-Thr37/46 were
decreased in hippocampal extracts of NRBF2-KO mice
when compared to the littermate controls, while no change
in these proteins basal expression was observed (Additional
file 2: Figure S7F-H). Together, these data suggest that hy-
peractivation of AMPK and reduced mTOR activity could
be related to LTP and memory deficits in NRBF2-KOmice.

Loss of NRBF2 promotes accumulation of APP C-terminal
fragments and Aβ in mouse hippocampus
We next evaluated the Aβ level in the hippocampus of
aged NRBF2-KO mice. We detected an accumulation of
p62 and APP Carboxyl-terminal Fragments (APP-CTFs)
in late adult hippocampus of NRBF2-KO mice while
observing no significant change in full-length APP (FL-
APP) when compared to control (Fig. 3a-e). Our study
revealed an increase of Aβ1–42 levels in aged KO hippo-
campal tissue (Fig. 3f). To verify that NRBF2 deletion

Fig. 3 Deletion of NRBF2 enhances accumulation of APP-CTFs and Aβ42 in mouse hippocampus. a Expression of FL-APP, APP-CTFs in the
hippocampus of 20-months-old WT (n = 6) and NRBF2-KO (n = 6) mice. The blots shown are representative of two separate experiments (b-e)
Quantification of (a). The statistical significance was determined using two-tailed unpaired Student’s t-test. f ELISA analysis results of Aβ1–42 levels
in hippocampus of 20- month-old WT (n = 3) and NRBF2-KO (n = 3) mice. The statistical significance was determined using two-tailed unpaired
Student’s t-test. *p < 0.05, **p < 0.01, ****p < 0.0001
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also promotes the buildup of human insoluble Aβ42, we
crossed NRBF2-KO mice with 5XFAD mouse model —
a well characterized AD model known to overproduce
Aβ42 [47] — and found that NRBF2-KO mice carrying
5XFAD hemizygous allele contained enhanced levels of
insoluble Aβ42 in the hippocampus compared to controls
(Additional file 2: Figure S5D), further supporting that
NRBF2 deficiency accelerates the aggregation of insol-
uble Aβ42 in the hippocampus.

AAV transduction of NRBF2 into the dorsal hippocampus
rescues autophagy and memory impairments of NRBF2-
KO and reduces β-amyloid load in 5XFAD mice
To test the specific function of hippocampal NRBF2 in
maintaining memory integrity, we reinstated NRBF2
expression in the hippocampal areas of NRBF2-KO mice
by injecting recombinant adeno-associated viruses (rAAV)
carrying either mCherry (AAV9-CMV-mCherry) or NRBF2-
mCherry (AAV9-CMV-NRBF2-mCherry) into the dorsal
hippocampus (dHip) of 2–3months old WT and NRBF2-

KO mice. We then performed behavioral and biochemical
analyses of these injected mice at 21–30 days post-injection.
Through assessment of OLT and CFC tasks, we found that
NRBF2-mCherry-injected KO mice showed greater discrim-
ination and improved freezing behaviors when compared to
mCherry-injected KO mice; and no differences was detected
between mCherry-injected and NRBF2-mCherry injected
WT mice (Fig. 4a-b). The above results demonstrate that the
memory deficits in NRBF2-KO mice is caused by NRBF2 loss
of function specifically in the dorsal hippocampus and can
be reversed by reintroduction of NRBF2 expression. Further,
our data suggests that the memory deficit of NRBF2-KO
mice is unlikely caused by developmental effect or neurode-
generation. Indeed, we have not detected any signs of apop-
tosis in NRBF2-KO mouse hippocampus (Additional file 2:
Figure S8A-B). Next, we examined autophagy status and
found comparable levels of p62 or LC3-II proteins between
NRBF2-mCherry-injected WT and KO mice, whereas p62
or LC3-II levels remained different between mCherry-
injected WT and KO mice (Fig. 4c-e), suggesting a recovery

Fig. 4 Transduction of NRBF2 carrying viruses into dorsal hippocampus rescues memory impairments and restores autophagy in NRBF2-KO mice.
a Discrimination ratio obtained on testing day of OLT. b Freezing behavior recorded during CFC experiments. Results are mean ± SEM of 3–4
months old WT +mCherry (n = 14), WT + NRBF2 (n = 14), KO +mCherry (n = 16) and KO + NRBF2 (n = 18) mice. c Immunoblot (IB) analysis of p62
and LC3B. d-e Quantification of C. Results are mean ± SEM of 3–4 months old WT +mCherry (n = 11) and WT + NRBF2 (n = 12) KO +mCherry (n =
11) KO + NRBF2 (n = 11) mice. The statistical significance was determined using regular two-way ANOVA test followed by Bonferroni’s post-test.
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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of autophagy in NRBF2-mCherry-injected KO mice. More-
over, ULK1-FIP200 interaction was improved in NRBF2-
mCherry-injected KO mice when compared to mCherry-
injected KO mice (Additional file 2: Figure S2E-F).
Finally, we injected rAAV carrying NRBF2 into dHip

of 5XFAD mice and tested their cognitive functions be-
fore and at 30- and 60-days post-injection (dpi). To do
so we chose to use a spontaneous alternation task (SAT)
since it is non-invasive and easily repeatable when com-
pared to OLT and CFC tasks. We found that the SAT
performance of NRBF2-mCherry-injected 5XFAD mice
was improved when compared to that of mCherry-
injected 5XFAD mice, while no change was observed be-
tween NRBF2-mCherry- and mCherry-injected WT
mice (Fig. 5a). Of note, the total numbers of entries
showed no significant differences between the groups
(Fig. 5b). Importantly, while evaluating β-amyloid load in
the injected 5XFAD brains, we observed a reduction of

area coverage and the counts of particles as well as a
trend decrease of the particles average size, of Aβ stain-
ing in NRBF2-mCherry-injected mice at 60 dpi, when
compared to mCherry-injected littermate controls, des-
pite lower expression of NRBF2-mCherry than mCherry
(Fig. 5c-d), suggesting that overexpression of NRBF2
decreases β-amyloid level in the hippocampus. Taken
together, our data also suggest that increasing NRBF2
expression is neuroprotective as evidenced by lowering
β-amyloid load and improving memory function in AD
model.

Discussion
Several studies have attempted to characterize the changes
of autophagy genes in AD brains. However, the results lack
an agreement on the exact nature of the change in autoph-
agy. By leveraging the transcriptomic dataset of a large AD
cohort, our analysis reveals altered expression of specific

Fig. 5 Injection of rAAV-NRBF2-mCherry into dorsal hippocampus rescues memory impairments and reduces Aβ levels in 5XFAD mice. a-b Y-
Maze performance and total number of entries recorded 1 day before (− 1), 30 and 60 days post-viral injection. Each group performance was
normalized to their initial performance, i.e. -1 dpi data. Results are mean ± SEM of 4–5 months old WT +mCherry (n = 4), WT + NRBF2 (n = 4),
5XFAD +mCherry (n = 4), 5XFAD + NRBF2 (n = 4) mice. The statistical significance was determined using a repeated two-way ANOVA test. c
Immunofluorescence analysis of Aβ and mCherry expression in hippocampus of 5XFAD mice injected with mCherry or NRBF2-mCherry viruses.
Scale bars, 500 μm. Images shown are representatives of two different experiments. d Quantification of Aβ signal within CA3 and DG area C.
Results were normalized over mCherry control and are mean ± SEM of mCherry or NRBF2-mCherry acquired from three separate mice per group.
The statistical significance was determined using regular two-way ANOVA test followed by Bonferroni’s post-test. *p < 0.05
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functional groups of autophagy genes in the PHG of AD
patients. Our data shows that downregulation of various
autophagy kinase complex components, e.g. BECN1-PIK
3C3, ULK1/2-ATG13-FIP200, and NRBF2, is prominent
and coincides with the disease progression (CDR). Indeed,
dysregulation of Beclin 1-PIK3C3 and ULK1 have already
been reported in AD brains [10, 11, 13, 14, 48]. However,
the significance of NRBF2 or its cellular functions in learn-
ing and memory has never been demonstrated.
Our study is the first to demonstrate that loss of NRBF2

and NRBF2-associated protein complex integrities pro-
mote memory impairments in young animals. Our find-
ings of reduced expression of NRBF2 (along with other
ATGs) in AD brains and characterization of NRBF2-KO
mice support the role of impaired NRBF2-associated func-
tion in promoting memory dysfunctions and AD risk.
Specifically, our study demonstrates that NRBF2-KO mice
develop memory deficits through multiple cognition
assays, i.e. working memory (RAM), reference memory
(CFC) and recognition memory (OLT), while displaying
minor change in anxiety-related behavior based on OF,
LD and EPM studies. Thus, our data may suggest selective
vulnerability of hippocampal regions responsible for mem-
ory function caused by deletion of NRBF2. Interestingly,
these cognitive domains are known to be impaired in dif-
ferent AD mouse models and are recognized to model the
preclinical behavioral changes observed in AD [49]. Our
work therefore provide insight into how autophagy related
processes, mediated by NRBF2, could potentially modu-
late pathogenic pathways in AD.
Furthermore, we showed that depletion of NRBF2 al-

ters ULK1-FIP200 complex, in addition to Beclin 1-
PIK3C3 complex as we previously reported [22]. Rees-
tablishing NRBF2 expression by viral transduction into
dorsal hippocampus of KO mice rescues memory im-
pairment, autophagy flux, ULK1-FIP200 interaction, thus
supporting that memory deficits are unlikely caused by
developmental effect or neurodegeneration. Therefore,
the lack of NRBF2-related functions in the hippocampus
primarily accounts for the memory impairment in the
mutant mice. Our work shows an impairment of LTP
while observing no change in basal synaptic transmission
in the hippocampus of NRBF2-KO mice. However, the
precise mechanism that contributes to LTP disruption
remains to be clarified. One could suspect that a modifi-
cation in AMPA receptors (AMPAR) trafficking is caus-
ing the LTP impairment or cognitive deficits in the
mutant mice. In fact, BECN1-PIK3C3 and ULK1/2 com-
plexes have been shown to promote endocytosis and ER-
to-Golgi trafficking respectively [50, 51]. Therefore, dys-
regulation of the functions of these kinases beyond au-
tophagy in the hippocampus of NRBF2-KO mice could
disrupt the AMPAR trafficking and explain the LTP in-
hibition. Nevertheless, deeper mechanistic analysis is

required to precisely define the molecular components
contributing to the LTP impairment observed in
NRBF2-KO mice.

Conclusions
In summary, our findings identify progressive decline in
the expression of NRBF2 and NRBF2-associated autoph-
agy complex in specific brain regions of AD patients,
which correlates with clinical dementia progression. Our
investigation reveals the impact of dysfunctional NRBF2-
related pathways in promoting Aβ accumulation and
memory deficits in experimental animal models. Our
study also provides evidence that restoration or modula-
tion of NRBF2 and perhaps its associated kinase com-
plexes activities may represent a new therapeutic strategy
for improving memory impairment related to AD.
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