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ABSTRACT 

 

Intracellular cargos are shuttled around the cell via molecular motor proteins along 

their respective filament substrates.  For decades, biophysicists have taken advantage of in 

vitro techniques to study fine details of the molecular motor machinery.  Today, thanks in 

large part to in vitro experimentation, a great deal is known about the structure-function 

relationship of various motors, including kinesin-1.   

 The field is now shifting to investigate how multiple motors work together to 

transport cargos around the cell’s complex microtubule (MT) network.  Due to the 

complexity of the cell’s complex biochemical makeup and the heterogeneity of its three-

dimensional (3D) MT network, this topic is virtually impossible to address quantitatively 

in the native cellular environment.  Instead, in vitro experiments must be used to ensure 

full control over all relevant variables to study how geometry alone, impacts cargo 

transport.   

Traditional in vitro bead assays cannot faithfully model the cell’s 3D MT network, 

and thus cannot be used to test how MT network geometry (orthogonal filament separation, 

or crossing angle) affects cargo transport.  To remedy this, we developed a novel in vitro 

method to manipulate individual MT filaments in 3D with nanometer precision.  With this 

technique, we constructed MT-MT crossings with various geometries to test how 

separation distance and angle between MT filaments impact transport behaviors of artificial 

model cargos driven by kinesin-1. 
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We find that variable separation distance and angle influence cargo navigational 

behaviors at MT-MT crossings.  We also use our experimental data to constrain a 3D 

simulation to probe aspects of the overall transport system that are not possible to assay 

experimentally.  We propose detailed mechanisms that underlie the MT network’s 

influence on cargo transport.  
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1.1 Overview 

In the eukaryotic cell, many different types of organelles may be considered cargo, 

i.e., lysosomes, lipid droplets, endosomes, mitochondria.  To transport cargo more quickly 

and/or efficiently than would be possible via diffusion, the cell relies on intricate 

cytoskeletal networks comprised of actin filaments (AFs) and microtubules (MTs).  Cargo 

motility is made possible by cytoskeletal motors of the kinesin, dynein, and myosin 

families which can both link cargos to filaments, and produce mechanical force to displace 

cargos, relative to the filaments. 

Many details of the components involved in this system are now understood.  

Protein structures for actin, tubulin, and many of their polymeric forms have been resolved 

and their important features mapped.  Likewise, structures for many molecular motors are 

now sufficiently understood to extrapolate structure-function relationships even for large 

complex motors like cytoplasmic dynein.  Overall, single-molecule dynamics are now well 

understood for many motors, and their respective substrates, through a combination of 

extremely precise biochemical and biophysical experiments. While many gaps remain to 

be filled at the single-molecule level, the imperative of our day requires an effort to 

reconcile our detailed single-molecule understanding with the complex cellular 

environment in which motors normally function (Ross et al., 2008a).   

The cell introduces many layers of complexity, but first consider that intracellular 

cargos are most likely transported via multiple motors, often by teams of kinesin-1 motors) 

(Hirokawa et al., 2010).  Thus, the transport field has recently shifted to investigate how 

multiple motors work together to transport cargo (Beeg et al., 2008; Mallik and Gross, 

2004; Roux et al., 2002; Vershinin et al., 2007).  To study this topic in fine detail, 
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biophysicists developed deoxyribonucleic acid (DNA) hybridization, antibody-coupling, 

and DNA origami methods to engineer precise assemblies of motor proteins to study in 

vitro (Derr et al., 2012; Furuta et al., 2013; Goodman and Reck-Peterson, 2014; Xu et al., 

2012).  These works have been instrumental in understanding how motors coordinate to 

carry out long distance transport along a single MT, but to understand transport in cells, 

we must consider another prominent layer of complexity the cellular environment begets: 

the MT network’s geometric heterogeneity.   

The MT network is very complex with respect to its three-dimensional (3D) 

geometry (Bo Huang. et al., 2008).  In the 3D environs of a cell, MT filaments can converge 

at virtually any angle to form MT-MT crosses with extreme separation variability.  Thus, 

in cells, cargos are immersed within a 3D mesh-like array of MT filaments; each of which 

serves as a potential binding partner.  This environment almost ensures the motile cargo, 

driven by multiple motors, will at some point interact with multiple MTs simultaneously.  

Indeed, this is regularly seen in vivo (Bálint et al., 2013; Mudrakola et al., 2009; Osunbayo 

et al., 2015). 

Near various MT-MT junctions the cargo can potentially disassociate from the 

original MT filament, giving rise to a switch (Bálint et al., 2013; Osunbayo et al., 2015; 

Ross et al., 2008b).  Corroborating this statement, cargos are known to be transported along 

multiple distinct MT filaments throughout its intracellular journey (Lakadamyali et al., 

2003; Mudrakola et al., 2009).  As one could imagine, switches could drastically impact a 

cargo’s transport route.  This then begs the question, How does the geometry of the MT 

network regulate switching? 

To address the above question, and to gain a better understanding of intracellular 



4 

 

cargo transport, it is paramount to learn how the underlying geometry of the MT network 

influences cargo navigational outcome at MT-MT crossings.  This is an important question 

to study because aberrant intracellular cargo transport could lead to an imbalance in cargo 

distribution, which could bring about decreased cellular function, such as in β-cell insulin 

secretion (Zhu et al., 2015), or neurodegenerative diseases (Hirokawa and Tanaka, 2015) 

A recent live cell study set out to investigate MT-MT crossing geometry and how 

it influences cargo transport behavior (Bálint et al., 2013).  By correlating lysosome 

transport outcomes with MT-MT separation distance, it was suggested that the MT 

network’s 3D geometry significantly influences navigational outcome.  Unfortunately, due 

to the complexity of the cell, a live cell approach has limited effectiveness in identifying 

how the geometry of the MT network impacts cargo transport.  With so many complicating 

protein factors in vivo, both known and unknown, teasing out the exact role MT network 

geometry plays in regulating transport behavior, is challenging.  Thus, this question is well 

suited to be subjected to a highly controlled in vitro investigation.   

Although the MT network’s 3D geometry is suggested to be a critical regulator of 

intracellular transport in vivo, the topic has received relatively little attention from 

biophysicists.  This is not due to disinterest, but is due to an inability to properly model the 

cell’s 3D MT network in vitro.  In the few reports where biophysicists addressed this 

question, they did so by engendering planar networks of MTs on glass surfaces (Ross et 

al., 2008b; Vershinin et al., 2007).  Considering the 3D nature of the cell, it is easy to 

understand why this approach has limited effectiveness.  Glass deposited MTs can only 

model zero separation MT-MT crossings, and with limited effectiveness (glass slide 

backings used in traditional bead assays sterically hinders the bead’s motion).  Although 
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zero separation scenarios are observed in the cell, a large proportion of crossings fall under 

the non-zero separation category, as well (Bálint et al., 2013).  

We aimed to study how MT network geometry (angle and separation distance) 

influences cargo transport by experimenting within a simple in vitro system that can 

faithfully model the 3D nature of the MT network in a cell.  To accomplish this, we first 

developed a method to manipulate multiple distinct MT filaments in 3D (Bergman et al., 

2015).  This operation is performed via precise 3D holographic optical trapping (Sinclair 

et al., 2004).  In essence, we adsorb trappable silica nodes to opposing ends of a MT 

filament, and then capture and place the nodes precisely in 3D with a holographic optical 

trap system, so that the MT suspended between them is stretched taut in the desired 

orientation.   With this novel technique, we can construct customizable MT-MT crossings 

in vitro, with respect to crossing angle, and filament separation.  With this system, we can 

then probe how the MT-MT crossing’s geometry impacts transport behaviors of a kinesin-

1 driven model cargo.   

Like the biophysical groups who developed methods to probe new questions 

regarding multiple motor transport with high precision, we developed a precise method to 

probe new questions relating to cargo transport upon complex 3D MT-MT crossings.  With 

this experimental setup, we begin to elucidate mechanisms that underlie the differential 

cargo navigational outcomes observed at variable crossing geometries.    

We also collaborate with theoretical physicists who developed a 3D simulation to 

model cargo transport across MT-MT crossings.  We use our experimental data to constrain 

their computer simulations to gain further insight into our model transport system.  With 

these in vitro and in silico approaches, we start to build a quantitative model so that we 
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may begin to extrapolate how various geometric parameters impact cargo routing at simple 

MT-MT intersections; after all, at its core, the MT cytoskeleton can be explained as a 

network comprised of a vast series of many individual MT-MT crossings.   

Overall, we find that variable crossing geometry (angle and separation parameters) 

significantly influence cargo transport behaviors.  In other words: various MT network 

geometries favor specific navigational outcomes.  For example, a cargo that faces a MT-

MT crossing with near-zero separation will be much more likely to switch filaments 

compared to an equivalent cargo that negotiates MT-MT crossings with separation 

distances on par with the diameter of the cargo.  In this introduction, I will (1) introduce 

motor proteins, microtubules, and (2) discuss previous studies that investigate cargo 

transport across MT networks.  Then I will (3) describe what modifications were 

implemented in our optical trap system to accommodate 3D MT network construction.  I 

will then (4) discuss the method of 3D MT network construction, (5) consider pragmatic 

details that potential MT network builders would appreciate, and then (6) discuss our 

findings regarding how MCs behave at various MT-MT crossings.   

 

1.2 The individual microtubule, and the complex environment  

in which the microtubule functions 

The MT cytoskeleton plays many roles in the cell.  The MT network provides 

structure and support, it serves as the apparatus for chromosomal segregation, and it acts 

as the highway network for long range intracellular cargo transport via kinesin and dynein 

family motors.  In this MT overview, I will discuss details of the individual MT 

(superstructure, substructure, dynamic instability), and will consider the vast complexity 
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of MT network regulating components within the cellular environment (diversity of MT 

associated proteins).  Together, these details will help us to understand and appreciate the 

inherent difficulties of studying cargo transport within the immeasurably complex 

intracellular environment. 

 

1.2.1 MT superstructure 

The MT is a tubular filament with an outside diameter of ~25nm and an inside 

diameter of ~15nm (Nogales, 2001).  The MT filament is comprised of multiple (8-17 with 

13-15 being typical, Hunyadi et al., 2007) protofilaments which can be thought of as 

“chains” of α/β tubulin subunit dimers which polymerize in repeating, head-to-tail fashion.  

These protofilaments arrange to form a hollow, tubular cylinder which can grow many 

micrometers in length (tens of micrometers). 

The MT’s tubular structure lends it some unique properties; even though they may 

appear to be a fragile elongated protein structure, MTs are actually considered rigid 

filaments.  Their persistence length is ~ three orders of magnitude greater than that of an 

actin filament, and their persistence length is far greater than the actual length of the largest 

MT filaments (Gittes et al., 1993).  The persistence length of the MT scales with its contour 

length as interactions between longer chains of protofilaments garner increased lateral 

interactions, which increase persistence length/rigidity (Pampaloni et al., 2006).  The cell 

is suggested to take advantage of the MT’s rigidity to use as mechano-transducing agents 

to stimulate transmembrane channels during osmotically induced cell shrinkage (Prager-

Khoutorsky et al., 2014). 
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1.2.2 MT substructure 

Although the α and β subunits only have 40% identity, they have nearly identical 

structures as the density maps for α and β tubulin are almost completely superimposable 

(Nogales et al., 1998). Their monomeric structure is very compact, but can be divided into 

three functional domains: (1) the amino-terminal domain containing the guanine 

nucleotide-binding region, (2) an intermediate domain containing the taxol-binding site (a 

very commonly used, small molecule MT-stabilizing agent), and (3) the carboxy-terminal 

domain, which comprises the binding surface for motor proteins (Nogales et al., 1998).  

Both α and β tubulin subunits are GTPase proteins which each bind a single 

molecule of GTP nucleotide. The binding of GTP to α tubulin at the N site is 

nonexchangeable, and nonhydrolysable whereas the binding of GTP to β tubulin at the E 

site is exchangeable and hydrolysable. Only α/β dimers with GTP in their β tubulin E site 

can be incorporated into a MT, unless taxol is used(Nogales, 2015).  After polymerization 

into a MT filament, the GTP in the β tubulin “exchangeable” site will become hydrolyzed 

over time (Weisenberg et al., 1976).   

GTP hydrolysis in β tubulin is only performed in the polymerized MT form because 

β tubulin itself lacks the crucial residues to hydrolyze the nucleotide.   Hydrolysis of β 

tubulin GTP is triggered once an additional α/β dimer has been added to the protofilament.  

The polymerization of an additional dimer leads to GTP hydrolysis in the previously 

incorporated dimer because the key hydrolytic residues, absent in β tubulin, are contributed 

by the newly added α tubulin subunit (Nogales et al., 1999).  Thus, in a MT, most of the 

incorporated β tubulin subunits are in the GDP state. 

MT polymerization requires GTP-bound α/β tubulin dimer because the dimer acts 
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like a bent spring, which resists straightening until ushered into a growing MT by GTP-

mediated interactions (Rice et al., 2008).  Once GTP in β tubulin is hydrolyzed to GDP, 

the β tubulin subunits would take on a “bent” conformation again, but this conformational 

change is suppressed by the dimer’s incorporation into the whole MT structure.  The 

positive end of the MT is stabilized by the GTP-bound α/β tubulin at the MT’s forefront, 

which is referred to as the GTP cap.  These GTP-bound tubulin dimers resist bending, and 

thus remain in a stable conformation.  Their presence at the positive end of the MT forces 

previously incorporated GDP-bound tubulin dimers to remain “straight.”   

If the GTP cap is removed, the GDP-bound α/β tubulin dimers tend to depolymerize 

because they are no longer held “straight.”  When this happens, the tubulin dimers start to 

bend, which  reduces the strength of lateral interactions between protofilaments, and leads 

to an unfurling of the MT (Rice et al., 2008).  Thus, GTP hydrolysis over time, initiated by 

MT incorporation, is what allows MTs to be rapidly depolymerized.  This mechanism is 

what gives rise to the dynamic instability phenomenon of the MT.    In our experiments, 

we suppress dynamic instability by addition of taxol, a MT-stabilizing drug.  Taxol addition 

to polymerized microtubules is very common in the in vitro motor proteins field. 

 

1.2.3 MT dynamic instability  

MT polymerization/depolymerization follows what is called dynamic instability.  

This means that MTs can exhibit phases of slow growth and rapid shrinkage (Mitchison 

and Kirschner, 1984).  Dynamic instability is important because it serves as a cellular 

mechanism to remodel the MT network during the cell cycle, or during development 

(Howard and Hyman, 2003).  Dynamic instability is partially dependent upon the guanine 



10 

 

nucleotide status of the tubulin dimers that make up the MT.   

In the cell, the GTP cap is actually comprised of patches of tubulin in both the GTP 

and GDP state.  The GTP-bound β tubulin subunits confers a stable MT (Seetapun et al., 

2012).  This patchwork is possible because hydrolysis of GTP lags behind the binding of 

new GTP-tubulin and occurs randomly; this lag is what creates a relatively large cap of 

GTP-tubulin at the microtubule plus end, compared to previous in vitro measurements 

(Carlier and Pantaloni, 1981; Seetapun et al., 2012).   The GTP cap can be considered a 

basal level of regulation.  The cell has machinery to further regulate the rates of MT 

polymerization and depolymerization through certain classes of MT-associated proteins 

(Howard and Hyman, 2003) like MCAK (mitotic centromere-associated kinesins, 

depolymerizing agents) and +TIPs (plus-end-binding proteins, stabilizing agents). 

 

1.2.4 Complexity of the MT cytoskeleton 

In this section, we must consider the different tubulin isoforms that make up a MT, 

the posttranslational modifications (PTMs) that tubulin undergo, and consider the 

multitude of MT-associated proteins (MAPs) found in cells.  We already briefly discussed 

a couple MAPs (MCAK, +TIPs) which regulate the MT’s mechanism of dynamic 

instability, but the cellular environment is extremely complex, and contains a multitude of 

MAPs which modify the MT track, which we have not yet considered.  It is important to 

consider the diversity of tubulin, PTMs, and MAPs so that one may appreciate the 

complexity of the MT cytoskeleton. 

The cell is an extraordinarily complex environment.  In humans, there are eight 

isoforms of both α and β tubulin, and they are found to have specific distributions in 
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different cell types (Leandro-García et al., 2010).  Some MTs are comprised of 

heterogenous tubulin isoforms, while others are more homogenous (Miller and Joshi, 

1996).  To further complicate matters, the cell is known to posttranslationally modify MTs 

via acetylation, detyrosination, phosphorylation, glutamylation, glycylation, amination, 

and plays host to a bevy of MAPs, both known, and unknown (Verhey and Gaertig, 2007).   

Effects of PTMs are still being elucidated, but we now know that PTMs of tubulin 

affect, not only dynamics of the microtubules, but also their organization and interaction 

with other cellular components (Song and Brady, 2015).  Due to the complexity of the MT 

cytoskeletal system, it is very difficult to study the functions of MT PTMs in vivo.  In the 

cell, sites of MT PTMs are heterogenous, meaning multiple PTMs can be intermingled or 

concentrated in distinct domains.  Multiple PTMs can even affect the same tubulin dimer 

(Song and Brady, 2015).  Thus, it is virtually impossible to account for all the various 

PTMs on the MT, especially in a cellular context.  Like the heterogeneity of tubulin 

isoforms, as discussed above, PTMs could be considered an additional layer of MT 

cytoskeletal complexity.  To state “the impact of these layers of complexity are still 

completely unresolved,” is not an overstatement.  As if those two layers were not 

confounding enough, the MT cytoskeletal system has yet another layer of complexity at 

the MT modification level: the existence of MT-associated proteins (MAPs). 

MAPs include a very large group of diverse types of proteins: single long a-helices 

(stathmin), helical coiled-coils (APC), helical hairpins (XMAP215/ch-TOG), extended 

random coil (tau) and 3 unrelated globular folds (EB1, CAP-Gly and doublecortin) (Amos 

and Schlieper, 2005).  MAPs, like the ones listed above have been traditionally subject of 

MT stabilizing/destabilizing studies, but recently more groups have begun to investigate 
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how their presence on the MT might impact motor transport characteristics.  

For example, Tau, a MAP famously implicated in Alzheimer’s disease, is known 

to stabilize MTs (Santarella et al., 2004), but also may serve as an impediment to forward 

progression for certain motor proteins, like conventional kinesin (Vershinin et al., 2007).  

To make the matter more complicated, different tau isoforms, of which there are 6 (Buée 

et al., 2000), have different influence on the motors (Dixit et al., 2008; Sparacino et al., 

2014; Vershinin et al., 2007).  Other structural proteins such as MAP4 affect seem to impact 

kinesin transport in vitro, but these findings, and Tau findings may not be reflected in vivo 

(Atherton et al., 2013).  

Overall, the MT network in vivo is extraordinarily complex.  To learn about how 

MT network geometry impacts cargo transport, experiments must be conducted in highly 

controlled environments which feature little complexity.  A controlled environment allows 

one to make confident assertions about how the system functions.  We negate the 

complexity of the cell’s MT network by conducting our 3D MT network geometry 

experiments in an in vitro environment. 

 

1.3 Kinesin-1, a single-molecule perspective 

Kinesin-1 is a highly processive MT-based motor protein comprised of two ~960 

amino acid “heavy chains” subunits which form homodimers.  The heavy chain is 

comprised of 3 domains: the motor domain, the neck linker, and the tail domain (which is 

responsible for dimerization of two kinesin heavy chains).  This protein is referred to as 

kinesin-1, or conventional kinesin, due to being the first motor protein discovered to 

translocate upon purified MTs, in vitro (Vale et al., 1985).  Kinesin-1, hereafter referred to 
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simply as kinesin, translocates across the MT in what is known as a “hand over hand” 

mechanism (Yildiz et al., 2004).  Kinesin stepping brings about a net motor displacement 

of ~8nm, a distance which correlates perfectly with the space between kinesin binding sites 

(Fehr et al., 2008).  This movement is mediated by the motor domain and neck linker. 

Approximately one-third of the amino acids that make up kinesin-1 are considered 

the motor domain.  This domain produces force to facilitate MT translocation by 

hydrolyzing ATP to convert the chemical energy stored in the terminal phosphoanhydride 

bond, to mechanical energy (Cross, 2016).  This energy conversion manifests in a 

conformational change of heavy chain’s motor domain/neck linker, referred to as the 

“powerstroke.”   

The powerstroke is the motion produced by the neck linker as it docks along the 

motor domain, enabling the motor to “walk” along the MT.  The neck linker is the short 

peptide sequence that swings forward to generate the powerstroke.  The neck linker is a 

~14 amino acid sequence at the carboxy-terminus of the motor domain (Rice et al., 1999).  

The neck linker also serves to “link” the motor domain to the rest of the heavy chain, which 

dimerizes with the tail domain of its partner to form a stalk-like “coiled-coil.”  The  

coiled-coil is a ~40-55nm long, ~5nm wide projection which serves to associate with 

kinesin-1’s cargo-binding “light chains” and cargo itself (Cuevas et al., 1992; Friedman 

and Vale, 1999). 

Kinesin-1 steps processively by carefully coordinating its motor domains to 

function in an “out of phase” cycle (Andreasson et al., 2015).  To explain the stepping 

cycle, imagine kinesin being bound to a MT by one of its heads, while the other is unbound 

from the MT.  The MT-disassociated head is referred to as the tethered head because 
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although it is not directly bound to the MT, it is indirectly “tethered” to the MT via the 

bound head.  Upon ATP binding, the MT-bound head exerts force to displace the tethered 

head ~16nm towards the MT’s plus end.   This 16nm displacement positions the tethered 

head in very close proximity to the next binding site, along the same protofilament (Yildiz 

et al., 2004).   A successful stepping cycle is considered complete when the tethered head 

rebinds the MT at the next forward position, and the bound head disassociates from the 

MT.  This cycle then continues in an alternating fashion, until the kinesin molecule 

completely disassociates from the MT.   

Kinesin can advance through this stepping cycle many times before completely 

dissociating from the MT.  Kinein’s extraordinary processivity is still an area of active 

study.  Kinesin’s high processivity (ability to step multiple times in a row) arises from its 

ability to carefully coordinate its two heads so that at least one head remains directly 

attached to the MT during the stepping cycle (Toprak et al., 2009).  Although kinesin can 

walk for long distances without completely disassociating from the MT, with every step, 

there is a ~ 1% chance that the stepping mechanism will fail.  The failure seems to occur 

at the stage when kinesin is in the one-head bound state (Milic et al., 2014).  When kinesin 

“falls off” the MT, this indicates that the bound motor domain detached from the MT lattice 

before the tethered head was able to bind to the MTs.  Since the kinesin can undergo ~100 

steps before failure, and each step displaces the dimer’s center of mass by ~8nm, a single 

kinesin can routinely walk for ~800nm before dissociating from the MT.  Kinesin’s 

incredible processivity arises from its ability to coordinate its two motor domains by 

“gating,” a mechanism which is still hotly debated (Andreasson et al., 2015; Sindelar, 2011; 

Yildiz et al., 2008). 
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To provide a solid foundation on which to understand the intricacies of kinesin, and 

its processivity, a key motor feature, I will discuss the structure and function of the motor 

domain and neck linker.   

 

1.3.1 Motor domain 

Kinesin-1 binds the MT by its motor domain to translocate across the filament.  The 

motor domain contains an ATPase that drives conformational changes to provide both 

force to step, and structural changes to modulate kinesin-MT affinity.  Although the 

stepping cycle mechanism has not been completely resolved, much is known about the 

motor domain’s ability to: (1) bind and hydrolyze ATP, (2) bind MTs, (3) exert force, and 

(4) coordinate heads, to perform processive transport.  I will briefly discuss these single-

molecule aspects of kinesin-1.   

1) Kinesin-1 is a NTPase, meaning it can bind nucleotides (generally ATP), and 

hydrolyze them to peform work.  Unlike other NTPases, like small g-proteins, kinesin 

structure can amplify small structural changes in the motor domain that modulates the 

motor domain’s MT-affinity, and gives rise to force exertion responsible for swinging the 

tethered head forward to the next binding site.  This is referred to as mechanochemical 

coupling (Woehlke and Schliwa, 2000).  Binding of ATP leads to a conformational change 

in which two motor domain motifs, “switch 1” and “switch 2” close upon the ATP 

molecule.  This binding event and subsequent “clamshell” closure spur the formation of a 

salt bridge between key residues Glu236 and Arg 203 which strengthens the “closed state” 

(Shang et al., 2014).  Switch closure facilitates ATP hydrolysis by coordinating the ATP’s 

γ-phosphate and a couple of water molecules to undergo a nucleophilic attack (Parke et al., 
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2010).  Without the formation of this salt bride (Glu236 and Arg 203), ATP cannot be 

hydrolyzed normally, and thus, the kinesin cannot step.  As you will find in subsequent 

chapters of this dissertation, we use this information to our advantage by mutating Glu236 

(residue in switch 2), to an alanine to produce a nonmotile kinesin.  We use this kinesin 

mutant as an agent to “glue” MTs to a solid support structure, in our case, a 2um silica 

microsphere.   

2) Kinesin-1 makes electrostatic interactions with the MT by docking on both α- 

and β-tubulin monomers, although it may bind mainly to β-tubulin (Marx et al., 2006).  

These interactions are mediated by a cluster of positively charged residues that reside on 

Loop 12 and α-helix 5, structural motifs on the MT-facing portion of the motor domain 

(Woehlke et al., 1997).  These positively charged residues interact with multiple negatively 

charged residues on the MT surface to garner an interaction which is capable of adopting 

multiple high and low Kinesin-MT affinity states (Uchimura et al., 2006).   

Affinity modulation is paramount, because in order to step, “hand over hand,” the 

motor domain must be able to adopt a low MT-affinity state so that the trailing head may 

dissociarte from the MT, propel forward via the bound head’s powerstroke, and then rebind 

to the MT with high affinity.  Kinesin-MT affinity modulation is enabled by 

conformational changes in the motor domain structure that arise from the current 

nucleotide-binding state of the motor domain; this affinity modulation mechanism 

functions in tandem with the powerstroke mechanism to coordinate the heads to walk in a 

hand-over-hand manner (discussed in next section).  The motor domain maintains high 

affinity for the MT in the nucleotide-free state and ATP-bound state.  When ATP 

hydrolysis occurs, and the inorganic phosphate is released, in the ADP state, the motor 
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domain adopts a conformation which maintains a low MT-affinity state (Shang et al., 

2014).   

3) Apart from driving variable MT-affinity states, kinesin’s different nucleotide 

states also bring about conformational changes that generate the powerstroke to propel the 

tethered head.  To step, the tethered Kinesin head is propelled forward by the bound head’s 

neck linker in what is called a “powerstroke.”  The powerstroke force exertion is powered 

by the neck linker, a structureless ~ 15 amino acid sequence at the carboxy-terminus of the 

motor domain (Rice et al., 1999).  In the APO state, the neck linker takes the form of a 

disordered loop, but upon ATP binding and hydrolysis, the neck linker swings forward to 

dock onto the head domain to form a β-sheet with the N-terminal coverstrand (Khalil et al., 

2008) forming the, “cover neck bundle.”  This neck linker displacement and subsequent 

docking occurs because ATP binding and hydrolysis exposes a site on the motor domain’s 

side where the disordered neck linker structure complements the coverstrand’s amino acid 

sequence to form a β-sheet.  Electrostatic interactions between the neck linker and 

coverstrand are what drive this large conformational change known as the powerstroke 

(Cross, 2016).  This docking mechanism enables kinesin to exert up to ~ 5 pN of force 

(Svoboda and Block, 1994).  The neck linker’s transition from a disordered loop state, to a 

forward docked “cover neck bundle” state, essentially pulls the trailing tethered head 

forward to adopt a position close to the next binding site on the MT protofilament.  

Kinesin’s neck linker is only long enough to reach the next binding site on the same 

protofilament; accordingly, kinesin-1 only steps along a single protofilament (Fehr et al., 

2008; Schaap et al., 2011).  Recent work suggests that the powerstroke actually happens in 

two steps: a pre-docked transition state that coordinates with ATP binding, and the fully 
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docked state that seems to be coordinated with ATP hydrolysis (Milic et al., 2014). 

4) Perhaps the most extraordinary feature of kinesin is its ability to walk many steps 

in a coordinated manner, before encountering a cycle failure.  Details of kinesin’s 

processivity have recently been subject to extensive scrutiny (Block, 2007; Thoresen and 

Gelles, 2008).  This topic has not reached consensus, but generally, Kinesin’s processivity 

is attributed to coordination between the heads that is mediated through the neck linkers in 

what is called intramolecular strain.  Essentially, the strain is believed to regulate the motor 

domain’s ability to bind ATP, or release inorganic phosphate.  This mechanism is what 

allows kinesin to coordinate its movements to retain high processivity. 

 

1.4 Transport via multiple kinesin motors 

Kinesin has been studied from a single-molecule perspective for decades.  From 

this vantage point, many exquisite details of its function have been discovered, as discussed 

in previous sections.  At the single-molecule level, there only remain a few more mysteries 

regarding kinesin’s structure and function, the largest mystery being kinesin’s ability to 

walk processively.  Fortunately, for biophysicists in the motors field, there are still many 

more decades of work to understand how kinesins function together at the multiple motor 

level to transport cargos around the cell.  Multiple motors of various types are used to 

effectively distribute cargos in an ordered fashion (Levi et al., 2006).  Our group and many 

others are now attempting to discern the various mechanisms that underlie this feat.   

Organized intracellular cargo distribution is undoubtedly made possible by various 

layers of cellular regulation.  I have mentioned in the microtubule section how the MT 

structure, and its associated structural proteins can regulate motor transport by modulating 
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motor-filament affinities, but we have not yet considered how the composition of a cargo’s 

motor assembly can affect transport.  This is an  important topic to consider because in 

cells, motor proteins are often found to function in cooperative teams comprised of various 

motor types (Gross et al., 2007; Hendricks et al., 2012; Kural et al., 2005).  It has also been 

suggested that intracellular cargo transport is regulated by the coordination of motors in 

various assemblies (Mallik et al., 2013).   

Single-molecule investigations of motor proteins have informed our understanding 

of how motors may function in ensembles, but these results cannot be used exclusively to 

extrapolate how multiple motor cooperate; this is due to geometric complexity associated 

with a multiple motor system.  Contemplating the role of cargo shape and motor 

distributions will help the reader appreciate why it is important to move past single-

molecule investigations of motors.  The field has begun to conduct experiments that study 

how multiple motor proteins work together to transport cargos through the MT network.   

Studying how motors function together is very difficult due to many confounding 

factors.  Many of the difficulties arise from the intrinsic three dimensionalities of transport 

systems.  Cargos in cells are obviously not point objects, so one must consider the geometry 

of the cargo, and the geometry of the motors distributed on the cargo’s surface.  Although 

a few works have published electron micrographs of intracellular cargos with what appears 

to be native motors on the cargo (Ashkin et al., 1990; Hirokawa, 1996), we still do not have 

a solid idea of how motors are truly distributed on cargos.  Are motors on intracellular 

cargos clustered?  Are they evenly distributed?  How close are they situated to each other?  

All of these factors impact how a cargo would interact with MT filaments in its 

environment. 
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To address this, scientists began to purposefully incubate beads with higher 

concentrations of motor protein to ensure that when beads bound to MTs, there was a high 

probability of transport being mediated by multiple motors.  Indeed, placing enough motors 

on a cargo will allow multiple motors to work together as they progress along the MT. 

Model cargos driven by multiple motors are able to travel for longer distances than 

cargos driven by a single motor (Block et al., 1990; Vershinin et al., 2007).  Vershinin et 

al. (2007) proposed that multiple motors can transport a cargo much for much longer 

distances because of the way cooperative motors compensate for each other’s failures (MT-

dissociation).  In a tandem team, if one motor dissociates from the MT, the neighboring 

kinesin-1 motor may continue to walk along the MT, which serves to tether the cargo to 

the MT.  This tethering effect would keep the bead in close proximity to the MT, which 

would allow the detached kinesin to rebind.  Thus, a cooperative team of multiple motors 

can travel for extraordinarily long distances.  The mean field model suggests the formula: 

5N-1/N to predict run lengths for various numbers of motors involved, with N being the 

maximal number of motors involved (Klumpp and Liposky, 2005).  In reality, this model 

does not reflect how motors truly cooperate to share load (Kunwar et al., 2008), but serves 

a good first order approximation for how increased number of motors can quickly increase 

run lengths.   

To further investigate how multiple motors work together, various biophysical labs 

developed various, yet similar methods, to precisely forge one-dimensional arrays of 

various motor protein assemblies (Furuta et al., 2013; Goodman and Reck-Peterson, 2014; 

Rogers et al., 2009). Currently, with standard bead-motor protein incubation techniques, it 

is challenging to understand how many motors are on the bead, and how they are 
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distributed.  Groups concerned with single molecule experiments have in the past relied on 

a bead binding fraction of 30% to confidently state that they were testing exclusively the 

behavior of a single molecule.  Currently, bead binding fractions are only a reliable way to 

tell if only a single motor is bound to the motor.  At higher binding fractions, i.e., 60%, it 

is difficult to know how many motors can team-up walk along a MT simultaneously.  This 

problem has recently been examined  (Li et al., 2016).  

 

1.5 Commentaries on prior reports pertaining to cargo transport  

through MT-MT intersections 

The topic of the 3D MT network geometry, and its impact on cargo transport, is a 

relatively new subject area.  So far, only a few groups have conducted experiments to 

investigate this problem.  It is important to discuss the results and methods of these reports, 

so that the reader of this dissertation will have a better understanding of the current state of 

the field.   

Out of the handful (~ 4) of papers that consider cargo transport through networks 

of cytoskeletal filaments, I will discuss two papers which focused exclusively on motor 

transport behaviors at MT-MT crossings: Ross et al. (2008), and Balint et al. (2013).  These 

two papers provide insight into this problem, but their approaches neglected key aspects of 

the cell’s complexity 

 

1.5.1 Commentary on Ross et al. (2008) 

In this paper, the group created planar crisscross arrangements of MTs on glass 

surface via biotin-streptavidin-biotin linkages to study how single motors, and model 
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cargos (laden with multiple motors), navigate through MT-MT intersections.  The 

orientation of the MT-MT intersection (which MT is on top, which MT is on bottom) was 

controlled by flowing MT filaments into the flow chamber in 2 different steps.  MTs that 

were flowed first aligned in one orientation, while a second wave of MT filaments were 

flowed in so that they would adopt an arrangement perpendicular to the filaments that were 

first introduced.  In this way, Ross et al. (2008) could confidently state which MT served 

as the “overpass” filament and which served as the “underpass” filament.   

The group then recorded navigational outcomes of either, single K560 motors, or 

ensembles of K560 motors (attached to polystyrene beads) with respect to the 

overpass/underpass filament orientation.  It is important to note that K560 motors do not 

have a full length coiled-coil domain; this is an important geometric feature which most 

likely impact cargo transport.  Ross et al. (2008) also investigated single dynein-dynactin 

motors and ensembles of dynein-dynactin, but I will just discuss their kinesin results, 

because my work used kinesin-1 exclusively.   

This group first set out to observe how single motors would navigate through a MT-

MT crossing.  They found that single truncated kinesin-1 motors (K560), could display 4 

different behaviors: pass, pause, switch, or disassociate.  A transport event was scored a 

“pass” if the motor moved at least 300nm beyond the intersection.  A “pause” event was 

recorded if the motor spent at least 1 sec at the intersection (did not move 300nm out of the 

intersection zone).  A “switch” was recorded if the motor moved out of the intersection 

zone (300nm) on the transverse filament.  And, a “disassociation” event was tallied if the 

fluorescent signal vanished near the intersection.  It is important to consider the transport 

event scoring rules to highlight the uncertainty inherent within their system. 
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The group observed that the two most prominent behaviors for single K560 motors 

was passing, or disassociation.  The incidence of these rates was significantly influenced 

by the orientation of the intersection, i.e., whether the motor started on the overpass or 

underpass MT.  They found that passing was more prevalent when the motor started on the 

overpass, and that disassociation was more common when the motor started on the 

underpass.  In their single  motor analysis, pausing and switching were observed, but only 

a fraction of the time (~7% for both overpass/underpass orientations).   

Considering the geometry of the planar intersections, the geometry of K560, and 

the processive characteristics of a single K560 motor, the high rates of passing and 

disassociation they detected are expected.  Also worth noting, K560 was much less likely 

to switch to the transverse filament when compared to dynein-dynactin, which has a much 

larger size, and larger stride.  They state: “Kinesin, with its smaller stride length, and 

straight path, is less likely to switch.  It is more likely to remain on an individual 

protofilament and pass the intersection without influence from the intersection 

microtubule” (Ross et al., 2008b). 

Based on kinesin’s single protofilament procession behavior (Shibata et al., 2012), 

it is not surprising that passes were prevalent when the kinesin started on the overpass.  In 

this configuration, K560 is unlikely to interact with the crossing MT, resulting in a pass.  

It takes a little imagination, but if one considers K560’s small size, and the geometry of the 

planar MT-MT crossing, one can easily envision how a single truncated motor protein 

would be able to “pass” even if the motor starts on the underpass MT.  Ross et al. (2008) 

propose that the truncated motor protein (proceeding upon the underpass MT) could 

completely avoid the overpass MT obstacle if it proceeds upon one of the MT’s ~13 
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protofilaments which are not in contact with the overlying MT.  Overall, the behaviors 

observed for single kinesin motors are not surprising, and the mechanisms to describe the 

observed results are logical.   

Like the single K560 motor, ensembles of K560 motors on .8µm polystyrene bead 

scaffolds (used as artificial intracellular cargo models) also display the same types of 

navigational outcomes, but with vastly different rates of prevalence.  In the “multiple motor 

bead assay” section of the article, Ross et al. (2008) vary the concentrations of motor 

proteins on the bead to test how bead-motor concentration, impacts cargo transport at 

planar MT-MT crossings.  They observed that a bead traveling on the overpass MT displays 

similar outcome rates when compared to the single motor assays, but the story changes 

drastically when considering the K560 driven model cargos that proceed upon the 

underpass MT.   

Switch outcomes are much more prevalent when their model cargo travels upon the 

underpass MT. In their experiments, this rate was largely independent of motor 

concentration.  Switching was far more prominent in the underpass geometry because 

motors on the cargo surface are more likely to interact with the transverse MT; cargos 

traveling along the overpass MT, are much less likely to interact the crossing MT due to 

the system architechture.  When the bead comes into proximity of the transverse MT, a 

subset of the bead’s motors will have the  opportunity to engage the transverse MT.  When 

motors engage the transverse MT, the cargo may switch from one filament to the other.  

The authors propose two mechanisms for the “apparent cooperativity between kinesin 

motors,” that lead to switching.  One mechanism suggests that the kinesin motors walking 

on the underpass MT would disassociate once they encountered the transverse MT, which 
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would lead to a switch if a group of motors had already engaged the transverse MT.  The 

other mechanism suggests that the motors are coordinated through strain that is generated 

by the two motor teams trying to proceed in two different directions.  Overall, the authors 

propose that the mechanisms are not mutually exclusive, and that switch rates are elevated 

for motors walking on the underpass MT because, “the bead would interact with both MTs 

easily in that situation.”  This paper certainly offers insight into the mechanisms of filament 

switching, but there are problems inherent in the traditional bead assay system they 

employed.   

The first problem to consider is the method in which the MT networks were 

engendered.  Like stated above, the MT filaments were deposited onto a glass surface.  

Apart from sterically hindering the model cargo with a glass surface, another drawback of 

this system is its inability to model MT intersections with separations greater than zero.  

Although near-zero separation intersections are found in cells, MT filaments exist in many 

different planes (Bo Huang et al., 2008).  Hence, this method employed by Ross et al. 

(2008) is only able to model this one specific scenario that occurs in the cellular 

environment.  To address this methodological pitfall, we developed a technique to conduct 

similar experiments in a system that enables one to create MT-MT crossings with 

customizable separation, and angle. 

Another shortcoming of Ross et al. (2008) is that they relied on slow fluorescent 

imaging techniques.  For the single K560 experiments, they recorded 2 FPS, and for the 

bead assay experiments, they recorded at 4 FPS.  At such slow frame rates, the fast 

dynamics of the transport events cannot be resolved, which reduces the experimental power 

of the system.  In our experiments, we chose to not rely on slow fluorescent imaging, and 
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instead chose to record with standard brightfield imaging.  This enabled us to record videos 

at 20 FPS, and localize particle positions with sub-100nm precision.  This imaging method 

provided enough spatiotemporal resolution to observe intricate cargo dynamics associated 

with MT intersection navigation. 

Another experimental drawback of Ross et al. (2008) to highlight is their use of a 

truncated kinesin-1 motor.  K560 is a popular construct to employ in single molecule 

studies due to ease of production, and inability to self-inhibit (due to lack of tail); but 

K560’s geometry is inherently different than natural full length kinesin-1.  K560 is much 

shorter (Shishido et al., 2010) than full length kinesin, which would most likely how the 

cargo navigates at intersections.  To negate this concern, we employed full-length kinesin 

constructs.   

I deemed it necessary to write this commentary because it helps the reader 

appreciate the reasons why we invested considerable resources and time to develop our 

unique, “suspended MT” bead assay system.   

 

1.5.2 Commentary on Balint et al. (2013) 

This report originated from a group whose traditional focus is not intracellular 

transport.  Balint et al. (2013), showcased a new method the group had developed: a live 

cell particle tracking system featuring post-hoc specimen fixation in conjunction with 

correlative 3D super-resolution fluorescence microscopy. 

Specifically, this group tracked the fluorescent signature of lysosomes in African 

green monkey kidney cells via epifluorescent microscopy.  As the lysosomes shuttled 

around the cellular environment, their trajectory was recorded at a relatively slow temporal 
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resolution (2 FPS), but since they resolved single lysosomes in a lysosome-sparse 

environment, the group was able to precisely localize the particle in 2D space.   

After tracking a few lysosome trajectories around the cell, the imaged cell was 

immediately fixated via 3% volume/volume paraformaldehyde and 0.1% glutaraldehyde.  

In this way, the group could preserve the underlying MT network in order to perform the 

slow process of 3D stochastic optical reconstruction microscopy (3D STORM).  The 

authors claim their STORM system is capable of 20 nm resolution in the lateral plane, and 

55 nm resolution in the axial plane.  Thus, with this experimental approach, the group could 

track the path of the lysosome cargos, and then  place their trajectory ontop of a 3D map 

of the MT network.  This allowed the group to correlate lysosome navigational behaviors 

with the underlying topology of the 3D MT network.   

In their analysis, they found that intracellular cargo transport, displayed in their 

cells, exhibited behaviors similar to those observed in in vitro experiments by Ross et al. 

(2008).  Lysosomes were seen passing, switching, pausing, and reversing at MT-MT 

intersections.  Pausing behaviors, which they defined as having “no net centroid position 

displacement for 1 sec or longer,” correlated strongly with the smallest separation distances 

they could resolve (<100 nm).  From this correlation, the authors suggest that the near-zero 

separation intersections give rise to “pauses” because the crossing MT will act as an 

obstacle to the motor(s) moving along the primary MT.  Usually, the paused cargos 

eventually navigate through the intersection, either passing, switching, or dissasociating. 

This paper serves as an excellent reference for our study, because it highlights the 

importance of the MT network’s geometry in cargo transport.  Due to the methods 

employed, this report is unable to delve deep into the mechanisms underlying the 
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navigational behaviors they observed.  Although their system is novel, and advanced, it 

cannot overcome the uncertainties associated with the highly complex cellular environment 

First, even though their spatial resolution is relatively precise, it is unable to 

perfectly resolve various important features associated with the MT network system.  For 

example, although their set up can resolve spacing (in the z-axis) between MTs with ~55nm 

accuracy, they were unable to determine the polarity of the MTs, or the orientation of the 

lysosome cargo, in relation to the MT-MT intersection.  In other words: does the cargo 

actually encounter the crossing MT?  Is the cargo in question situated between the 

intersecting MTs?  For example, the lysosome could skirt the intersection by traveling in a 

3D zone which does not impinge the crossing MT.  This geometric information, which they 

could not resolve, is critical when attempting to elucidate the mechanisms of transport 

through a MT network.  Also, due to their dependence on fluorescence, their acquisition 

speeds were too slow to resolve fine cargo dynamics.  Overall, although their data suggest 

MT network geometry is paramount, they can only offer a very simplistic model for how 

MT network geometry impacts cargo transport.  This is because they cannot resolve high 

levels of detail. 

This analysis of Balint et al. (2013) was included to highlight the complexity of the 

cellular environment, and to help the reader understand why we employed a controlled in 

vitro approach to ask a similar question: how does MT network geometry impact cargo 

transport? 
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Reprinted from Bergman, J., Osunbayo, O., Vershinin, M. Constructing 3D microtubule 

networks using holographic optical trapping. Scientific Reports 5, article number 18085 

2015.  With permission from Nature Publishing Group. 
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Figure 2.1: Basic BH-MT tethering strategy and preparation of assay constituents 
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Figure 2.2: Dumbbell assembly and polarity characterization. 
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Figure 2.3: 3D network assemblies. 
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Figure 2.4: Technique validation for motility assays 
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Figure 2.S1: MT stiffness assay 
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Figure 2.S2: MT stiffness analysis 
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Figure 2.S3: Z-axis calibration 
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Figure 2.S4: Example of 3D coverslip steps used to calibrate voxel height 
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Figure 2.S5: Motility assays on suspended MTs 
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Figure 2.S6: BH tracking and force readout 
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CHAPTER 3 

 

ARTIFICIAL MICROTUBULE CYTOSKELETON CONSTRUCTION, 

MANIPULATION, AND MODELING VIA 

HOLOGRAPHIC OPTICAL TRAPPING 

 

 

 

 

 

 

 

 

 

 

 

 

Reprinted from Bergman, J., Doval, F., Vershinin, M. Artificial microtubule cytoskeleton 

construction, manipulation, and modeling via holographic trapping of network nodes.  

Proc. of SPIE Vol. 9930, 993005 (2015). With permission from SPIE. 
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Figure 3.1: Four MT dumbbells are resting on the glass coverslip in a designated area 
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Figure 3.2: A dumbbell with a side MT can be a useful construction block  
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Figure 3.3: Pentagonal shape is assembled out of five MTs and seven BHs 
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Figure 3.4: Pentagonal and Y building blocks are combined to form  a more complex 
arrangement 
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Figure 3.5: An example of an extended star MT network 
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Figure 3.6: Two MT-MTcrosses are formed by 3 dumbbells 
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4.1 Abstract 

The eukaryotic cell’s microtubule cytoskeleton is a complex 3D filament network. 

Microtubules cross at a wide variety of separation distances and angles. Prior studies in 

vivo and in vitro suggest that cargo transport is affected by intersection geometry. However, 

geometric complexity is not yet widely appreciated as a regulatory factor in its own right, 

and mechanisms that underlie this mode of regulation are not well understood. We have 

used our recently reported 3D microtubule manipulation system to build filament crossings 

de novo in a purified in vitro environment and used them to assay kinesin-1 driven model 

cargo navigation. We find that 3D microtubule network geometry alone significantly 

influences cargo routing, and, in particular, that it is possible to bias a cargo to pass or 

switch just by changing either filament spacing or angle.  Further, we capture our 

experimental results in a model which accounts for the full 3D geometry, stochastic motion 

of the cargo and associated motors, as well as motor force production and force-dependent 

behavior. We use a combination of experimental and theoretical analysis to establish the 

detailed mechanisms underlying cargo navigation at microtubule crossings. 

 

4.2 Introduction 

The microtubule (MT) network in eukaryotic cells is typically a dense, highly 

variable, three-dimensional (3D) mesh (Figure 4.1A). MT network topologies are known 

to vary widely between cells (Schnorrenberg et al., 2016) and even between cells of the 

same type and lineage (Dong et al., 2015). Within a given network, MTs converge to form 

crossings at a variety of filament separations, and angles of intersection. Often, the 

crossings feature interfilament separations that are comparable to the scale of the cargos 
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found within the cell (Figure 4.1A). At these “intersections,” a cargo, with multiple motors 

on its surface, can potentially interact with several MTs simultaneously; a scenario known 

as Tug-of-War (ToW) (Müller et al., 2008; Osunbayo et al., 2015). The cargo can then 

either pass along the original MT, switch to the intersecting filament, pause, or detach. The 

probabilities of these outcomes are known to be sensitive to the 3D layout of the filaments 

(Bálint et al., 2013; Erickson et al., 2013; Ross et al., 2008b) but the mechanistic details of 

this phenomenon are unclear. Given that the architecture/topology of the MT cytoskeleton 

serves as a persistent and pervasive regulator of cargo transport, its role in cargo routing 

warrants a thorough investigation.  

The importance of MT cytoskeletal architecture is underscored by the fact that MT 

network remodeling occurs often in various diseases and during normal cellular processes. 

For example, neuritic de-arborization or restructuring is often encountered in 

neurodegenerative diseases (Di Polo, 2015; Van Battum et al., 2015). Microtubule 

remodeling is also observed in many neoplasias (Parker et al., 2014) and is associated with 

pathways often disturbed in cancers (Galmarini et al., 2003) and formins (Chesarone et al., 

2010; Young et al., 2008). There is also evidence that suggests the geometry of the MT 

network, itself, acts as a regulator to tune insulin granule secretion in mouse pancreatic β-

cells (Zhu et al., 2015).  

The cell can use multiple mechanisms to modulate its MT architecture. MTs can be 

locked in parallel (Fink et al., 2009) or antiparallel (Subramanian et al., 2010) alignment 

via cross-linking. Axonal branching generally shows a preference for normal angles (Kalil 

and Dent, 2014); low branch angles can arise from MT nucleating factors (Petry et al., 

2013). The cell can set overall MT spacing by simply controlling the amount of  
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polymerized tubulin, either via regulation of expression levels (Dumontet et al., 1996) or 

filament stability (Desai and Mitchison, 1997). 

Filament spacing can also be controlled via MAPs that cross-link microtubules 

(Hirokawa et al., 1988). External factors which affect cell shape can also regulate MT 

network topology (Gomez et al., 2016). Finally, MT crossings are known to be special loci 

for intracellular regulation (Hamant, 2013). Currently, the implications of these topology 

variations for cargo logistics and overall biomechanics are not quantitatively understood.  

Decoupling the influence of the MT network’s 3D topology from regulatory protein 

factors is challenging.  The same pathways that drive network remodeling can also couple 

to motor regulation. The result is that, to date, the impact of geometric changes in MT 

networks on intracellular cargo transport has been difficult to isolate and quantitate. It is 

common to think in terms of chemical regulation. However, to truly understand how 

intracellular cargo transport functions, it is critical to gain a baseline understanding of how 

the 3D MT geometry alone impacts cargo distribution, starting at the most fundamental 

level of the MT network: individual MT-MT intersections. 

Studying cargo navigational behavior as a function of 3D network geometry poses 

considerable experimental challenges. In vivo investigations cannot easily decouple 

chemical and topological regulation, as discussed above. Moreover, although theoretical 

work highlights its importance (Erickson et al., 2013) in vitro bead assays that use 

traditional MT-glass deposition techniques are also unable to model MT-MT crossings 

with controlled filament separation (Ross et al., 2008b; Vershinin et al., 2007), though they 

provide a useful starting point for any study in full 3D.  
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To address this question, we developed an in vitro system to suspend and 

dynamically manipulate multiple individual MT filaments in 3D. Each MT is manipulated 

individually via holographic optical trapping (HOT) of two or more bead handles (BH), as 

previously described (Bergman et al., 2015). We used this bottom-up approach to 

systematically construct MT-MT intersections featuring various angles and separations. 

We then measured the statistics of kinesin-1 driven model cargo (MC) transport on these 

model MT geometries, and used this data to constrain 3D simulations.  We show from 

experimental data and theoretical analysis that navigational outcomes exhibit systematic 

variation based on 3D MT intersection geometry. Further, we propose dynamic 

mechanisms that explain the observed preferences.   

 

4.3 Results 

4.3.1 Experimental setup 

The broad aim of this work is to understand the impact of cytoskeletal geometry on 

intracellular transport. A comprehensive experimental model of all possible geometries 

(e.g., Figure 1A) is well beyond the scope of any singular study, so we restricted our scope 

to representative model scenarios. We focused on the simplest type of intracellular MT 

intersections  ̶ where just two filaments cross (Figure 4.1A, inset). We used silica 

microspheres, driven by full length KHC homodimers, as our MC. This is a common, albeit 

simplified model for in vitro work. We chose to focus on assays outside the single-molecule 

regime because there is substantial evidence that cargos in cells are often driven by multiple 

motor ensembles, and indeed, multiple-motor ensembles are essential for a ToW to 

develop.  
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We used in vitro 3D MT manipulation via HOT (Bergman et al., 2015) to examine 

three filament spacings: zero, radius, and diameter of the MC. Our MCs were 1 µm in 

diameter, hence, we constructed and observed MC transport across model intersections 

featuring 3 separation distances (0µm, 0.5µm, and 1µm). We decided to only parametrize 

this geometric range because the probability of a cargo interacting with both MTs for 

crossing separations greater than the cargo diameter quickly becomes negligible. For each 

separation distance, we examined three different angles of intersection: acute (MT 

polarities nearly counter aligned), normal (90°), obtuse (MT polarities nearly aligned), for 

a total of nine geometric conditions.   

We chose silica microspheres as our MCs because their density is ≈ 2.2x that of 

water. This biased the cargo to hang below the MT to which it was engaged, although 

Brownian motion along all three axes was both expected and observed. Thus, in our setup, 

we always deposited the MC (via HOT) onto the “overpass” MT, such that the hanging 

cargo would be likely to encounter the lower, crossing MT (Figure 4.1B). With this setup, 

our 0µm separation experiments resemble the “underpass” MT geometry in prior crossing 

experiments, in which MTs were attached to a glass substrate (Ross et al., 2008b; Vershinin 

et al., 2007). However, our experimental model allows for MT bending, twisting, and 

vibrations which cannot be recapitulated when MTs are firmly attached to a solid substrate. 

The absence of the solid glass substrate in our work is a major difference since the cargo 

can explore many more three-dimensional paths as it negotiates the intersection.  
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4.3.2 Final navigational outcomes depend on 3D geometry 

For each of the nine MT network arrangements in our assays, we quantified final 

cargo routing outcomes strictly in terms of, “switching” or “passing,” because detachment 

at intersections was negligible. In addition, we do not report pause events, because we can 

characterize the entire navigational event, even in cases where the MC navigational choice 

takes several seconds to make. Below, we report switching probability only, as passing 

probability is complementary.  

Our results suggest that 3D MT network topology alone can be an effective 

regulator of cargo routing (Figure 4.1C). Geometries in the upper left corner of the table 

promote switching while those in the lower right corner promote passing. Therefore, 

routing outcomes are determined by multiple geometric factors interacting in nontrivial 

ways. Disentangling these factors by intuition alone is challenging, therefore, we relied 

upon in silico modeling. Helpfully, many fine mechanistic details are resolved by our 

experimental approach (see section 4.3.3), constraining the in silico model. 

 

4.3.3 Characterization of Tug-of-War events  

A cargo that does not engage in a ToW, does not switch; hence, precisely 

distinguishing between ToW and non-ToW events is critical to dissect the mechanisms that 

lead to differential switching probabilities. Our spatiotemporal resolution is sufficient not 

only to establish whether a ToW took place, but also to precisely determine ToW durations. 

We can readily identify ToW start and end by observing significant MC 

displacements away from MT axes and associated MT deflections (Figure 4.2A).  MC 

tracks for representative pass (Figure 4.2B), and switch (Figure 4.2C) events are shown, 
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along with their displacements projected along the axes of the intersecting MTs. A ToW 

start can be identified with the beginning of a sustained displacement upon the crossing 

MT’s axis. ToW end can then be identified when the cargo snaps back upon dissociation 

from either the primary or crossing MT. BH displacements can also be used as an indicator 

of a ToW because the MC motors engaged in a ToW will exert force on the MTs that 

ultimately displaces the BHs (Figure 4.1B, 4.2A middle, D). 

Although BH displacements can help confirm ToW presence and duration, their 

greatest benefit is that they are an indicator of how many motors were exerting force on 

the bead. We set the trap stiffness at ~1pN/100nm, so that a single kinesin motor could not 

pull the BH out of the trap (escape event) but two or more motors working together could 

do so readily (Figure 4.3). Quantifying collective activity of multiple motors via trap escape 

forces is a well-established approach both in vivo (Ashkin et al., 1990; Gross et al., 2002) 

and in vitro (McKenney et al., 2010) and has been validated in silico (McKenney et al., 

2010). This setup allowed us to control the surface density of motors on MCs by discarding 

assays in which BH escape fraction exceeded 25% of total events. This provided refined 

control on top of the more crude and variable approach of controlling motor concentration 

at incubation time. It also provided confidence that ToWs in our assays were dominated by 

forces from 1-2 kinesin motors; more motors are likely engaged on the MT but not all are 

positioned to exert force during the ToW.  

 

4.3.4 Mechanisms of cargo routing 

The ability to sensitively detect ToW events allowed us to quantify their 

probability. We could then also examine the probability for the cargo to pass or switch 
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conditional on ToW occurrence. This analysis is informative because these probabilities 

reveal different aspects of cargo dynamics (Figure 4.4). Our data indicate that ToW 

probability is sensitive to 3D geometry: it is higher for narrower filament separations, and  

for acute/obtuse angles (Figure 4.4A).  For 0µm separations, ToW probability is so high 

that significant differences as a function of angle may not be practical to measure.  A 

different pattern of navigational outcomes emerged when trivial passes (no-ToW events) 

were omitted (Figure 4.4B vs. Figure 4.1C). Four out of nine geometries show switch 

probabilities close to 50%. We also record switch probabilities that are significantly 

higher than 50% for the following geometries: 0 µm normal, 0 µm acute, and .5 µm acute 

(p < .05 Barnard’s test).  We conclude that geometric constraints can promote or inhibit 

switching outcomes for ToW events. 

 

4.3.5 A mathematical model of cargo transport reproduces observed  

switch probabilities 

As mentioned in the previous section, it is difficult to disentangle the mechanism 

through which each factor acts to (in concert) determine ToW and switching probabilities. 

Therefore, to gain further insight into the mechanism determining cargo routing, we 

constructed an in silico model of cargo transport.  This model allows us to examine 

experimentally unobservable details, such as how motor locations, bound states, and force 

states change with time. 

The model incorporates relevant experimental details including: the well-

established properties of kinesin-1 motors, and cargo translational and rotational diffusion 

(Figure 4.5A), however, simulated MTs do not move, twist, or bend. Five hundred cargo 
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trajectories were simulated independently for each assay geometry, and probabilities of 

ToW and switching were then determined analogously to the experimental data. For full 

simulation details and parameter fitting procedure, see Appendix. Briefly, there were two 

parameters that could not be established from current experiments or prior literature: 

average motor number attached to MCs and each motor’s on-rate. These two parameters 

were constrained by matching three experimental observations: ToW probability as a 

function of geometry, fraction of BH escape events, and MC run lengths (See Appendix). 

Thus, the model is fully constrained and therefore predictive. 

We found good agreement between experimentally observed and theoretically 

predicted probabilities of ToW’ing and switching (Figure 4.5B-D). We now turn to 

investigate the quantitative details of ToW and switching (next two sections), and their 

implications for the mechanisms of cargo navigation at MT intersections. 

 

4.3.6 The influence of intersection geometry on ToW probability  

The longer a cargo spends within reach of the primary and intersecting MTs 

(henceforth, the ToW zone), the more chances unbound motors on the cargo have to engage 

the intersecting MT. This phenomenon can be understood from a simple, heuristic model. 

If we consider the cargo as having a single rate of binding to the crossing MT given by 

𝑘𝑘𝑜𝑜𝑜𝑜
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, the probability the cargo binds to the crossing MT before leaving the ToW zone is 

given by 

𝑝𝑝𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑘𝑘𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑣𝑣/𝑑𝑑𝑇𝑇𝑇𝑇𝑇𝑇
, 

where 𝑣𝑣 is the cargo velocity and 𝑑𝑑𝑇𝑇𝑇𝑇𝑇𝑇 is the length of the ToW zone. This simple model 
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can accurately reproduce experimental ToW probabilities for both the 0.5 µm and 1 µm 

separation distance geometries (Figure 4.6), but not for the 0 µm separation geometries. 

This strongly suggests that there are mechanisms at play for 0 µm separations which are 

not present at other distances (see below).  

On the other hand, our full model closely recapitulates all experimental ToW 

probabilities, including 0 µm separation data. It is encouraging that the model captures 

several a priori intuitive features of the system. For 0 m geometries, if a cargo is driven 

by multiple motors then there is guaranteed to be a pool of motors able to bind the crossing 

MT (namely, the already engaged motors). Thus, we a priori expect the ToW probability 

for all angles to be close to 1, which our model indeed reproduces. For 0.5 µm and 1 m 

geometries, we expect higher ToW probability for longer ToW zones (acute and obtuse 

angles). Indeed, simulated ToW probabilities were smallest for 90° intersections (Figure 

4.5B). Also as expected, they were symmetric about the normal angle (since kinesin 

binding is not affected by MT polarity). Simulated ToW probabilities also increased when 

MT separation decreased from 1 µm to 0.5 µm, as expected. When the intersecting MT 

encounters the cargo midsection, at 0.5 µm separations, it samples more of the bead’s 

surface area. Hence, more motors are given a chance to engage on the crossing MT. 

 

4.3.7 The influence of intersection geometry on navigational outcomes 

given ToW  

Experimentally, we observe a large range of geometries (most 0.5 µm and 1 µm 

geometries) where the conditional probability to switch is ~50%. At first glance, this 

appears to be a relatively intuitive result: if ToW lasts ~ 1 second or more (our experimental 
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ToW durations average ~ 3 sec, Figure 4.7), then the motor team engaged on the crossing 

MT should be able to reach steady state (Erickson et al., 2011), and become equal in 

number to the primary motor team. With two equivalent ways to proceed, the probability 

of either choice would indeed be ~50%. However, such a consideration is too simplistic as 

we discuss directly below. 

Experimental results allow for sensitive identification of ToW, so that ToW events 

can be analyzed separately from trivial “no-ToW” intersection passages (Figure 4.4). The 

same analysis can be performed for simulated events (Figure 4.5B-D) and the two sets of 

results largely agree. A careful analysis of the simulations helps us shed light on the 

mechanistic details of cargo navigation.  

We first assessed whether the number of motors in the two ensembles is, in fact, 

equal in our simulations. We find that contrary to naïve expectation, the number of engaged 

motors on the secondary MT is comparable but consistently lower than that on the primary 

MT (ratio of ~0.7; Figure 4.8). The reason is that the motors already engaged on the 

primary MT constrain the bead from full range of linear and rotational diffusion. Once a 

ToW starts, the bead diffusion is even more constrained which then curtails the number of 

motors that can reach the secondary MT. We therefore find that the numbers of motors in 

the ToW’ing teams are not equal: the team of motors pulling along the primary MT has a 

consistent advantage. However, the two paths to proceed are not equivalent either. The 

crossing MT itself can serve as an obstacle for bead progress and exert a force which 

hinders the MC from passing (Figure 4.5G). The smooth decrease from passing to 

switching prevalence across our experimental geometries (Figure 4.4B) therefore reflects 

the balance between net motor activity (which is biased in favor of moving along the 



82 

 

primary MT) and steric hindrance from the crossing MT. 

 

4.3.8 The limits of geometric regulation  

Our results establish that a single MT intersection can significantly bias cargo 

routing towards more switching or more passing. Can a single MT intersection produce a 

near 100% bias for switching or passing? What are the mechanisms which affect these 

limits? It is easy to see that ~100% passing naturally occurs for intersections with 

filament separation much greater than MC diameter. Is 100% switching attainable? To 

address this, we consider two special cases which lead to elevated probability to switch, 

and their broader implications for geometric regulation. For completeness, we also 

discuss each experimental geometry individually in the appendix. 

 

4.3.9 Low filament separations 

A closer look at the geometric setup (Figure 4.5E) makes it clear that the 0 µm 

case is qualitatively distinct. At 0 µm separation, the crossing MT sterically hinders the 

motors engaged on the primary MT, but not for the MC itself. To pass, the cargo can 

“hurdle” over the crossing MT due to Brownian motion but this is improbable for our 

large silica MCs (density ≈ 2.2x water). This would also be unlikely in the viscous 

cytosolic environment (even for smaller cargos). The only other way to pass is by a 

mechanism we refer to as “monkey-barring.”  To pass via monkey-barring, the MC must 

first diffuse underneath the crossing MT so that some of the unengaged motors on its 

surface could bind to the distal side of the primary MT. The motors proximal to the 

crossing MT must then gradually disengage. 
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The above suggests that passing at 0 m separation should have a sensitive 

dependence on the diffusion properties of the medium. This is indeed seen in our 

simulations (Figure 4.5F). In fact, for viscosities close to intracellular range, where cargo 

diffusion is suppressed, the preference to switch approaches 100%.  

 

4.3.10 Acute angles / intermediate separations 

Why is switching more prevalent for 0.5 µm acute geometry? Again, this must be 

due to the crossing MT acting as a strong hindrance, but the mechanism cannot be the 

same as in the previous section. Here, monkey-barring is not feasible but hurdling is. 

Evidently, in this case, for switching probability to be elevated, hurdling must be 

suppressed.  

The vertical forces associated with the ToW for 0.5 µm acute geometry pull the 

MC between MTs. This effectively wedges the cargo between the two MTs, which indeed 

prevents hurdling. We refer to this mode of steric hindrance as “chop-sticking.” Note that 

in our simulations, MTs were not allowed to bend, which would likely be a factor under 

experimental conditions. In reality, the two motor teams engaged in a ToW during chop-

sticking would be expected to pull the two MTs closer together, which would make the 

crossing MT an even stronger obstacle to passing. This is likely the reason why 

experimentally observed switching probability for 0.5 µm acute geometry is somewhat 

higher than theoretical prediction.  
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4.4 Discussion 

Cargos driven by multiple motors can exhibit incredibly complex behavior. Even 

when one considers this for a single cargo moving along a single MT, the system 

complexity is sufficient to lead to highly nontrivial emergent behaviors. The number of 

motors in biologically relevant systems is typically small which necessitates highly detailed 

experiments and modeling to account for not only averaged behavior but also the effect of 

fluctuations.  The addition of just one more filament adds such complexity that the 

emergent behaviors can dramatically diverge to give rise to discrete outcomes: passing and 

switching. It is therefore a fascinating model system for emergent behaviors in biology. 

We have modeled this problem in a highly controlled experimental environment in 

which we imposed very specific restrictions on cargo size and other experimental variables. 

We then performed highly detailed modeling of our system in silico to generalize our 

experimental results. We were thus able to infer the key processes which underlie our 

observations. This enables us to extrapolate how cargo routing might function in cells (and 

other environments). 

Our analysis shows that the team of motors driving the cargo along the primary 

MT is generally at an advantage, even when the ToW is prolonged. This implies that 

there is an inherent bias to pass. However, our data show that for many geometric 

conditions passing and switching is balanced, and in some cases, switching dominates. 

The missing factor which shifts the balance between passing and switching is the extent 

to which the crossing MT acts to sterically hinder the motors progressing along the 

primary MT.  

We show that the crossing MT can indeed be an effective obstacle, especially when 
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it intersects at an acute angle with intermediate separation, or near-zero MT-MT separation. 

Both types of geometries significantly inhibit passing but via different mechanisms: 

intermediate separations with acute angles lead to chop-sticking, while near-zero filament 

separations mean that passing is only accessible by means of monkey-barring (which is an 

unlikely event). 

Our simulations generally closely follow the experimental results but two important 

deviations are seen: the conditional probability to switch given that ToW already started is 

higher in experiments than in simulations. Also, the time a cargo spends at the intersection 

is higher in the experiment than in simulation (Figure 4.7). In both cases, the discrepancy 

is clearly linked to the fact that we model MTs as an infinitely rigid rod. To date, MT 

rigidity has been mostly studied separately from MT-based transport. Our work suggests 

that MT bending and more generally biomechanics of the MT cytoskeleton must be taken 

into account in future studies of intracellular motility as they are a non-negligible 

contributor to cargo routing. 

A faithful and detailed in silico model of cargo motility and the ToW process 

enables us to then speculate about cargo navigation patterns beyond our specific conditions. 

First, we show that if viscosity increases, then switching would be further favored for near-

zero filament separations. In effect, our simulations lead us to speculate that not only MT 

geometry but also local microrheology can be a regulator of cargo routing. 

We also predict that extremely short motors should find reaching across the 

crossing MT for near-zero separations particularly difficult, so cargos driven by very short 

motors would preferentially switch at intersections. It is tempting to speculate that overall 

kinesin length evolved to reduce the probability of cargos getting trapped in filament-
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filament switching loops.  

On a more architectural level, our results suggest that for each cargo type and size 

there is a critical MT density at which efficient transport can be inhibited by too much 

switching at intersections. This prediction from the single molecule level dove-tails with 

the more qualitative observations for the insulin secretion process (Zhu et al., 2015).  

Our work opens many new directions for future work, including studies of more 

complex intersections, more complex cargos and motor complexes. Together these 

baseline studies can then serve as a basis for studying chemical regulation of motility in 

the context of cytoskeletal network geometry. A gradual from-the-bottom-up increase in 

complexity can then gradually lead to comprehensive quantitative understanding of 

intracellular cargo fluxes, from a single-molecule mechanistic perspective. 

 

4.5 Methods 

Optical trapping and 3D motility experiments: our holographic optical trapping and 

bead assays were performed as previously described (Bergman et al., 2015). However, in 

present work, enzymatically dead KIF5A heavy chain dimers were adsorbed onto bead 

handles nonspecifically. Switch/pass outcomes were assessed live during the experiments 

from the video feed and recordings were conducted until definitive outcome was attained. 

Video records of bead positions were tracked using custom software (MATLAB, 

MathWorks, Natick, MA). 

Statistical analysis: much of our data are in the form of contingency tables. 

Barnard’s exact tests were used to assess significance of differences between outcomes. 

Simulations: See Appendix for detailed discussion. 
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Figure 4.1:  Our in vitro system allows us to model transport through 3D MT crossings 
(A)  3D STORM image of MT cytoskeleton from BSC-1 cell.  Color coding indicates 
relative depth in the cell.  X-Y Scale bar is 4µm. (Inset) Perspective image of the MT 
crossing highlighted in dashed box. Fits to MT positions (light blue and orange) are 
shown along with the registered photon originations (red and blue). MT separation at 
point of closest approach (double arrow) and MT-MT angle (protractor, dashed lines) is 
annotated for clarity.  
(B)  Illustration of in vitro 3D MT crossing, constructed using our technique, depicting an 
MC undergoing ToW.  BHs (bigger beads) are permanently bound to MTs (blue and red 
tinted filaments bands).  BHs are held in 3D via HOTs (red cones).  Positive MT ends are 
indicated by positive signs. For clarity, we only depict two motors on the MC (smaller 
bead), engaged on different MTs.   In our assays, cargos ultimately switch filaments, or 
pass through the intersection (arrows). 
(C)  Table showing probabilities of switching as a function of 3D MT arrangement.  Higher 
switch rates are highlighted by darker background. Significant differences (p < 0.05, 
Barnard’s test) are indicated by links with * symbols.  
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Figure 4.2: Identification and quantification of ToW 
(A)  Three video frames: before, during, and after ToW (left to right).  Circles show BH 
positions in the left panel and are positioned identically in middle and right panels.  
Displacement of the top BH relative to its fiducial circle indicates presence of ToW (middle 
panel); its original position is restored once ToW has ended (right panel). White plus signs 
indicate the MT plus ends.  Blue and red color dashed lines represent positions of both the 
over and underpass MTs, respectively.  Frame timings shown in lower right corner. 
(B)  Analysis of the pass event shown in panel (A).  Left panel: Trajectory of MC (red) 
overlaid on one video frame. Right panel:  MC displacements projected along the primary 
(blue) and crossing (red) MT’s axes. Red arrowhead highlights the snapback event which 
is typical of a ToW conclusion. Gray band: ToW temporal extent (~ 1.9 s). 
(C)  Analysis of a switch event.  Left panel: Trajectory of MC (red) overlaid on one video 
frame. Right panel:  MC displacement projected along the primary (blue) and crossing 
(red) MT’s axes. Blue arrowhead highlights when the MC undergoes a “snapback”, an 
event which is typical of a ToW conclusion. Gray band: ToW temporal extent (~ 1.6 s). 
(D)  MC displacement along the crossing (red) MT axis shown in (B) overlaid onto trace 
of BH’s displacement from trap center, due to ToW (for the top BH in (A).  all scale bars 
are 5µm.   
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Figure 4.3: Restoring force on BH 
Restoring force on a glass bead (index of refraction 1.55, 1000nm radius) exerted by the 
HOT for various displacements  from trap center.  Calculations were performed using 
reviously published software.  
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Figure 4.4: Cargo navigation flow chart, with associated probabilities 
(A)  Probabilities of ToW, as a function of 3D MT network geometry. 
(B)  Probabilities of primary MT disengagement, for ToW events only, as a function of 3D 
MT network geometry.  ** indicate probability is significantly higher than 50% (p<0.05s, 
Barnard’s test).   
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Figure 4.5: Mathematical modeling demonstrates mechanisms of variable switch 
probabilities 
(A)  Time series of simulation snapshots.  Snapshots demonstrate behavior of simulated 
cargos. Motors walk stochastically, pulling the cargo along with them (left). Motors bound 
to the primary MT are shown in cyan. Unbound motors are shown in green; sphere radius 
represents motor’s reach. Teams of motors bound to opposite MTs pull against each other, 
demonstrating a ToW (center). Motors bound to the crossing MT are shown in magenta. If 
all motors in the primary MT team detach, the cargo continues along the crossing MT, 
undergoing a switch (right).  Bead’s “prime meridian” demarcated to emphasize rotational 
movement. 
(B)  Simulated probabilities to engage in ToW.  Simulated ToW probabilities decrease as 
separation between filaments increase, and are lowest at normal geometries. For each 
experimental separation distance, many cargo runs were simulated for MT angles ranging 
from near-antiparallel (0 degrees) to near parallel (180 degrees). Probability of undergoing 
ToW for each is shown, with thin bars representing standard error. Curves represent 
quadratic fits. Experimental data are shown as crosses overlaid on simulated, with thick 
bars representing mean, and +/- 95% confidence interval. Experimental data points for 
.5µm geometries shifted slightly to aid the eye. 
(C)  Simulated probability to switch, given the cargo engaged in ToW. Transport outcomes 
for simulated cargo runs that engaged in ToW are plotted.  Simulated and experimental 
data represented as in (B). 
(D)  Simulated probability to switch, overall.  Nonintuitive trends found in overall 
switching behavior are explained by multiplying probability to ToW (B), by probability to 
switch, given ToW (C).  Simulated and experimental data represented as in (B). 
(E)  Snapshot of a 0 µm ToW, normal geometry.  3D visualization reveals primary MT 
motors are blocked from passing the intersection by the crossing MT at 0 µm. Bound and 
unbound motors represented as in (A). 
(F)  Probability to switch increases with increasing simulated fluid viscosity. Sweeping 
over viscosity demonstrates that passing in 0µm geometries relies upon diffusive 
assistance. Error bars represent standard error.  
(G)  Mean force exerted by the crossing MT on the cargo (.5 µm normal geometry). The 
crossing MT exerts significant force on the cargo at acute angles, leading to enhanced 
switching. Data represented as mean +/- standard error of the mean.  
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Figure 4.6: Solutions to the heuristic model for ToW probability 
A heuristic model poses the probability of undergoing ToW as the the probabilityof the 
cargo binding (with constant binding rate) to the crossing MT before leaving the ToW 
zone. Solutions shown as solid curves. Bars represent 95% confidence intervals for 
corresponding experimental data. Bars for data at 0.5 μm shifted slightly to aid the eye. 
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Figure 4.7: Empirical cumulative probability distributions for ToW times 
The time for which cargos underwent ToW in 90 degree (normal) geometries was measured 
in experiments and simulations. Cumulative distributions are shown for each geometry. To 
aid interpretation, medians are highlighted with dotted lines. 
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Figure 4.8: Simulated average number of motors engaged 
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Unpublished Data.  M. Bovyn.  Mathematical model of cargo Dynamics.  With permission 

from Matthew Bovyn. 
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