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Abstract 

Since the wide cracks or large deflections can have a significant effect on the appearance of concrete elements and may 

cause some uncommon behavior, therefore, serviceability of concrete structures requires investigation. The main objective 

of this paper is to study experimentally the serviceability of continuous reinforced concrete (RC) beams strengthened by 

Ni-Ti strands. In addition, some building code provisions were used to calculate crack width and deflection. The current 

study presents the experimental results to verify the accuracy of building codes’ provisions for continuous RC beams 

strengthened by SMA strands. Although a pattern of smaller width cracks was monitored for strengthened beams, more 

than 50% of the crack widths were recovered because of super elastic SMA strands. The performance of crack width 

provisions illustrates an overestimated crack width for SMA RC beams. Moreover, the predicted values for immediate 

deflections based on building codes provided a good agreement, although the effective reinforcement ratio (steel 

reinforcement and SMA strands) had a significant effect on immediate deflections of reinforced concrete beams 

strengthened by SMA strands under service loads. 

Keywords: Serviceability; Continuous Beam; Cyclic Loads; Strengthening by Nitinol Strands; Building Codes. 

 

1. Introduction 

Nowadays, concrete structures are one of the favorable alternatives in the construction industry and they are 

considered to satisfy the main criteria of limit states. Well-detailed and properly-erected structures designed by the limit 

state method will have acceptable probabilities that they will not reach a limit state, will not become unfit for their 

purpose by collapse and buckling (ultimate limit states), deformation and cracking (serviceability limit states), and 

therefore, the structure will be durable under environmental conditions over its design life. Some researchers have 

studied the serviceability requirements, crack width and deflection. Ramos et al. developed and validated a finite element 

model to study the static and dynamic behavior of a reinforced concrete beam during cracking. A nonlinear behavior 

was expected at the loading cycle because of cracking. However, upon secondary analysis, when it was loaded again up 

to the same level, the concrete behaved linearly and so it did not suffer more degradation [1]. Allam et al. investigated 

building codes formulas and different effective factors for crack width calculations in RC flexural members. Standard 

codes provisions predicted various values, while Egyptian code underestimated crack width, especially in sections with 

low reinforcement ratio [2]. Desayi and Ganesan considered a concrete member with a reinforcement bar under tension 

loading and proposed a new method to calculate crack width. The proposed equation overestimated crack width by 

5.1%, while the BS8110 provision underestimated crack width by 18.3% [3].  Rakoczy and Deak theoretically 
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investigated the effects of cracked section on deformation of continuous reinforced concrete beams under service limit 

state. As a result of the proposed method, the plastic redistribution of moments caused a different moment distribution 

compared to the one assuming constant stiffness [4]. Yasir Alam et al. experimentally tested three different sizes of RC 

beams to consider crack width and crack spacing under service loads. The results were more or less in agreement with 

measured values and calculated ones at low strains and small beam size [5]. Araujo presented a nonlinear model as a 

reference to verify ACI and CEB methods for calculation of immediate and long-term deflections. Both methods showed 

good results for the uncracked sections and the cracked ones. However, the ACI method is not reliable for deflection 

calculations related to creep and shrinkage [6]. Shaaban et al. experimentally investigated the crack pattern and 

deflection of normal strength concrete (NSC) and high strength concrete (HSC) T-beams under service limit state. It 

was shown that the flange dimensions played an effective role on the beams’ behavior. Experimental results 

demonstrated that the crack initiation was delayed and short-term deflection decreased by increasing the flange 

dimensions [7]. 

Although crack width and crack spacing have been widely investigated, plastic deformation of steel reinforcement at 

unloading can be considered as an important disadvantage of concrete structures, especially when they are subjected to 

earthquakes. Usage of shape memory alloys, may well solve this problem. Shape memory alloys (SMAs) are innovative 

materials that have the potential to sustain large deformations and to revert to their undeformed shape upon removing 

the stress (superelasticity) or by heating (shape memory effect). These unique properties and their particular behavior, 

especially under cyclic loading, marked them as a desirable material. Shape memory alloys (SMAs) can be formed into 

different shapes, and therefore, they have the capability of serving various functions: (a) in bridge restrainers for reducing 

the movement of the deck during an earthquake; (b) Base-isolation systems; (c) in concrete structures for reducing of 

permanent deformation and also leads to re-centering capacity of the structure after devastation, and (d) in steel 

structures as a part of the connections or bracing [8]. 

Saiidi et al. cyclically tested eight simply supported reinforced concrete beams under two-point loading. Half of them 

were reinforced by Ni-Ti rods. Loading and unloading with half yield load increments were performed until achieving 

the displacement ductility of two. It was found that the SMA reinforcement had the ability of recovering deformation 

under cyclic loading [9]. Debbarma and Saha experimentally tested eight simply supported beams, which half of them 

were reinforced by SMA rods to investigate immediate and long-term deflections. The super elasticity of the SMAs 

increased loading capacity, resulting in decline of the instantaneous and long-term deflections of SMA RC beams were 

declined [10]. Choi et al. carried out the bending test on small-scale beams reinforced by four different types of SMA 

fibers to offer a new method for crack closing. Although all types of SMA fibers increased the flexural strength of 

reinforced beams, paper-wrapped fibers exhibited higher cracking recovery because of sufficient anchoring action [11]. 

Khaloo et al. numerically studied the effect of different parameters on cyclic behavior of RC beams reinforced by smart 

rebars. It was shown that using smart rebars reduced the residual displacement of RC beams under cyclic loading [12]. 

Shajil et al. carried out three point bending tests on beam specimens in which Ni-Ti fibers were embedded for their self-

centering capability. Recoverable deformations were observed under cyclic loading, whereas steel reinforcement rebars 

could not achieve the small results under similar loading conditions [13]. Nubailah et al. proposed a finite element model 

to report the behavior of reinforced concrete beams with super elastic shape memory alloys subjected to static loading. 

SMAs played a positive role on limiting residual displacements and crack propagation. Moreover, SMA RC beams 

experienced higher yield load and displacement ductility compared to conventional RC beams [14]. Hosseini et al. 

studied the capability of reinforced concrete structures with shape memory alloys. Copper-based memory alloys and 

Nickel-based memory alloys were separately used in the stimulated finite element model. It was shown that the rate of 

general strains and plastic strains in models with Cu-based alloy armatures was higher than those with Ni-based alloy 

armatures. However, columns with Cu-based alloy armatures experienced less lateral load [15]. Elbahi and Youssef 

analytically compared the flexural behavior of steel and SMA RC beams during loading and unloading stages, by using 

a displacement-controlled loading method. The parametric study demonstrated that increasing the SMA bar length 

reduces the amount of residual displacement and flexural stiffness. Correspondingly, the length of SMA bars played a 

significant role on the amount of dissipated energy [16]. 

In spite of various investigations on SMA reinforced concrete sections, their service behavior is currently unknown 

and needs to be studied. Moreover, since demand of self-compacting concrete (SCC) in the construction industry is 

growing because of its high workability compared to that of typical vibrated concrete structures, this paper focused 

particularly on the serviceability of reinforced self-compacting concrete continuous beams strengthened by super elastic 

SMA strands. As mentioned, previous litarture mainly focused on vibrated concrete and not on SCC. 

In this study, four continuous beams were experimentally tested under cyclic loading, which half of them were 

strengthened by SMA strands in sagging and hogging regions. Based on experimental results, the service response of 

beams are discussed by the following steps: (i) cyclic loading in increments related to yield deflection, which was 

measured in a monotonic test [17]; (ii) monitoring the behavior of tensile reinforcements, concrete strains and 

deflections, and (iii) measuring flexural crack width and deflection under service loads. Likewise, experimental results 
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Figure 1.  The research methodology 

 

2. Theoretical Serviceability Limit State (SLS) According To Building Codes 

2.1. Stress Limitations 

Different standards consider service conditions based on the elastic behavior of materials. The limitation of concrete 

compressive stress is to avoid longitudinal cracks or high level creep where they could result in unacceptable effects on 

the function of the structure. According to ACI 318M-14 [18], the concrete structures are studied under service loads 

when the compressive stress in the extreme concrete fiber equals 0.45𝑓𝑐
′. Considering CSA A23.3 code [19], the limit 

for the concrete compressive stress in the serviceability limit state is set to 0.4𝑓𝑐
′. BS8110 [20] explains that in flexural 

members, the compressive stress should not exceed 0.4𝑓𝑐𝑢 at the extreme concrete fiber in continuous beams. In EN 

1992-2 [21], the compressive stress of concrete is limited to the value 0.6𝑓𝑐𝑘 under rare load combinations and 0.45𝑓𝑐𝑘 

under quasi-permanent loads. In addition, EN code considered limitations of reinforcement tensile stress to avoid 

inelastic strain, unacceptable cracking, or deformation. Therefore, the tensile stress of reinforcements is limited to 0.8𝑓𝑦𝑘 

under characteristic load combinations and 𝑓𝑦𝑘 under an imposed deformation. 

2.2. Deflection and Crack Width Considerations 

In general, design requirements for the serviceability limit state (SLS) are presented with emphasis on deflection 

and cracking under service loads. The following deflection and crack width provisions are drawn from different 

standards.  

2.2.1. Crack Width Provisions 

i) ACI code 

Based on statistical analysis for flexural crack control in beams, Equation 1 predicts the probable maximum crack 

width [22].  



Civil Engineering Journal         Vol. 5, No. 5, May, 2019 

1071 

 

 

L L

P P

i i

𝑊𝑚𝑎𝑥 = (1.08 × 10−5)𝛽ℎ𝑓𝑠√𝑑𝑐 . 𝐴
3                                                                                                                                     (1) 

 

Further researches and experimental works showed that there is no clear relationship between surface crack widths and 

corrosion. Therefore ACI code proposed a simplified equation based on maximum bar spacing in lieu of earlier crack 

rules. ACI 318M-14 presented Equation (2) for crack width control [18]. 
 

 𝑠 = 380 (
280

𝑓𝑠
) − 2.5𝑐𝑐    ≤    300 (

280

𝑓𝑠
)                                                                                                                         (2)     

 

ii) Canadian standard 

According to CSA A23.3-14 [19], the spacing between the tension bars was considered as the crack width control. 

Therefore, flexural bars shall be spaced in the tension zone so that the value z in Equation 3 does not exceed 30000N/mm 

for interior exposure and 25000N/mm for exterior exposure. 
 

 𝑧 =  𝑓𝑠√𝑑𝑐 . 𝐴
3

                                                                                                                                                                  (3) 

iii) British standard 

Based on general provisions of crack width in BS 8110-1997[20], flexural crack width at a particular point on the 

beam surface depends on a) the concrete cover b) the distance of the neutral axis from the particular point and c) the 

average surface strain at the considered point. It is declared that the surface crack width, which is calculated from 

Equation 4 should not exceed 0.3 mm for the visible members (appearance) and the members in aggressive environments 

(corrosion). 
 

𝑊𝑠 = 
3𝑎𝑐𝑟𝜀𝑚

1+2(
𝑎𝑐𝑟−𝑐𝑚𝑖𝑛

ℎ−𝑥
)
                                                                                                                                              (4) 

It should be noted that the elasticity modulus of concrete in the calculation of strain should be taken as half of the 

instantaneous value. 

iv) Eurocode 2 

According to Eurocode2 (EN 1992-1-1) [21], the following Equation 5 is presented for crack width calculations. 
 

𝑊𝑘 = 𝑆𝑟,𝑚𝑎𝑥 . (𝜀𝑠𝑚 − 𝜀𝑐𝑚)                                                                                                                                                 (5)  

𝑏𝑎𝑟 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 ≤ 5 (𝑐 +
𝜙

2
)   →  𝑆𝑟,𝑚𝑎𝑥 = 3.4𝑐 + 0.425𝐾1𝐾2𝜙/𝜌𝑝,𝑒𝑓𝑓                                                                            (6) 

 𝑏𝑎𝑟 𝑠𝑝𝑎𝑐𝑖𝑛𝑔  > 5 (𝑐 +
𝜙

2
)  → 𝑆𝑟,𝑚𝑎𝑥 = 1.3(ℎ − 𝑥)                                                                                                     (7) 

2.2.2. Deflection Calculations  

i) ACI 318M-14 and CSA A23.3-14 

Reinforced concrete members subject to flexure shall be designed to have adequate stiffness to limit deflections or 

any deformations that could adversely affect the strength or serviceability of the structure. When deflections are 

computed, deflections that occurred immediately upon loading shall be computed by methods or formulas for elastic 

deflections. 

The immediate midspan deflection (∆𝑖) of a two-span beam under concentrated loads (Figure 2) can be derived by 

Equation 8. 
 

∆𝑖=
7𝑃𝐿3

768𝐸𝑐𝐼𝑒
                                                                                                                                          (8) 

        

 

 

 

 
Figure 2. Schematic of a two-span beam under two concentrated loads 

 

For two-span continuous prismatic members, the effective moment of inertia may be taken as the weighted average of 

the values obtained from Equation 9 for the critical positive and negative moment section. Hence, the average effective 

moment of inertia can be calculated by Equation 10. 
 

𝐼𝑒 = 𝐼𝑐𝑟 + (𝐼𝑔 − 𝐼𝑐𝑟). (
𝑀𝑐𝑟

𝑀
)3 ≤ 𝐼𝑔                                                                                                                                      (9) 

𝐼𝑒,𝑎𝑣𝑒 = 0.85𝐼𝑒𝑚 + 0.15𝐼𝑒𝑖𝑠                                                                                                                                             (10) 

The transformed uncracked and cracked section of strengthened beams are shown in Figure 3. Meanwhile, Equations 

11-14 were expanded to determine the depth of neutral axis and the moment of inertia for both transformed uncracked 

and cracked section with SMAs, as follows: 
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i) Transformed uncracked section 

�̅�𝑡𝑟 = (
1

2
𝐵′ℎ + 𝑟′𝑑 + 𝑑′)/(1 + 𝐵′ + 𝑟′)                                                                                                                               (11) 

 𝐼𝑡𝑟 = [
1

12
𝑏ℎ3 + 𝑏ℎ (�̅�𝑡𝑟 −

ℎ

2
)
2

] + (2𝑛𝑠𝑡 − 1)𝐴𝑠𝑡
′ . (�̅�𝑡𝑟 − 𝑑′)2 + 

                     +[(𝑛𝑠𝑡 − 1)𝐴𝑠𝑡 + (𝑛𝑆𝑀𝐴 − 1)𝐴𝑆𝑀𝐴]. (𝑑 − �̅�𝑡𝑟)
2                                                                                        (12) 

 

ii) Transformed cracked section 

�̅�𝑐𝑟 = (√(1 + 𝑟)2 + 4𝐵𝑑′(1 + 𝑟𝑑/𝑑′) − (1 + 𝑟))/2𝐵                                                                                               (13)    

𝐼𝑐𝑟 =
1

3
𝑏�̅�𝑐𝑟

3 + (2𝑛𝑠𝑡 − 1)𝐴𝑠𝑡
′ . (�̅�𝑐𝑟 − 𝑑′)2 + (𝑛𝑠𝑡𝐴𝑠𝑡 + 𝑛𝑆𝑀𝐴𝐴𝑆𝑀𝐴). (𝑑 − �̅�𝑐𝑟)

2                                                         (14) 

Where: 

𝐵 =
𝑏

2(2𝑛𝑠𝑡−1)𝐴𝑠𝑡
′      ;        𝑟 = (𝑛𝑠𝑡𝐴𝑠𝑡 + 𝑛𝑆𝑀𝐴𝐴𝑆𝑀𝐴)/(2𝑛𝑠𝑡 − 1)𝐴𝑠𝑡

′   

𝐵′ =
𝑏ℎ

(2𝑛𝑠𝑡−1)𝐴𝑠𝑡
′       ;          𝑟

′ = [(𝑛𝑠𝑡 − 1)𝐴𝑠𝑡 + (𝑛𝑆𝑀𝐴 − 1)𝐴𝑆𝑀𝐴]/(2𝑛𝑠𝑡 − 1)𝐴𝑠𝑡
′  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. Cross section of strengthened beams: (a) typical section (b) transformed uncracked section (c) transformed 

cracked section 

 

ii) British standard 

According to BS 8110-997 [20], the deflected shape of a member is related to the curvatures, and thus, deflections 

may be determined by calculating the curvatures at successive sections along the member and using a numerical 

integration technique. Alternatively, the simplified Equation 15 can be used for calculating deflection based on the 

curvature.  

∆= 𝐾𝐿2
1

𝑟
                                                                                                                                                                         (15) 

 

It should be noted that K can be determined by using Equation 16 for the bending moment diagram of continuous beams 

under concentrated loads (Figure 4). 
 

𝐾 = 0.083(1 −
𝑀𝑎+𝑀𝑏

4𝑀𝑐
)                                                                                                                                                 (16) 

 

 

 

 

 

 

 
Figure 4. Continuous beam under concentrated loads: (a) loading condition, (b) bending moment diagram 

iii) Eurocode 2 

In EN 1992-1-1[21], the method of assessing deflections is to compute the curvatures at frequent sections along the 

member and then calculate the deflection by numerical integration. According to EN, in most cases it will be acceptable 

to compute the deflection twice, assuming the whole member to be in the uncracked and fully cracked condition in turn, 

and then interpolate using Equation 17. 

(a)                                                (b)                           (c) 

              (a)                                                                                               (b) 
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𝛼 = 𝜉𝛼11 + (1 − 𝜉)𝛼1                                                                                                                                                   (17) 

 

𝜉 = 1 − 𝛽 (
𝑀𝑐𝑟

𝑀
)
2

                                                                                                                                                              (18) 
 

3. Experimental Program 

3.1. Details of Beam Specimens  

Four two-span continuous beams were experimentally tested under cyclic loading up to failure. The beam specimens 

were designed and casted in two sets of strengthened beams by SMA strands in critical tension regions (BN1-Nm and 

BN2-Nm) according to the flexural moment diagram and non-strengthened beams (BN1-S and BN2-S), and control 

beams with just conventional steel reinforcements. The numbers 1 and 2 represent the group of beams according to the 

percentage of tensile bars. In other words, the beams were entitled BN1 are reinforced by four steel bars of Φ8 at top 

and bottom, while four steel bars of Φ10 are used at top and bottom of the other two beams were named BN2. Also, 

one additional tensile bar of Φ8  is added to the beam section at central support. Beam dimensions and reinforcement 

details are shown in Figure 5 and summarized in Table 1. 
 

Table 1. Beam reinforcement details 

Group 

number 

Beam 

type 

Section a-a 

 

Section b-b 

Steel 

bar 

Additional 

steel bar 

SMA 

strand 
𝝆 𝝆′ 

Steel 

bar 

SMA 

strand 
𝝆 𝝆′ 

1 

BN1-S 4Φ8 None None 0.0054 0.0054  4Φ8 None 0.0054 0.0054 

BN1-Nm 4Φ8 None 
3 𝑠𝑡𝑟𝑎𝑛𝑑7 

(l=200) 
0.0054 0.0054  4Φ8 

3 𝑠𝑡𝑟𝑎𝑛𝑑7 
(l=250) 

0.0054 0.0054 

2 

BN2-S 4Φ10 
1Φ8 

(l=500) 
None 0.0112 0.0086  4Φ10 None 0.0086 0.0086 

BN2-Nm 4Φ10 
1Φ8 

(l=500) 
2 𝑠𝑡𝑟𝑎𝑛𝑑7 

(l=250) 
0.0112 0.0086  4Φ10 

2 𝑠𝑡𝑟𝑎𝑛𝑑7 
(l=320) 

0.0086 0.0086 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5. Longitudinal profile and reinforcement details of (a) Group 1; (b) Group 2 (all dimensions in mm) 
 

3.2. Material Properties 

The ASTM standard presents some codes considering the required tests for SMA alloys, especially nickel-titanium 

superelastic materials. The F2004-05 code suggests the differential scanning calorimatory (DSC) method to determine 

transformation temperatures of superelastic Nitinol materials [23]. The DSC method was implemented and the 

temperature of phase transformations were measured. According to the DSC diagram given in Figure 6a, the austenite 

phase will begin at the temperature 𝐴𝑆 = 0℃ and phase transformation will be completed after obtaining the temperature 

𝐴𝑓 = 28℃ and so the SMA will be completely austenitic. In addition, while it is in a high temperature austenite phase 

and the material cools down, the austenite to martensite phase transformation will begin at the temperature 𝑀𝑆 = 26℃ 

and will become entirely martensitic whenever the temperature reaches 𝑀𝑓 = −7.5℃. The most reliable method for 
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stress-strain relationship of Nitinol wires are provided in F2516-07 [24]. Figure 6b shows the derived stress-strain 

diagram of SMA wires by pulling the sample to 6% strain, unloading to less than 7MPa stress, and then pulling up to 

failure.  

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 
 

 

 

 

   

 

 

 (b)   

 

 

 

 

 

 

 

 

 
 

Figure 6. Nitinol wire properties: (a) DSC thermogram; (b) stress-strain diagram 

It should be noted that a special machine was used for twisting seven wires to a strand (Figure 7). Likewise, a tension 

test was carried out on steel reinforcements to determine the required properties. The properties of steel reinforcement 

and SMA wires such as yield and ultimate strengths and Young’s modulus are provided in Table 2. The tested beams 

were casted with normal strength self-compacting concrete (SCC), while the average of four cylinder compressive 

strength of concrete at 28 days after casting (𝑓𝑐
′) are reported in Table 3.  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 7.  Twisting machine 
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Table 2. Reinforcement material properties 

Type 𝒇𝒚(𝑴𝑷𝒂) 𝒇𝒖(𝑴𝑷𝒂) 𝑬(𝑮𝑷𝒂) 

𝚽𝟖 371.7 534.0 199 

𝚽𝟏𝟎 323.9 487.7 197 

𝚽𝟏𝟐 324.3 479.4 209 

Nitinol wire of 0.46 mm dia. 502.45 1635.56 37.7 
 

 

Table 3. SCC material properties 

Beams specimen 𝒇𝒄
′  (𝑴𝑷𝒂) 

BN1-S 43.51 

BN1-Nm 36.96 

BN2-S 43.56 

BN2-Nm 40.65 

 

3.3. Test Setup and Procedure  

The test loading procedure of the beams is shown in Figure 8. All specimens were set up as two-span continuous 

which were loaded by a hydraulic jack. Some electrical strain gauges and DEMEC gauges were attached to different 

locations of the steel bars and along the height of the beams to monitor the behavior of the specimens during the test 

(see Figure 5). Meanwhile, vertical deflections of beams at mid-span and central support were recorded by linear variable 

displacement transducers (LVDTs). A 0.02 mm accurate microscope was implemented to observe the crack widths at 

every loading and unloading step. The test was conducted cyclically using “displacement control” method. According 

to ATC-24 [17], the yield values of displacement (∆𝑦) were measured from a monotonic loading test. A stepwise 

displacement cycle is recommended to be applied; which was started as  0.33∆𝑦 to 1∆𝑦 in increments of 0.33∆𝑦 and 

was continued in increments of 1∆𝑦 up to the end [17]. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 8. Test setup 
 

4. Test Results and Observations 

4.1. Cracking Moment 

The beams were continuously monitored during the test. While the first visible crack appeared at mid-span, the 

corresponding force was recorded as the cracking load (𝑃𝑐𝑟) and the experimental cracking moment (𝑀𝑒𝑥𝑝) for all tested 

beams were determined. The cracking moments were also calculated theoretically using Equation 19. It is obvious that 

the cracking moment of a reinforced concrete member is related to the flexural tensile strength, which is proportional to 

the compressive strength of concrete. According to Eurocode 2, the flexural tensile strength depends on the mean axial 

tensile strength (𝑓𝑐𝑡𝑚); in other words, it is a function of the compressive strength.  

𝑀𝑐𝑟 =
𝑓𝑟 .𝐼𝑡𝑟

𝑦𝑡
                                                                                                (19) 

 𝑓𝑟 = 0.62√𝑓𝑐
′                                                            ACI 318M-14 [18]                                                                                   (19a) 

𝑓𝑟 = 0.3√𝑓𝑐
′                                                CSA A23.3-14 [19]                                                            (19b) 

𝑓𝑟 = 𝑚𝑎𝑥 ((1.6 −
ℎ

1000
) 𝑓𝑐𝑡𝑚; 𝑓𝑐𝑡𝑚)                       EN 1992-1-1 [21]                                                                                       (19c) 
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Table 4 provides experimental and theoretical cracking moments for all the tested beams. It is considered that beams 

strengthened by SMA strands experienced higher cracking moment compared to that of the control beams. In addition, 

the enhancement ratio of cracking moment (𝛾) shows an increase of 38% and 15% in cracking moment of strengthened 

beams, BN1-Nm and BN2-Nm, respectively. Analyzing the ratio of theoretical to experimental cracking moment 

(𝑀𝑐𝑟/𝑀𝑒𝑥𝑝) in Table 4, it is understood that EN 1992-1-1 code had the most conservative prediction of cracking moment 

with an average theoretical to experimental ratio of 2.77 for the strengthened beams. By contrast, the mean value of 

theoretical to experimental ratio of cracking moments for beams strengthened by SMA is about 1.056 for CSA, which 

shows that CSA standard predicts the cracking moment of strengthened beams, unconservatively. 

 Table 4. Experimental and theoretical cracking moments 

 

 

 

 

 

 

 

 

4.2. Experimental Stresses under Service States 

Standard provisions for allowable stresses (see Section 2.1) were implemented to verify the serviceability state. The 

permissible strain was calculated according to the elastic behavior of materials under service loads. The material strains 

were continuously recorded during the test, and therefore, the service load was determined. The results for concrete and 

steel reinforcement stresses under service loads are summarized in Table 5. It was found that steel stress limitations are 

critical for the control beam BN1-S, and so, the corresponding loads are measured as the service load in which steel 

reinforcements obtain their allowable elastic levels. By contrast, the other beams mostly reached their serviceability 

limit state under concrete stress limitations, and thus, the load was considered as the service load. Meanwhile, all the 

mentioned codes predict roughly the same service load for the tested beams. In the strengthened beams (BN1-Nm and 

BN2-Nm), SMA strands were only used in critical tension regions, and therefore, as expected, they had no specific effect 

on compressive concrete stress. However, the tensile stress in steel reinforcements under service loads declined 

significantly compared to that of the control beams.  

Table 5. Experimental concrete and reinforcement stress under service loads  

Beam Building code Load (KN) Loading cycle 𝒇𝒔(𝑴𝑷𝒂) 𝒇𝒔/𝒇𝒚 𝒇𝒄(𝑴𝑷𝒂) 𝒇𝒄/𝒇𝒄
∗ 

BN1-S 

ACI 318M-14 65.13 C3 371.7 1 13.80 0.32 

CSA A23.3-14 65.13 C3 371.7 1 13.21 0.3 

BS 8110 65.13 C3 371.7 1 17.06 0.35 

EN 1992-1-1 62.11 C2 297.35 0.8 10.03 0.23 

BN1-Nm 

ACI 318M-14 59.68 C4 245.96 0.66 16.63 0.45 

CSA A23.3-14 54.87 C3 257.11 0.69 14.77 0.4 

BS 8110 50.92 C4 201.00 0.54 16.79 0.4 

EN 1992-1-1 57.81 C3 259.30 0.70 16.65 0.45 

BN2-S 

ACI 318M-14 122.21 C4 302.00 0.93 19.60 0.45 

CSA A23.3-14 115.79 C4 288.81 0.89 17.43 0.4 

BS 8110 103.20 C4 323.90 1 19.13 0.39 

EN 1992-1-1 107.72 C4 259.12 0.8 19.21 0.44 

BN2-Nm 

ACI 318M-14 83.29 C5 212.17 0.66 18.28 0.45 

CSA A23.3-14 76.45 C5 188.33 0.58 16.27 0.4 

BS 8110 68.60 C4 243.69 0.75 18.32 0.4 

EN 1992-1-1 68.97 C4 259.06 0.8 17.95 0.44 

Note: fc
∗ is assumed as specified compressive strength of concrete (fc

′) in ACI and CSA codes, the cube strength of concrete (fcu) in BS8110 

standard and characteristic cylinder strength (fck) in Eurocode 2. 
 

4.3. Crack Results 

4.3.1. Cracking Propagation 

Following the guidelines for cyclic testing [17], first, all specimens were loaded up monotonically. The first visible 

cracks appeared at midspan during the monotonic test. At the end of this step, the cracks were completely recovered in 

Beam 
𝐌𝐞𝐱𝐩 

(KN-m) 
𝛄 

ACI 318M-14 

 

CSA A23.3-14 

 

EN 1992-1-1 

𝐌𝐜𝐫 

(KN-m) 
𝐌𝐜𝐫/𝐌𝐞𝐱𝐩 

𝐌𝐜𝐫 

(KN-m) 
𝐌𝐜𝐫/𝐌𝐞𝐱𝐩 

𝐌𝐜𝐫 

(KN-m) 
𝐌𝐜𝐫/𝐌𝐞𝐱𝐩 

BN1-S 0.981 1.00 2.474 2.522  1.201 1.224  3.221 3.615 

BN1-Nm 1.138 1.38 2.771 2.435  1.345 1.182  3.650 3.207 

BN2-S 1.021 1.00 2.377 2.328  1.157 1.133  2.972 2.911 

BN2-Nm 1.178 1.15 2.252 1.912  1.096 0.930  2.748 2.333 
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BN1-Nm and BN2-Nm. By contrast, control beams BN1-S and BN2-S were capable of recovering just 50% of the first 

crack widths. Loading cyclically, existing midspan cracks became wider and some new ones appeared at both the point 

load and central support. Figure 9 shows the crack propagations of the tested beams at the service state. As shown in the 

figure, the number of midspan cracks was more than that of the central support. Whereas SMA RC beams tend to develop 

cracks of smaller width compared to the control beams.  

 

Figure 9.  Service crack propagation: (a) BN1-S; (b) BN2-S (c) BN1-Nm (d) BN2-Nm 
 

Table 6 provides the initial and maximum flexural cracking characteristics for the beams tested under cyclic loading. 

In the conventional RC beams, BN1-S and BN2-S, the first visible flexural crack appeared at approximately 19.43KN 

and 12.8KN, respectively. At these load levels, both BN1-S and BN2-S had a crack width of about 0.08mm. The 

superelastic property of SMA strands resulted in smaller width cracks in less cracking load for strengthened beams, 

BN1-Nm and BN2-Nm. The relative ratio of loads (𝛼) shows a decrease of about 21% and 8% in the cracking load of 

SMA RC beams, BN1-Nm and BN2-Nm, compared to the corresponding control beams. Considering the reinforcing 

details of the tested beams, it was found that the increase in reinforcement ratio of SMA RC beams caused less decrease 

in the amount of cracking load compared to that of conventional RC beams. Moreover, the strengthened beams were 

found to capable of recovering the initial crack width. At the unloading step, the initial crack in beam BN1-Nm was 

completely recovered; and the residual crack width in BN2-Nm was negligible (less than 0.01mm). Service crack 

characteristics such as maximum crack width (𝑤𝑐𝑟,𝑚𝑎𝑥), residual crack width (𝑅𝑐𝑟) and the recovery capacity of crack 

width are also reported in Table 6. It can be seen that the maximum flexural crack width in the strengthened beams is 

less than that of nonstrengthened ones. Meanwhile, SMA RC beams recovered approximately 70% and 87% of the crack 

width under service load. However, less than 50% of crack width were recorded in the control beam. 
 

Table 6. Initial and maximum service crack characteristics 

Beam 

type 

Initial flexural crack 

 

Maximum service crack 

𝑷𝒄𝒓(𝑲𝑵) 𝑾𝒊,𝒄𝒓(𝒎𝒎) 𝑹𝒊,𝒄𝒓(𝒎𝒎) 𝜶 𝑾𝒄𝒓,𝒎𝒂𝒙(𝒎𝒎) 𝑹𝒄𝒓(𝒎𝒎) 
Recovery 

capacity 

BN1-S 19.43 0.08 0.02 1.00  0.36 0.20 44% 

BN1-Nm 15.41 0.04 0 0.79  0.20 0.06 70% 

BN2-S 12.8 0.08 0.04 1.00  0.40 0.22 45% 

BN2-Nm 11.73 0.04 < 0.01 0.92  0.30 0.04 87% 

 

4.3.2. Assessment of Crack Width Provisions 
 

The crack width provisions of the mentioned standards are applied to the tested specimens and the results are 

compared with experimental data in Table 7 and Figure 10. Generally, the values of crack widths showed a large scatter 

among the code equations. As shown, the values predicted by ACI 318M-14 are the highest among those of other codes, 

although BS 8110 and EN 1992-1-1 mostly predicted similar results for service crack widths. The results obtained from 

the equations propose an underestimated service crack width for the beam BN2-S, the section reinforced with the ratio 

of 0.86%. However, ACI 318M-14 was found to provide the best correlation with the experimental service crack width, 

with the predicted to experimental value of 0.87. In general, ACI 318M-14 predicts more realistic values of service crack 

width compared to those by other codes.  

The values of predicted to experimental ratio are well ranged from -22% to 15% for control beams while those of 

SMA RC beams indicate that standards provisions overestimated the value of service crack widths for RC beams 

strengthened by SMA strands. It is a predictable finding because the standards crack width equations were just 

formulated for conventional reinforced concrete beams. Although a much more logical finding can be achieved by a 

wide range of experimental data, it is evident that crack width provisions of building codes must be revised for a 

substantial decline in service crack width of SMA RC beams. 
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Figure 10. Comparison of maximum crack width based on building codes with experimental maximum crack width under 

service loads 
 

Table 7. Values of service crack widths based on standards and experimental results  

Tested 

specimen 

Maximum crack width (mm) 

ACI 318M-14 
 

BS 8110 
 

EN 1992-1-1 
 Experimental 

Eq. (1) pred./exp. Eq. (4) pred./exp. Eq. (5) pred./exp. 

BN1-S 0.230 1.15  0.202 1.01  0.225 1.125  0.20 

BN1-Nm 0.164 2.73  0.147 2.45  0.146 2.43  0.06 

BN2-S 0.192 0.87  0.171 0.78  0.177 0.80  0.22 

BN2-Nm 0.176 4.40  0.158 3.95  0.166 4.15  0.04 

 
 

In SMA RC beams, conventional steel bars and SMA strands were used simultaneously which caused new 

conditions compared to RC beams with just steel bars. Some particular factors such as steel reinforcement stress and 

effective reinforcement ratio (conventional steel bars plus SMA strands) affected the crack width in SMA RC beams, 

which caused narrow cracks to appear. The relationship between experimental service crack width in conventional RC 

beams and SMA RC beams are shown in Figure 11. The most significant feature of the graph is a dramatic decrease in 

crack widths under service loads for SMA RC beams. Two groups of beams with the effective reinforcement ratios of 

0.56% and 0.88% were experimentally tested. A linear relationship was obtained with the value of service crack width 

in SMA RC beams and conventional RC beams. The value of service crack width in RC beams strengthened by SMA 

strands was about 28% and 20% of the corresponding value for RC beams with the effective reinforcement ratio of 

0.56% and 0.88%, respectively. On the other hand, the values of the crack widths in SMA RC beams are roughly less 

than 30% of crack widths in conventional RC beams. Meanwhile, more effective ratio of tension reinforcements caused 

more narrow cracks in the SMA RC beams. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 
 

Figure 11. The relationship between observed service crack width in conventional RC beams and SMA RC beams 
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4.4. Deflection Considerations 

4.4.1. Experimental Deflection Behavior 

For every loading cycle, the mean value of beam deflection obtained from LVDTs at two midspans are calculated 

for deflection assessment. The relationship between total applied load and midspan deflection for all tested beams are 

plotted in Figure 12. Each curve represents the pushover of average midspans’ deflection under service loads. It can be 

seen that maximum service deflection and its residual value for control beams are significantly more than those of the 

tested beams strengthened by SMA strands. Maximum deflection values of about 1.15 mm and 1.88 mm were recorded 

for control beams BN1-S and BN2-S corresponding to 83 KN and 130 KN, respectively. Whereas the strengthened 

beams, BN1-Nm and BN2-Nm, deformed up to approximately 0.62 mm and 1.56 mm corresponding to 58 KN and 100 

KN, respectively. While unloading, SMA RC beams BN1-Nm and BN2-Nm were capable of recovering roughly 86% 

and 69% of maximum service deflection, respectively. However, approximately 58% and 46% of the maximum 

deflection under service loads recovered in the control beams BN1-S and BN2-S. 

As expected, the crack pattern along the beam is different. In turn, the flexural stiffness (EI) has different values 

based on whether the considered section is cracked or uncracked. The variation of flexural stiffness is directly related to 

that of the moment of inertia (I); therefore, the ratio of  𝐼𝑒/𝐼𝑔 is used to study the flexural stiffness variation of the tested 

beams. Figure 13 illustrates the relationship between 𝐼𝑒/𝐼𝑔 and 𝑀/𝑀𝑐𝑟 at midspan and central support of all the beams. 

As shown, the 𝐼𝑒/𝐼𝑔 trend of the SMA RC beams is roughly similar to that of the corresponding control beams. However, 

the strengthened beams experienced lower flexural stiffness for a specific 𝑀/𝑀𝑐𝑟. There was a significant decline in the 

ratio 𝐼𝑒/𝐼𝑔  of cracked specimens until values of 𝑀/𝑀𝑐𝑟  are less than 2.5 and 1.5 at midspan and central support, 

respectively. From this point onwards, although the applied moment increased, the ratio 𝐼𝑒/𝐼𝑔 leveled out.  

 

 

 

 

 

 

 

 

 

  

 

 

 

 
 

 

 

Figure 12. Applied load versus experimental deflection 

 
 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 
 

 

 

Figure 13. Variation of 𝑰𝒆/𝑰𝒈 versus 𝑴/𝑴𝒄𝒓 at midspan and central support 
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4.4.2. Evaluation of Deflection Provisions 

According to the mentioned standard provisions (see Section 2.2.2), immediate deflection is calculated at the service 

limit state. Table 8 provides the predicted deflection (∆𝑝𝑟𝑒𝑑), experimental deflection (∆𝑒𝑥𝑝) and the relative ratio of 

midspan deflection in strengthened beam to that of the corresponding RC beam (𝛾). Experimental midspan deflections 

were measured as 0.45mm and 0.97mm in BN1-Nm and BN2-Nm, respectively, and were significantly less than those 

of the corresponding RC beams. The values of 𝛾  demonstrate a decrease of about 50% in midspan deflection of 

strengthened beams by the SMA strands. In fact, the substantial decline of midspan deflection for SMA RC beams 

compared with conventional ones are mainly due to their higher displacement ductility, because of their strengthening 

with superelastic Ni-Ti strands. The values of deflection ratios ∆𝑝𝑟𝑒𝑑/∆𝑒𝑥𝑝 (𝛽) are reported in Table 8, and are plotted 

in Figure 14 for all tested beams in terms of different building codes. As can be seen, the predicted values of ACI 318M-

14 and CSA A23.3-14 are approximately the same. Likewise, these two codes predicted the highest instantaneous 

deflection for beams compared to other building codes. Because of the superelastic property of SMAs, the midspan 

displacement in SMA RC beams declined compared to that of control beams. Although the decrease of immediate 

deflection in strengthened beams is clearly obtained from code provisions, the building codes predicted deflection of 

SMA RC beams, differently. Code provisions conservatively predicted the immediate deflection of beam BN1-Nm 

(𝜌𝑒𝑓𝑓 = 0.56%) with the value of 𝛽 ranged between 1.62 and 2.53, whereas the range of 𝛽 from 0.90 to 1.03 showed 

an unconservative prediction of instantaneous deflection for beam BN2-Nm  (𝜌𝑒𝑓𝑓 = 0.88%) . The lower ratio of 

effective reinforcement demonstrated the more conservative predicted deflection for SMA RC beams. Hence, code 

provisions for RC beams strengthened by SMAs must be revised with the effective reinforcement ratio in mind. Further 

tests on this subject are essential. 

Table 8. Comparison of measured and predicted immediate deflection 

Beam ∆𝒆𝒙𝒑(𝒎𝒎) 𝜸 
ACI 318M-14 CSA A23.3-14 BS 8110 EN 1992-1-1 

∆𝒑𝒓𝒆𝒅(𝒎𝒎) 𝜷 ∆𝒑𝒓𝒆𝒅(𝒎𝒎) 𝜷 ∆𝒑𝒓𝒆𝒅(𝒎𝒎) 𝜷 ∆𝒑𝒓𝒆𝒅(𝒎𝒎) 𝜷 

BN1-S 1.09 1.00 1.33 1.22 1.39 1.28 1.10 1.01 1.23 1.13 

BN1-Nm 0.45 0.41 1.09 2.42 1.14 2.53 0.92 2.04 0.73 1.62 

BN2-S 1.79 1.00 1.95 1.09 2.03 1.13 1.57 0.88 1.39 0.78 

BN2-Nm 0.97 0.54 0.96 0.99 1.00 1.03 0.87 0.90 0.89 0.92 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 14. Ratio of predicted to experimental immediate deflection 

 

5. Conclusions 

The serviceability of two-span reinforced concrete beams strengthened by SMA strands under cyclic loading was 

investigated experimentally. Different building codes were also used to assess the service response of strengthened 

beams such as crack width and deflection. The main results were obtained as follows: 

 Unique superelastisity of Ni-Ti strands influenced the concrete pre-cracking stage. Therefore, the cracking moment 

of RC beams strengthened by SMA strands increased significantly up to 40%. However, theoretical equations 

predicted higher values of cracking moment compared to experimental data.  

 Material strains were monitored continuously during the test to determine service loads. In addition, different 

building codes were implemented to specify the allowable stress of materials (concrete and steel reinforcement) 

at service limit state. It was found that RC beams mostly reached to the serviceability limit state under steel 

reinforcement limitations. By contrast, using SMA strands in strengthened beams caused a substantial decline in 

steel reinforcement stresses and so concrete stress was highlighted as the service level. 

∆
𝑝
𝑟
𝑒
𝑑
/∆

𝑒
𝑥
𝑝
 

∆𝑝𝑟𝑒𝑑= ∆𝑒𝑥𝑝 
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 Considering crack propagations under service loads, smaller width cracks were developed in SMA RC beams 

compared with control beams. Likewise, SMA RC beams were capable of recovering more than 50% of the service 

crack widths. On the other hand, theoretical crack widths illustrate that crack width provisions of building codes 

overestimated the crack widths under service loads for SMA RC beams. 

 Experimental deflections of the tested beams showed that the maximum midspan deflection of SMA RC beams 

was substantially less than that of the control beams. Moreover, RC beams strengthened by SMA strands were 

able to recover up to 90% of the maximum service deflections. 

 Although the 𝐼𝑒/𝐼𝑔 trend of SMA RC beams is roughly similar to that of corresponding control beams, the ratio 

𝐼𝑒/𝐼𝑔 of cracked beams decreased substantially for the values 𝑀/𝑀𝑐𝑟 up to 2.5 and 1.5 at midspan and central 

support, meaning that the tested beams experienced more cracks. However, for higher values of applied moment, 

the ratio 𝐼𝑒/𝐼𝑔 remained approximately at the same level.  

 Comparison between theoretical deflections based on building codes and experimental data demonstrated a good 

agreement for the tested beams. However, the effective reinforcement ratio (steel reinforcement and SMA strands) 

had a significant effect on immediate deflections of reinforced concrete beams strengthened by SMA strands under 

service loads. 

6. Notations 
 

The following symbols are used in this paper: 
 

A = Effective tension area of concrete surrounding the flexural tension reinforcement (=
2𝑑𝑐𝑏

𝑛
) 

𝐴𝑠𝑡 = Area of  longitudinal tension reinforcement, 𝑚𝑚2 

𝐴𝑠𝑡
′  = Area of  longitudinal compression reinforcement, 𝑚𝑚2 

𝐴𝑆𝑀𝐴 = Area of  longitudinal SMA strands, 𝑚𝑚2 

𝑎𝑐𝑟 = Distance from the particular point to the surface of the nearest longitudinal bar, mm 

b = Width of beam, mm 

C = Cover to the longitudinal reinforcement, mm 

𝐶𝑐 = The least distance from reinforcement surface to the tension concrete face, mm 

𝐶𝑚𝑖𝑛 = Minimum cover to tension bars, mm 

d = Effective depth to the centroid of the outer layer of reinforcement, mm 

𝑑𝑐 = Thickness of cover from the extreme tension fiber to the closest bar, mm 

𝐸𝑐 = Elasticity modulus of concrete, MPa 

𝐸𝑠 = Elasticity modulus of steel reinforcement, MPa 

𝐸𝑆𝑀𝐴 = Elasticity modulus of  SMA strands, MPa 

𝑓𝑐 = Design service stress in concrete, MPa 

𝑓𝑐𝑡𝑚 = Mean value of axial tensile strength of concrete, MPa 

𝑓𝑐𝑢 = Characteristic compressive cubic strength of concrete at 28 days, MPa 

𝑓𝑟 = Modulus of rupture of concrete, MPa 

𝑓𝑠 = Tensile  stress in reinforcement under service loads, MPa 

𝑓𝑦(𝑓𝑦𝑘) = Characteristic yield strength of reinforcement, MPa 

𝑓𝑢 = Ultimate strength of reinforcement, MPa 

𝑓𝑐
′(𝑓𝑐𝑘) = Characteristic compressive cylinder strength of concrete at 28 days, MPa 

h = Overall depth of the beam, mm 

𝐼𝑐𝑟 = Moment of inertia of cracked section transformed to concrete, 𝑚𝑚4 

𝐼𝑒 = Effective moment of inertia, 𝑚𝑚4 

𝐼𝑒,𝑎𝑣𝑔 = Midspan and inner support average moment of inertia, 𝑚𝑚4 

𝐼𝑒𝑖𝑠 = Inner support effective moment of inertia, 𝑚𝑚4 

𝐼𝑒𝑚    = Midspan effective moment of inertia, 𝑚𝑚4 

𝐼𝑔    = Moment of inertia of gross concrete section about centroid axis, 𝑚𝑚4 

𝐼𝑡𝑟     = Moment of inertia of uncracked section transformed to concrete, 𝑚𝑚4 

K = Constant depends on the shape of the bending moment diagram 

𝐾1 = Coefficient which takes account of the bond properties of the bonded reinforcement 

𝐾2 = Coefficient which takes account of the distribution of strain 
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