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INVESTIGATION

Genetic Interactions Affect Lung Function in
Patients with Systemic Sclerosis
Anna Tyler,* J. Matthew Mahoney,†,‡ and Gregory W. Carter*,1

*The Jackson Laboratory, 600 Main St. Bar Harbor, ME, †Department of Neurological Sciences, Larner College of
Medicine, University of Vermont, Burlington, VT, and ‡Department of Computer Science, University of Vermont,
Burlington, VT

ORCID IDs: 0000-0001-8371-2377 (A.T.); 0000-0003-1425-5939 (J.M.M.); 0000-0002-2834-8186 (G.W.C.)

ABSTRACT Scleroderma, or systemic sclerosis (SSc), is an autoimmune disease characterized by pro-
gressive fibrosis of the skin and internal organs. The most common cause of death in people with SSc is lung
disease, but the pathogenesis of lung disease in SSc is insufficiently understood to devise specific treatment
strategies. Developing targeted treatments requires not only the identification of molecular processes
involved in SSc-associated lung disease, but also understanding of how these processes interact to drive
pathology. One potentially powerful approach is to identify alleles that interact genetically to influence lung
outcomes in patients with SSc. Analysis of interactions, rather than individual allele effects, has the potential
to delineate molecular interactions that are important in SSc-related lung pathology. However, detecting
genetic interactions, or epistasis, in human cohorts is challenging. Large numbers of variants with low minor
allele frequencies, paired with heterogeneous disease presentation, reduce power to detect epistasis. Here
we present an analysis that increases power to detect epistasis in human genome-wide association studies
(GWAS). We tested for genetic interactions influencing lung function and autoantibody status in a cohort of
416 SSc patients. Using Matrix Epistasis to filter SNPs followed by the Combined Analysis of Pleiotropy and
Epistasis (CAPE), we identified a network of interacting alleles influencing lung function in patients with SSc.
In particular, we identified a three-gene network comprising WNT5A, RBMS3, and MSI2, which in combi-
nation influenced multiple pulmonary pathology measures. The associations of these genes with lung
outcomes in SSc are novel and high-confidence. Furthermore, gene coexpression analysis suggested that
the interactions we identified are tissue-specific, thus differentiating SSc-related pathogenic processes in
lung from those in skin.
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Systemic sclerosis (SSc), or scleroderma, is a complex autoimmune
disease associated with significant morbidity and mortality. It is char-
acterized by widespread fibrosis of skin and internal organs, as well as
vasculopathy (Denton and Khanna 2017). The most common cause of
death in SSc is lung disease (Steen and Medsger 2007). Roughly a

quarter of people with SSc develop interstitial lung disease, which in-
volves lung fibrosis, vascular hyperreactivity, and inflammation
(Solomon et al. 2013). Another 7–13% of patients develop pulmonary
arterial hypertension, which is characterized by vascular injury and
occlusion, vasoconstriction, and dysregulated angiogenesis (Solomon
et al. 2013). Both conditions lead to reduced lung function and in-
creased risk of death. The pathogenesis of lung disease in SSc is not
understood well enough for development of specific treatments, and
current treatments rely primarily on non-specific immune suppression
(Cappelli et al. 2015). There is a need to identify new molecular drivers
of lung disease in SSc, as well as how these drivers interact with other
genes to influence pathogenesis.

A standardapproach todiscoveringmolecular driversof lungdisease
in SSc is to identify genetic variants associated with lung outcomes.
Genetic studieshavebeen tremendously successful in identifying genetic
variants associated with SSc and its complications. In a reflection of the
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complexity of the disease, variants in over 200 genes have been impli-
cated in SSc risk and progression (Yu et al. 2010), which has greatly
increased our understanding of the development of SSc (Mayes 2012;
Agarwal 2010; Agarwal and Reveille 2010) and may aid in personalized
disease monitoring and treatment (Assassi et al. 2013). The next step in
this line of inquiry is to incorporate genetic complexity intomodels that
determine how variants interact with each other to influence disease.
By explicitly modeling genetic interactions, or epistasis, we can build
understanding of howmolecular pathways work in concert to drive SSc
pathology.

Initial studies of genetic interactions in SSc have been promising.
Epistasis between polymorphisms in the HLA region and cytokines has
been shown to predict SSc risk (Beretta et al. 2008a), development of
severe ventilatory restriction (Beretta et al. 2008b), and digital ulcer
formation (Beretta et al. 2010) in SSc patients. However, progress in
this search is limited by a number of challenges. The rarity of the disease
and its clinical heterogeneity add to difficulties present in all human
genetic studies, such as low minor allele frequencies and the large
number of potentially relevant variants. Non-parametric tests such as
Multifactor Dimensionality Reduction (MDR) (Hahn et al. 2003) have
been successful in identifying the interactions that have been identified
thus far (Beretta et al. 2008a,b 2010). These findings suggest additional,
complementary interaction analyses may further dissect the genetic
complexity of SSc and other common diseases.

Here we present a novel approach that increases power to detect
genetic interactions in human genome-wide association studies
(GWAS). We previously developed the Combined Analysis of
Pleiotropy and Epistasis (CAPE) to model epistatic interactions
in model organisms (Tyler et al. 2013; Carter et al. 2012). CAPE
increases power to detect and interpret genetic interactions by com-
bining information across multiple traits into a single consistent
model. We have demonstrated its ability to identify novel genetic
interactions not detectable by other methods (Tyler et al. 2014,
2016). For this study, we combined CAPE with a filtering step, which
filtered the SNPs to those most likely to be involved in genetic inter-
actions. We used Matrix Epistasis (Zhu and Fang 2018), an ultra-fast
method for exhaustively testing epistasis in genome-wide SNP data.
Candidate SNP pairs were then analyzed with CAPE and significance
was assessed with permutation tests.

Weapplied this approach togenetic andclinical data fromacohortof
patients with SSc (dbGaP accession phs000357.v2.p1). To capture
aspects of lung disease and autoimmunity, we analyzed two measures
of lung function, forced vital capacity (FVC) and diffusion lung capacity
(DLC), as well as two autoantibody staining patterns: centromeric, and
nucleolar. Anti-centromere autoantibodies (ACA) are associated with
pulmonary hypertension, and anti-nucleolar autoantibodies (ANA) are
associated with progressive interstitial lung disease and pulmonary
arterial hypertension (Betteridge et al. 2016). Thus, there may be com-
mon genetic pathways underlying both autoantibody status and lung
function that we can identify by analyzing all four traits simultaneously.

MATERIALS AND METHODS

Methods workflow
All code used for computational analyses in this paper are available in a
supplemental workflow available at https://github.com/annaLtyler/
SSc_Epistasis_Workflow.

Genetic and clinical data
We obtained genotype and phenotype from the database of Genotypes
and Phenotypes (dbGaP) Accession phs000357.v1.p1.

The full data comprised 833 SSc patients, including 741 females
and 85 males. Genotypes were measured at 601,273 SNPs using the
Human610_Quadv1_B platform. Patients were assessed for the pres-
ence ofmultiple autoantibodies and lung function tests were performed.
Values for autoantibodyphenotypeswere1 (present)and0 (absent), and
values for test of lung function included forced vital capacity and
diffusion lung capacity. Both measurements were represented as the
percent of the predicted value based on factors such as age and sex
(Agarwal et al. 2009).

We analyzed two lung function traits, percent predicted forced vital
capacity (FVCP) and percent predicted diffusion lung capacity (DLCP)
as well as two autoantibody patterns, anti-centromere (ACA) and anti-
nucleolar (ANA). There were 416 patients (369 females and 47 males)
with measurements for all four traits, and all subsequent analyses used
only these patients.

Expression data
We obtained gene expression data from the Gene Expression Omnibus
(GEO) (Edgar et al. 2002; Barrett et al. 2013). The data set we used
(accession number GSE76808) compared gene expression in lung bi-
opsies taken from patients with SSc and interstitial lung disease (ILD)
to biopsies of unaffected tissue from lung cancer patients undergoing
surgical resection (Christmann et al. 2014). This is the only data set
available that compares SSc lung to normal lung. The available data
were log2 normalized, thus we did not perform further normalization.
Group-wise comparisons were performed with two-tailed Student’s
two-sample t-tests.

SNP filtering
We first reduced to 243,662 SNPs with minor allele frequency (MAF)
$ 0:1, a relatively high cutoff due to our pair-wise testing strategy.
Because analysis of all pairwise combinations of the filtered SNPs
was computationally infeasible, we further filtered the SNPs to
1500 SNPs that were likely to participate in genetic interactions influ-
encing the four traits. The number 1500 was selected such that the
CAPE pipeline would take about 24 hr to run. For this filter we used
Matrix Epistasis (Zhu and Fang 2018), an ultra-fast method of calcu-
lating interactions between SNPs. Using Matrix Epistasis, we were able
to calculate interaction scores for all SNP pairs exhaustively for each of
the four traits. We used a permissive p value significance threshold of
p, 1 · 106 to limit the false discovery inflation cause by trait-based
SNP selection. We then used an iterative scheme to identify SNPs that
were epistatic and pleiotropic (affecting more than one trait) based on
this significance threshold. In the first stage of the search, we identified
SNP pairs that interacted significantly (p, 1 · 1026) to influence more
than one trait. There were 52 pairs of SNPs that interacted to affect both
lung traits. No other SNP pairs influenced more than one trait. In the
next stage of the search, we looked for individual SNPs that were in
epistatic interactions affecting more than one trait, regardless of the
interacting partner. For example, SNP1 might interact with SNP2 to
influence ANA, but interact with SNP3 to influence ACA. SNP1 affects
both traits through interactions, but by interacting with different part-
ners. In this case, we keep SNP1, but discard SNPs 2 and 3.We searched
in this way for SNPs that influenced all four traits as part of interactions,
and then all three traits as part of interactions, and so on until we had
selected 1500 SNPs that were potentially epistatic and pleiotropic. For
this filtering step as well as for CAPE, we used a dominant coding for
the SNPs; i.e., loci homozygous for the major allele were coded as 0 and
loci that were either heterozygous or homozygous for the minor allele
were coded as 1. This coding allows for maximum representation of
each two-locus genotype combination, which increases power to detect
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dominant effects, but reduces power to detect recessive or additive
effects.

Combined Analysis of Pleiotropy and Epistasis (CAPE)
We identified genetic interactions between SNPs using Combined
Analysis of Pleiotropy and Epistasis (CAPE) (Tyler et al. 2013; Carter
et al. 2012). This method combines information across multiple traits
to infer directed genetic interactions. Combining information across
traits not only increases power to detect genetic interactions, but also
allows inference of the allele-to-allele direction of the interaction, which
can be either positive (enhancing) or negative (suppressing). We have
applied this analysis to multiple model organisms including yeast
(Carter et al. 2012), fly cell lines (Carter 2013), and mice (Philip et al.
2014; Tyler et al. 2014, 2017, 2016). This is the first application to a
human cohort.

As a preliminary analysis, we tested whether SNPs previously asso-
ciated with SSc could be recapitulated in this small cohort.We performed
linear regression to associate each SNP with each of the four traits.

We then decomposed the autoantibody and lung traits to four
orthogonal eigentraits (ETs) using singular value decomposition
(SVD) (Figure 2). This step concentrates trait variance into composite
ETs potentially improving the ability to map weak genetic effects that
are otherwise distributed across traits. We analyzed the first two
ETs, which explained 71% of the variance across the four phenotypes
(Figure 2A). These ETs contrasted each of the autoantibodies with the
other autoantibody and the two lung traits in turn (Figure 2A).

Weperformed linear regression on SNPpairs and each ET. To avoid
testing SNPs in linkage disequilibrium, we did not test any SNP pairs
whose Pearson correlation coefficient exceeded an arbitrary, stringent
cutoff of 0.5.Out of 1,125,750 possible pairs between the 1500 SNPs plus
the covariate sex, 1,125,593 SNP pairs (. 99:9%) passed this criterion.
We also assessed population structure in the patient cohort. Population
structure, caused by heterogeneous relatedness among individuals in a
cohort, can artificially inflate the association between SNPs and traits.
To test whether population structure was influencing our associa-
tion tests, we compared the quantile normalized distribution of
the 2log10ðpÞ from association tests with each trait to the distribution
of quantile normalized p values under the null hypothesis (Fig S1).
There was no systematic inflation of the estimates of significance. We
therefore did not correct for population structure in this study.

After performing all pairwise regressions, we recast the regression
coefficients to CAPE parameters describing allele-to-allele influences.
This process is described in detail elsewhere (Carter et al. 2012; Tyler
et al. 2013), and we describe it briefly here. The first step in calculating
CAPE coefficients is a reparametrization of the regression coefficients
to obtain delta parameters (d1 and d2) which describe the degree to
which the presence of one SNP influences the phenotypic effects of the
other SNP:
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These parameters are then translated into directional (m12 andm21)
coefficients that self-consistently describe how the two SNPs influence
one another:

d1 ¼ m12ð1þ d2Þ;   d2 ¼ m21ð1þ d1Þ

We estimated standard errors for these interaction terms by
propagating standard error terms from least squares regression with

second-order Taylor expansion on the regression parameters (Carter
et al. 2012).

Weestimatedsignificanceof the resultingmodelparameters through
permutations with family-wise error rate estimation. We generated a
nulldistributionas follows:ETswere randomly re-orderedrelative to the
genotypes, andweperformed the single-SNPscan, and thepairwise scan
aswith theoriginaldata.Werepeatedthisprocessuntilwehadgenerated
a null distribution with 1.5 million values. We corrected empirical
p values using false discovery rate (FDR) (Benjamini and Hochberg
1995) and used a significance threshold of q, 0:05.

To aid in visualizing the strength of each interaction we calculated a
predicted additive effect of each pairwise SNP combination. These are
shown in figure 2.We used the linear regression coefficients as shown in
the following model.

y ¼ b0 þ x1b1 þ x2b2 þ x1x2b1;2 þ e

We subtracted the intercept (b0) from each term, and calculated the
predicted additive effect as the sum of the twomain effectb coefficients.
Similarly, we defined the error as the sum of the standard errors of each
group defined by the pairwise genotypes.

Assignment of SNPs to genes
To assign each SNP in the final network to a gene, we downloaded SNP
annotations fromSNPNexus (DayemUllah et al. 2018, 2013, 2012) and
assigned each gene to the nearest or containing gene.

Coexpression analysis
To explore the potential function of the interactions we identified, we
used the Search-Based Exploration of ExpressionCompendium (SEEK)
(Zhu et al. 2015). SEEK is a web tool (http://seek.princeton.edu) that
searches across thousands of gene expression data sets to find genes that
are co-expressed with a user-defined query gene or gene set. The search
can be restricted to data sets in individual tissues or that have associated
keywords, thus providing context for the co-regulation.

Basedon theCAPEresults,we analyzed two genepairs:WNT5A and
RBMS3 in one query andRBMS3 andMSI2 in another. Using SEEK, we
searched for co-regulated genes across all expression data sets. We also
restricted our search to subsets of data sets to identify co-regulated
genes in particular contexts (Table 2). For example, to look for tis-
sue-specific co-regulation, we searched for genes co-regulated in all
lung tissue data sets and also in all skin tissue data sets. Both tissues
are relevant to SSc pathogenesis. However, in this study, we identified
genetic interactions associated with lung function. We thus expected
that genes co-regulatedwith the query genes in lungwould better reflect
the function of each interaction in this study.

In addition to tissue-specific searches, we also searched for genes
co-regulated with our query genes in disease-specific data sets. To
perform these searches, we restricted the search to data sets associated
with key words, for example autoimmunity and fibrosis.

Ineachof thesequeries,we identified thegeneswhoseexpressionwas
significantly correlated with the pair of query genes (p, 0:05). These
gene sets represent genes that were co-regulated with the query gene set
acrossmultiple tissues and disease contexts.We propose that functional
enrichments of these gene sets are related to the function of the query
gene pair in this disease cohort. To identify functional enrichment of
each gene set, we used gProfileR (Reimand et al. 2016) (See workflow).

Among the significantly enriched terms, were many that are known
to be related to SSc, for example terms relating to extracellular matrix
organization and wound healing. We were interested in determining
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whether these sets of enriched GO terms enriched were related to SSc
more than we would expect at random. To asses this, we downloaded a
set of disease-GO term associations from the Comparative Toxicogen-
moics Database (http://ctdbase.org/downloads/#phenotypediseases)
(Davis et al. 2019, 2016). This database provided us with a set of GO
terms that are associated with SSc.

From the database, we collected all GO terms associated with SSc,
including Systemic Scleroderma, Diffuse Scleroderma, and Limited
Scleroderma, and looked for overlap between these GO terms and the

GOterms enriched in theSEEKanalysis.Todetermine significanceof the
overlap between gene pair GO terms and SSc-associated GO terms, we
performed Fisher’s Exact Test. Significance was assessed at p# 0:05=16.

For visualization purposes, we clustered SSc-related GO terms using
REVIGO (Supek et al. 2011) (http://revigo.irb.hr).

Interestingly, althoughWnt signaling has been shown to be involved
in SSc, no Wnt signaling GO terms were associated with SSc by CTD.
This indicates missing true associations between SSc and GO terms and
suggests that the associations we calculated are conservative estimates.

Figure 1 Trait distributions and correlations.
(A) Colored bars show the proportion of
patients that were negative for both autoanti-
bodies (None), positive for either centromere
(ACA) or nucleolar (ANA) autoantibodies, or
positive for both (Both). (B) Histograms show-
ing the distribution of FVCP (%) and DLCP (%).
The distributions are roughly normal. The third
panel shows the correlation between FVCP
and DLCP. They were moderately correlated
(r ¼ 0:48, p ¼ 1:3· 10225). (C) Box plots show
associations between lung traits and binary
traits. Sex, nucleolar status, and centromere
status all had significant effects on FVCP.
None of the binary traits were significantly as-
sociated with DLCP. P values from two-tailed
Student’s t-test (p,0:05) are reported. Auto-
antibody status is denoted as ANA (N), ACA
(C) or absent (Ø). (D) These plots show inter-
actions between binary traits that affect the
lung traits. Sex and nucleolar status interacted
significantly to influence FVCP (p#0:05). In-
teractions between sex and autoantibody sta-
tus on DLCP were not quite significant, but
trended toward significance (p � 0:06).
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Data availability
Genotype and phenotype data are available from the Database of Geno-
types and Phenotypes (DbGaP) (https://www.ncbi.nlm.nih.gov/gap) Ac-
cession: phs000357.v2.p1. Gene expression data are available from the
Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/)
Accession: GSE76808 A complete workflow including all code to gener-
ate results and figures is available here: https://github.com/annaLtyler/
SSc_Epistasis_Workflow. Supplemental material available at figshare:
https://doi.org/10.25387/g3.8300543.

RESULTS

Trait descriptions
We analyzed a cohort of 416 patients with lung function and autoan-
tibody measurements (369 females and 47 males). The two lung traits,
forced vital capacity (FVCP) and diffusion lung capacity (DLCP), were
measured as a percentage of the total predicted by patient demographic
parameters, such as age and weight (Agarwal et al. 2009). The autoan-
tibodies were distributed as shown in Figure 1A. Roughly half the
patients were negative for both antinucleolar autoantibodies (ANA)
and anti-centromeric autoantibodies (ACA), and the other half of pa-
tients were positive for one or the other. Only five patients presented
with both autoantibodies.

Both lung traits were roughly normally distributed, with maximum
values greater than 100%, and the traits were modestly correlated
(Pearson’s r ¼ 0:48, p ¼ 1:3 · 10225) (Figure 1B). We used rank Z
normalization on both traits prior to performing association tests.

FVCP was influenced by sex and autoantibody status (Figure 1C).
Males had significantly lower FVCP on average than females (two-taied
Student’s t-test p ¼ 0:0063). The presence of the two autoantibodies had
opposite effects. The presence of ANA significantly reduced FVCP (two-
tailed Student’s t-test p ¼ 0:033), while the presence of ACA signifi-
cantly improved FVCP (two-tailed Student’s t-test p ¼ 5:1 · 1027).
Neither autoantibody nor sex had any significant associationwithDLCP
(all two-tailed Student’s t-test p. 0:05).

We also looked for interactions between the autoantibodies and sex
that influenced the lung traits (Figure 1D). Presence of ANA and sex
interacted nominally significantly to influence FVCP (p ¼ 0:042). In
this interaction, females positive for ANA had lower FVCP on average
than females negative for ANA. However, in males, the effect was the
opposite. Males positive for ANA had higher FVCP on average than
males negative for ANA. None of the other factor combinations had
any significant effects on either FVCP orDLCP (all two-tailed Student’s
t-test p. 0:05); however sex and autoantibody status trended toward a
significant interaction for DLCP. The presence of each autoantibody
had very little effect on DLCP in females, but increased DLCP inmales.

Single-locus association identified four SNPs with
significant main effects on ACA
The patients in this study were genotyped at 601,273 SNPs. However,
because detection of genetic interactions can be confounded by
low minor allele frequencies (MAF), we first filtered this data set to
243,662 SNPs with MAF $ 0:1. We then performed all single marker

regressions (Materials and Methods). The purpose of this analysis was
twofold. First it allowed us to determinewhether the number of patients
in this cohort was sufficient to recapitulate known associations between
SNPs and SSc traits. Second, we used the p value distributions from
this analysis to investigate whether population structure in this co-
hort might affect the SNP associations (Materials and Methods).
There was no systematic effect of population structure in this cohort
(Fig S1). We therefore did not use a correction for population structure
in this analysis.

The SNP association tests identified significant main effects in the
HLA region influencing the presence of ACA (Table 1). One of these
SNPs (rs9275390) maps upstream of HLA-DBQ1 and was previously
associated with positive ACA status in an SSc GWAS (Gorlova et al.
2011). Another SNP, rs660895, maps upstream of HLA-DRB1, andwas
previously associated with risk of the autoimmune disease Rheumatoid
Arthritis (Plenge et al. 2007).

Multiple epistatic interactions influenced lung and
autoantibody traits
We next performed pairwise SNP associations to identify interactions
between SNPs. As CAPE is relatively computationally intensive, per-
forming exhaustive pairwise testing (. 1:8 · 1011 tests) was not feasi-
ble. We thus filtered the SNPs to 1500 that were likely to participate in
epistatic interactions influencing more than one trait (Materials and
Methods). This numberwas selected such that the CAPEpipeline could
be completed in about 24 hr. In addition, we decomposed the traits into
orthogonal eigentraits (ETs) using singular value decomposition (SVD)
(Figure 2A) (Materials and Methods). Traits that are moderately cor-
related may share common underlying biological processes. Using ETs
concentrates signals from these underlying processes into single traits
thereby increasing power tomap them genetically. We selected the first
two ETs for analysis. Each ET describes the contrast between one
autoantibody and the two lung traits. After calculating CAPE coeffi-
cients associated with the two ETs, we rotated the coefficients back to
trait space thus identifying interactions associated with all traits simul-
taneously. By selecting only two ETs we lost some biological informa-
tion contained in the other two ETs, but we simultaneously gained
power to identify interactions influencing the biological processes
encoded by the first two eigentraits.

We identified a network of 11 significant genetic interactions in-
volving 15 SNPs and the covariate sex (Figure 2B) (FDR# 0:05). The
twomost significant interactions (largest standardized effects) formed a
single subnetwork among SNPs rs556874, rs1449292, and rs792399
(Figure 2B). This subnetwork was notable in that, not only did it contain
the most significant interactions, but all three SNPs were intronic in
protein coding genesWNT5A, RBMS3, andMSI2. The SNP rs556874 is
located in the fourth intron ofWNT5A, which is a member of the large
family of Wnt ligands. Wnt signaling is a widely important family of
signaling pathways integral to embryonic development, carcinogenesis,
andmany other processes. The SNP rs1449292 is located in an intron of
RBMS3. This gene encodes a member of a small family of proteins that
bind single-stranded RNA and DNA to regulate a wide range of bi-
ological processes. The SNP rs792399 is located in an intron of MSI2

n■ Table 1 Information about position of SNPs significantly associated with ACA (p < 0.01)

SNP Chr Position Nearest Gene Annot. Dist. (bp)

rs4248166 6 32398644 BTNL2 intronic
rs660895 6 32609603 HLA-DRB1 upstream 19755
rs7755224 6 32684540 HLA-DQB1 upstream 16157
rs9275390 6 32701379 HLA-DQB1 upstream 32996
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about which little is known. Although both WNT5A and RBMS3 are
both encoded on Chr 3, there is no LD between the interacting SNPs in
this cohort (R2 ¼ 0:004). We focused on this subnetwork, which we
refer to as the “Wnt subnetwork,” for the remainder of the analysis.

Interactions in the Wnt subnetwork were less
than additive
The interactions in the Wnt subnetwork were suppressing (Figure 2B).
This means that in the presence of the alternate allele at one locus, the

Figure 2 Genetic interactions influenced lung function and autoantibodies in SSc. (A) The relative contributions of each trait to each eigentrait
(ET). Gray bars indicate how much overall variance each ET captures. We used the first two ETs, each of which contrasted one of the
autoantibodies, with the other autoantibody and the lung function traits. These two ETs captured 71% of the overall trait variance. (B) The network
of significant SNP-SNP interactions. Each node in the network represents one SNP. Each is labeled with the rs number, as well as with the name of
the nearest gene. The color of each node indicates whether the SNP is upstream, downstream, or overlapping the gene. The shape of each node
indicates the type of gene, protein coding, lncRNA, etc. The links between the nodes are colored to indicate whether each significant interaction
was enhancing or suppressing. Three SNPs (rs556874, rs1449292, and rs792399) formed a three-node subnetwork we called the Wnt subnetwork
(circled). Each of these SNPs overlaps a protein coding gene. (C) The effects of the Wnt subnetwork interactions on clinical traits. The x-axis in each
plot indicates the four possible genotypes for each set of two SNPs. SNPs are labeled by their overlapping gene for clarity. The “O” indicates the
reference genotype, and “+” indicates the alternate genotype. Gray bars indicate the mean trait value for the group of patients with the genotype
indicated on the x-axis. The number above each bar indicates how many patients are in that group. Error bars show standard error. The additive
prediction for each double alternate genotype is indicated by the dashed line and the error of the estimate is shown in the orange box. Gray
bars that fall outside the orange box indicate interactions between the alleles. In A and C traits are abbreviated as follows: percent predicted
forced vital capacity (FVCP) and percent predicted diffusion lung capacity (DLCP), antinucleolar autoantibodies (ANA), anticentromere autoan-
tibodies (ACA).
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phenotypic effects of the interacting locus were suppressed. In this case,
the suppressing interactions resulted less-than-additive interactions.
These effects can be seen in Figure 2C. The RBMS3-MSI2 interaction
primarily affected the two autoantibody traits. The alternate alleles of
the SNPs each had a negative effect on autoantibody presence. How-
ever, the effects of both alternate alleles together was redundant and
did not decrease autoantibody presence beyond either of the indivi-
dual alleles. The effects of this interaction on lung function were not
different from additive.

The RBMS3-WNT5A interaction affected both lung function traits
andANA. The effects onANAwere similar to the effects of theRBMS3-
MSI2 interaction: individual alternate alleles decreased ANA incidence,
but having two alternate alleles did not further decrease incidence
beyond that seen for a single alternate allele. For both lung function
traits, the WNT5A alternate allele had a large negative effect in the
presence of the RBMS3 reference allele, but this effect was completely
suppressed in the presence of the RBMS3 alternate allele.

Expression of RBMS3 and WNT5A was dysregulated in
SSc lung
We investigated whether the candidate genes in the Wnt subnetwork
were differentially expressed in SSc patient lung tissue (Materials and
Methods) compared to control lung tissue. Differential expression
between SSc lung tissue and control lung tissue suggests potential

involvement in SSc pathogenesis. WNT5A (two-tailed Student’s t-test
p ¼ 0:02) and RBMS3 (two-tailed Student’s t-test p ¼ 0:011) had sig-
nificantly higher expression in SSc lung tissue relative to healthy lung
tissue (Figure 3A). Although we cannot assess the role of the genetic
variants in expression level, differential expression supports the hy-
pothesis that RBMS3 and WNT5A may be involved in SSc processes.
We could not assess the differential expression of MSI2, as it was not
present in the data set.

Co-expressed genes were functionally enriched for
processes related to SSc
To further investigate biological processes affected by the Wnt sub-
network, we searched across GEO for genes that were co-regulated with
the gene pairs in theWnt subnetwork. Geneswith correlated expression
often function together, andco-expression is frequentlyusedtoelucidate
gene function (Eisen et al. 1998;Whitfield et al. 2002; Langfelder and
Horvath 2008; Mahoney et al. 2015). We used this principle to
identify possible functional roles of the interactions in the Wnt
subnetwork. To investigate whether the interactions might be con-
text-specific, we searched across multiple subsets of data sets in
GEO (Materials and Methods). For example, to identify lung-
specific functions of each gene pair, we searched for genes with
correlated expression among data sets that were obtained from lung
tissue. To identify functions that were related to autoimmunity,

Figure 3 Expression of subnetwork genes in SSc. (A) Both WNT5A (two-tailed Student’s t-test p ¼ 0:011) and RBMS3 (two-tailed Student’s t-test
p ¼ 0:02) were significantly overexpressed in lung tissue from SSc patients with interstitial lung disease. (B) The 2log10ðpÞ for enriched GO terms
in gene sets derived from SEEK (Materials and Methods). Each column shows results from a subset of the data sets on GEO. They are as follows:
All - all data sets on GEO, Autoimmune - data sets studying autoimmunity, EMT - data sets studying epithelial to mesenchymal transition,
Fibrosis - data sets studying fibrosis, ILD_PAH - data sets studying interstitial lung disease (ILD) or pulmonary arterial hypertension (PAH), Lung -
data sets using lung tissue, Skin - data sets using skin tissue, SSc - data sets studying SSc. Each row shows the results for one GO term identified
on the right-hand side. The GO terms are grouped functionally into nine groups identified by the GO term clustering algorithm REVIGO (Supek
et al. 2011): ECM/cytoskeleton, collagen metabolism, Rho protein signaling transduction, Binding, Transcription, Cell Adhesion, Wound Repair,
Vascular Function, and Growth Factors. The gene names at the top of the figure indicate that the left hand side of the figure shows results for the
RBMS3-MSI2 interaction, and the right side shows results for the RBMS3-WNT5A interaction. The legend indicates how the colors of the cells
relate to the 2log10ðpÞ of the term enrichment. Only GO terms with fewer than 300 genes are shown. (C) Significance of overlap between gene
pair-enriched GO terms and SSc-related GO terms. Fisher’s exact test p values are reported for each condition (rows) and each gene pair
(columns). Asterisks indicate p#0:5=16. Colors denote the 2log10ðpÞ.
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we searched only among data sets that analyzed autoimmune dis-
ease. All data set subsets are listed in (Table 2).

In each of these data set subsets, we queried theWNT5A-RBMS3
gene pair separately from the RBMS3-MSI2 gene pair. For each
query, we identified sets of genes whose expression was signifi-
cantly correlated with the two query genes (p, 0:05), and used
the R package gProfileR (Reimand et al. 2016) to identify function-
ally enriched GO terms in each gene set. Multiple GO terms were
significantly associated with the gene set from each query. For a
complete list of the enriched terms, see Fig S2. To focus on terms
that are strongly related to SSc, we used disease-GO term associa-
tions provided by the Comparative Toxicogenomic Database (Davis
et al. 2019, 2016). These terms, and their enrichment p values across
all queries are shown in Figure 3B.

Genes coexpressed with RBMS3 and WNT5A were functionally
enriched for multiple relevant processes, including ECM organization,
wound repair, vasoconstriction, and growth factor activity.

Both gene pairs were significantly correlated with extracellular
matrix (ECM) GO terms across multiple tissue types and conditions
(Figure 3); however, only the RBMS3-WNT5A pair was significantly
correlated with genes specifically involved in collagen metabolism
indicating that this pair may affect ECM through effects on collagen,
whereas the RBMS3-MSI2 pair may influence ECM in a collagen-
independent manner.

These enrichments for collagen metabolism appeared in lung tissue
experiments, but not skin suggesting that the gene pair may be involved
in collagen metabolism in a tissue-specific manner. Similarly, most
significant enrichments associated with the RBMS3-MSI2 interaction
were concentrated in lung, lung disease, and autoimmune conditions,
suggesting that this interaction may be specific to lung tissue, and may
be aberrantly regulated in autoimmune conditions.

Fisher’s exact tests showed that many of the groups of GO terms
enriched in genes co-expressed with the epistatic gene pairs were sig-
nificantly related to SSc processes (Figure 3C). Genes co-expressed with
the RBMS3-WNT5A pair were significantly SSc-related across more
conditions than the genes co-expressed with RBMS3 and MSI2. The
patterns for the two gene pairs suggest that the RBMS3-MSI2 interac-
tion may be more involved in autoimmunity, whereas, the RBMS3-
WNT5A interaction may be more involved specifically in lung disease
and SSc-specific processes.

Positive interaction also highlights
promising candidates
Although we focus here primarily on the Wnt subnetwork, we also
investigated whether any of the enhancing interactions in the genetic

interactionnetwork showedpromise for follow-up.Themost significant
positive interaction in the network involved two additional variants
located within or very near protein coding genes. This interaction was
between rs2055566, which is located in an intron of FARP2, and
rs3746070, which is located 736 bp upstream of S1PR4. These two
variants had additive effects on all traits except DLCP. Neither variant
had a significant main effect on DLCP, but individuals with both
alternate alleles, had improved DLCP relative to other individuals
(Fig S3).

DISCUSSION
We used a novel analytical approach to identify an epistatic interaction
network influencing lung function in patientswith SSc. In this approach
we used three strategies to increase power to detect interactions in a
patient cohort.First,weusedaSNPfilteringstep toselect themosthighly
epistatic and pleiotropic SNPs for further testing. This step reduced the
numberof statistical tests performed, butmay also increase false positive
rate due to the trait-based nature of the selection. We addressed this in
part by using permutation-based p values and a stringent FDR cutoff
(# 0:05). We also noted that none of the interactions identified by
CAPE overlapped with the interactions identified by Matrix Epistasis,
i.e., all CAPE interactions were novel combinations of SNPs selected
by the filtering step; however, the results reported are intended for
discovery, and validation is required.

As a second strategy for increasing power to detect interactions,
we combined information across multiple related traits: two auto-
antibody traits, and two lung function traits. And third, we decom-
posed the traits into orthogonal eigentraits and used only the top two
eigentraits in our study. This step reduced noise and captured
mappable signals that related to all four traits. Thus, using Matrix
Epistasis to pre-filter SNPs combined with CAPE allowed us to
identify genetic interactions in a relatively small human cohort.
Because of the increased false positive rate imposed by the SNP
filtering step, the results reported here are primarily for discovery and
hypothesis generation. Although the genes identified are supported
by the literature as discussed below, the interactions between them
need to be replicated in an independent cohort.

The resulting genetic interaction network contained a notable sub-
network consisting of two interactions between three SNPs. Because the
interactions in this networkwere highly significant and because all three
SNPswere locatedwithinprotein-codinggenebodies,we focusedon this
subnetwork for further analysis. We also briefly investigated the most
significant positive interaction between SNPs that were also associated
protein coding genes, FARP2 and S1PR4. Each of the candidates
implicated by these interactions has been associated either directly with
SSc or with SSc-related processes, which speaks to the reliability of this
analysis.

The two genes participating in the positive interaction have been
more directly linked to SSc than the genes in the Wnt subnetwork.
S1PR4, for example, encodes the sphingosine-1-phosphate receptor 4,
and sphingosine-1-phosphate well is known to affect SSc pathogenesis.
This signaling phospholipid is elevated in the serum of SSc individuals
and is capable of producing many of the abnormalities seen in SSc
(Pattanaik and Postlethwaite 2010; Tokumura et al. 2009). Sphingo-
sine-1-Phosphate Receptor 5 was found to modulate early fibrogenesis
in a mouse model of SSc (Schmidt et al. 2017), and the selective S1P1
receptor modulator cenerimod has been shown to attenuate lung and
skin fibrosis in two different mouse models of SSc (Kano et al. 2019).
FARP2 encodes FERM, RhoGEF and pleckstrin domain protein 2 and
is involved in semaphorin signaling. Dysregulation of semaphorin sig-
naling has been associated with antibody production, disease type,

n■ Table 2 The terms used to refine searches across gene expression
data sets in GEO. Subsets were defined either by selecting a pre-
defined subset (categorical) or by using key words (keyword)
(Materials and Methods). The final column indicates how many data
sets were included when subset criteria were applied

Subset Method Data sets

All none 3402
Autoimmune categorical 18
EMT keyword 13
Fibrosis categorical 39
ILD_PAH keyword 4
Lung categorical 239
Skin categorical 136
SSc keyword 6
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thickening of skin, disease duration, and active inflammation in SSc
patients (Besliu et al. 2011; Rimar et al. 2015).

Thegenes in the three-geneWntsubnetworkalsohavesupport in the
literature for SSc involvement. We focus the discussion primarily on
these genes to highlight the possible connections between genetic
interactions and functional relatedness. Although none of the genes
in the Wnt subnetwork had previously been associated with lung
function in SSc, they have all been implicated in lung disease, as well
as in molecular processes that are known to be involved in SSc
pathogenesis.

WNT5A, and Wnt signaling more generally, have been impli-
cated in many processes known to be involved in SSc pathogenesis
(Tsou and Sawalha 2017; Wei et al. 2011; Katsumoto et al. 2011;
Lafyatis 2012), such as angiogenesis (Huang et al. 2005), keratino-
cyte differentiation and inflammation signaling (Wang et al. 2018),
and fibroblast proliferation (Vuga et al. 2009). WNT5A has also
been linked to cellular transdifferentiation, a family of processes
by which differentiated cell types dedifferentiate and redifferentiate
into another cell type. Transdifferentiation processes are critical for
embryonic development, wound healing and tissue regeneration
(Kalluri andWeinberg 2009). However, when they are dysregulated,
these processes contribute to metastases in cancer, and widespread
fibrosis seen in fibrotic diseases (Kalluri and Weinberg 2009).
There are three types of transdifferentiation that have been linked
to fibrosis in SSc: epithelial to mesenchymal transition (EMT)
(Postlethwaite et al. 2004), endothelial to mesenchymal transition
(EndoMT) (Manetti et al. 2017) and adipocyte-myofibroblast
transition (AMT) (Marangoni et al. 2015).

Eachof theseprocesseshasbeenhypothesized tobea sourceof excess
myofibroblasts in SSc tissues. Myofibroblasts differentiate from fibro-
blasts in response to signaling from TGF-b, as well as other growth
factors and cytokines. In healthy individuals, myofibroblasts play an
important role in wound healing. They contract to close wounds and
deposit ECM to seal wounds and to provide a scaffold for the
re-establishment of epithelial tissue. In SSc and other fibrotic disease
however, there are increased numbers of myofibroblasts with a con-
comitant increase in the deposition of extracellular matrix, which
causes tissue stiffening (Postlethwaite et al. 2004; Nakamura and
Tokura 2011). EMT has been directly implicated in lung fibrosis
in mice (Kim et al. 2006; Hashimoto et al. 2004), and may be an
important source of myofibroblasts in SSc skin (Nakamura and
Tokura 2011). Wnt signaling, and WNT5A in particular, has been
shown to mediate EMT in melanoma (Dissanayake et al. 2007) and
in lung cancer (Wang et al. 2017).

Endothelial to mesenchymal transition (EndoMT) has also been
proposed to be a source of myofibroblasts in SSc (Piera-Velazquez
et al. 2011; Manetti et al. 2017; Jimenez and Piera-Velazquez 2016).
Originally thought only to occur in developing embryos, EndoMT
has been demonstrated to occur in adult cattle (Arciniegas et al.
1992) and mice (Zeisberg et al. 2007). TGF-b-induced EndoMT
has since been shown to be involved in the bleomycin model of
pulmonary fibrosis as well as SSc-associated pulmonary hyperten-
sion (Jimenez 2013; Jimenez and Piera-Velazquez 2016). Further-
more, there is evidence to suggest that Wnt signaling may mediate
EndoMT (Jimenez and Piera-Velazquez 2016).

The third transdifferentiation process to be proposed as a source of
myofibroblasts in SSc is AMT (Marangoni et al. 2015).Marangoni et al.
(2015) showed that when adipose-derived stem cells from healthy do-
nors were incubated with TGF-b, they lost markers of adipocytes, and
gained markers of myofibroblasts. In this experiment WNT5A was
strongly upregulated in the transitioning cells.

Like WNT5A, RBMS3 has been linked to transdifferentiation. Up-
regulation of RBMS3 inhibits EMT in lung cancer through the inhibi-
tion of canonical Wnt signaling (Yang et al. 2018; Liang et al. 2015). By
downregulating MMP2 and b-catenin, RBMS3 also inhibits microves-
sel formation (Chen et al. 2012). Loss of microvessels and reduced
angiogenesis are hallmarks of SSc (Manetti et al. 2010; Distler et al.
2004). RBMS3 may also directly influence collagen synthesis (Penkov
et al. 2000; Fritz and Stefanovic 2007), which is highly upregulated in
SSc. Although RBMS3 has not been directly linked to SSc, SNPs in
RBMS3 have been associated with risk of another autoimmune disease
affecting connective tissue called Sjögren’s syndrome (Song et al. 2016).

Of the three genes in theWnt subnetwork, the least is known about
MSI2, and it ismost studied in the context of cancer and its influence on
EMT (He et al. 2014; Kudinov et al. 2016). MSI2 is upregulated in
metastatic-competent lung cancer cell lines, and aggressively metastatic
patient tumors have upregulated MSI2 (Kudinov et al. 2016). Con-
versely, depletion of MSI2 resulted in reduced metastatic potential
(Kudinov et al. 2016). As mentioned previously, EMT may be an im-
portant process in SSc pathogenesis. MSI2 is also related to Wnt sig-
naling and may influence hepatocellular carcinoma outcomes through
dysregulation of Wnt signaling (Wang et al. 2015).

Thus, all three genes in theWnt subnetwork have been implicated in
mediating the transdifferentiation process of epithelial tomesenchymal
transition (EMT). Both EMT (Willis and Borok 2007) and EndoMT
(Jimenez and Piera-Velazquez 2016) are known to take place in the
lung and have demonstrated roles in SSc (Jimenez 2013; Postlethwaite
et al. 2004). These results suggest that EMT, or another similar trans-
differentiation, may play a role in lung disease pathogenesis and lung
function in SSc patients, and that genes in the Wnt subnetwork we
identified here may be involved.

Furthermore, all three genes in the Wnt subnetwork have been
shown to be associated withWnt signaling. These pathways are known
to be important both in lung development, and in lung fibrosis in SSc
(Pongracz and Stockley 2006; Lam et al. 2011). Wnt signaling, both
canonical (b-catenin mediated) and non-canonical (not b-catenin me-
diated), has been shown to drive EMT. Upregulation of WNT5A in-
creases EMT in lung cancer (Wang et al. 2017) possibly through
stimulation of the non-canonical PKC Wnt pathway (Dissanayake
et al. 2007). Similarly, upregulation ofMSI2 is an indicator of increased
metastatic potential in lung cancer (Kudinov et al. 2016) and hepato-
cellular carcinoma (Kudinov et al. 2016), and is proposed to stimulate
EMT through stimulation of canonical Wnt signaling (Wang et al.
2015). RBMS3 has been shown to reduce EMT and metastatic capacity
of lung cancer cells (Liang et al. 2015) and reduces EMT in gastric
cancer cells through suppression of canonical Wnt signaling (Yang
et al. 2018). Taken together, these results suggest that the Wnt sub-
network we identified here may mediate cellular transdifferentiation in
the SSc lung through regulation of Wnt signaling.

Importantly, the Wnt subnetwork includes not only three novel
candidate genes, but also the genetic interactions between them. These
interactions suggest functional relatedness, which is broadly supported
through connections in the literature with EMT andWnt signaling. But
we can alsomakemore direct connections between the specific genes by
using a more agnostic gene expression-based approach. We looked at
genes that were co-expressed with each pair of subnetwork genes across
multiple different tissue anddisease contexts, including lung tissue, lung
disease, and skin tissue. We found that the gene pairs were associated
with multiple processes related to SSc pathogenesis, such as ECM
organization, growth factor activity, and vascular abnormalities. By
comparing the enrichments related to the two interactions, we can
generatehypotheses about their specific involvement. For example, both
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gene pairs were co-regulated with genes involved in ECM-related GO
processes; however only genes co-expresed with RBMS3 and WNT5A
were associated with collagen metabolism, suggesting that RBMS3 and
MSI2 together may influence a distinct aspect of ECM.

Interestingly, functional enrichment of co-expressed genes also
appeared to be context-specific. SSc-related functional enrichments
were seen predominantly in the lung disease (ILD_PAH) data sets, as
well as inautoimmunitydata sets, asopposed toskin.We interpret this to
mean that both genetic interactions may be tissue- and disease-specific.
It is possible that these interactions were only detectable because we
looked specifically at lung function outcomes in an SSc cohort. Thus, the
interactions we identified may not be related to skin pathology. Vali-
dation experiments, therefore, should focus on lung tissue.

We further hypothesize that these interactions may be particularly
important to lung function in adisease state.All three SNPswe identified
have high minor allele frequencies in the general population (rs556874
MAF� 0:4, rs1449292MAF� 0:5, and rs792399MAF� 0:4) (Sherry
et al. 2001). We hypothesize that these SNPs are unlikely to have any
measurable effect on lung function in healthy individuals, but that the
interactions between them become important in disease. We further
hypothesize that because these alleles are so common, they may not
increase the risk of developing SSc, but that they affect the course of the
disease once established. We performed our genetic analysis on a co-
hort of patients with SSc that did not include controls. Although a
cohort containing only affected individuals may have few individuals,
thereby reducing power to detect interactions, we assert that this type of
case-only study is important in detecting disease-specific interactions
that would not be detectable in a data set that included controls.

These interactionsmay be important considerations in personalized
medicine. Whereas genetic main effects are averaged across all genetic
backgrounds, genetic interactions may identify clinically relevant sub-
groups of patients based on allele combinations. For example, in this
study we found that the minor allele of rs556874 in WNT5A had
substantially reduced lung function, but only in patients with the major
allele of rs1449292 in RBMS3. With this knowledge, this subset of
patients can be monitored more closely for lung disease and perhaps
provided with treatments for lung disease earlier in the course of their
disease.

In this study we have taken a systems approach to identifying
potential SSc-related processes by analyzing genetic interactions that
influence multiple disease traits simultaneously. By addressing the
complexity of this disease in our models we increased power to detect
novel interactions among highly promising candidate genes. The in-
teractions, furthermore, may be disease- and tissue-specific. Identifying
such specific interactions may provide a promising avenue forward in
drug target discovery. The genes identified in this study are all widely
expressed, and targeting them broadlymay result in unintended effects.
However, because evidence suggests that the interactions between the
genes may be tissue- and disease-specific, perhaps the interactions
themselves are better targets than the genes. For example, rather than
attempting to reduceWNT5A expression globally, a specific targeting of
its interaction with RBMS3 may provide a novel approach to treating
SSc-related lung disease without widespread off-target effects. Known
genetic interactions may also help predict disease course in individual
SSc patients. If it is known, for example, that a patient has the reference
RBMS3 allele and the alternate WNT5A allele, this might indicate a
highly likelihood of developing severe SSc-related lung disease, and
testing and treatment of lung disease could be started early and aggres-
sively. Genetic interactions offer a rich source of information for the
understanding and treatment of disease, and new computational meth-
ods that take genetic and physiological complexity into account have

the potential to build on the past success of GWAS and to piece
together connections between individual findings that are currently
isolated from one another.
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