
problems with a computer. The term
"algorithm", used for a systematic procedure
that solves a problem, is defined as a step by
step solution to a problem in terms of the
actions to be taken and the order in which
they are to be taken. A computational physi-
cist or numerical analyst often is interested in
determining which of several algorithms that
can solve the problem is, in some sense, the
most efficient. Efficiency may be measured
in many ways some of which include the
number of steps in the algorithm, the time
taken by the computer to execute the algo-
rithm, the amount of computer memory
used, among others. A major advantage of
numerical analysis is that a numerical solu-

INTRODUCTION
Java is a modern object oriented language
which facilitates disciplined approach to
program design (Deitel and Deitel, 2007). It
has features that make it suitable for mod-
ern day computation which include multi-
threading (parallel programming), object
orientation, support for internet, among
others.

Computational Physics seeks numerical so-
lutions to physical problems. It involves the
use of numerical analysis methods to pro-
vide approximate solutions to problems in
Physics. As described by Gerald and Wheat-
ley (1999) numerical analysis is the develop-
ment and study of procedures for solving

IMPLEMENTATION OF THE ROOT BISECTION
COMPUTATIONAL PHYSICS METHOD FOR THE
DETERMINATION OF ROOTS OF NON-LINEAR

EQUATIONS USING JAVA

1.*V. MAKINDE, 1.A.O.MUSTAPHA, 1I.C. OKEYODE, 1.F.G. AKINBORO, 1.O.S.
ADESINA AND 2.J.O. COKER

1.Department of Physics, Federal University of Agriculture, Abeokuta
2.Department of Physics, Lagos State Polytechnic, Ikorodu, Lagos
*Corresponding Author r victor_makindeii@yahoo.com Tel: +2348035994001

Journal of Natural
Science, Engineering

and Technology

ISSN:
Print - 2277 - 0593
Online - 2315 - 7461
© FUNAAB 2012

J. Nat. Sci. Engr. Tech. 2012, 11(2): 83-96 83

ABSTRACT
Advancement in programming and language development has made possible improved efficiency and
accuracy in solving numerical problems and hence the numerical computation of physical problems as
used in Computational Physics. Hitherto, languages such as Basic, Fortran, C, among others, have
commonly been employed in solving numerical problems. In this work, Java, a modern object oriented
language was deployed in solving some physical problems, specifically, determination of roots of non-
linear equations using the Root-Bisection Method. A comparison between results obtained showed
faster convergence and greater accuracy using Java than as obtained using Fortran.

Keywords: Numerical Computation, Computational Physics, Java, Fortran

mailto:victor_makindeii@yahoo.com

tion can be obtained even when a problem
has no analytical solution.

It is important to realize that numerical
analysis of a problem always give numerical
solution. Analytical methods usually give a
result in terms of mathematical functions
that can then be evaluated for specific in-
stances (Gupta, 2010). Furthermore, a nu-
merical solution is an approximation whose
results can be made as accurate as desired
(Arfken et al., 2012).

Solving for the roots of non-linear equa-
tions is one of the numerous operations
that numerical analysis can do (Gerald and
Wheatley, 1999). It can also be applied in
solving large systems of linear equations;
obtaining the solutions of a set of non-
linear equations, interpolating to find inter-
mediate values within a table of data, find-
ing efficient and effective approximations
of functions, among others.

Pang (2006) used Java extensively to imple-
ment computational methods in his bid to
introduce students to computational physics
and to show the suitability of Java to com-
putational science. Stroud and Booth (2001,
2003), enumerated the numerous ways in
which computational methods can be
adapted to solve numerical problems.

In this work, Java was used to implement
the computational methods because
i) much of the work that had been done

in the field of computational physics
used FORTRAN and C;

ii) these two languages, although still pow-
erful and efficient, tend toward becom-
ing old languages in that they do not
provide fully for the needs of the mod-
ern day computational physicists.

iii) Java is a modern object oriented lan-

guage which facilitates a disciplined ap-
proach to program design.

Some of the other features of Java that make
it suitable for modern day computation in-
clude multithreading (parallel programming),
object orientation, support for the internet
among others.

This work involves the:

i) implementation of the root bisection
method for practically simple equations,
using Java in the determination of roots
of non-linear equations;

ii) testing the implemented method with
examples obtained from academic
sources; and

iii) evaluating the Java implementation of
the computational physics methods by
comparing them with similar implemen-
tations done with other programming
languages.

METHODOLOGY
Determination of the roots of non-linear
equations
What does it mean to find the root of an
equation?
Consider a function f(x); if f(x) = 0, then the
values of the variable x that satisfies f(x) = 0
are called the roots of the equation. They are
also known as the zeros of f(x).

Some equations are very easy to solve, that
is, to find the roots. For example, if the
function f(x) is linear in nature and given as f
(x) = 6x - 12, then by making f(x) = 0, that
is, 6x - 12 = 0, the equation is solved simply
by rearranging the terms of the equation to
make the variable x stand alone on the left-
hand side of the equation, giving 6x = 12 or
x = 12 / 6, that is, x = 2.

Also, if f(x) is quadratic, that is, f(x) = ax2 +
bx + c, in which the highest power of the

V. MAKINDE, .A.O.MUSTAPHA, I.C. OKEYODE, F.G. AKINBORO, O.S. ADESINA AND 2J.O. COKER

84 J. Nat. Sci. Engr. Tech. 2012, 11(2): 83-96

variable x in the function is 2, a formula
exists to find the roots of the equation - the
well known quadratic formula given as:

 However, as we move
higher in the power to which the variable x
is raised, finding the roots of the equation
becomes more tedious.

According to Gerald & Wheatley (1999), it
has been proved that no general formula
exists for polynomials of degree greater
than four meaning that there is no way to
exhibit the roots in terms of "ordinary"
functions. Usually, such polynomials are
solved by successive approximations and
some of the methods employed include:
Root Bisection (or Interval Halving), Secant
Method, Regula Falsi method, Fixed-Point
Iteration method, Newton's method, Mul-
ler's method, among others (Dass, 2010).

Theory of the Root Bisection Method
The root bisection method is an ancient but
effective method for finding a zero of f(x).
Out of the common methods, the root bi-
section method is almost the simplest to
understand and the easiest to implement.

To find a root of f(x), the root bisection
method begins with two values x = x1 and x
= x2 that bracket (enclose) a root. It is
known that a root is enclosed if the func-
tion changes sign at the endpoints, that is,
at f(x1) and f(x2); this is true if (f(x1)*f(x2)) <
0 (Kreszig, 2006). It is certain that there is
at least one root in the interval [x1, x2] as
long as f(x) is continuous in [x1, x2]. The
method then successively divides the inter-
val in half and replaces one endpoint with
the midpoint so that again the root is en-
closed. Known in advance is that the error
in the estimate of the root must be less than
|(x2–x1)*(1/2n)| where n is the number of

iterations performed (Gupta, 2010).

In implementing the Root Bisection Method,
the pseudocode was written to set the brack-
et values and algorithm for implementation.
The pseudocode for the Root Bisection algo-
rithm is stated thus.

To determine a root of f(x) = 0 that is accu-
rate within a specified tolerance value, given
values X1 and X2 such that f(X1) * f(X2) <
0.

REPEAT
 Set X3 = (X1 + X2) / 2
 IF (f(X3) * f(X1) < 0):
 Set X2 = X3
 ELSE
 Set X1 = X3
 END IF

UNTIL (|X1 - X2| < 2 * tolerance value) or
f(X3) = 0

NOTE: The method may give a false root if
f(x) is discontinuous in [X1, X2]. The final
value of X3 approximates the root within the
accuracy of the specified tolerance value
(Gerald & Wheatley, 1999).

Implementation
Implementation of the root bisection meth-
od was achieved by creating a Java class
called RootBisection. This class consists of six
private fields and fifteen public methods
which includes a constructor and the corre-
sponding set and get assessors for each of the
fields. The method called getRoot() imple-
ments the algorithm for the root bisection
method.

A driver class called RootBisectionMethod
(Adesina, 2010), was created to collect the
data to satisfy the preconditions of the root

IMPLEMENTATION OF THE ROOT BISECTIONCOMPUTATIONAL PHYSICS ...

85 J. Nat. Sci. Engr. Tech. 2012, 11(2): 83-96

bisection algorithm and to execute the
getRoot() method of the RootBisection class
which is the method that implements the
root bisection algorithm. The RootBisection-

Method class is an application class because it
contains a method called main() which is the
entry point for all Java programs. The code
listing for the getRoot() method is shown next.

V. MAKINDE, .A.O.MUSTAPHA, .C. OKEYODE, F.G. AKINBORO, .O.S. ADESINA AND J.O. COKER

1 public double getRoot() {
2 int iterate = 0;
3 double mid, x1, x2, oppSign, fxmid;
4 x1 = lowerLimitOfInterval;
5 x2 = upperLimitOfInterval;
6 setOutput("");
7 compileOutput(String.format("\n%15s%15s%15s%15s%15s\n", "ITR

NO","X1", "X2", "X3", "F(X3)"));
8 do {
9 iterate += 1;
10 mid = (x2 + x1) / 2;
11 fxmid = Function.getFofX(mid, coefficients);
12 compileOutput(String.format("\n%15d%15.7f%15.7f%15.7f

%15.7f", iterate, x1, x2, mid, fxmid));
13 oppSign = fxmid * Function.getFofX(x1, coefficients);
14 if (oppSign < 0) {
15 x2 = mid;
16 } else {
17 x1 = mid;
18 }

19 } while (!((Math.abs(x1 - x2) < (2 * tolerance)) ||

(fxmid == 0) || (iterate >= maxIteration)));
20 compileOutput(String.format("\n\n%s\n\n", "Program output for x1 = " +

lowerLimitOfInterval + ", x2 = " + upperLimitOfInterval + ", tolerance =
" + tolerance));

21 return mid;

22 }
 Code Listing 1: The getRoot() method of RootBisection class

Lines 2 and 3 of Code Listing 1 declare var-
iables that are used within the getRoot()
method. Integer variable iterate (which is
initialized to zero) keeps track of the num-
ber of iterations. Variables mid, X1, X2,
oppSign, and fxmid are of double data-type

and they store double precision floating
point numbers; .mid stores the mid-point of
the interval [X1, X2], while X1, X2 stores
the lower and upper limits of the interval
respectively.

86 J. Nat. Sci. Engr. Tech. 2012, 11(2): 83-96

The root bisection algorithm starts from
line 8 and ends at 19 of Code Listing 1.
Line 11 calls method getFofX() of class
Function which contains only two methods
-getFofX() and getDerivativeFofX(). getFofX()
computes the value of the polynomial func-
tion using the value of x and the coeffi-
cients vector passed to it as arguments; com-
pileOutput() is one of the methods of the
root bisection class; it stores the format-
ted output, which will be displayed to the
user, passed to it as arguments as it is used
in lines 7 and 20. Line 13 performs the op-
eration f(X3) * f(X1) and stores the result in
the variable oppSign. Line 14 begins an if-else
structure that tests whether f(x) changes
sign at the endpoints X3 and X1. If the

function changes sign then mid replaces X2
in line 15 else mid replaces X1 in line 17.
The condition in line 19 checks if the abso-
lute value of X1 - X2 (Math.abs(X1 - X2)) is
not less than 2 times the tolerance value giv-
en or if f(X3) (fxmid) is not equal to zero or if
the iteration number is not greater than or
equal to the maximum given. If this complex
logical condition is true, that is if any one of
the tests is true, then the iteration continues
otherwise lines 20 and 21 execute. Line 21
returns the value of X3 that is mid.

In order to obtain the roots therefore, pa-
rameters are first set as input to the program
thus: For a polynomial of order n,

IMPLEMENTATION OF THE ROOT BISECTIONCOMPUTATIONAL PHYSICS ...

f(x) = Anxn + An-1xn-1 + An-2xn-2 + …….. + A2x2 + A1x + A0

For example, if f(x) = x2 – 2; then A2 = 1, A1 = 0, and A0 = - 2
if f(x) = x3 + x2 - 3x – 3, then A3 = 1, A2 = 1, A1 = - 3, and A0 = - 3
if f(x) = x4 – 2; then A4 = 1, A3 = 0, A2 = 0, A1 = 0, and A0 = - 2

WELCOME TO THE ROOT BISECTION METHOD
THIS PROGRAM IMPLEMENTATION ALLOWS YOU TO FIND THE ROOT(S)
OF A POLYNOMIAL OR NON-LINEAR EQUATION

Enter the lower limit of the interval x1:
Enter the upper limit of the interval x2:
Enter the degree of the polynomial: n
Now, enter the elements of the coefficient vector one after the other.
Enter A0:
Enter A1:
Enter A2: . .
Enter An-1:
Enter An:
Enter the tolerance value: 0.00001
Enter the maximum number of iterations in case tolerance is not met: 20

In order to determine other roots, either of
two approaches can be made: i) to reset the
interval limits to new values of [x1, x2]

which bracket the second root; ii) to set an
all encompassing enclosing limits [X1, X2]
from the outset.

87 J. Nat. Sci. Engr. Tech. 2012, 11(2): 83-96

Tests and Results
Example 1: As an example, consider the
following function from Gerald & Wheatley
(1999): f(x) = x3 + x2 - 3x - 3 = 0.

It can almost be seen by inspection that a
root is Ö3, that is, square root of 3. Alt-
hough the function is simple enough to be

easily solved by hand, it is a good example to
show how successive iterates converge on
the value Ö3, that is, 1.732050808.The result
obtained by Gerald & Wheatley (1999), who
implemented the Root Bisection Method
using FORTRAN 90 is given next in Table
1:

V. MAKINDE, .A.O.MUSTAPHA, I.C. OKEYODE, F.G. AKINBORO, O.S. ADESINA AND .J.O. COKER

Table 1: Finding the root of f(x) = x3 + x2 - 3x - 3 = 0 starting with X1 = 1, X2 = 2,
 and tolerance 1E-4 by root bisection method (Adapted from Gerald &
 Wheatley, 1999)

ITR NO X1 X2 X3 F(X3) MAXIMUM
ERROR

ACTUAL
ERROR

1 1.000000 2.000000 1.500000 - 1.875000 0.500000 - 0.232051

2 1.500000 2.000000 1.750000 0.171875 0.250000 0.017949

3 1.500000 1.750000 1.625000 - 0.9433594 0.125000 - 0.107051

4 1.625000 1.750000 1.687500 - 0.409424 0.062500 - 0.044551

5 1.687500 1.750000 1.718750 - 0.124786 0.031250 - 0.013301

6 1.718750 1.750000 1.734375 0.022030 0.015625 0.002324

7 1.718750 1.734375 1.726563 - 0.051756 0.007813 - 0.005488

8 1.726563 1.734375 1.730469 - 0.014957 0.003906 - 0.001582

9 1.730469 1.734375 1.732422 0.003512 0.001953 0.000371

10 1.730469 1.732422 1.731445 - 0.005728 0.000977 - 0.000605

11 1.731445 1.732422 1.731934 - 0.001109 0.000488 - 0.000117

12 1.731934 1.732422 1.732178 0.001202 0.000244 0.000127

13 1.731934 1.732178 1.732056 0.000045 0.000122 0.000005

Tolerance met

The result obtained in the implementation of the root bisection algorithm using Java (Code
Listing 1) is given next in Table 2:

88 J. Nat. Sci. Engr. Tech. 2012, 11(2): 83-96

Tables 1 and 2 show that it takes the root
bisection method thirteen iterations to find
the approximate root within the accuracy of
the tolerance value. X3 is the mid-point of
the interval while f(X3) gives the value of
the function at X3.
It was observed in the tables that the esti-
mate of the root may be better at an earlier
iteration than at later ones. The second iter-
ate in Table 1 is closer to the true root than
are the next two, that is, iterates 3 and 4.
Also, it is closer at iterate 6 than iterate 7. In
this example, we have the advantage of
knowing the answer, but this is never the
case in real world applications. However,
the values of f(x) themselves show that
these better estimates are closer to the root.

Although, this may not always be an absolute
indicator due to the fact that some functions
may be nearly zero at points which are not
so near the root, but for smooth functions, a
small value of the function is a good indica-
tor that we are near the root; this is especially
true when we are quite close to the root.

Example 2: Consider another example:
 f(x) = x4 - 2 = 0
This function is a fourth degree polyno-
mial and a root is the fourth-root of 2
which is 1.189207115.
Using the Java implementation of the root
bisection method, the following results
shown in Table 3 were obtained.

IMPLEMENTATION OF THE ROOT BISECTIONCOMPUTATIONAL PHYSICS ...

Table 2: Finding the root of f(x) = x3 + x2 - 3x - 3 = 0 starting with X1 = 1, X2 = 2,
 and tolerance of 1E-4 by root bisection method using Java Approximate root

 found: 1.732056

ITR NO X1 X2 X3 F(X3)
1 1.0000000 2.0000000 1.5000000 - 1.6750000
2 1.5000000 2.0000000 1.7500000 0.1718750
3 1.5000000 1.7500000 1.6250000 - 0.9433594
4 1.6250000 1.7500000 1.6875000 - 0.4094238
5 1.6875000 1.7500000 1.7187500 - 0.1247864
6 1.7187500 1.7500000 1.7343750 0.0220299
7 1.7187500 1.7343750 1.7265625 - 0.0517554
8 1.7165625 1.7343750 1.7304688 - 0.0148572
9 1.7304688 1.7343750 1.7324219 0.0035127
10 1.7304688 1.7324219 1.7314453 - 0.0057282
11 1.7314453 1.7324219 1.7319336 - 0.0011092
12 1.7319336 1.7324219 1.7321777 0.0012013
13 1.7319336 1.7321777 1.7320557 0.0000460

Program Output for X1 = 1.0; X2 = 2.0; tolerance 1.0E-04

89 J. Nat. Sci. Engr. Tech. 2012, 11(2): 83-96

It can also be observed in Table 3, that ear-
lier estimates of the root may be better as
reflected in iterate 4 being closer to the root
than the next two. It took thirteen iterations
for the root bisection method to converge
to an approximate root within the accuracy
of the tolerance value, that is, 0.0001.
From the foregoing, it is evident that the
root bisection method is indeed slow to

converge.

Root Bisection Method Applied to Quad-
ratic Equations
Hitherto, all examples taken were non-
quadratic. To elucidate its applicability to
quadratic equations, two quadratic equations
are here taken as further examples.

 Table 3: Finding the root of f(x) = x4- 2 = 0 starting with X1 = 1, X2 = 2, and
 tolerance of 1E-4 by root bisection method using Java

ITR NO X1 X2 X3 F(X3)

1 1.0000000 2.0000000 1.5000000 3.0625000

2 1.0000000 1.5000000 1.2500000 0.4414063
3 1.0000000 1.2500000 1.1250000 - 0.3981934

4 1.1250000 1.2500000 1.1875000 - 0.0114594

5 1.1875000 1.2500000 1.2187500 0.2062693

6 1.1875000 1.2187500 1.2031250 0.0952845
7 1.1875000 1.2031250 1.1953125 0.0413893

8 1.1875000 1.1953125 1.1914063 0.0148350

9 1.1875000 1.1914063 1.1894531 0.0016555

10 1.1875000 1.1894531 1.1884766 - 0.0049100

11 1.1884766 1.1894531 1.1889648 - 0.0016293

12 1.1889648 1.1894531 1.1892090 0.0000126

13 1.1889648 1.1892090 1.1890869 - 0.0008085

Program output for x1 = 1.0, x2 = 2.0, tolerance = 1.0E-4

90

V. MAKINDE, A.O.MUSTAPHA, I.C. OKEYODE, F.G. AKINBORO, O.S. ADESINA AND J.O. COKER

J. Nat. Sci. Engr. Tech. 2012, 11(2): 83-96

Example 3: Consider the equation f(x) = x2 – 2 = 0 (Adapted from Stroud and Booth,
2003)
Results obtained from the Root Bisection Method Java program is given as follows:

Approximate root found: 1.414200

ITR NO X1 X2 X3 F(X3)
1 1.0000000 2.0000000 1.5000000 0.2500000
2 1.0000000 1.5000000 1.2500000 - 0.4375000
3 1.2500000 1.5000000 1.3750000 - 0.1093750
4 1.3750000 1.5000000 1.4375000 0.0664063
5 1.3750000 1.4375000 1.4062500 - 0.0224609
6 1.4062500 1.4375000 1.4218750 0.0217285
7 1.4062500 1.4218750 1.4140625 - 0.0004272
8 1.4140625 1.4218750 1.4179688 0.0106354
9 1.4140625 1.4179688 1.4160156 0.0051003
10 1.4140625 1.4160156 1.4150391 0.0023355
11 1.4140625 1.4150391 1.4145508 0.0009539
12 1.4140625 1.4145508 1.4143066 0.0002633
13 1.4140625 1.4143066 1.4141846 - 0.0000820
14 1.4141846 1.4143066 1.4142456 0.0000906
15 1.4141846 1.4142456 1.4142151 0.0000043
16 1.4141846 1.4142151 1.4141998 - 0.0000388

Program output for x1 = 1.0, x2 = 2.0, tolerance = 1.0E-5

Example 4::f(x) = 2x2 – 9x + 5 = 0

The first root can be found in the interval [1, 4] and the results obtained from the RootBi-
sectionMethod Java program are given as follows:

Enter the lower limit of the interval x1: 1
Enter the upper limit of the interval x2: 4
Enter the degree of the polynomial: 2

Now, enter the elements of the coefficient vector one after the other.
Enter A0: 5
Enter A1: -9
Enter A2: 2
Enter the tolerance value: 0.00001
Enter the maximum number of iterations in case tolerance is not met: 20

91

IMPLEMENTATION OF THE ROOT BISECTIONCOMPUTATIONAL PHYSICS ...

J. Nat. Sci. Engr. Tech. 2012, 11(2): 83-96

Now, to find the second root, the interval limits are reset to new values of [-1, 1] which
bracket the second root. The results obtained from the Root Bisection Method Java pro-
gram are given below:

Enter the lower limit of the interval x1: -1
Enter the upper limit of the interval x2: 1
Enter the degree of the polynomial: 2

Now, enter the elements of the coefficient vector one after the other.
Enter A0: 5
Enter A1: -9
Enter A2: 2
Enter the tolerance value: 0.00001
Enter the maximum number of iterations in case tolerance is not met: 20

Approximate root found: 3.850780

ITR NO X1 X2 X3 F(X3)
 1 1.0000000 4.0000000 2.5000000 - 5.0000000
 2 2.5000000 4.0000000 3.2500000 - 3.1250000
 3 3.2500000 4.0000000 3.6250000 - 1.3437500
 4 3.6250000 4.0000000 3.8125000 - 0.2421875
 5 3.8125000 4.0000000 3.9062500 0.3613281
 6 3.8125000 3.9062500 3.8593750 0.0551758
 7 3.8125000 3.8593750 3.8359375 - 0.0946045
 8 3.8359375 3.8593750 3.8476563 - 0.0199890
 9 3.8476563 3.8593750 3.8535156 0.0175247
 10 3.8476563 3.8535156 3.8505859 - 0.0012493
 11 3.8505859 3.8535156 3.8520508 0.0081334

 12 3.8505859 3.8520508 3.8513184 0.0034410
 13 3.8505859 3.8513184 3.8509521 0.0010956
 14 3.8505859 3.8509521 3.8507690 - 0.0000769
 15 3.8507690 3.8509521 3.8508606 0.0005093
 16 3.8507690 3.8508606 3.8508148 0.0002162
 17 3.8507690 3.8508148 3.8507919 0.0000696
 18 3.8507690 3.8507919 3.8507805 - 0.0000037

Program output for x1 = 1.0, x2 = 4.0, tolerance = 1.0E-5

92

V. MAKINDE, A.O.MUSTAPHA, I.C. OKEYODE, .F.G. AKINBORO, O.S. ADESINA AND J.O. COKER

J. Nat. Sci. Engr. Tech. 2012, 11(2): 83-96

Approximate root found: 0.649216

ITR NO X1 X2 X3 F(X3)
1 -1.0000000 1.0000000 0.0000000 5.0000000
2 0.0000000 1.0000000 0.5000000 1.0000000
3 0.5000000 1.0000000 0.7500000 - 0.6250000
4 0.5000000 0.7500000 0.6250000 0.1562500
5 0.6250000 0.7500000 0.6875000 - 0.2421875
6 0.6250000 0.6875000 0.6562500 - 0.0449219
7 0.6250000 0.6562500 0.6406250 0.0551758
8 0.6406250 0.6562500 0.6484375 0.0050049
9 0.6484375 0.6562500 0.6523438 - 0.0199890
10 0.6484375 0.6523438 0.6503906 0.0074997
11 0.6484375 0.6503906 0.6494141 - 0.0012493
12 0.6484375 0.6494141 0.6489258 0.0018773
13 0.6489258 0.6494141 0.6491699 0.0003139
14 0.6491699 0.6494141 0.6492920 - 0.0004677
15 0.6491699 0.6492920 0.6492310 0.0000769
16 0.6491699 0.6492310 0.6492004 0.0001185
17 0.6492004 0.6492310 0.6492157 0.0000208
Program output for x1 = -1.0, x2 = 1.0, tolerance = 1.0E-5

In another way round, the interval could be set at [-1, 4] form onset. For this example, do-
ing that would yield the result as given next:

WELCOME TO THE ROOT BISECTION METHOD

THIS PROGRAM IMPLEMENTATION ALLOWS YOU TO FIND THE ROOT OF A
POLYNOMIAL OR NON-LINEAR EQUATION

Enter the lower limit of the interval x1: -1
Enter the upper limit of the interval x2: 4
Enter the degree of the polynomial: 2

Now, enter the elements of the coefficient vector one after the other.
Enter A0: 5
Enter A1: -9
Enter A2: 2
Enter the tolerance value: 0.00001
Enter the maximum number of iterations in case tolerance is not met: 20

93

IMPLEMENTATION OF THE ROOT BISECTIONCOMPUTATIONAL PHYSICS ...

J. Nat. Sci. Engr. Tech. 2012, 11(2): 83-96

First Approximate root found: 0.649227
 ITR NO X1 X2 X3 F(X3)
 1 -1.0000000 4.0000000 1.5000000 - 4.0000000
 2 -1.0000000 1.5000000 0.2500000 2.8750000
 3 0.2500000 1.5000000 0.8750000 - 1.3437500
 4 0.2500000 0.8750000 0.5625000 0.5703125
 5 0.5625000 0.8750000 0.7187500 - 0.4355469
 6 0.5625000 0.7187500 0.6406250 0.0551758
 7 0.6406250 0.7187500 0.6796875 - 0.1932373
 8 0.6406250 0.6796875 0.6601563 - 0.0697937
 9 0.6406250 0.6601563 0.6503906 - 0.0074997
 10 0.6406250 0.6503906 0.6455078 0.0237904
 11 0.6455078 0.6503906 0.6479492 0.0081334
 12 0.6479492 0.6503906 0.6491699 0.0003139
 13 0.6491699 0.6503906 0.6497803 - 0.0035937
 14 0.6491699 0.6497803 0.6494751 - 0.0016401
 15 0.6491699 0.6494751 0.6493225 - 0.0006631
 16 0.6491699 0.6493225 0.6492462 - 0.0001746
 17 0.6491699 0.6492462 0.6492081 0.0000696
 18 0.6492081 0.6492462 0.6492271 - 0.0000525

Second Approximate root found: 3.850769
 ITR NO X1 X2 X3 F(X3)
 1 0.6492462 4.0000000 2.3246231 -5.1138628
 2 2.3246231 4.0000000 3.1623116 -3.4603753
 3 3.1623116 4.0000000 3.5811558 -1.5810486
 4 3.5811558 4.0000000 3.7905779 - 0.3782395
 5 3.7905779 4.0000000 3.8952889 0.2889514
 6 3.7905779 3.8952889 3.8429334 - 0.0501263
 7 3.8429334 3.8952889 3.8691112 0.1180420
 8 3.8429334 3.8691112 3.8560223 0.0336152
 9 3.8429334 3.8560223 3.8494779 - 0.0083412
 10 3.8494779 3.8560223 3.8527501 0.0126156
 11 3.8494779 3.8527501 3.8511140 0.0021319
 12 3.8494779 3.8511140 3.8502959 - 0.0031060
 13 3.8502959 3.8511140 3.8507049 - 0.0004874
 14 3.8507049 3.8511140 3.8509095 0.0008222
 15 3.8507049 3.8509095 3.8508072 0.0001674
 16 3.8507049 3.8508072 3.8507561 - 0.0001600
 17 3.8507561 3.8508072 3.8507816 0.0000037
 18 3.8507561 3.8507816 3.8507688 - 0.0000782
Program output for x1 = 0.6492462, x2 = 4.0, tolerance = 1.0E-5

94

V. MAKINDE, A.O.MUSTAPHA, I.C. OKEYODE, F.G. AKINBORO, .O.S. ADESINA AND J.O. COKER

J. Nat. Sci. Engr. Tech. 2012, 11(2): 83-96

CONCLUSION
Scientific computing is today becoming the
third pillar of scientific inquiry alongside the
more traditional theory and experimenta-
tion pillars. For example, scientists today do
not have to brave the risks of hazardous or
dangerous chemical experiments, rather
they use computational methods imple-
mented with programming languages such
as Java to simulate and model such experi-
ments.

The relevance that computational physics,
numerical analysis or computational science
in general has today, is as a result of a lot of
work that had been done in the implemen-
tation of several computational methods
using computer programming languages.
FORTRAN, which was developed by IBM,
is essentially a computational tool; it has
been used extensively to develop programs
in both the defense and geophysical fields
(Chapman, 1998). Chapman (1998) imple-
mented computational methods using
FORTRAN 90/95. C, a language developed
by Dennis Ritchie in the 1960s, is another
language that has found extensive use in
computational science. C is most suitable
for High Performance Computing (HPC)
because of its speed of execution (Chow,
2000). However, it is very susceptible to
errors especially if used by a not so skillful
programmer.

The scale of modern day problems being
solved by computational physicist requires
the use of programming languages that
are very easy to use; provide features
which make it possible to re-use existing
codes; is capable of specifying different
operations to be executed simultaneously
by the computer; and that enable distribut-
ed programs to be easily developed
(Kiusalaas, 2005; Jeffrey, 2002)). Java is

such a programming language, and has been
used in this work to determine roots of non-
linear equations as set out, and for adaptabil-
ity in training students.
One pertinent question is, having found one
of the roots, how do we obtain the other
root(s)? The solution to that problem is
simply that to find all roots, the limits are
reset to new values within the expected
range x1 < x < x2, or a broad all enclosing
limits [x1, x2] is chosen from inception with
the necessary codes included. Either of these
procedures brings out clearly the other roots
of the equation being solved.

The main advantage of root bisection is that
it is guaranteed to work if f(x) is continuous
in [x1, x2] and if the values x = x1 and x = x2
actually bracket a root. Another advantage is
that the number of iterations required to
achieve a specified accuracy is known in ad-
vance (DeVries, 1993). To find all roots, the
limits are reset to new values within the ex-
pected range x1< x < x2, or to choose a
broad all enclosing limits [X1, X2] from in-
ception.

The major drawback of root bisection is that
it is slow to converge. Other methods such
as the Newton's method require fewer num-
bers of iterations to achieve the same level of
accuracy.

In spite of arguments that other methods
find roots with fewer iterations, root bisec-
tion is nevertheless an important tool in the
computational physicist's arsenal. It is gener-
ally recommended that root bisection be
used for finding approximate root which can
then be refined by more efficient methods.
The reason is that most other methods re-
quire a starting value near to a root which, if
not available, may cause them to fail com-
pletely.

95

IMPLEMENTATION OF THE ROOT BISECTIONCOMPUTATIONAL PHYSICS ...

J. Nat. Sci. Engr. Tech. 2012, 11(2): 83-96

REFERENCES

Adesina, O.S. 2010. Implementation of
Basic Computational Physics Methods us-
ing Java. Unpublished B.Sc. Project, Federal
University of Agriculture, Abeokuta, Nige-
ria.

Arfken, G.B., Weber, H.J., Harris, F.E.
2012. Mathematical Methods for Physicists. 7th
Edition. Associated Press. New York, U.S.A.
P. 1205

Chapman, S.J. 1998. FORTRAN 90/95 for
Scientists and Engineers. McGraw-Hill, USA
P. 431

Chow, T.L. 2000. Mathematical Methods for
Physicists – A Concise Introduction. Cambridge
University Press. U.S.A. pp 569

Dass, H.K. 2010. Advanced Engineering
Mathematics. S Chand and Co. Publishers.
New Delhi, India. pp 1358

Deitel, P.J., Deitel, H.M. 2007. Java: How
to Program. Pearson Education Inc, New Jer-
sey, USA. P. 317

DeVries, P.L. 1993. A First Course in Com-
putational Physics. John Wiley & Sons, New
York, U.S.A. P. 435.

Gerald, C.F., Wheatley, P.O. 1999. Applied
Numerical Analysis. Dorling Kindersley, India.
P. 698.

Gupta, B.D. 2010. Mathematical Physics. 4th
Edition. Vikas Publishing House, New Delhi,
India. P. 1417.

Jeffrey, A. 2002. Advanced Engineering Mathe-
matics. Academic Press. U.S.A. P. 1181

Kiusalaas, J. (2005). Numerical Methods in
Engineering with MATLAB. Cambridge Uni-
versity Press. U.S.A. pp 435.

Kreyszig, E. 2006. Advanced Engineering
Mathematics. 9th Edition. John Wiley & Sons.
U.S.A. P. 1246.

Pang, T. 2006. Introduction to Computational
Physics. Cambridge University Press, New
York, USA. P. 528.

Stroud, K.A., Booth, D.J. 2001. Engineering
Mathematics. Palgrave Macmillan, New York,
USA. P. 1236.

Stroud, K.A., Booth, D.J. 2003. Advanced
Engineering Mathematics. Palgrave Macmillan,
New York, USA. P. 1057.

(Manuscript received: 4th April, 2013 ; accepted 4th December, 2013).

96

V. MAKINDE, A.O.MUSTAPHA, I.C. OKEYODE, F.G. AKINBORO, O.S. ADESINA AND J.O. COKER

J. Nat. Sci. Engr. Tech. 2012, 11(2): 83-96

