
problems with a computer. The term 
"algorithm", used for a systematic procedure 
that solves a problem, is defined as a step by 
step solution to a problem in terms of the 
actions to be taken and the order in which 
they are to be taken. A computational physi-
cist or numerical analyst often is interested in 
determining which of several algorithms that 
can solve the problem is, in some sense, the 
most efficient. Efficiency may be measured 
in many ways some of which include the 
number of steps in the algorithm, the time 
taken by the computer to execute the algo-
rithm, the amount of computer memory 
used, among others. A major advantage of 
numerical analysis is that a numerical solu-

INTRODUCTION 
Java is a modern object oriented language 
which facilitates disciplined approach to 
program design (Deitel and Deitel, 2007). It 
has features that make it suitable for mod-
ern day computation which include multi-
threading (parallel programming), object 
orientation, support for internet, among 
others. 
 
Computational Physics seeks numerical so-
lutions to physical problems. It involves the 
use of numerical analysis methods to pro-
vide approximate solutions to problems in 
Physics. As described by Gerald and Wheat-
ley (1999) numerical analysis is the develop-
ment and study of procedures for solving 
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ABSTRACT 
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commonly been employed in solving numerical problems. In this work, Java, a modern object oriented 
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linear equations using the Root-Bisection Method. A comparison between results obtained showed 
faster convergence and greater accuracy using Java than as obtained using Fortran. 
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tion can be obtained even when a problem 
has no analytical solution.  
 
It is important to realize that numerical 
analysis of a problem always give numerical 
solution. Analytical methods usually give a 
result in terms of mathematical functions 
that can then be evaluated for specific in-
stances (Gupta, 2010). Furthermore, a nu-
merical solution is an approximation whose 
results can be made as accurate as desired 
(Arfken et al., 2012).  
 
Solving for the roots of non-linear equa-
tions is one of the numerous operations 
that numerical analysis can do (Gerald and 
Wheatley, 1999). It can also be applied in 
solving large systems of linear equations; 
obtaining the solutions of a set of non-
linear equations, interpolating to find inter-
mediate values within a table of data, find-
ing efficient and effective approximations 
of functions, among others.  
 
Pang (2006) used Java extensively to imple-
ment computational methods in his bid to 
introduce students to computational physics 
and to show the suitability of Java to com-
putational science. Stroud and Booth (2001, 
2003), enumerated the numerous ways in 
which computational methods can be 
adapted to solve numerical problems. 
 
In this work, Java was used to implement 
the computational methods because   
i) much of the work that had been done 

in the field of computational physics 
used FORTRAN and C; 

ii) these two languages, although still pow-
erful and efficient, tend toward becom-
ing old languages in that they do not 
provide fully for the needs of the mod-
ern day computational physicists. 

iii) Java is a modern object oriented lan-

guage which facilitates a disciplined ap-
proach to program design.  

 
Some of the other features of Java that make 
it suitable for modern day computation in-
clude multithreading (parallel programming), 
object orientation, support for the internet 
among others.  

This work involves the:  

i) implementation of the root bisection 
method for practically simple equations, 
using Java in the determination of roots 
of non-linear equations; 

ii) testing the implemented method with 
examples obtained from academic 
sources; and 

iii) evaluating the Java implementation of 
the computational physics methods by 
comparing them with similar implemen-
tations done with other programming 
languages. 

METHODOLOGY 
Determination of the roots of non-linear 
equations 
What does it mean to find the root of an 
equation?  
Consider a function f(x); if f(x) = 0, then the 
values of the variable x that satisfies f(x) = 0 
are called the roots of the equation. They are 
also known as the zeros of f(x).  
 
Some equations are very easy to solve, that 
is, to find the roots. For example, if the 
function f(x) is linear in nature and given as f
(x) = 6x - 12, then by making f(x) = 0, that 
is, 6x - 12 = 0, the equation is solved simply 
by rearranging the terms of the equation to 
make the variable x stand alone on the left-
hand side of the equation, giving 6x = 12 or 
x = 12 / 6, that is, x = 2. 
 
Also, if f(x) is quadratic, that is, f(x) = ax2 + 
bx + c, in which the highest power of the 
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variable x in the function is 2, a formula 
exists to find the roots of the equation - the 
well known quadratic formula given as: 

 However, as we move 
higher in the power to which the variable x 
is raised, finding the roots of the equation 
becomes more tedious.  
 
According to Gerald & Wheatley (1999), it 
has been proved that no general formula 
exists for polynomials of degree greater 
than four meaning that there is no way to 
exhibit the roots in terms of "ordinary" 
functions. Usually, such polynomials  are  
solved  by  successive  approximations  and  
some  of  the  methods employed include: 
Root Bisection (or Interval Halving), Secant 
Method, Regula Falsi method, Fixed-Point 
Iteration method, Newton's method, Mul-
ler's method, among others (Dass, 2010).  
 
Theory of the Root Bisection Method  
The root bisection method is an ancient but 
effective method for finding a zero of f(x). 
Out of the common methods, the root bi-
section method is almost the simplest to 
understand and the easiest to implement.  
 
To find a root of f(x), the root bisection 
method begins with two values x = x1 and x 
= x2 that bracket (enclose) a root. It is 
known that a root is enclosed if the func-
tion changes sign at the endpoints, that is, 
at f(x1) and f(x2); this is true if (f(x1)*f(x2)) < 
0 (Kreszig, 2006). It is certain that there is 
at least one root in the interval [x1, x2] as 
long as f(x) is continuous in [x1, x2]. The 
method then successively divides the inter-
val in half and replaces one endpoint with 
the midpoint so that again the root is en-
closed. Known in advance is that the error 
in the estimate of the root must be less than 
|(x2–x1)*(1/2n)| where n is the number of 

iterations performed (Gupta, 2010).  
 
In implementing the Root Bisection Method, 
the pseudocode was written to set the brack-
et values and algorithm for implementation. 
The pseudocode for the Root Bisection algo-
rithm is stated thus.  
 
To determine a root of f(x) = 0 that is accu-
rate within a specified tolerance value, given 
values X1 and X2 such that f(X1) * f(X2) < 
0.  
 

REPEAT  
         Set X3 = (X1 + X2) / 2  
     IF (f(X3) * f(X1) < 0):  
          Set X2 = X3  
      ELSE  
          Set X1 = X3  
         END IF  
 
UNTIL (|X1 - X2| < 2 * tolerance value) or 
f(X3) = 0  
 
NOTE: The method may give a false root if 
f(x) is discontinuous in [X1, X2]. The final 
value of X3 approximates the root within the 
accuracy of the specified tolerance value 
(Gerald & Wheatley, 1999). 
 
Implementation 
Implementation of the root bisection meth-
od was achieved by creating a Java class 
called RootBisection. This class consists of six 
private fields and fifteen public methods 
which includes a constructor and the corre-
sponding set and get assessors for each of the 
fields. The method called getRoot() imple-
ments the algorithm for the root bisection 
method.  
 
A driver class called RootBisectionMethod 
(Adesina, 2010), was created to collect the 
data to satisfy the preconditions of the root 
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bisection algorithm and to execute the 
getRoot() method of the RootBisection class 
which is the method that implements the 
root bisection algorithm. The RootBisection-

Method class is an application class because it 
contains a method called main() which is the 
entry point for all Java programs. The code 
listing for the getRoot() method is shown next. 
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1 public double getRoot() { 
2  int iterate = 0; 
3  double mid, x1, x2, oppSign, fxmid;  
4  x1 = lowerLimitOfInterval; 
5  x2 = upperLimitOfInterval; 
6  setOutput(""); 
7 compileOutput(String.format("\n%15s%15s%15s%15s%15s\n", "ITR 

NO","X1", "X2", "X3", "F(X3)")); 
8  do { 
9   iterate += 1; 
10   mid = (x2 + x1) / 2; 
11   fxmid = Function.getFofX(mid, coefficients); 
12  compileOutput(String.format("\n%15d%15.7f%15.7f%15.7f 

%15.7f", iterate, x1, x2, mid, fxmid)); 
13   oppSign = fxmid * Function.getFofX(x1, coefficients); 
14   if ( oppSign < 0 ) { 
15    x2 = mid; 
16   } else { 
17    x1 = mid; 
18 } 
 
19  } while ( !((Math.abs(x1 - x2) < ( 2 * tolerance )) ||  

(fxmid == 0) || (iterate >= maxIteration)) ); 
20 compileOutput(String.format("\n\n%s\n\n", "Program output for x1 = " + 

lowerLimitOfInterval + ", x2 = " + upperLimitOfInterval + ", tolerance = 
" + tolerance)); 

 
21  return mid; 
 
22 }       
 Code Listing 1: The getRoot() method of RootBisection class  

Lines 2 and 3 of Code Listing 1 declare var-
iables that are used within the getRoot() 
method. Integer variable iterate (which is 
initialized to zero) keeps track of the num-
ber of iterations. Variables mid, X1, X2, 
oppSign, and fxmid are of double data-type 

and they store double precision floating 
point numbers; .mid stores the mid-point of 
the interval [X1, X2], while X1, X2 stores 
the lower and upper limits of the interval 
respectively.  
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The root bisection algorithm starts from 
line 8 and ends at 19 of Code Listing 1. 
Line 11 calls method getFofX() of class 
Function which contains only two methods 
-getFofX() and getDerivativeFofX(). getFofX() 
computes the value of the polynomial func-
tion using the value of x and the coeffi-
cients vector passed to it as arguments; com-
pileOutput() is one of the methods  of  the  
root  bisection  class; it  stores  the  format-
ted  output,  which  will  be displayed to the 
user, passed to it as arguments as it is used 
in lines 7 and 20. Line 13 performs the op-
eration f(X3) * f(X1) and stores the result in 
the variable oppSign. Line 14 begins an if-else 
structure that tests whether f(x) changes 
sign at the endpoints X3 and X1. If the 

function changes sign then mid replaces X2 
in line 15 else mid replaces X1 in line 17.  
The condition in line 19 checks if the abso-
lute value of X1 - X2 (Math.abs(X1 - X2)) is 
not less than 2 times the tolerance value giv-
en or if f(X3) (fxmid) is not equal to zero or if 
the iteration number is not greater than or 
equal to the maximum given. If this complex 
logical condition is true, that is if any one of 
the tests is true, then the iteration continues 
otherwise lines 20 and 21 execute. Line 21 
returns the value of X3 that is mid.  
 
In order to obtain the roots therefore, pa-
rameters are first set as input to the program 
thus: For a polynomial of order n,  
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f(x) = Anxn + An-1xn-1 + An-2xn-2 + …….. + A2x2 + A1x + A0 
 
For example, if f(x) = x2 – 2; then A2 = 1, A1 = 0, and A0 = - 2 
if f(x) = x3 + x2 - 3x – 3, then A3 = 1, A2 = 1, A1 = - 3, and A0 = - 3  
if f(x) = x4 – 2; then A4 = 1, A3 = 0, A2 = 0, A1 = 0, and A0 = - 2 
  
WELCOME TO THE ROOT BISECTION METHOD 
THIS PROGRAM IMPLEMENTATION ALLOWS YOU TO FIND THE ROOT(S) 
OF A POLYNOMIAL OR NON-LINEAR EQUATION 

Enter the lower limit of the interval x1:  
Enter the upper limit of the interval x2: 
Enter the degree of the polynomial: n 
Now, enter the elements of the coefficient vector one after the other. 
Enter A0:  
Enter A1:  
Enter A2:          .         . 
Enter An-1: 
Enter An: 
Enter the tolerance value: 0.00001 
Enter the maximum number of iterations in case tolerance is not met: 20 

In order to determine other roots, either of 
two approaches can be made: i) to reset the 
interval limits to new values of [x1, x2] 

which bracket the second root;  ii) to set an 
all encompassing enclosing limits [X1, X2]  
from the outset.  
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Tests and Results  
Example 1: As an example, consider the 
following function from Gerald & Wheatley 
(1999): f(x) = x3 + x2 - 3x - 3 = 0. 
  
It can almost be seen by inspection that a 
root is Ö3, that is, square root of 3. Alt-
hough the function is simple enough to be 

easily solved by hand, it is a good example to 
show how successive iterates converge on 
the value Ö3, that is, 1.732050808.The result 
obtained by Gerald & Wheatley (1999), who 
implemented the Root Bisection Method 
using FORTRAN 90 is given next in Table 
1: 
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Table 1: Finding the root of f(x) = x3 + x2 - 3x - 3 = 0 starting with X1 = 1, X2 = 2, 
              and tolerance 1E-4 by root bisection method (Adapted from Gerald & 
              Wheatley, 1999) 

ITR NO X1 X2 X3 F(X3) MAXIMUM 
ERROR 

ACTUAL 
ERROR 

1 1.000000 2.000000 1.500000 - 1.875000 0.500000 - 0.232051 

2 1.500000 2.000000 1.750000   0.171875 0.250000   0.017949 

3 1.500000 1.750000 1.625000  - 0.9433594 0.125000 - 0.107051 

4 1.625000 1.750000 1.687500 - 0.409424 0.062500 - 0.044551 

5 1.687500 1.750000 1.718750 - 0.124786 0.031250 - 0.013301 

6 1.718750 1.750000 1.734375   0.022030 0.015625   0.002324 

7 1.718750 1.734375 1.726563 - 0.051756 0.007813 - 0.005488 

8 1.726563 1.734375 1.730469 - 0.014957 0.003906 - 0.001582 

9 1.730469 1.734375 1.732422   0.003512 0.001953   0.000371 

10 1.730469 1.732422 1.731445 - 0.005728 0.000977 - 0.000605 

11 1.731445 1.732422 1.731934 - 0.001109 0.000488 - 0.000117 

12 1.731934 1.732422 1.732178   0.001202 0.000244   0.000127 

13 1.731934 1.732178 1.732056   0.000045 0.000122   0.000005 

Tolerance met 
 
The result obtained in the implementation of the root bisection algorithm using Java (Code 
Listing 1) is given next in Table 2: 
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Tables 1 and 2 show that it takes the root 
bisection method thirteen iterations to find 
the approximate root within the accuracy of 
the tolerance value. X3 is the mid-point of 
the interval while f(X3) gives the value of 
the function at X3. 
It was observed in the tables that the esti-
mate of the root may be better at an earlier 
iteration than at later ones. The second iter-
ate in Table 1 is closer to the true root than 
are the next two, that is, iterates 3 and 4. 
Also, it is closer at iterate 6 than iterate 7. In 
this example, we have the advantage of 
knowing the answer, but this is never the 
case in real world applications. However, 
the values of f(x) themselves show that 
these better estimates are closer to the root. 

Although, this may not always be an absolute 
indicator due to the fact that some functions 
may be nearly zero at points which are not 
so near the root, but for smooth functions, a 
small value of the function is a good indica-
tor that we are near the root; this is especially 
true when we are quite close to the root.  
  
Example 2: Consider another example: 
 f(x) = x4 - 2 = 0  
This  function  is  a  fourth degree  polyno-
mial  and  a  root  is  the  fourth-root  of  2  
which  is 1.189207115.  
Using the Java implementation of the root 
bisection method, the following results 
shown in Table 3 were obtained.   
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Table 2: Finding the root of f(x) = x3 + x2 - 3x - 3 = 0 starting with X1 = 1, X2 = 2, 
 and tolerance of 1E-4 by root bisection method using Java Approximate root  

            found: 1.732056 

ITR NO X1 X2 X3 F(X3) 
1 1.0000000 2.0000000 1.5000000 - 1.6750000 
2 1.5000000 2.0000000 1.7500000   0.1718750 
3 1.5000000 1.7500000 1.6250000 - 0.9433594 
4 1.6250000 1.7500000 1.6875000 - 0.4094238 
5 1.6875000 1.7500000 1.7187500 - 0.1247864 
6 1.7187500 1.7500000 1.7343750   0.0220299 
7 1.7187500 1.7343750 1.7265625 - 0.0517554 
8 1.7165625 1.7343750 1.7304688 - 0.0148572 
9 1.7304688 1.7343750 1.7324219   0.0035127 
10 1.7304688 1.7324219 1.7314453 - 0.0057282 
11 1.7314453 1.7324219 1.7319336 - 0.0011092 
12 1.7319336 1.7324219 1.7321777   0.0012013 
13 1.7319336 1.7321777 1.7320557   0.0000460 

Program Output for X1 = 1.0; X2 = 2.0; tolerance 1.0E-04 
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It can also be observed in Table 3, that ear-
lier estimates of the root may be better as 
reflected in iterate 4 being closer to the root 
than the next two. It took thirteen iterations 
for the root bisection method to converge 
to an approximate root within the accuracy 
of the tolerance value, that is, 0.0001. 
From the foregoing, it is evident that the 
root bisection method is indeed slow to 

converge.  
 
Root Bisection Method Applied to Quad-
ratic Equations 
Hitherto, all examples taken were non-
quadratic. To elucidate its applicability to 
quadratic equations, two quadratic equations 
are here taken as further examples. 

 Table 3: Finding the root of f(x) = x4- 2 = 0 starting with X1 = 1, X2 = 2, and 
               tolerance of 1E-4 by root bisection method using Java 

ITR NO X1 X2 X3 F(X3) 

1 1.0000000 2.0000000 1.5000000   3.0625000 

2 1.0000000 1.5000000 1.2500000  0.4414063 
3 1.0000000 1.2500000 1.1250000 - 0.3981934 

4 1.1250000 1.2500000 1.1875000 - 0.0114594 

5 1.1875000 1.2500000 1.2187500   0.2062693 

6 1.1875000 1.2187500 1.2031250   0.0952845 
7 1.1875000 1.2031250 1.1953125   0.0413893 

8 1.1875000 1.1953125 1.1914063   0.0148350 

9 1.1875000 1.1914063 1.1894531   0.0016555 

10 1.1875000 1.1894531 1.1884766 - 0.0049100 

11 1.1884766 1.1894531 1.1889648 - 0.0016293 

12 1.1889648 1.1894531 1.1892090   0.0000126 

13 1.1889648 1.1892090 1.1890869 - 0.0008085 

Program output for x1 = 1.0, x2 = 2.0, tolerance = 1.0E-4 

90 
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Example 3: Consider the equation f(x) = x2 – 2 = 0 (Adapted from Stroud and Booth, 
2003) 
Results obtained from the Root Bisection Method Java program is given as follows: 
 
Approximate root found: 1.414200 

ITR NO X1 X2 X3 F(X3) 
1 1.0000000 2.0000000 1.5000000   0.2500000 
2 1.0000000 1.5000000 1.2500000 - 0.4375000 
3 1.2500000 1.5000000 1.3750000 - 0.1093750 
4 1.3750000 1.5000000 1.4375000   0.0664063 
5 1.3750000 1.4375000 1.4062500 - 0.0224609 
6 1.4062500 1.4375000 1.4218750   0.0217285 
7 1.4062500 1.4218750 1.4140625 - 0.0004272 
8 1.4140625 1.4218750 1.4179688   0.0106354 
9 1.4140625 1.4179688 1.4160156   0.0051003 
10 1.4140625 1.4160156 1.4150391   0.0023355 
11 1.4140625 1.4150391 1.4145508   0.0009539 
12 1.4140625 1.4145508 1.4143066   0.0002633 
13 1.4140625 1.4143066 1.4141846 - 0.0000820 
14 1.4141846 1.4143066 1.4142456   0.0000906 
15 1.4141846 1.4142456 1.4142151   0.0000043 
16 1.4141846 1.4142151 1.4141998 - 0.0000388 

Program output for x1 = 1.0, x2 = 2.0, tolerance = 1.0E-5  

Example 4::f(x) = 2x2 – 9x + 5 = 0 
 

The first root can be found in the interval [1, 4] and the results obtained from the RootBi-
sectionMethod Java program are given as follows: 

 
Enter the lower limit of the interval x1: 1 
Enter the upper limit of the interval x2: 4 
Enter the degree of the polynomial: 2 

Now, enter the elements of the coefficient vector one after the other. 
Enter A0: 5 
Enter A1: -9 
Enter A2: 2 
Enter the tolerance value: 0.00001 
Enter the maximum number of iterations in case tolerance is not met: 20 
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Now, to find the second root, the interval limits are reset to new values of [-1, 1] which 
bracket the second root. The results obtained from the Root Bisection Method Java pro-
gram are given below: 

 
Enter the lower limit of the interval x1: -1 
Enter the upper limit of the interval x2: 1 
Enter the degree of the polynomial: 2 

Now, enter the elements of the coefficient vector one after the other. 
Enter A0: 5 
Enter A1: -9 
Enter A2: 2 
Enter the tolerance value: 0.00001 
Enter the maximum number of iterations in case tolerance is not met: 20 

Approximate root found: 3.850780 

ITR  NO X1 X2 X3 F(X3) 
       1 1.0000000 4.0000000 2.5000000 - 5.0000000 
       2 2.5000000 4.0000000 3.2500000 - 3.1250000 
       3 3.2500000 4.0000000 3.6250000 - 1.3437500 
       4 3.6250000 4.0000000 3.8125000 - 0.2421875 
       5 3.8125000 4.0000000 3.9062500   0.3613281 
       6 3.8125000 3.9062500 3.8593750   0.0551758 
       7 3.8125000 3.8593750 3.8359375 - 0.0946045 
       8 3.8359375 3.8593750 3.8476563 - 0.0199890 
       9 3.8476563 3.8593750 3.8535156   0.0175247 
      10 3.8476563 3.8535156 3.8505859 - 0.0012493 
      11 3.8505859 3.8535156 3.8520508   0.0081334 

      12 3.8505859 3.8520508 3.8513184   0.0034410 
      13 3.8505859 3.8513184 3.8509521   0.0010956 
      14 3.8505859 3.8509521 3.8507690 - 0.0000769 
      15 3.8507690 3.8509521 3.8508606   0.0005093 
      16 3.8507690 3.8508606 3.8508148   0.0002162 
      17 3.8507690 3.8508148 3.8507919   0.0000696 
      18 3.8507690 3.8507919 3.8507805 - 0.0000037 

Program output for x1 = 1.0, x2 = 4.0, tolerance = 1.0E-5  
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Approximate root found: 0.649216 

ITR NO X1 X2 X3 F(X3) 
1 -1.0000000 1.0000000 0.0000000 5.0000000 
2 0.0000000 1.0000000 0.5000000 1.0000000 
3 0.5000000 1.0000000 0.7500000 - 0.6250000 
4 0.5000000 0.7500000 0.6250000 0.1562500 
5 0.6250000 0.7500000 0.6875000 - 0.2421875 
6 0.6250000 0.6875000 0.6562500 - 0.0449219 
7 0.6250000 0.6562500 0.6406250 0.0551758 
8 0.6406250 0.6562500 0.6484375 0.0050049 
9 0.6484375 0.6562500 0.6523438 - 0.0199890 
10 0.6484375 0.6523438 0.6503906 0.0074997 
11 0.6484375 0.6503906 0.6494141 - 0.0012493 
12 0.6484375 0.6494141 0.6489258 0.0018773 
13 0.6489258 0.6494141 0.6491699 0.0003139 
14 0.6491699 0.6494141 0.6492920 - 0.0004677 
15 0.6491699 0.6492920 0.6492310 0.0000769 
16 0.6491699 0.6492310 0.6492004 0.0001185 
17 0.6492004 0.6492310 0.6492157 0.0000208 
Program output for x1 = -1.0, x2 = 1.0, tolerance = 1.0E-5 

In another way round, the interval could be set at [-1, 4] form onset. For this example, do-
ing that would yield the result as given next: 
 
WELCOME TO THE ROOT BISECTION METHOD 
 
THIS PROGRAM IMPLEMENTATION ALLOWS YOU TO FIND THE ROOT OF A 
POLYNOMIAL OR NON-LINEAR EQUATION 
 

Enter the lower limit of the interval x1: -1 
Enter the upper limit of the interval x2: 4 
Enter the degree of the polynomial: 2 

Now, enter the elements of the coefficient vector one after the other. 
Enter A0: 5 
Enter A1: -9 
Enter A2: 2 
Enter the tolerance value: 0.00001 
Enter the maximum number of iterations in case tolerance is not met: 20 
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First Approximate root found: 0.649227 
 ITR NO       X1                 X2                X3                F(X3) 
     1     -1.0000000      4.0000000      1.5000000     - 4.0000000 
     2     -1.0000000      1.5000000      0.2500000      2.8750000 
     3      0.2500000      1.5000000      0.8750000     - 1.3437500 
     4      0.2500000      0.8750000      0.5625000      0.5703125 
     5      0.5625000      0.8750000      0.7187500     - 0.4355469 
     6      0.5625000      0.7187500      0.6406250      0.0551758 
     7      0.6406250      0.7187500      0.6796875     - 0.1932373 
     8      0.6406250      0.6796875      0.6601563     - 0.0697937 
     9      0.6406250      0.6601563      0.6503906     - 0.0074997 
   10      0.6406250      0.6503906      0.6455078      0.0237904 
   11      0.6455078      0.6503906      0.6479492      0.0081334 
   12      0.6479492      0.6503906      0.6491699      0.0003139 
   13      0.6491699      0.6503906      0.6497803     - 0.0035937 
   14      0.6491699      0.6497803      0.6494751     - 0.0016401 
   15      0.6491699      0.6494751      0.6493225     - 0.0006631 
   16      0.6491699      0.6493225      0.6492462     - 0.0001746 
   17      0.6491699      0.6492462      0.6492081      0.0000696 
   18      0.6492081      0.6492462      0.6492271     - 0.0000525 
  
Second Approximate root found: 3.850769 
 ITR NO        X1               X2                  X3              F(X3) 
     1      0.6492462      4.0000000      2.3246231     -5.1138628 
     2      2.3246231      4.0000000      3.1623116     -3.4603753 
     3      3.1623116      4.0000000      3.5811558     -1.5810486 
     4      3.5811558      4.0000000      3.7905779     - 0.3782395 
     5      3.7905779      4.0000000      3.8952889      0.2889514 
     6      3.7905779      3.8952889      3.8429334     - 0.0501263 
     7      3.8429334      3.8952889      3.8691112      0.1180420 
     8      3.8429334      3.8691112      3.8560223      0.0336152 
     9      3.8429334      3.8560223      3.8494779     - 0.0083412 
   10      3.8494779      3.8560223      3.8527501      0.0126156 
   11      3.8494779      3.8527501      3.8511140      0.0021319 
   12      3.8494779      3.8511140      3.8502959     - 0.0031060 
   13      3.8502959      3.8511140      3.8507049     - 0.0004874 
   14      3.8507049      3.8511140      3.8509095      0.0008222 
   15      3.8507049      3.8509095      3.8508072      0.0001674 
   16      3.8507049      3.8508072      3.8507561     - 0.0001600 
   17      3.8507561      3.8508072      3.8507816      0.0000037 
   18      3.8507561      3.8507816      3.8507688     - 0.0000782 
Program output for x1 = 0.6492462, x2 = 4.0, tolerance = 1.0E-5 
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CONCLUSION 
Scientific computing is today becoming the 
third pillar of scientific inquiry alongside the 
more traditional theory and experimenta-
tion pillars. For example, scientists today do 
not have to brave the risks of hazardous or 
dangerous chemical experiments, rather 
they use computational methods imple-
mented with programming languages such 
as Java to simulate and model such experi-
ments.  
 
The relevance that computational physics, 
numerical analysis or computational science 
in general has today, is as a result of a lot of 
work that had been done in the implemen-
tation of several computational methods 
using computer programming languages.  
FORTRAN, which was developed by IBM, 
is essentially a computational tool; it has 
been used extensively to develop programs 
in both the defense and geophysical fields 
(Chapman, 1998). Chapman (1998) imple-
mented computational methods using 
FORTRAN 90/95. C, a language developed 
by Dennis Ritchie in the 1960s, is another 
language that has found extensive use in 
computational science. C is most suitable 
for High Performance Computing (HPC) 
because of its speed of execution (Chow, 
2000). However, it is very susceptible to 
errors especially if used by a not so skillful 
programmer.  
 
The scale of modern day problems being 
solved by computational physicist requires 
the use of  programming  languages  that  
are  very  easy  to  use;  provide  features  
which  make  it possible  to  re-use  existing  
codes;  is  capable  of  specifying  different  
operations  to  be executed simultaneously 
by the computer; and that enable distribut-
ed programs to be easily developed 
(Kiusalaas, 2005; Jeffrey, 2002)). Java is 

such a programming language, and has been 
used in this work to determine roots of non-
linear equations as set out, and for adaptabil-
ity in training students.  
One pertinent question is, having found one 
of the roots, how do we obtain the other 
root(s)? The solution to that problem is 
simply that to find all roots, the limits are 
reset to new values within the expected 
range x1 < x < x2, or a broad all enclosing 
limits [x1, x2] is chosen from inception with 
the necessary codes included. Either of these 
procedures brings out clearly the other roots 
of the equation being solved. 
 
The main advantage of root bisection is that 
it is guaranteed to work if f(x) is continuous 
in [x1, x2] and if the values x = x1 and x = x2 
actually bracket a root. Another advantage is 
that the number of iterations required to 
achieve a specified accuracy is known in ad-
vance (DeVries, 1993). To find all roots, the 
limits are reset to new values within the ex-
pected range x1< x < x2, or to choose a 
broad all enclosing limits [X1, X2] from in-
ception. 
 
The major drawback of root bisection is that 
it is slow to converge. Other methods such 
as the Newton's method require fewer num-
bers of iterations to achieve the same level of 
accuracy.  
 
In spite of arguments that other methods 
find roots with fewer iterations, root bisec-
tion is nevertheless an important tool in the 
computational physicist's arsenal. It is gener-
ally recommended that root bisection be 
used for finding approximate root which can 
then be refined by more efficient methods. 
The reason is that most other methods re-
quire a starting value near to a root which, if 
not available, may cause them to fail com-
pletely. 
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