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Abstract 

W. B. Saunders. Fine-scale microclimatic controls on soil carbon dioxide fluxes in a northern 
hardwood forest, 96 pages, 13 tables, 20 figures, 2019. APA style guide used.  
 
Carbon dioxide (CO2) emissions from soil are typically the largest carbon flux from forest 
ecosystems to the atmosphere, representing a significant biogenic source of greenhouse gases. 
Although the temperature and moisture sensitivities of the respiration processes underlying soil 
CO2 fluxes are well studied, the impacts of a changing climate on these abiotic controls and the 
resulting soil flux responses are unresolved. Using in-situ continuous measurements of soil 
microclimate at sites with contrasting hydrology, this study assessed the temperature and 
moisture dependence of soil CO2 fluxes within hardwood forests of the Adirondack Mountains 
in northern New York State (USA). During the 2018 growing season, soil CO2 fluxes were very 
strongly coupled with soil temperature and only weakly coupled with soil moisture. Statistical 
modeling indicated that the relationship between soil moisture and the CO2 flux was driven by 
their covariation with soil temperature. Moderate drought conditions during the 2018 growing 
season affirmed the importance of soil moisture regimes in mediating weather variability, yet 
there was limited evidence to indicate that respiration was significantly moisture-limited.  
 
 
Key Words: soil carbon dioxide flux, soil respiration, temperature, soil moisture, climate change, 
forest soils, northern hardwood forest, Adirondacks, drought 
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Introduction 

The flux of carbon dioxide (CO2) from soils is a significant component of the global 

carbon cycle (Raich & Schlesinger, 1992; Schlesinger & Andrews, 2000), but many of the 

interactions that drive this ecosystem process remain uncertain (Lloyd & Taylor, 1994; Xu et al., 

2004; Carey et al., 2016). The soil CO2 flux is one of the largest carbon ecosystem fluxes 

(Davidson et al., 1998; Raich et al., 2002; Ryan & Law, 2005; Carey et al., 2016) that 

incorporates the waste products of respiration by both autotrophs (Ra) and heterotrophs (Rh). 

Autotrophic respiration in the soil is conducted by plant roots as they metabolize sugars 

produced via photosynthesis, while heterotrophic respiration results from metabolism of soil-

dwelling bacteria, fungi and fauna that conduct organic matter decomposition (Lloyd & Taylor, 

1994; Ryan & Law, 2005). Soil respiration rates and the resulting fluxes of CO2 to the 

atmosphere, which vary widely across biomes and within a given ecosystem type, are known to 

be affected by abiotic (e.g., temperature, moisture), biotic (e.g., organic matter content and 

quality, microbial community composition) and anthropogenic (e.g., land use history) factors 

(Raich & Schlesinger, 1992; Lloyd & Taylor, 1994; Davidson et al., 1998; Senevirante et al., 2010; 

Carey et al., 2016). In forests, where the largest pool of carbon is typically soil, changes in soil 

CO2 flux can shift these ecosystems from net sinks to sources of carbon, with implications for 

global carbon cycling and greenhouse gas balance (Schlesinger & Andrews, 2000; Xu et al., 

2004; Carey et al., 2016).  

The role of the microclimate in exerting fine-scale controls on CO2 fluxes is important to 

better understand the potential changes in carbon cycling in forest ecosystems. Temperature 

has been the most studied abiotic driver of soil respiration, with attention to the influence of 
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warming soil and air temperatures. Soil respiration is temperature dependent, as biochemical 

reactions that drive microbial activity and fine root production in soils, rely upon higher rates of 

respiration to generate the energy needed. Higher temperatures increase reaction rates and 

soil respiration to a point where soil respiration becomes constrained by higher temperatures, 

as biological activity declines due to enzyme denaturation and complex temperature regulatory 

responses in cells. At lower temperatures, soil respiration is limited by slower reaction rates 

that do not provided enough energy to sustain biological activity. Q10, which is the factor by 

which the rate of a reaction will increase with every 10-degree increase in temperature, has 

also been shown to be higher at lower temperatures with declining values as temperature 

increases (Lloyd & Taylor, 1994; Davidson & Janssens, 2006; Schipper at al., 2014). Although 

studies consistently find that soil CO2 flux is positively correlated with temperature (Richey, 

1994; Davidson et al., 1998; Liang et al., 2004; Allison & Treseder, 2008; Ullha & Moore, 2011), 

there have been inconsistent results regarding the rate and the specific nature (e.g., shape of 

response curve) of this temperature dependent relationship (Lloyd & Taylor, 1994; Xu et al., 

2004; Carey et al., 2016).  

 At high temperatures, the rate of increase in CO2 flux starts to decline, especially in 

mesic temperate forests due to moisture limitation (McHale et al., 1998; Carey et al., 2016). Soil 

moisture and temperature both regulate soil CO2 flux, with temperature having the greater 

influence when soil moisture is in an optimal range. Several studies have found soil moisture to 

be a limiting factor under drought conditions (Davidson et al., 1998; Knapp et al., 2002; Yuste et 

al., 2003; Xu et al., 2004; C. W. Harper et al., 2005). Low soil moisture can decrease soil 

respiration due to limited availability of soluble organic C substrates in water films. Soil 
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microbes and roots are unable to access organic material needed for biochemical reactions, 

lowering the rate of respiration in the soils. At the other extreme of soil moisture, soils that 

become highly saturated can impact respiration rates as well as the CO2 flux, although these 

effects may be decoupled. Water fills up air pore space in saturated soils, causing anoxic 

conditions by lowering the diffusion rate of O2 into the soils. The oxygen needed for aerobic 

respiration becomes less accessible to soil microbes and roots, lowering soil respiration rates. 

At the same time, saturated soils can lower the diffusion rate of CO2 out of the soils, creating a 

physical barrier that impedes the release of CO2 via soil pore spaces to the atmosphere. Aerobic 

respiration could still be occurring deeper in the soil profile, but measurements of soil CO2 flux 

would be impeded due to this physical obstruction (Davidson et al., 1998; Davidson et al., 2000; 

Ryan & Law, 2005). Sites like wetlands that are saturated more often and have more hydric 

substrates tend to have lower measurable rates of soil respiration under ‘normal’ conditions 

(Davidson et al., 1998; Savage & Davidson, 2001; Ryan & Law, 2005; Ullha & Moore, 2011), and 

this is likely due to both mechanisms (oxygen limitation of aerobic respiration and poor gaseous 

CO2 diffusion in saturated pore spaces). For these reasons, identifying when soil moisture 

becomes a limiting factor is important for accurately modeling soil CO2 flux.  

Numerous studies have been conducted to evaluate the temperature dependency and 

the soil moisture threshold(s) of soil respiration. At Harvard Forest in central Massachusetts, 

USA, studies have been measuring soil CO2 fluxes for over two decades to understand a variety 

of influences on soil respiration (Giasson et al., 2013). Davidson et al. (1998) measured spatial 

and temporal associations between soil respiration, moisture, and temperature across soil 

drainage classes. Soil CO2 flux was confirmed to be strongly coupled with temperature, with an 
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exponential model accounting for 80% of the observed variation in the flux. Soil drainage 

classes also influenced soil CO2 flux, with lower fluxes observed in wetlands and poorly-drained 

soils than in mesic and well-drained soils. During the study, a late summer drought resulted in 

decreases in CO2 from well-drained soils, while there were simultaneous flux increases from 

poorly-drained soils. The temperature model predicted soil CO2 flux well for most the year, but 

during the drought months, a model incorporating soil moisture along with temperature was 

needed to explain variation seen in the flux. Drying of well-drained soils likely created limiting 

conditions for respiration by roots and microbes. In the poorly drained soils, the drought 

conditions may have allowed for a release of CO2 that had been impeded by saturated soils, 

and/or removed the limitation of poor O2 diffusion, producing more favorable conditions for 

soil respiration (Davidson et al., 1998). Ullah and Moore (2011) observed a similar phenomenon 

in a temperate forest in the St. Lawrence River Valley of Canada. Soil drainage characteristics 

were found to be important when estimating the soil CO2 flux across the forested landscape. 

Soil temperature was found to be more important than soil moisture for estimating CO2 fluxes 

from well-drained soils, where soil moisture was more important in poorly-drained soils. Based 

on these findings, soil drainage characteristics related to topographic index need to be 

considered in order to estimate soil fluxes at a watershed scale (Ullah & Moore, 2011).  

The soil microclimate (temperature and soil moisture) are fundamentally shaped by the 

ambient weather conditions, and several studies have suggested that small changes in local 

climate will significantly influence rates of soil respiration (Savage & Davidson, 2001; Xu et al., 

2004; Senevirante et al., 2010). The interaction between temperature and soil moisture is more 

variable in temperate ecosystems than tropical (moisture limited) or boreal (temperature 
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limited) ecosystems, as temperature and moisture regimes vary seasonally and across 

ecosystems (Senevirante et al., 2010). Determining when soil moisture becomes a limiting 

factor is more difficult because of this variability and the relationship between the moisture 

content of soil and its temperature stability. During the Davidson et al. (1998) study, 

temperature and soil moisture were (negatively) correlated across seasons, with a warm and 

dry summer and a cool and wet winter. It was impossible to distinguish between the effects of 

the two factors when there was moderate to high soil moisture. A lower threshold of soil 

moisture was discovered due to the drought that occurred during the study. Without the 

occurrence of the drought, the soil moisture threshold may not have been discovered for these 

sites, leaving temperature as the only consistent predictor of temporal variation in soil CO2 flux. 

To identify such thresholds and their effects, flux measurements need to be carefully 

distributed both temporally and spatially. The drought at Harvard forest was observed due to 

the temporal duration of the study, while sampling locations were selected to evaluate how 

topography and soil moisture regimes mediated the effects of ambient weather conditions 

(Davidson et al., 1998; Ullah & Moore, 2011).  

While temperature and soil moisture vary across temperate systems, forest ecosystems 

effectively regulate their microclimates and can provide more stability for ecosystem processes 

such as soil respiration. Overstory tree canopies buffer the understory from direct solar 

radiation, leading to a moderation of higher temperatures during summer months (Fetcher et 

al., 1985; Chen et al., 1993; K. A. Harper et al., 2005). The alteration of solar radiation leads to 

higher levels of soil moisture in forest ecosystems due to lower rates of evaporation directly 

from soils below the canopy, and lesser evaporative demand resulting in lower rates of 
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evapotranspiration by plants. These effects are evident in forestry studies on gap dynamics and 

forest fragmentation, where the microclimates of large gaps and clear-cut areas are compared 

to the edges and understory of intact forest. In the clearings and larger gaps, temperatures rise 

and fall faster than inside the forest, reaching a higher maximum and lower minimum daily 

temperature (Fetcher et al., 1985; Chen et al., 1993; Strong et al., 1997; K. A. Harper et al., 

2005). Frost was found to occurred more readily in the clear-cut areas, causing damage to 

sensitive vegetation (de Freitas & Enright, 1995). Temperature and humidity are more stable 

beneath the closed canopy than in the clearings and gaps, leading to less diurnal variation in 

the microclimate (Fetcher et al., 1985; Chen et al., 1993).  

Recent climatic changes have made the US Northeast region significantly warmer and 

wetter over the last few decades (Griffiths & Bradley, 2007; DeGaetano, 2009; Brown et al., 

2010; Horton et al., 2014; U.S. Global Change Research Program (USGCRP 2018); Howarth et al., 

2019). Increases in temperatures across the US Northeast have ranged from approximately 0.6 

to 1.7+°C since 1901. Temperatures are predicted to increase by 2.8°C by 2050 under the lower 

emissions scenario (RCP 4.5), and increase by 2.2°C by 2050 under the higher emissions 

scenario (RCP 8.5). The US Northeast has also seen the greatest increase (55%) in the amount of 

precipitation falling in heavy rain events between 1958-2012 among all the US regions 

(USGCRP, 2018). These high magnitude rainfall events have become more frequent over the 

last century, with 50-year and 100-year storms occurring at roughly a 40% shorter return 

interval (DeGaetano, 2009). There has been a statistically significant increase in precipitation 

attributable to the top 1% precipitation, and in the frequency and magnitude of extreme 

weather events. The frequency of these top 1% precipitation events increased by 15 events per 
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year and the annual daily maximum precipitation increased 58.0 mm from 1979–2014, with the 

most robust trends particularly in September through November (Howarth et al., 2019). There 

has been an observed decreasing trend in consecutive dry days (CDD) from weather stations in 

New York (Griffiths & Bradley, 2007; Brown et al., 2010; Insaf et al., 2013; Thibeault & Seth, 

2014). However, model forecasts suggest that with increases in the magnitude of rainfall, there 

may also be decreases in rainfall frequency, leading to overall longer periods of dry weather 

(CDD) between rainfall events (Sillmann et al., 2013; Singh et al., 2013; Wuebbles et al., 2014). 

Warming temperatures can lead to earlier snowmelt and increases in the growing season, 

altering the availability and timing of soil moisture for the ecosystem (Groffman et al., 2001; 

Horton et al., 2014; USGCRP, 2018). Warmer temperatures are expected to increase 

evapotranspiration which, if not offset by concomitant increases in precipitation, could 

exacerbate short term droughts in warmer months (Horton et al., 2014; Wuebbles et al., 2014; 

USGCRP, 2018). However, it widely known that drought forecasts for New York’s future climate 

are marked with large uncertainty (Horton et al., 2014).  

Experimental manipulations in temperate forest have yielded some insights on soil 

respiration and CO2 flux response to changes in a warmer climate. McHale et al. (1998) 

conducted experimental warming of soil temperatures (+2.5, 5.0, 7.5 °C) in an eastern 

temperate deciduous forest in New York. An increase in the soil CO2 flux was evident in warmed 

soils, with the + 2.5°C and + 5.0°C plots having the highest fluxes. It was observed that the + 

7.5°C plot did not have the highest flux but was more closely related to the reference plot. 

These findings could be attributed to a limitation in soil moisture in the warmest plot, as the 

+7.5°C plot exhibited the lowest soil water tension during the study (McHale et al., 1998). 
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Groffman et al. (2001) simulated declines in snow pack due to warmer temperatures by 

experimentally removing snow from plots in Hubbard Brook Experimental Forest, which 

exposed soils to colder temperatures during early winter. Snow removal led to mild soil freezing 

events that caused significant increases in fine root mortality and leaching of soil solutes. 

Changes to the available solutes and increased fine root mortality over winter could influence 

soil respiration rates (and CO2 fluxes) during the early growing season and potentially decrease 

net productivity (Groffman et al., 2001). 

Changes in the timing, frequency, and intensity of precipitation events may also 

influence respiration and CO2 flux, especially in well-drained mesic soils. For example, an 

increase in the period of dry days between precipitation events could increase the likelihood of 

soils reaching their wilting point, creating limiting conditions for respiration. After the next rain 

event remoistens the soil, a brief increase (or pulse) in soil CO2 flux is a well-documented 

phenomenon known as the ‘Birch effect’ (Birch, 1958), which is attributed to favorable 

conditions for the immediate response of both roots and microbes (Lee et al., 2002; Yuste et al., 

2003; Xu et al., 2004; Warren, 2014, 2016). Changes to the normal timing and amount of 

precipitation has been shown to impact soil respiration over a growing season. Knapp et al. 

(2002) and C. W. Harper et al. (2005) altered the precipitation regime of a temperate grassland 

in Kansas to simulate the predicted increases in both intense rainfall and the mean number of 

dry days between rainfall events, under both ambient and reduced rainfall quantities. Four 

rainfall regimes were implemented during the study: ambient rainfall quantity and timing, 

reduced rainfall quantity with ambient timing, altered rainfall timing (increase in dry days) with 

ambient quantity, and altered timing with reduced quantity. In this experiment, soil CO2 flux 



 9 

decreased by 8% under reduced rainfall, decreased by 13% under increased dry periods 

between rain events, and decreased by 20% under both conditions. The variability in 

precipitation led to an overall decrease in soil CO2 flux and belowground productivity 

throughout the growing season (Knapp et al, 2002; C. W. Harper et al., 2005).  

The interactions between ambient weather conditions, the regulating influence of the 

forest environment on temperature and moisture, and soil drainage characteristics shape the 

microclimate of the forest soil, which in turn regulates soil respiration and CO2 fluxes. These 

interactions require more detailed investigations (Senevirante et al., 2010; Davidson et al., 

2012; Carey et al., 2016) to explain spatial and temporal variation in observed soil CO2 fluxes 

and their potential responses under changing climate conditions. Understanding these 

interacting controls on soil respiration is essential to accurate forecasting of climate-induced 

changes in forest carbon cycling (Davidson et al., 1998; Schlesinger & Andrews, 2000; Carey et 

al., 2016). Temperature increases are expected to increase soil CO2 flux, decreasing the soil 

carbon stock and increasing atmospheric CO2, if all factors are held equal (Raich & Schlesinger, 

1992; Schlesinger & Andrews, 2000), but several studies have found a neutral or negative 

response to warming, due to moisture limitations, shifts in physiological response and/or 

depletion of labile C pools (Carey et al., 2016). If increases in precipitation cannot keep pace 

with increases in evapotranspiration due to higher temperatures, more frequent short-term 

droughts could occur. Increases in extreme precipitation could lead to more saturating events 

in mesic soils (Senevirante et al., 2010; Horton et al., 2014; Wuebbles et al., 2014; USGCRP, 

2018; Howarth et al., 2019). Because both types of moisture extremes can occur in the same 

growing season, understanding their impact on soil gas fluxes rates poses a complex problem. 
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Given that climate forecasts for the US Northeast indicate an increasing likelihood of 

both high and low soil moisture extremes, a better understanding of how soil moisture 

interacts with temperature controls on soil CO2 flux in the region’s temperate forests is needed 

for accurate modeling of forest carbon cycling in a changing climate (Schlesinger & Andrews, 

2000; Xu et al., 2004; Carey et al., 2016). Creation of an overall global model has been difficult 

due to site specific parameterization of temperature and soil moisture relationships, and the 

confounding effects of temperature, soil moisture and environmental drivers (e.g., substrate 

availability and quality, soil type, plant species composition, etc.) obscuring the individual 

effects on soil respiration. In other words, the temperature dependency coefficient Q10 is 

strongly influenced by local environmental conditions (Davidson et al., 2006; Davidson & 

Janssens, 2006; Davidson et al., 2012; Schipper at al., 2014; Carey et al., 2016). Site specific 

studies continue to be needed to parameterize the relationships between soil gas fluxes and 

the microclimate within and across ecosystem types. Specifically, in mesic temperate forests, 

the challenge of estimating the threshold(s) of soil moisture limitation in response to ambient 

weather conditions requires consideration of spatial heterogeneity in soil moisture regimes 

(i.e., topography).  

In this study, the approach used by Davidson et al. (1998) was generally reproduced to 

observe the impacts of soil moisture extremes, particularly increases in high-magnitude rain 

events, on soil CO2 fluxes in well-drained and poorly-drained soils in the northern hardwood 

forests of the Adirondack Mountains (New York State, USA).
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Objectives 

The first objective of this study was to evaluate the relationships between ambient 

weather conditions and the in-situ soil microclimate. As a rule, the subcanopy microclimate is 

more stable than that of an open field, with canopy cover moderating temperature maxima and 

minima (less diurnal variation in temperature) and lowering rates of evapotranspiration (higher 

soil moisture; Fetcher et al., 1985; Chen et al., 1993). I hypothesized that in-situ measurements 

of the forest microclimate would more accurately model the soil CO2 flux as compared to open-

field meteorological measurements. I also compared the subcanopy measurements to those 

from weather stations in open fields to provide a better understanding of how changes in 

ambient weather conditions were mediated in the subcanopy microclimate. The relationship 

between the microclimate measurements in open fields and subcanopy was applied to develop 

rough predictions of future CO2 flux (based on forecasted warming).  

The second objective of this study was the role of the soil microclimate in exerting fine-

scale controls on CO2 fluxes in well-drained and poorly-drained mesic soils. Temperature is a 

well-known predictor variable of soil CO2 flux, as respiration is a temperature depend reaction, 

and soil temperature has lower variation than air temperature above the soils (Richey, 1994; 

Davidson et al., 1998; Ullha & Moore, 2011). Soil moisture is known to limit both respiration 

and the measurement of the flux, but when it becomes a limiting factor is still inconclusive 

(Davidson et al., 1998; Knapp et al., 2002; C. W. Harper et al., 2005). Soil drainage 

characteristics have also been found to influence the flux, especially in poorly-drained soils and 

should be accounted for when modeling across forest or watershed scales (Davidson et al., 

1998; Ullha & Moore, 2011). To accurately model these relationships, the methodology from 
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Davidson et al. (1998) and Ullah & Moore (2011) were modified to measure soil CO2 flux (not 

teasing apart Ra and Rh) and the microclimate throughout the growing season at a fine spatial 

scale in two sites with different soil drainage characteristics. Both a well-drained and a poorly-

drained mesic soil were used to try to observe both the high and low threshold of soil moisture 

under varying conditions. 

The final objective of this study was the role of extreme soil moisture events in 

impacting soil CO2 fluxes, in a northern hardwood forest ecosystem. With the US Northeast 

experiencing more high magnitude rainfall events, soil could be saturated more often, 

suppressing the infusion of O2 or the release of CO2 (Davidson et al., 1998; Davidson et al., 

2000; Ryan & Law, 2005; USGCRP, 2018). I initially set out to look at the effect of soil saturating 

events on soil CO2 flux, but ended up capturing one of the driest growing seasons in recent 

decades. The continuous in-situ microclimate measurements allowed for drying down periods 

to be observed during the study. Short term droughts are being forecasted for the US Northeast 

with warmer temperatures predicted to overshadow increases in precipitation (Horton et al., 

2014; Wuebbles et al., 2014; USGCRP, 2018). Increases in CDD would lower soil respiration as 

soils would reach their wilting point more frequently. Extreme soil moisture events will be more 

prevalent in the future, making soil moisture potential a more important factor of soil 

respiration. 

Methods  

Study Area  

I measured growing season soil CO2 fluxes and the microclimate (temperature and 

moisture) from June to October in 2018, at two locations within a first-order catchment of the 



 13 

Archer Creek Watershed (135 ha), located within Huntington Wildlife Forest (HWF; 43°59’N, 

74°14’W) in Newcomb, New York (USA; Figure 1). Between the years of 1981-2010, the mean 

temperature between June and October was 19.62°C and the mean total precipitation was 

approximately 508.25 mm (Table 1; accessed March 20, 2018, 

https://w2.weather.gov/climate/xmacis.php?wfo=btv; The National Weather Service (NWS), 

2018). Subcatchment S14 (3.5 ha) has a mean elevation of 619 m, mean slope of 16°, a mean 

aspect of 200° (SSW) and typically has a stair-step topography with steep sided hallows. The 

upland forest soils are generally < 1.0 m thick and classified as Becket-Mundal series sandy 

loams (course-loamy, mixed, frigid, typic Haplorthods) with approximately 75% sand and less 

than 10% clay with many cobblestones and boulders present (Somers, 1986; Christopher et al., 

2006). The soils in the S14 catchment where sampling was conducted have a high pH (5.5) 

compared to most Adirondack forest soils (pH < 4.5) and therefore are well buffered against 

acid deposition (Christopher et al., 2006; Beier et al., 2012; Homan et al., 2016). The overstory 

vegetation within the catchment is dominated by sugar maple (Acer saccharum Marsh.), white 

ash (Fraxinus americana L.), and American basswood (Tilia americana L.; Beier et al., 2012).  

I selected two sites within S14 to establish measurement plots: a forested wetland 

(seep) above the first-order stream, and a mesic forest on the upper hillslope adjacent to the 

wetland. Located in close proximity but with differing drainage conditions, the sites were 

selected to compare soil microclimate and CO2 fluxes in a mesic, well-drained soil and a 

relatively hydric, poorly-drained soil within the same catena. At each site, five plots were 

installed with gas flux sampling collars and automated sensors to continuously measure soil 

moisture, soil temperature and air temperature. Each plot (collar and sensor arrays) was 
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located a random distance between 2-4 m from a center point, where the moisture probe data 

logger was located. These varying distances were used to account for spatial heterogeneity 

within the site, and to estimate site-level mean fluxes over time and among sites (Figure 2). 

Soil CO2 Flux 

Soil CO2 flux was measured using a LI-COR LI-8100A Survey System that consists of a 20 

cm dynamic flow chamber coupled with an infrared gas analyzer (IRGA; LI-COR, 2018). The 

specifications of the LI-8100A Survey System are provided in Appendix A. The IRGA and survey 

chamber were controlled by the LI-8100A application running on an Android phone via a 

wireless router. Three 12-volt rechargeable lead-acid batteries were used to power the IRGA for 

an entire day, with each battery lasting approximately 3-4 hours under typical warm summer 

conditions (batteries drained more quickly at temperatures < 50F). A five-minute measurement 

period was employed, which included a 50- second ‘dead band’ to allow conditions to stabilize, 

and followed by a 30-second line purge. Measurements began in the headwater wetland and 

then preceded directly to the upper hillslope, with plots being measured in the same order 

each time. Soil collars were made out of 20 cm diameter, schedule 40 PVC pipe, cut into 11 to 

12 cm sections and beveled on the inside of one end. On June 13th 2018, prior to sampling, the 

beveled end of each collar was inserted a few centimeters into the soil (to achieve a firm 

footing while minimizing fine root damage) and the chamber offset was recorded to account for 

the full volume of air under the chamber once positioned on the collar. 

Soil CO2 flux measurements were made every two weeks for a total of 10 dates as 

follows: June 23rd, July 7th, July 21st, August 4th, August 18th, September 1st, September 15th, 

September 29th, October 13th, and October 27th. On each sampling day, measurements of the 
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complete circuit of 10 collars began at 0600 and were repeated every three hours with the final 

measurements starting at 1800, for a total of 5 measurements per plot per sampling day. In 

addition, a 24-hour diurnal sampling period was conducted to confirm that subcanopy soil 

temperatures are less variable diurnally, causing less diurnal variability in the flux (Fetcher et 

al., 1985; Chen et al., 1993; Davidson et al., 1998). The same three-hour interval was used, 

starting at 0600 on August 18th with the final round of measurements beginning at 0600 on 

August 19th 2019 (9 measurements per plot). Each plot was expected to have a total of 54 soil 

CO2 flux measurements at the end of the study period.  

Soil Microclimate Monitoring  

Temperature sensor arrays consisted of Thermochron iButtons (model #DS1922L and 

#DS1921G-F5) with a range of -40°C to 85°C, resolution settings of either 0.5°C (for both 

models) or 0.0625°C (for #DS1922L only), and storage of 2-8 kB depending on settings and 

model (Maxim Integrated, 2018). The iButtons were arranged vertically on a solid PVC rod 

within a sealed PVC housing (6.35 cm diameter pipe) buried partially in the soil, attached to a 

steel reinforcement stake for stability. Within the housing, the iButtons were spaced 0.2 m 

apart vertically from each other, ranging from -0.2 m (below soil surface) to +1.0 m (above soil 

surface); note the arrays utilized did not contain sensors at the +0.8 m position. These arrays 

allowed for the measurement of both soil and air temperature, with the iButtons at -0.2 m and 

0 m set at a 0.0625°C resolution (#DS1922L) and the others set to a 0.5°C resolution 

(#DS1921G-F5). Arrays were carefully installed to ensure that the 0 m iButtons were located at 

the surface of the soil. Sensors were programmed to record every 4 hours from June 13th at 

1200 to October 30th at 0800.  
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Soil moisture was measured for each plot using ECH2O GS 1 data-logging soil volumetric 

water content (VWC) probes connected to an ECH2O Em50 data logger at each site (METER 

Group, 2018). The probes record a range of 0 to 0.57 m3/m3, with a resolution of 0.001 m3/m3, 

and a volume of influence of 690 cm3. The probes were installed at -0.2 m below the soil 

surface at each plot and connected to the data-logger via 5-meter cables housed in 1.27 cm 

diameter PVC pipe conduits. Soil moisture probes were programmed to record mean conditions 

every 2 hours starting June 22nd at 1400 till October 30th at 1200. In each plot the buried 

temperature array’s PVC housing and the soil moisture probe were installed at a minimum 

distance of 30 cm apart to avoid sampling interference. 

To estimate C, N and moisture content of soils in measurement plots, samples of the O 

and A horizon were collected from underneath the plot collars at the end of the study period 

(October 30, 2018). An additional 10 randomly located soil samples were collected within each 

site using a 4 cm diameter soil corer to represent the soil matrix around and between the plots. 

These random samples were bulked together by site prior to analysis. The twelve samples (one 

from each of 10 measurement plots, 1 bulked sample from each site outside of plots) were 

analyzed for gravimetric water content, total C and total N. To calculate the gravimetric water 

content, 250 g wet weight samples were dried in a drying oven at 105°C for 48 hours and then 

weighed again. For the C:N analysis, 40 mg sub-samples were pulverized and mixed using a 

SPEX Mixer/Mill (8000M) to obtain fine particles. Samples were then measured by the Dumas 

Method of dry combustion (Thermo Scientific Flash Elemental Analyzer, 1112 series) to 

determine the percentage of C and N. A piece of decaying wood found buried in the soil directly 

beneath one collar (U3) was placed in a drying oven at 60°C for 48 hours to obtain a dry weight. 
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Meteorological Data  

In addition to the soil microclimate measurements in the plots, first-order 

meteorological stations located at HWF in Newcomb were used for real-time meteorological 

data. A New York State (NYS) Mesonet weather station is located in a maintained clearing – 

which contains instruments for several other monitoring programs including National 

Atmospheric Deposition Program and the US Environmental Protection Agency Clean Air Status 

and Trends Network – approximately 4 km from the study area in Archer Creek Watershed. The 

Mesonet station has automated sensors that measure ambient meteorological conditions every 

3-30 seconds and records / reports 5-minute means of these values. Data obtained from this 

station included air temperature (°C) at 2 m, soil temperature (°C) at -0.25 m, 5-minute 

precipitation (mm), and 24-hour precipitation (mm; NYS Mesonet, 2018). Weather instruments 

located in a forest opening approximately 50 m from the headwater wetland site were also 

used; the Ackerman Clearing tower was installed in 2007 and serves as a meteorological station 

for the upper Arbutus watershed, recording data every 15 minutes, including temperature (°C; 

Campbell Scientific model 107-I) and 15-minute precipitation (mm; Campbell Scientific model 

TE525WS-L; SUNY ESF, 2018). Temperature (record starting in 1986) and precipitation (record 

starting in 1959) data were used from the NWS station located in HWF for analysis and 

comparison.  

Storm Events  

Storm events were defined as the top 1% of daily precipitation totals based on the 

metrological record from the NWS station in Newcomb, NY. This threshold would allow for a 

few measured samples of a potentially saturated well-drained soils, to investigate how high soil 
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moisture impeded soil respiration and suppresses soil CO2 flux. A statistical analysis of 

Newcomb’s precipitation data from 1959 to 2017 found that the top 1% of daily total 

precipitation for the months of June through October was 37.99 mm or greater (NWS, 2018). To 

determine if a storm event was likely to occur, several precipitation forecasts (NYS Mesonet, 

North American Mesoscale Model, Global Forecast System) were monitored for 24h rainfall 

predictions greater than the 37.99 mm threshold. If a storm event qualified, then soil CO2 flux 

would have been measured, but no such rainfall occurred at HWF during my study period.  

Data Analysis  

Temperature means and variance were analyzed to evaluate differences between the 

subcanopy microclimate (1 m above forest floor) and ambient air temperatures recorded by 

weather stations located in a forest gap (Ackerman Clearing) and a maintained open clearing 

(Mesonet station). The subcanopy temperatures analyzed were based on the mean of all five 

+1.0 m iButtons in the arrays installed at the two soil gas flux study sites in S14. Linear 

interpolation between measurement intervals was used to estimate soil temperature and 

moisture at a 60 sec resolution for the entire study period to allow for simultaneous 

comparison of observations. Tukey’s multiple comparison test was used to examine if means 

differed among the plot level soil CO2 fluxes. Means and variance were calculated and 

compared for soil temperature (-0.2 m depth), soil moisture, and the soil CO2 flux at the site 

level. Two sample t-test (95% confidence) were run to test for significant differences between 

the sites means of soil temperature, soil moisture, soil CO2 flux, and soil carbon and nitrogen 

content.  
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Relationships between subsurface observations of the soil microclimate (temperature 

and moisture at -0.2 m depth) were analyzed with correlation tests and a series of regression 

models. Soil moisture effects on soil CO2 flux were initially evaluated using linear regression 

models based on three sets of antecedent mean soil moisture observations (24, 48 and 72 

hours prior to sampling time) to account for potential lags. Pearson correlations and simple 

linear least-squares regressions were used to evaluate plot-level relationships between soil CO2 

flux and soil temperature. A log-linear model based on the Arrhenius equation from Lloyd & 

Taylor (1994) was used to examine the plot-level temperature dependence and relative 

reaction rates of soil respiration: 

ln(R) = a + b*(1/Ts)        [1] 

where R is the soil CO2 flux in µmol/m2/s, Ts is soil temperature in degrees K, a is the intercept 

and b is the slope. The activation energy of the soil CO2 flux at each plot was calculated by using 

the slopes from equation [1], which is equal to -Ea/r, where Ea is the activation energy in J/mol K 

and r is the gas constant (8.314 J/mol K; Lloyd & Taylor, 1994; Davidson & Janssens, 2006). The 

Q10 was calculated from the activation energy by using equation [10] from Zaragoza-Castell et 

al. (2008): 

 !"# = 	&("#()
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where Ea is the activation energy, r is the gas constant, and T is soil temperature in K. A soil 

temperature of 15°C was used based on the global mean soil temperature observed during the 

June-October 2018 study period. 

A nonlinear mixed effects (NLME) regression method was used to generate a predictive 

model of CO2 flux, based on repeated measures of the same ten plots located in two sites 
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(upland and wetland), as a function of the soil microclimate. A random effect was assigned to 

‘plot’ that was zero-centered with normally distributed variance around the intercept using an 

unstructured covariance structure. This is to account for plot-level variation due to the 

individualized plots, calculating the residuals from the mean of the plot. Random intercepts and 

slopes of soil microclimate factors were incorporated to have a maximal random effect 

structure to achieve conditional independence. The combination of random slopes and 

intercepts minimize type I & II errors by avoiding a narrow confidence interval, allowing for 

between-individual variation in slope to be considered, accounting for all possible individual 

variation in the data (Schielzeth & Frostmeier, 2009; Barr et al., 2013; Winter, 2013; Harrison et 

al., 2018). Consequently, random intercepts and slopes can make the model too complex 

(overfitted) for the given data. Two nonlinear models from Davidson et al. (2012) were used to 

evaluate the combined effects of soil temperature and soil moisture on soil CO2 flux. A purely 

Q10 model was fit by using equation [8] from Davidson et al. (2012):  

. = .*/0(!
12345656 7)        [3] 

and a Q10 and water content model was fit using equation [9] from Davidson et al. (2012): 
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where R is the soil CO2 flux in µmol/m2/s, Ts is soil temperature in °C, Rref is the reference R at 

10 °C, Q is the Q10 parameter, M is soil moisture in %, Mopt is the optimum soil moisture which 

is set at the maximum % soil moisture content encountered in the data, and D is a calibrated 

parameter. Equation [4] was used for both instantaneous soil moisture and 72-hour antecedent 

soil moisture. The nonlinear models were compared using Akaike Information Criterion (AIC). 

AIC compares models from given data by considering the model’s goodness of fit (based on a 
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likelihood function) and a plenty for adding more parameters (overfitting). The model with the 

lower AIC would be the preferred model for the given data set, unlike R2, which explains how 

much of the variance of the dependent variable is explained by variables in a regression model 

(Akaike, 1978). Random Rref coefficients were regressed with soil %C and %N to identify 

potential effects of C and N content on CO2 flux rates. The NLME models were fitted to the data 

using the nlmer function from the lme4 package in R 3.6.1 (Bates, 2007; R Development Core 

Team, 2019).  

A linear mixed effects (LME) regression method was used to generate a predictive 

model of CO2 flux, to account for potential heteroscedasticity in the nonlinear models. Using 

equation [1], all combinations of the explanatory variables of site and soil elemental content 

(carbon and nitrogen) were used to best fit the data to a model based on AIC. The LME model 

was fitted to the data using the lmer function from the lme4 package in R 3.6.1 (Bates, 2007; R 

Development Core Team, 2019). The log-linear relationship causes issues fitting other variables 

to the model other than soil CO2 flux and temperature. To account for this, the intercept from 

the plot level log-linear temperature-CO2 flux models were regressed with soil %C and %N to 

identify potential effects of C and N content on CO2 flux rates. I also evaluated potential 

relationships of antecedent soil moisture with the residuals of the plot level log-linear 

regression fits, to determine if model error was associated with moisture extremes. For 

example, a temperature model may overestimate flux when soils are very dry and respiration 

becomes moisture-limited. Likewise, fully saturated soils where gas exchange becomes 

impeded, may have an overestimated flux. The nonlinear and log-linear models were compared 

by using a Jacobian transformation on the log-linear model’s AIC (Akaike, 1978). 
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I used the log-linear LME model (equation [1]) to forecast potential changes in flux 

resulting from projections of future temperature change, based on downscaled global 

circulation model ensembles (CMIP5; Pierce et al. 2014). The model was run with adjusted 

temperature data reflecting generalized changes in temperature from the recent past. The 

baseline dataset was constructed of the mean daily temperature during the nominal growing 

season (June 1st through October 31st) based on weather records from NWS Newcomb, NY 

station from 1981-2010. These temperature ‘normals’ were then adjusted by the forecasted 

changes (Δt) derived from the CMIP5 downscaled predictions for Essex County, New York (USA), 

for two future endpoints (2050 and 2090) and under RCP 4.5 (low emissions) and RCP 8.5 (high 

emissions) scenarios relative to the 1971-2000 temperature ‘normals’. Because the Δt values 

from CMIP5 predictions were seasonally estimated (accessed 10 April 2019 at 

www.nyclimatescience.org; The New York Climate Change Mapping Tool, 2019), the summer Δt 

were applied to June, July and August baseline data, while the fall Δt were applied to 

September and October baseline data (Table 2). With the derived Δt downscaled to match 

weather stations in open fields and the log-linear model based on subcanopy soil temperatures, 

the forecasted weather station temperatures were converted to forecasted subcanopy air 

temperatures based on the empirical relationship observed at HWF between the air 

temperatures measured at the Mesonet station and the temperature sensors at the study sites. 

The forecasted subcanopy air temperatures were then converted to forecasted soil 

temperatures based on the empirical relationship observed at HWF between air and soil 

temperature sensors at the study sites.  
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Using the log-linear model, an uncertainty analysis was conducted to investigate the 

uncertainty of the model parameters in predicting the future soil CO2 flux. Bootstrapping was 

used to sample from a multivariate normal distribution of the model parameters (slope and 

intercept) using their standard errors and the covariance matrix from the model (Raftery et al., 

1993; Vrugt et al., 2003; Wilby, 2005). Since the temperature sensitivity of soil respiration has 

been shown to not significantly change with warmer temperatures (Carey et al., 2016), a Monte 

Carlo analysis (10,000 iterations) was used to predict the changes in the future soil CO2 flux 

compared to the NWS Newcomb thirty-year average temperatures. This was done under the 

assumption that all other factors (e.g., labile carbon pool size, rate of photosynthesis, forest 

composition and structure, etc.) remain unchanged and that there are no soil moisture 

limitations. All analyses described above and graphics were performed using R 3.6.1 (R 

Development Core Team, 2019).  

Results 

Soil CO2 Flux 

The mean soil CO2 flux was roughly equivalent in the headwater wetland (3.38 

µmol/m2/s) and upper hillslope sites (3.61 µmol/m2/s) in Archer Creek watershed (two-sided t-

test, p = 0.116). I did observe significant differences in mean flux rates between plots (Table 3), 

with overall more significant variation among the upper hillslope plots, while only one of the 

wetland plots differed significantly from the other wetland plots (Figure 3). The highest flux 

measured was 10.02 µmol/m2/s at plot U3 on September 15th at 1558, and the lowest was 0.43 

µmol/m2/s at plot U2 on October 27th at 0959. Fluxes at all plots increase from June 23rd until 

August 4th, after which they started to decline, with the exception of a noticeable decrease in 
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the upper hillslope plots on July 21st and a notable increase on September 15th (Figure 4). Soil 

CO2 flux fluctuated more so on a weekly timescale than a diurnal timescale, as soil 

temperatures remain steady and vary over longer timeframes. The diurnal measurement 

confirmed there was no significant changes in the soil CO2 fluxes over the daily interval. From 

August 18th at 0600 to August 19th at 0600, the fluxes had a mean CV of 7.41%, while soil 

temperatures had a mean CV of 1.89%, falling by approximately 1°C during the 24-hour study 

(Figure 5). 

Soil Microclimate 

 Soil temperatures were not significantly different among the sites (t-test, p = 0.723). 

Mean soil temperatures were 14.03°C in the headwater wetland and 14.08°C in the upper 

hillslope (Table 4). Site soil temperatures were averaged from all five -0.2 m iButtons per site. 

Soil temperature and soil CO2 flux were positively correlated (r = 0.57, p < 0.001), with the 

observed temperature dependence of the soil CO2 flux having an exponential relationship 

(Figure 6). 

Soil moisture (VWC) was significantly greater but less variable in the wetland site 

relative to the upland site (t-test, p = 0.003). The headwater wetland had a mean VWC of 0.416 

m3/m3, while the upper hillslope had a mean VWC of 0.229 m3/m3 (Table 5). Soil moisture 

varied more in the upper hillslope (CV = 29.694%) than it did in the headwater wetland (CV = 

17.548%). The sites were wettest on average in October, and were at their driest in late August, 

early September (Figure 7; Figure 8). The headwater wetland plots had a mean gravimetric 

water content of 2.18 g/g, with the upper hillslope plots having a mean of 0.59 g/g (Table 6). 

Soil moisture was negatively correlated with soil CO2 flux (r = -0.06, p = 0.162), and with soil 
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temperature (r = -0.12, p = 0.006). The 72-hour antecedent soil moisture had the best 

correlation (Pearson’s r) with the soil CO2 flux (Table 7). 

Soil carbon and nitrogen were significantly greater in the headwater wetland site (t-test, 

p = 0.002, p < 0.001 respectively; Figure 9). Plot H1 had significantly lower C and N than the 

other four wetland plots, while Plot U2 had the lowest C and N content seen across both sites 

(Table 6). A 108.5g (dry weight) piece of decaying wood, which had white rot fungus on it, was 

found directly underneath one of the upland collars (U3).  

Meteorological Data 

The mean monthly temperatures and monthly precipitation from the weather stations 

(Ackerman, Mesonet, and NWS) and the temperature arrays were compared with the thirty-

year average from NWS Newcomb, NY (Table 8). The mean air temperatures for the headwater 

wetland and upper hillslope were lower than the weather stations and experienced smaller 

variance. Based on the NWS data, the month of July was 1.56 °C warmer than average, August 

was 2.28 °C warmer than average and September was 2.17 °C warmer than average. In contrast 

June was 1.33 °C colder than average and October was 1.50°C colder than average. The month 

of June had 29.72 mm below average rainfall, July had 27.69 mm below average rainfall and the 

month of August had 51.02 mm below average rainfall (greater than 1 standard deviation). The 

month of September experience 11.94 mm above average rainfall and October was close to 

average rainfall (+2.54 mm). There was a moderate drought from early July until early 

November, with a severe drought from the beginning of September until the middle of October 

(accessed March 27, 2019, https://www.ncdc.noaa.gov/temp-and-precip/drought/weekly-

palmers/20180901; The National Oceanic and Atmospheric Administration (NOAA), 2019; 
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accessed March 20, 2019, https://droughtmonitor.unl.edu/Maps/MapArchive.aspx; The 

National Drought Mitigation Center, University of Nebraska-Lincoln (NDMC), 2019a, 2019b).  

Soil CO2 Flux Modeling 

 The plot level temperature dependence, activation energy and Q10 of soil CO2 flux 

(derived from the log-linear models) varied between plots, with each having a high adjusted R2 

(Table 9). The NLME regression using the Q10 function produced the following population model 

from the fixed effects: 

. = 1.861(3.8521
23456
56 7)       [5] 

with an AIC = 1006.45 and a Pseudo-R2 for the fixed effect = 0.54 (n = 525; Figure 10). The NLME 

regression using the Q10 and instantaneous soil moisture function produced the following 

population model from the fixed effects: 

. = 1.887(1.0009:;<=>:?
,
)(3.8811

23456
56 7)     [6] 

with an AIC = 1007.69 and a Pseudo-R2 for the fixed effect = 0.63 (n = 525). The NLME 

regression using the Q10 and 72-hour antecedent soil moisture function produced the following 

population model from the fixed effects: 

. = 1.929(0.9999:;<=>:?
,
)(4.0951

23456
56 7)     [7] 

with an AIC = 1001.17 and a Pseudo-R2 for the fixed effect = 0.66 (n = 525; Figure 11). The 

population models were based on the random effect of ‘plot’ and the random coefficients of 

Rref and Q10 (Table 10). Residuals from all three models show signs of heteroscedasticity and are 

further discussed in the discussion section. Based on AIC, there was no difference between the 

Q10 model and the Q10 and instantaneous moisture models. The Q10 and 72-hour antecedent 
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soil moisture model had the lowest AIC, making it the preferred model. Soil C and N were not 

considered in these models but were compared to the random Rref coefficients of the Q10 model 

and the Q10 and 72-hour antecedent soil moisture model. Weak negative linear relationships 

were exhibited for carbon content (Q10 adjusted R2 = -0.04, Q10 and 72-hour antecedent 

adjusted R2 = -0.09) and nitrogen content (Q10 adjusted R2 = -0.07, Q10 and 72-hour antecedent 

adjusted R2 = -0.10)).  

The fitted LME models were compared using AIC, with the difference in AIC being less 

than three (Table 11). Such small differences are not significant and would not support 

choosing a more complex model over a simpler one (Burnham & Anderson 2004; Davidson et 

al., 2012). The preferred model based on AIC had soil temperature as the only explanatory 

variable, giving the following population model from the fixed effects: 

ln(R) = 39.381 – 10998.214*(1/Ts)      [8] 

with an AIC = -360.51, mean square error (MSE) = 0.025, root mean square error (RMSE) = 

0.157 and a Pseudo-R2 for the fixed effect = 0.48 (n = 525; Figure 12). The population model 

was based on the random effect of ‘plot’ and the random coefficients of soil temperature, 

which were similarly to the plot level log-linear models (Table 12). The activation energy of soil 

CO2 flux at S14 was equal to 91.45 KJ/ mol K (95% CI [83.97, 99.02 KJ/ mol K]). The Q10 was 

found to be 3.76 (95% CI [3.37, 4.20]). 

Soil carbon and nitrogen were not significant in the model based on AIC, but were 

compared to the plot level log-linear model intercepts due to the use of a log-linear 

transformation equation. Strong positive linear relationships were exhibited for carbon content 

(intercepts adjusted R2 = 0.71; Figure 13) and nitrogen content (intercepts adjusted R2 = 0.69). 
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Soil moisture was not considered in the linear model due to the log-linear transformation, but 

the 72-hour antecedent soil moisture was compared to the plot level log-linear model residuals 

to determine if model error was associated with moisture extremes. There was no distinct 

pattern that showed a clear effect of soil moisture that could explain the residuals in the log-

linear models.  

A Jacobian transformation was used on the log-linear LME model’s AIC to be able to 

compare to the nonlinear models. The transformed AIC (806.32) was the lowest AIC of all four 

models, making the log-linear LME model the preferred model for this study.  

Future Soil CO2 Flux Uncertainty Analysis 

The forecasted weather station temperatures and the NWS thirty-year average 

temperatures were converted to forecasted subcanopy air temperatures using the following 

equation based on the empirical relationship observed at HWF between the air temperatures 

measured at the Mesonet station and the temperature sensors at the study sites: 

STa = 0.943 +0.907(MTa)       [9]            

where STa is the sites air temperature in °C, MTa is the Mesonet air temperature in °C, and the 

adjusted R2 = 0.95. The forecasted subcanopy air temperatures were covert to forecasted soil 

temperatures using the following equation based on the empirical relationship observed at 

HWF between the soil and air temperature sensors at the study sites: 

Ts = 8.913+ 0.346(Ta)        [10] 

where Ts is site soil temperature in °C, Ta is site air temperature in °C, and the adjusted R2 = 

0.64. The log-linear LME model was used to then predict soil CO2 fluxes from the forecasted soil 

temperatures. The uncertainty analysis of the mean soil CO2 flux from June 1st to October 31st 
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for the thirty-year average and future emission scenarios, predicts soil CO2 flux to increase by 

0.29 μmoles/m2/s by 2090 under scenario RCP 4.5 and by 0.70 μmoles/m2/s by 2090 under 

scenario RCP 8.5 (Table 13; Figure 14). 

Measurement Errors and Corrections  

Due to colder weather on the last sampling day of October 27th, battery failure 

prevented the completion of the final round of measurements at 1800. This led to each plot 

having a total of 53 soil CO2 flux measurements. After the temperature array data were 

collected, it was noted that the recording interval for the -0.2 m iButton in array N was 

consistently 44 minutes off from the remaining iButtons during the study period. 

 Wildlife interfered with soil moisture probe cables several times leading to gaps in the 

data. Wildlife were able to unplug all probes in the headwater wetland on September 7th 

around 2000 and probes were plugged back in on September 15th just after 0600. Wildlife were 

able to unplug all probes in the headwater wetland again on September 28th around 2000 and 

probes were plugged back in on September 29th just before 0600. Wildlife also chewed through 

a cable for plot U3 soil moisture probe (port 5) in the upper hillslope on September 15th around 

1600, the cable was repaired and plugged back in on September 17Th at 1400. Data are missing 

for all probes affected between these time frames. Due to this each model considered a sample 

size of 525, as all five headwater wetland plots were missing antecedent soil moisture at 0600 

on September 15.  

From data analysis, it was noted that the response of some of the probes were 

adversely affected from being unplugged, registering unusually high readings. Headwater 

wetland Plot H1 (Port 1) was reading above 0.65 m3/m3, when it usually read between the 0.40 
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m3/m3 to 0.20 m3/m3, after being plugged back in on September 17th until it was unplugged 

again on September 28th. Headwater wetland Plot H4 (Port 3) was reading above 0.65 m3/m3 as 

well, where it usually read between 0.50 m3/m3 to 0.40 m3/m3, and seemed to be having issues 

with the data logger registering it was plugged in, after it was plugged back in on September 

29th till October 27th. A bias correction was done on the affected data based on the means of 

Plots H2, H3 and H5 for Plot H3, as they were generally close throughout the season, and 

means of all plots were used for Plot H1, as it was generally always below the other ports.  

A couple of readings were incorrect due to being chewed through or plugged back in, 

registering extremely low or negative values. The readings shortly after these low values were 

normal and other ports did not have any significant changes in their readings between those 

two-time frames. A bias correction was used to fix these readings by replacing the off reading 

with the reading just after it, if it was after being plugged back in, or just before it, if it was 

because of being chewed on. The readings affected were the headwater wetlands’ Plot H1 (Port 

1) on September 18th at 0800 and 1000, Plot H2 (Port 5) on September 18th at 0800, Plot H3 

(Port 4) on September 29th at 0800, and the upper hillslopes’ Plot U3 (Port 5) and Plot U4 (Port 

1) on September 15th at 1600.  

Discussion 

 Soil temperature was the best predictor variable for the soil CO2 flux based on the data 

collected. There were significant differences between soil moisture and soil carbon between 

the sites, but there were no significant differences in the soil CO2 flux. There were significant 

differences in soil CO2 flux between the plots. Soil moisture had an effect on soil CO2 flux based 

on the Q10 and 72-hour antecedent nonlinear model, but it was very close to one. Conditions 
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did not get wet enough during measurements to impact the soil CO2 flux and the driest 

condition were missed by measurements. The moderate to strong collinearity between 

temperature and soil moisture made it difficult to separate any effects of soil moisture on the 

soil CO2 flux. Carbon did appear to influence the intercept of the plot level models, but was not 

significant in the log-linear LME model. The log-linear LME soil model was the preferred models 

based on AIC. 

Soil CO2 Flux Modeling 

The NLME models were used to examine the effects of soil moisture on soil CO2 flux. 

Using the Q10 function as a comparison, the Q10 and instantaneous soil moisture function did 

not improve the model as the AIC for the two models were similar. The calibrated parameter 

for soil moisture (D) was close to 1 (0.9999) suggesting that there was a minor effect of soil 

moisture on soil CO2 flux during the study. The Q10 and 72-hour antecedent soil moisture 

function has the lowest AIC of the NLME models, though the calibrated parameter D is still 

close to 1 (0.9998). The Q10 and 72-hour antecedent soil moisture function indicates a minimal 

effect of soil moisture on soil CO2, while the comparison of the residuals from the plot level log-

linear models showed no clear effect of soil moisture.  

 All of the NLME models exhibit signs of heteroscedasticity, with greater variance in the 

residuals under warmer conditions (Figure 15). This increase in variance can be attributed to 

the argument that the Q10 function itself is temperature dependent, with higher values found in 

colder climates/conditions, and that the relationship between respiration and temperature is 

not simply exponential as other factors can influence this relationship (Lloyd & Taylor, 1994; 

Davidson et al., 1998; Schipper et al., 2014). Temperate regions experience seasonal variation, 
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where summers are often warm and dry, and winters are cold and wet (Savage & Davidson, 

2001). Calibrating a model to a full year worth of data in this case can cause systemic seasonal 

errors, though the use of seasonally variable parameters can help improve the model (Davidson 

et al., 2012). A simple option to correct for heteroscedasticity would be a log transformation 

and the log-linear model residuals have constant variance (Figure 16). The log transformation 

made it difficult to add other variables to the model, though the soil elemental content 

appeared to influence the intercepts. To be able to compare a nonlinear and a transformed 

model, a Jacobian transformation needs to be applied to the log-linear model’s AIC (Akaike, 

1978). The resulting AIC was lowest of all the models, making the log-linear model the 

preferred model for this study.  

Soil Temperature and Q10 

The present study confirmed that soil temperature and soil CO2 flux have a strong 

positive relationship. The plot level log-linear models using only soil temperature had high 

adjusted R2 (0.79 - 0.95; Table 9) and could effectively explain soil CO2 flux. Soil temperature 

was relatively similar among all plots but there were significantly differences between some of 

the plots’ soil CO2 fluxes. The four headwater wetland plots (H2-H5) had very similar fluxes 

throughout the study (Tukey’s grouping c). These four headwater wetland plots had four of the 

five highest activation energy and Q10, with Plot H4 had the highest activation energy and Q10 

(Table 9). Plot U3 had a similar activation energy and Q10 value to the lowest plot (H3) in the 

headwater wetland grouping, and was the highest of the upper hillslope. Plots U4 and U5 

(Tukey’s grouping e) had similar fluxes, and had the next highest activation energy and Q10 

values. Plots H1 and U2 (Tukey’s grouping f) had the lowest fluxes, activation energy and Q10 
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values (Table 9). In the Normal QQ plot of the log-linear model random intercepts, Plot H4 fell 

above the normal residual line, and Plots H1 and U2 fell below the line (Figure 17).  

 Some studies have been previously conducted at Archer Creek Watershed on the 

relationship of the soil CO2 flux with temperature and other factors (Richey, 1994; McHale et 

al., 1998; Gross, 2012; Gomez, 2014). These studies had confirmed the strong positive 

relationship of the soil CO2 flux with temperature. Richey (1994) had positive Pearson 

correlation for soil temperature and the soil flux with a Pearson’s r = 0.694 in 1992 and a 

Pearson’s r = 0.418 in 1993. Gomez (2014) found a significant positive correlation of soil 

temperature with the soil flux, having a Spearman ρ for his study sites ranging from 0.49 to 

0.83. McHale et al. (1998) had strong positive Pearson correlation as well for soil temperature 

and the soil flux with a Pearson’s r = 0.68 in 1993 and Pearson’s r = 0.69 in 1994. My study had 

similar Pearson’s r to Richey (1994) and McHale et al. (1998), where Pearson’s r for the 

headwater wetland, upper hillslope and S14 were 0.70, 0.49 and 0.57 respectively. The 

disparities observed with some of these studies are likely explained by the different protocols 

(e.g., static versus dynamic chamber) and sampling designs (e.g., intensive, single-season versus 

extensive year-round). This study was only conducted in the growing season similar to the other 

studies (Richey, 1994; McHale et al. 1998; Gross, 2012), but continued measurements should be 

made year-round to better capture the variations in the flux like Gomez (2014). This study also 

had more temporal measurements and fine scale spatial measurements compared to the other 

studies, that had more spatial coverage and less temporal. 

 Comparing Q10 values across sites can be difficult due to a range of factors, including soil 

moisture, nutrient content, organic material, microbial and root respiration, and depth at which 
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soil temperature was measured (Davidson et al., 2006; Davidson & Janssens, 2006). The mean 

Q10 estimated for this study was 3.76 (95% CI [3.37, 4.20]), with plot level Q10 ranging from 2.91 

to 5.37. This study was not significantly different to the Q10 reported by Davidson et al. (1998) 

at Harvard Forest, but was significantly higher than those reported by Fahey et al. (2005) for 

Bear Brook and Watershed 1 experimental sites in Hubbard Brook Experimental Forest (Figure 

18). Median global Q10 has been reported as 2.40, with a reported range from different biomes 

of 1.10 to 3.30 (Raich & Schlesinger, 1992). The mean Q10 in the Northeast was calculated to be 

approximately 3.33 (based on mean Q10 reported from: my study; Davidson et al., 1998; 

McHale et al., 1998; Fahey et al., 2005; Davidson et al., 2006; Giasson et al., 2013) and falls at 

the highest end of the global range. Measurements of Q10 in the forest ecosystems of the 

Northeast are thought to be higher than the global mean due to the increase in temperatures 

seen during the growing season, and increased root growth and respiration during the spring 

and summer months (Raich & Schlesinger, 1992; Davidson et al., 1998). Differences in Q10 

among these sites can be explained by site specific conditions, different methodologies and the 

temperature dependence of the Q10 function (Lloyd & Taylor, 1994; Davidson et al., 1998; 

Davidson et al., 2006; Davidson & Janssens, 2006; Schipper et al., 2014). Davidson et al. (2006) 

estimated a spring and fall Q10 for Howland Forest in Maine of 3.50 and 2.50 respectively, 

displaying this issue at a single site. Spring would have a higher Q10 than fall due to the 

springtime root growth, and soil temperatures warm from the top down (temperature is 

measured at a fixed depth), while CO2 is produced at varying depths. Several studies, including 

my own, have only sampled during one growing season. For an accurate Q10, a year-round, 

multi-year study would be needed to accurately capture as many conditions as possible and the 
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use of seasonally variable parameters should be considered. Further research should be 

conducted to account for all these potential variations to better understand the Q10 of Archer 

Creek Watershed soils. 

Carbon Content 

Soil carbon content was a potential explanatory factor for soil CO2 flux due to its 

relationship with the intercepts of the plot level log-linear models (Figure 13). The lowest soil 

CO2 fluxes came from the two plots with the lowest soil C (plots H1 and U2). The four 

headwater wetland plots (H2 - H5) had the highest carbon content, with Plot H4 having the 

highest at 32.68% (Table 6). However, the highest soil CO2 flux did not come from Plot H4 or the 

headwater wetland plots. Plots U1 and U3 had the largest mean soil CO2 fluxes, but had 

significantly lower soil C than the four headwater wetland plots, 8.71% and 8.63% respectively. 

Plot U1 had the third lowest intercept and activation energy among all plots, while Plot U3 had 

an intercept and activation energy more closely related to the headwater wetland groupings 

(Table 9). Plot U3’s high flux and similarities to the four headwater wetland plots can be 

explained by the decaying piece of wood underneath the collar providing extra organic 

material. Plot U3 had two dates where the CO2 fluxes were significantly higher than expected, 

and fell above the 2 standardized residuals based on RMSE of the log-linear LME model (Figure 

16). However, the reason for Plot U1’s high flux but low activation energy is not known. There 

could potentially be organic material that was not found providing extra carbon to the plot or 

another factor that was influencing soil CO2 flux. Further analysis would need to conducted in 

that plot to determine why the soil CO2 flux was as high as observed. Furthermore, Plot U5’s 

soil CO2 flux was found to not be significantly different from Plots H3 and H5, while it had the 
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third lowest carbon content (7.26%). These mixed results (Figure 19), along with relatively low 

replication, may explain why soil C was not significant in the model. Although soil C appeared to 

influence the intercept of the temperature-flux relationship and activation energy of the 

underlying reactions, it was not found to be a consistent predictor of the flux after accounting 

for temperature. 

Soil Moisture and Microclimatic Conditions 

Soil moisture was not identified as a predictor variable of soil CO2 flux based on my data. 

The Q10 and 72-hour antecedent soil moisture function indicated a minor effect of soil moisture 

as the calibrated parameter D was close to 1 (0.9998). In comparison with all models, the log-

linear LME model was the preferred model based on AIC. The 72-hour antecedent soil moisture 

comparison with the residuals of the log-linear model showed no clear effect of soil moisture. 

Since soil CO2 flux measurements during extremes in soil moisture were not well captured 

during the study, it was hard to parse apart the effects of soil moisture from soil temperatures 

because of its negative collinearity with soil temperature (Table 7). Also, temperature was a 

suitable predictor (high plot level adjusted R2) of explaining soil CO2 flux. What the soil moisture 

data are showing is more of a relation to the soil temperature than with the soil flux. 

Soil moisture did fluctuate throughout the months of July to September especially in the 

upper hillslope. There was some significant drying down in all of the upper hillslope plots, with 

four of five plots dropping below 0.200 m3/m3 on five measurement dates; two of those plots 

approached 0.100 m3/m3 on four of those dates (Figure 8). Two plots in the headwater 

wetlands also decrease by approximately 0.200 m3/m3 over this time period (Figure 7). Soil 

moisture anomalies of 20 to 40 mm below average occurred in the month of July (below 30th 
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percentile), and anomalies of 40 to 60 mm below average occurred in August through October 

(below 20th percentile), based on the Land Surface Monitoring and Prediction CPC ‘Leaky Bucket 

Model’ relative to the 1951 to present time period. The model estimates soil moisture, 

evaporation, runoff, and potential evaporation from observed temperature and precipitation 

(accessed April 1, 2019, https://www.cpc.ncep.noaa.gov/products/Soilmst_Monitoring/ 

index.shtml; NWS, 2019). Surface soil moisture and root zone soil moisture were below the 20th 

percentile, relative to the 1948 to 2009 time period, reaching at times as low as below 2nd 

percentile during July and September. Groundwater was below the 30th percentile, relative to 

the 1948 to 2009 time period, reaching at times below the 5th percentile during September. 

These data were obtained from NASA's Gravity Recovery and Climate Experiment (GRACE) 

satellites, which detect small changes in the Earth's gravity field caused by the redistribution of 

water on and beneath the land surface. The data are modeled from measurements from GRACE 

along with meteorological data (precipitation, temperature, solar radiation) to create a long-

term record of soil moisture and groundwater (accessed 26 March 2019, 

https://nasagrace.unl.edu/Archive.aspx; NASA, 2019).  

The summer of 2018 was substantially warmer than normal in the US Northeast, with 

the mean temperatures in July and September being above the 95th percentile and above the 

99th percentile in August, based on station observed monthly mean surface air temperatures at 

a 0.5 x 0.5 degree resolution since 1948 (NWS, 2019). August 2018 was the warmest August 

recorded by the NWS station in Newcomb, NY (1986 - present). The 2018 growing season was 

also relatively dry, with below-average precipitation from May to August. August 2018 had the 

5th lowest total rainfall recorded in August at the NWS station in Newcomb, NY (1959 - present). 
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Well above normal temperatures along with abnormally dry conditions led to moderate 

drought conditions existing from July through October, with severe drought conditions existing 

throughout the month of September (NDMC, 2019b). During September, stream gauges 

dropped below the lower 25th percentile in the region (NDMC, 2019a). Lastly, during the month 

of September, the Palmer Drought Severity Index (PDSI) indicated that moderate drought 

conditions existed in HWF (NOAA, 2019). Overall, these relatively dry and warm conditions 

could explain why the headwater wetland had marginally higher fluxes than the upland, 

because fluxes in the upper hillslope may have been lower due to respiration being moisture 

limitation. During drier conditions, well-drained soils can approach the wilting point while 

poorly drained soils are likely experience more favorable conditions for gas exchange (Davidson 

et al., 1998; Ullah & Moore, 2011). 

Ambient drought conditions were evident in the 2-hour soil moisture measurements, 

especially in well-drained soils of the upper hillslope site (Figure 8). Unfortunately, the study 

was set up to track extreme rain events and not significant dry downs, so the soil CO2 flux was 

not measured during these significantly dry periods. The set schedule of measurements missed 

most of these dry days but did capture the end of the first major dry-down period. 

Measurements were made on July 21st which was a hot and dry day, with no significant rainfall 

since July 6th, and storms were expected overnight. Upon further inspection, there is a clear 

decrease in the flux in all plots in the upper hillslope and a slight decrease in a few of the 

headwater wetland plots. Most of the flux measurements made on July 21st in the upper 

hillslope were approximately two standard deviations below the seasonal mean flux (Figure 16). 

In the normal QQ plot, these points fell below the normal line, with the measurements falling in 
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the -3 to -2 Theoretical Quantiles range, as the model overestimated flux by an average of 

45.37% for the upper hillslope on July 21st. Although this suggested that soil moisture could 

have been a limiting, July 21st was not the lowest soil moisture recorded during flux 

measurements. 

 Soil flux measurements made on September 1st coincided with lower observed soil 

moisture than July 21st, but the upper hillslope fluxes did not appear to be moisture-limited, 

based on the overall better model estimates (1.12% error on September 1st vs. 45.37% error on 

July 21st). The September 1st sampling coincided with the lowest soil moisture observed at 

measurement time for all but two plots, but two days prior to the sampling date it rained 

approximately 10 mm, which briefly rewetted the soil at -0.20 m depth (Figure 7; Figure 8). The 

September 1st sampling may indicate the effect of rewetting on dry soils known as the Birch 

effect, when precipitation results in a pulse of respiration and corresponding soil CO2 flux after 

a prolonged dry period (Birch, 1958; Lee et al., 2002; Yuste et al., 2003; Xu et al., 2004; C. W. 

Harper et al., 2005; Warren, 2014, 2016). Soil moisture may have been a limiting factor of the 

CO2 flux, but this threshold was not adequately captured during this study. Although ambient 

weather conditions were categorized as drought, I found only limited evidence to indicate that 

conditions became dry enough to limit soil respiration (and therefore CO2 flux). 

Soil CO2 Flux Predictions 

The Mesonet network has good geographic coverage across the Adirondacks (18 

stations). All of the Mesonet stations in the Adirondacks record soil temperature, which is not 

typical of weather stations. If one wanted to use the log-linear LME model to estimate the soil 

CO2 flux for sites similar to my headwater wetland and upper hillslope around the Adirondacks, 
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then the Mesonet measured soil temperatures could be used to predict the sites soil 

temperatures. The soil temperatures measured by the Mesonet (-0.25 m) at HWF and the soil 

temperatures measured at my sites had a strong positive correlation (Pearson r = 0.97). Soil 

temperatures for similar sites in the Adirondacks could be predicted by using the closest 

Mesonet stations’ measured soil temperatures with the following equation, based on the 

empirical relationship observed at HWF between the Mesonet station and the temperature 

sensors at the study sites: 

STs = -4.042 +1.054(MTs)       [11]           

where STs is the sites soil temperature in °C, MTs is the Mesonet soil temperature in °C, and the 

adjusted R2 = 0.95. Soil temperatures below the forest canopy were on average 4.04°C cooler 

than in the open field where Mesonet was located. Equation [11] could be used to predict the 

soil temperature at sites in the Adirondacks by using the closest Mesonet station, to provide 

estimates of in-situ temperature for soil CO2 flux prediction at similar forest sites. 

For use of the model outside of areas that have available soil temperature data, the 

model could still be used, if measured air temperature at weather stations could be empirically 

related to the soil temperature under the canopy. As expected, the daily maximum 

temperatures in the subcanopy at the sites were lesser, and the daily minimum temperatures 

were greater, than those recorded by Mesonet station located in open field (Fetcher et al., 

1985; Chen et al., 1993; Strong et al., 1997; K. A. Harper et al., 2005), and most weather 

stations do not measure soil temperature in contrast to the Mesonet stations. Future analysis 

should be conducted to predict soil temperatures in a forested site from air temperatures in an 

open field. A major factor that would need to be considered is the effect of solar radiation on 
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air temperature in an open field. If a correction for that can be used to accurately predict air 

temperature under the canopy and then the log-linear LME model could be used in other 

similar locations. This would be immensely useful and something that future research should 

focus on to help better understand and estimate the soil CO2 flux from available data. 

Using the estimated ΔT to forecast subcanopy soil temperatures and the assumption 

that all other factors will remain unchanged, the future soil CO2 flux was predicted using the 

log-linear LME model. Under the RCP 4.5 scenario, soil CO2 flux from the study sites could 

increase by 10.18% over the next century. Whereas under the RCP 8.5 scenario, the soil CO2 

flux is predicted to increase by 24.28% by 2090 (Figure 20). Under both scenarios, temperatures 

are expected to stay warmer longer into the fall, leading to a higher predicted increase in the 

flux by 2090 in the fall months. It was noticed that soil CO2 flux is expected to have a greater 

increase in the fall months and increase at a faster rate through the months of September and 

October. The expected increases could be explained by warmer temperatures being favorable 

for microbial activity and fine root production (McHale et al., 1998; Ryan & Law, 2005; Davidson 

et al., 2006; Allison & Treseder, 2008). Increases in soil CO2 flux rates could lead to a significant 

increase in atmospheric CO2 and depletion of organic carbon matter from soils in the future 

(Raich & Schlesinger, 1992; Schlesinger & Andrews, 2000). 

Increasing temperatures are expected to increase soil CO2 flux, but many other factors 

will influence how much it increases. Soil moisture is the primary factor that could affect soil 

respiration as moisture limitations could occur more often under warming conditions. Model 

forecasts are predicting longer dry periods between rain events (CDD) and a potential increase 

in short term droughts in the US Northeast (Sillmann et al. 2013; Singh et al. 2013; Horton et al., 
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2014; Wuebbles et al., 2014; USGCRP, 2018). Warmer temperatures are expected to increase 

evapotranspiration, and could alter the timing of snow melt and the start of the growing 

season. If increases in precipitation are not enough to offset these changes, soils could dry out 

more often during the warmer months, producing short term droughts. Moisture limitations 

are known to constrain respiration (Davidson et al., 1998; Knapp et al., 2002; Yuste et al., 2003; 

Xu et al., 2004; C. W. Harper et al., 2005), so an increase in prolonged dry periods, like the 

summer of 2018, could decrease the future flux. When all factors are considered (moisture 

limitations, shifts in physiological response, depletion of liable C pools, etc.), there could be a 

neutral or negative response to warming (Carey et al., 2016). All factors that can directly impact 

soil CO2 flux need to be included in a model to accurately forecast changes in the future flux.  

Future Research into Changes to the Soil CO2 flux due to Climate Change 

Adjustments to the current methodology may be warranted. For example, my data 

suggest that three daily measurements, made twice a month, at 0800, 1200 and 1600, would 

have sufficiently sampled the flux under varying daily temperatures. Reducing the frequency of 

sampling at a given site would allow for a more spatially-extensive design that could sample 

more of the edaphic and microclimatic variability in the study watershed.  

Along with sampling at regular intervals, future work to examine in-situ soil moisture 

thresholds for respiration and CO2 flux can be made more effective by monitoring the ‘real-

time’ observations by autonomous sensors and sampling during key periods, or ‘events’, when 

soils are either very dry or fully saturated. In most locations this would be possible by deploying 

data loggers with cellular network connectivity, however, at the HWF study site located in the 

remote Adirondacks, network coverage is very poor. In this specific case, we could explore the 
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use of the existing tower and radio infrastructure (at Ackerman Clearing) that transmits real-

time data to an online database where it can be accessed remotely. Although unique to the 

HWF Archer Creek watershed site, it may be sufficient to monitor the stage and discharge data 

from the stream weirs, which is recorded and visualized online in 15-min intervals, to identify 

event sampling periods. Similarly, soil moisture data from weather stations like Mesonet could 

be monitored to identify and effectively sample moisture extremes at remote field sites. 

Conclusion 

 The soil microclimate exerts control over soil CO2 flux primarily through soil 

temperature, with potential influence from soil moisture and carbon content. Soil temperature 

was the main predictor of the soil CO2 flux during the study. The soil moisture threshold was 

not captured during the study, as the correlation between soil moisture and soil temperature 

made it hard to tease apart the effects of soil moisture. The relationship between the soil CO2 

flux, temperature and moisture was studied with a dynamic chamber and intensive, in-situ 

measurements, to better understand their interactions. Soil CO2 flux had a strong positive 

relationship with soil temperature and a Q10 value of 3.76 was found through modeling of the 

temperature-flux interaction. Soil moisture did have a moderate negative relationship with the 

soil CO2 flux but this was possibly due to the correlation between soil moisture and soil 

temperature. The Q10 and soil moisture functions indicated a minor effect of soil moisture, but 

model comparison led to the log-linear LME model being the preferred model. Comparisons of 

soil moisture to the residuals of the log-linear models did not show a clear effect of soil 

moisture on the flux. The soil CO2 flux, soil moisture and carbon content varied across plots 

under nearly identical soil temperature conditions, indicating that spatial heterogeneity in 
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other factors may influence soil CO2 flux. Finding the soil moisture threshold, along with the 

impacts that soil organic material, microbial and ecosystem composition, land use history, and 

other factors have on the soil respiration are needed to better understand and predict soil CO2 

flux.  

 The study period encompassed a cool start to a significantly hot and dry summer, which 

turned into a cold and wet fall. Soil moisture was low through much of the months of August 

and September, due to significantly high temperatures and below average rainfall over the 

months of May to August. Drought conditions existed most of the summer with severe drought 

conditions occurring in September. While the fixed sampling interval did not produce 

measurements during the driest periods observed via soil moisture sensors, soil CO2 flux did not 

seem to be negatively influenced by low soil moisture. With the Adirondacks having mesic 

conditions, soil moisture may not be a limiting factor on the flux, except for potentially in the 

extreme ranges (Davidson et al., 1998; Knapp et al., 2002; Yuste et al., 2003; Xu et al., 2004; 

Harper C. W. et al., 2005). Low soil moisture and the amount of days removed from last rain 

event could be factors affecting the flux, as the driest day was predicted well by the log-linear 

LME model. With warmer temperatures, heavier rain events and short-term drought predicted 

in the future (Griffiths & Bradley, 2007; DeGaetano, 2009; Brown et al., 2010; Horton et al., 

2014; USGCRP, 2018), the flux needs to be more intensely studied under these conditions to 

better understand what other factors affect the relationship between the soil CO2 flux and 

temperature.  



 45 

Table 1 - June to October monthly climatological data (mean precipitation (mm), mean minimum 
temperature (°C), mean maximum temperature (°C) and mean temperatures (°C)) for Newcomb, 
New York. Based on the NOAA 1981-2010 thirty-year climate normals. 
 

Month 
Mean 

Precipitation 
Mean Maximum 

Temperature 
Mean Minimum 

Temperature 
Mean 

Temperature 
June 98.55 21.72 9.94 15.83 
July 102.87 23.89 12.17 18.06 
August 99.57 22.56 11.61 17.11 
September 99.82 18.22 7.67 12.94 
October 107.44 11.72 1.33 6.50 
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Table 2 - Forecasted changes (Δt) derived from the CMIP5 downscaled predictions for Essex 
County, New York (USA) in Summer (June, July, August) and Fall (September, October, 
November) by 2050 and 2090 under RCP 8.5 (high emissions) and RCP 4.5 (low emissions) 
scenarios relative to the 1971-2000 temperature ‘normals’. 
 

Season 
Emissions 
Scenario 

Change in 
Temperature (°C) 

by 2050 

Change in 
Temperature (°C) 

by 2090 

Summer 
RCP 8.5 2.2 5.1 
RCP 4.5 1.8 2.8 

Fall 
RCP 8.5 2.4 5.2 
RCP 4.5 2.1 3.0 
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Table 3 - Daily means, plot mean and standard deviations of the soil CO2 flux (μmoles/m2/s) for each plot. Tukey’s multiple comparison 
groupings is listed for each plot, plots with different letters had significantly different means.  
 

Date H1  H2  H3  H4  H5  U1  U2  U3  U4  U5  

6/23/18 1.71 3.13 2.99 2.80 2.78 4.42 1.53 4.09 2.09 2.33 
7/7/18 1.61 3.97 3.74 3.96 3.27 5.44 1.68 5.30 2.74 2.77 
7/21/18 1.75 3.76 3.47 4.21 3.40 3.62 1.30 4.32 1.97 2.08 
8/4/18 2.47 5.87 5.57 6.67 5.23 6.83 2.53 7.93 4.27 4.00 
8/18/18 2.32 5.09 4.59 5.22 4.48 6.63 2.17 7.31 3.67 3.95 
9/1/18 2.00 4.57 3.91 5.03 4.26 5.56 2.06 7.04 2.85 3.68 
9/15/18 1.92 5.31 4.19 4.88 4.13 5.97 2.38 9.43 3.23 3.77 
9/29/18 1.14 3.23 2.45 2.80 2.57 3.95 1.46 6.00 1.83 2.31 
10/13/18 1.04 2.58 2.53 2.55 2.21 3.15 1.22 3.91 1.50 1.78 
10/27/18 0.63 1.08 1.02 0.99 0.95 1.71 0.60 1.54 0.82 0.89 
           
Mean 1.73 4.00 3.58 4.07 3.46 4.93 1.75 5.89 2.62 2.88 
Standard 
Deviation 

0.57 1.33 1.19 1.54 1.17 1.58 0.56 2.15 1.01 1.02 

Tukey’s 
Comparison 

f c cd c cd b f a e de 
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Table 4 - Mean monthly soil temperature (°C) and mean site soil temperature (°C) for the 
headwater wetland and upper hillslope. Site soil temperatures were averaged from all five -0.2 
m iButtons from the temperature arrays at each site.  
 

 Headwater Wetland Upper Hillslope 

Month 
Mean Soil 

Temperature 
Mean Soil 

Temperature 
June 12.26 12.54 
July 15.70 15.89 
August 16.59 16.70 
September 14.87 14.91 
October 9.79 9.49 
   
Mean June-Oct 14.03 14.08 
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Table 5 - Plot level mean volumetric water content (VWC; m3/m3), standard deviation (m3/m3) and coefficient of variance (%). Data 
missing from all plots in the headwater wetland from September 7th at 2000 to September 15th at 0800 and from September 28th at 
2000 till September 29th 0600 due to wildlife interference. Data missing for Plot U3 in the upper hillslope from September 15th at 1600 
to September 17th at 1400 due to wildlife interference. 
 

 Headwater Wetland Upper Hillslope 

Month H1  H2  H3  H4  H5  U1  U2  U3  U4  U5  

Mean 0.280 0.438 0.414 0.460 0.441 0.191 0.327 0.243 0.187 0.168 
Standard 
Deviation 0.025 0.054 0.073 0.018 0.030 0.033 0.046 0.057 0.048 0.034 

Coefficient 
of Variance 8.929% 12.329% 17.633% 3.913% 6.803% 17.277% 14.067% 23.457% 25.668% 20.238% 
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Table 6 - Plot level percent soil carbon content, percent soil nitrogen content, C:N ratio, and 
gravimetric water content (g/g). Soil samples taken from directly below the collars of the O and A 
horizons. HRAND and URAND are based on 10 randomly located core samples from the sites, 
bulked together as a single reference sample for the plot area. 
 

Plot %C %N C:N 
Gravimetric Water 

Content (g/g) 
H1 5.32 0.44 12.09 0.78 
H2 22.77 1.85 12.31 2.50 
H3 24.46 1.84 13.29 2.25 
H4 32.68 2.47 13.23 2.89 
H5 24.45 1.96 12.47 2.46 
HRAND 9.69 0.71 13.65 0.73 
U1 8.71 0.54 16.13 0.56 
U2 3.92 0.27 14.52 0.47 
U3 8.63 0.59 14.63 0.65 
U4 9.28 0.69 13.45 0.69 
U5 7.26 0.47 15.45 0.58 
URAND 7.51 0.54 13.91 0.57 
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Table 7 - Plot level Pearson’s Correlation Coefficient of soil CO2 flux with soil moisture, soil CO2 
flux with 72-hour antecedent soil moisture, and 72-hour antecedent soil moisture with soil 
temperature.  
 

Plot 
Soil CO2 Flux x Soil 

Moisture 

Soil CO2 Flux x 72-hour 
Antecedent Soil 

Moisture 

72-hour Antecedent Soil 
Moisture x Soil 
Temperature 

H1 -0.53 -0.72 -0.74 

H2 -0.30 -0.54 -0.51 

H3 -0.37 -0.54 -0.57 

H4 -0.23 -0.57 -0.55 

H5 -0.44 -0.62 -0.63 

U1 -0.39 -0.58 -0.64 

U2 -0.30 -0.56 -0.68 

U3 -0.60 -0.67 -0.71 

U4 -0.40 -0.59 -0.60 

U5 -0.35 -0.63 -0.71 
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Table 8 - Monthly mean temperature (°C), mean study period temperature (°C), total monthly precipitation (mm), and total study 
period precipitation (mm) from the NWS weather station in Newcomb, NY, the Mesonet weather station at HWF, Ackerman Clearing 
weather station, and study sites (temperature only). Data is compared to the mean temperature (°C) and mean total precipitation 
(mm) from the NWS thirty-year averages for Newcomb, NY. Headwater wetland and upper hillslope temperatures averaged from all 
five +1.0 m iButtons from the temperature arrays at each site. Standard deviation and coefficient of variation provided for the mean 
temperatures.  
  

NWS Thirty-Year Average  
(1981-2010) 

NWS Mesonet Ackerman Clearing Headwater 
Wetland 

Upper 
Hillslope 

Month 
Mean 

Temperature 
Total 

Precipitation 
Mean 

Temperature 
Total 

Precipitation 
Mean 

Temperature 
Total 

Precipitation 
Mean 

Temperature 
Total 

Precipitation 
Mean 

Temperature 
Mean 

Temperature 
June 15.83 98.55 14.50 68.83 15.10 67.14 15.29 74.93 15.60 15.73 
July 18.06 102.87 19.61 75.18 19.87 74.21 20.01 73.15 19.5 19.56 
August 17.11 99.57 19.39 48.51 19.20 56 19.17 52.07 18.64 18.61 
September 12.94 99.82 15.11 111.76 15.10 112.62 15.03 111.76 14.60 14.62 
October 6.50 107.44 5.00 109.98 6.27 111.9 5.74 131.83 5.74 5.79 
           
Mean/ Total 14.12 508.25 14.82 409.26 15.16 421.87 15.05 443.74 14.84 14.87 
Standard 
Deviation 4.39  6.62  7.52  7.42  7.09 6.97 
Coefficient of 
Variance 31.09%  44.67%  49.60%  49.30%  47.78% 46.87% 
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Table 9 - Model coefficients (slope and intercept), adjusted R2, activation energy with 95% CI (kJ/mol K) and Q10 with 95% CI for the 
plot level log-linear regression of soil CO2 flux and soil temperature. 
 

Plot Intercept Slope Adj R2 Activation Energy (kJ/mol k) 
(95% CI) 

Q10 (95% CI) 

H1 34.540 -9788.901 0.83 81.38 (71.19, 91.58) 3.25 (2.80, 3.77) 
H2 41.888 -11653.675 0.93 96.89 (89.32, 104.45) 4.07 (3.65, 4.54) 
H3 39.683 -11059.172 0.92 91.95 (84.62, 99.26) 3.79 (3.41, 4.21) 
H4 49.873 -13953.625 0.93 116.01 (107.28, 124.74) 5.37 (4.73, 6.09) 
H5 43.453 -12149.813 0.95 101.01 (94.34, 107.69) 4.32 (3.92, 4.76) 
U1 35.631 -9792.818 0.84 81.42 (71.52, 91.31) 3.25 (2.82, 3.75) 
U2 31.373 -8879.821 0.79 73.83 (63.17, 84.48) 2.91 (2.50, 3.40) 
U3 40.549 -11167.554 0.79 92.85 (79.59, 106.11) 3.84 (3.17, 4.65) 
U4 38.987 -10947.668 0.85 91.02 (80.25, 101.78) 3.74 (3.20, 4.37) 
U5 38.464 -10769.470 0.85 89.54 (79.11, 99.97) 3.66 (3.15, 4.26) 
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Table 10 - Random effect coefficients for the nonlinear mixed effects models. 
 

 Nonlinear Mixed Effects Models 
 

Q10 Q10 x Soil Moisture Q10 x 72-hour Antecedent 
Soil Moisture  

Rref Q10 Rref Q10 Rref Q10 
H1 0.913 3.816 0.926 3.852 0.941 4.095 
H2 2.157 3.852 2.154 3.874 2.109 4.095 
H3 1.880 3.859 1.880 3.884 1.857 4.095 
H4 2.113 4.189 2.123 4.161 2.147 4.095 
H5 1.832 3.958 1.833 3.965 1.814 4.095 
U1 2.701 3.726 2.786 3.780 2.948 4.095 
U2 0.893 3.726 0.896 3.778 0.883 4.095 
U3 3.203 3.605 3.256 3.685 3.305 4.095 
U4 1.386 3.961 1.439 3.979 1.569 4.095 
U5 1.528 3.861 1.588 3.888 1.715 4.095 
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Table 11 - Model comparison of fitted log-linear mixed effects model ((ln)Flux ~) using Akaike 
Information Criterion (AIC). Models fit with lmer function from lme4 package in R 3.6.1, random 
effect of ‘plot’ with random intercept and slope of temperature (1 + (1/Temp) | Plot) used in all 
models. 
 

Linear Mixed Effect Model AIC ΔAIC 
~ (1/Temp) + (1 + (1/Temp) | Plot) -360.51 0 
~ (1/Temp) + Site + (1 + (1/Temp) | Plot) -360.13 0.38 
~ (1/Temp) + Site + C + (1 + (1/Temp) | Plot) -359.34 1.17 
~ (1/Temp) + N + C + (1 + (1/Temp) | Plot) -359.06 1.45 
~ (1/Temp) + Site + N + (1 + (1/Temp) | Plot) -359.06 1.45 
~ (1/Temp) + N + (1 + (1/Temp) | Plot) -358.62 1.89 
~ (1/Temp) + C + (1 + (1/Temp) | Plot) -358.52 1.99 
~ (1/Temp) + Site + C + N + (1 + (1/Temp) | Plot) -357.83 2.68 
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Table 12 - Soil temperature random effect coefficients (intercept and slope) of the log-linear 
mixed effects model. 
 

Plot Intercept Slope 

H1 34.666 -9824.362 
H2 41.625 -11578.386 
H3 39.765 -11082.953 
H4 47.172 -13177.623 
H5 42.411 -11850.347 
U1 37.461 -10318.863 
U2 32.200 -9117.269 
U3 41.310 -11387.122 
U4 38.716 -10869.689 
U5 34.666 -9824.362 
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Table 13 - The mean predicted soil CO2 flux (μmoles/m2/s) from a Monte Carlo analysis (10,000 
iterations) with bootstrapping the model coefficients (intercept and slope) to account for the 
model uncertainty, for June 1st and October 31st.  
 

 Predicted mean Soil CO2 Flux (μmoles/m2/s) 
 NWS Thirty-Year 

Average 
RCP 4.5 Scenario  RCP 8.5 Scenario 

 
 2050 2090  2050  2090 

Mean 2.89 3.13 3.18 3.26 3.59 
Standard 
Deviation 

0.35 0.39 0.40 0.41 0.45 

Coefficient 
of Variation 

12.23% 12.38% 12.41% 12.46% 12.66% 
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Figure 1 - The location of Archer Creek Watershed, and Subcatchment S14 headwater wetland and upper hillslope, within Huntington 
Wildlife Forest, in the Adirondack State Park, New York, US.
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Figure 2 - Maps of site design with location of the plots (1-5), soil moisture probes, temperature arrays and soil collars. Modified from 
Gross (2012).
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Figure 3 - Boxplots of soil CO2 flux (μmoles/m2/s) per plot and site during the study period, showing the distribution of the fluxes 
(minimum, first quartile (Q1), median, third quartile (Q3), and maximum), arranged by descending soil carbon content. Letters 
represents Tukey’s Grouping, plots with different letters have significantly different means (n = 53 per plot). 
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Figure 4 - Boxplots of site soil CO2 flux (μmoles/m2/s) by date, showing the distribution of fluxes (minimum, first quartile (Q1), median, 
third quartile (Q3), and maximum) over time during the study period. All dates have n= 25 per sites (August 18th 21:00 readings 
excluded), except October 27th, where all plots missing 18:00 measurement (n= 24 per site).
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Figure 5 - Time series showing a) site mean soil temperatures (°C) and b) boxplots of the sites soil 
CO2 flux (μmoles/m2/s) at each time measurement during the diurnal study. Soil CO2 flux 
measurements were made every three hours starting on August 18th at 0600 and ending on 
August 19th at 0600.

a 
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Figure 6 - Observed temperature (°C) dependence of the soil CO2 flux (μmoles/m2/s) in Subcatchment 14. Line fit using Q10 function 
(Pseudo R2 = 0.54).
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Figure 7 - Times series of volumetric water content (m3/m3) for each plot in the headwater wetland during the study period. Data 
missing from all plots in the headwater wetland from September 7th at 2000 to September 15th at 0800 and from September 28th at 
2000 till September 29th 0600 due to wildlife interference.  
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Figure 8 - Times series of volumetric water content (m3/m3) for each plot in the upper hillslope during the study period. Data missing 
for Plot U3 in the upper hillslope from September 15th at 1600 to September 17th at 1400 due to wildlife interference. 
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Figure 9 - Boxplots of percentage of soil carbon content and nitrogen content by site (n = 6 per soil element per site). Soil samples 
taken from directly below the collars of the O and A horizons. HRAND and URAND are the 10 random samples from the sites, bulked 
together for a reference to compare the collar soil samples to.
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Figure 10 - Temperature dependence of soil CO2 flux based on the Q10 nonlinear mixed effects model. Measurements by plot and site 
shown, with random effect coefficients used for the best fit of plot level data (headwater wetland n = 52, upper hillslope n = 53). Black 
line represents the population model fit to the data (n = 525). 
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Figure 11 - Soil CO2 flux as a function of soil temperature (°C) and 72-hour antecedent soil moisture (m3/m3), based on the Q10 and 72-
hour antecedent soil moisture nonlinear mixed effects model (n = 525). Measurements shown by plot (headwater wetland n = 52, 
upper hillslope n = 53). 
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Figure 12 - Log-linear transformed temperature dependence of soil CO2 flux based on the linear mixed effects model. Measurements 
shown by plot and site, with random effect coefficients used for the best fit of plot level data (headwater wetland n = 52, upper 
hillslope n = 53). Black line represents the population model fit for the data (n = 525).
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Figure 13 - Linear relationship of the plot level log-linear model intercepts and the plot level percent soil carbon content (adjusted R2 = 
0.71; n = 10).
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Figure 14 - Predicted soil CO2 flux by 2050 and 2090 under two emissions scenarios. Histograms from the Monte Carlo analysis 
(10,000 iterations), with bootstrapping the model coefficients (intercept and slope) to account for model uncertainty, of the predicted 
mean soil CO2 flux (μmoles/m2/s) for June 1st and October 31st.
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Figure 15 - Residual plot for the Q10 and 72-hour antecedent soil moisture nonlinear mixed effects model. Lines represent 0, 1.165, 
and -1.165 (2 standard deviations based on RMSE; n = 525).
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Figure 16 - Residual plot for the log-linear mixed effects model. Lines represent 0, 0.314, and -0.314 (2 standard deviations based on 
RMSE) (n = 525).
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Figure 17 - Normal QQ Plot of the log-linear mixed effects model random effect of ‘plot’ residuals, plotted along the normal residuals 
line. 
 



 75 

Raich & Schlesinger (1992)

Davidson et al. (2006) (Fall)

Davidson et al. (2006) (Spring)

Fahey et al. (2005)

Giasson et al. (2013)

Davidson et al. (1998)

McHale et al. (1998)

Saunders (2019)

1 2 3 4 5
Q10

St
ud

y

Global (Median and Range) Harvard Howland Hubbard Brook Huntington

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18 - Comparison of mean Q10 values for studies mentioned in this paper conducted in the US Northeast. Studies colored by 
sites, error bars represent 95% confidence interval. 
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Figure 19 - Log-linear relationship between soil temperature (1/K) and the soil CO2 flux (μmoles/m2/s) based on carbon content in 
Subcatchment 14. High carbon content (n = 212) includes Plots H2, H3, H4, and H5, low carbon content (n = 318) includes plots H1, 
U1, U2, U3, U4, and U5.
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Figure 20 - Percent change in the mean soil CO2 flux during summer (June, July, August) and fall (September, October) by 2050 and 
2090 under RCP 8.5 (high emissions) and RCP 4.5 (low emissions) scenarios compared to the NWS thirty-year average predicted soil 
CO2 flux. Forecasted change (Δt) for summer and fall (Table 3) were added to the thirty-year average.
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 Appendix A 

The LI-8100A Survey System is a portable manual chamber that makes continuous flux 

measurements over a preset time period. Collars are inserted into the soil, where the chamber 

is placed on the collar, to minimize disturbance and to create an airtight seal to measure the 

diffusion of CO2 from the soil surface into the chamber. The chamber keeps equal pressure with 

the outside ambient air through a special vent designed to minimize wind impacts, and the 

chambers shape allows for mixing of air. The closed system circulates air from the chamber to 

the IRGA and back, calculating the flux from the increasing rate of CO2 inside the chamber. The 

chamber is kept sealed for a short time since the rate at which CO2 diffuses into the chamber 

will change over time as the CO2 gradient changes. A ‘dead band’ is preset at the beginning of 

the measurements to account for the mixing of the air. A line purge is done after the 

measurement as the chamber opens to clear the line of moisture and particles (Davidson et al., 

2002; Pacaldo et al., 2014; LI-COR, 2018). 
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