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Abstract 

J. Huang. Increased Lactic Acid Batch Fermentation Process by Lactobacillus pentosus 

Its Kinetic Model, 77 pages, 3 tables, 27 figures, 2019. APA style guide used. 

Currently, lactic acid (LA) is being widely utilized in food industry, chemical industry 

and poly (lactic acid) synthesis. However, the search for the most favorable 

fermentation conditions is still desired for the successful commercial development of 

cost competitive processes. In this work, the effects of temperature on LA batch 

fermentation from glucose by Lactobacillus pentosus (L. pentosus) were studied. In 

batch fermentation of pH 6.0, the optimal temperature is 35 ℃ (agitation speed at 150 

rpm, and air flow rate at 25 mL/min), and lower temperature leads to better cell growth 

while higher temperature results in more efficient glucose utilization and more 

productive LA generation. A kinetic model was developed to properly simulate batch 

LA production at 35 ℃ and pH 6.0 from glucose by L. pentosus. 

Key words: lactic acid, fermentation, temperature, kinetic modeling 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 

Traditionally, LA and its derivatives are applied in the food industry, chemical 

industry, cosmetics and pharmaceutical industry (Vijayakumar, Aravindan & 

Viruthagiri, 2008). However, LA has become a valuable chemical, as a monomer used 

in the production of polylactic acid (PLA). Its production is significantly increasing to 

supply the feedstock for PLA production (Alsaheb et al., 2015). 

In industry, LA is produced by bacterial fermentation or by chemical synthesis 

from acetaldehyde (Li & Cui, 2010). Approximately 90% of the total LA production is 

obtained from microbial fermentation. However, many parameters influence the 

efficiency of a fermentation process (Hofvendahl & Hahn-Hägerdal, 2000). Therefore, 

there is a search for the most favorable fermentation conditions, which vary depending 

on the microorganism, to use in promoting the development of economically 

competitive processes. In addition, the study of the kinetics for cell growth, product 

formation and substrate utilization would be helpful for fermentation process 

development, optimization and bioreactor design (Akpa, 2012). 

This dissertation presents the investigation of temperature effects and a kinetics 

study of LA production via the batch fermentation process. 

1.2 Objectives of study 

The objectives of this study are: 
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1. To study the kinetics of glucose utilization and LA production by L. pentosus in a 

batch fermentation process. 

2. To study the effects of temperature on the cell growth of L. pentosus, glucose 

utilization and LA production. 

3. To develop a kinetic model to simulate the cell growth of L. pentosus, glucose 

utilization and LA production. 

1.3 Dissertation Outline 

In Chapter 2, a literature review related to LA production and the L. pentosus 

metabolic pathway and parameters effecting fermentation is presented. 

In Chapter 3, the experimental methods employed in this study are explained. Seed 

culture preparation and fermentation procedures are described, and the techniques for 

determination of biomass, glucose and LA concentration are detailed. 

In Chapter 4, batch production of LA from glucose by L. pentosus is examined with 

focus on the effects of temperature on the cell growth of L. pentosus, glucose utilization 

and LA production. A kinetic study of batch production of LA from glucose by L. 

pentosus is also conducted, providing a mathematical model of L. pentosus cell growth 

rate, product formation rate and glucose utilization rate via batch fermentation process. 

In Chapter 5, the findings of this study are presented, along with the 

recommendations for future studies. 
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CHAPTER 2: LITERATURE REVIEW 

 This chapter presents a brief review of LA production. 

2.1 Introduction 

LA, or 2-hydroxypropanoic acid, is a hygroscopic non-toxic organic compound 

with the formula CH3CH(OH)COOH, also named milk acid. It is white and water-

soluble in its solid state and colorless in its liquid state. LA is chiral, consisting of two 

optical isomers with one known as L-(+)-LA or (S)-LA and the other, its mirror image, 

as D-(−)-LA or (R)-LA (Martinez et al., 2013). DL-LA or racemic LA, a mixture of the 

two in equal amounts, is miscible with water and with ethanol above its melting point 

which is around 17 or 18 °C. Due to the presence of a hydroxyl group and a carboxyl 

group, LA can be self-esterified, dimerized to form a ring, or polymerized to form a 

polymer. (Vu et al., 2013). 

 

Figure 2.1 Structure of D (−) and L (+) isomers of LA (redrawn based on Martinez et al., 2013). 

2.2 LA application 

As an industrially important product, LA and its derivatives have a wide range of 

applications in the food industry, chemical industry, cosmetics and pharmaceutical 
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industry. Furthermore, LA can polymerize to obtain polylactic acid which can be 

further used as a biodegradable polymeric material (Dusselier, Van Wouwe, Dewaele, 

Makshina, & Sels, 2013). 

2.2.1 Food applications 

LA is found primarily in sour milk products, such as koumiss, yogurt, kefir, and 

some cottage cheeses. It is approved for the use as a food ingredient by regulatory 

agencies in the EU, USA, Australia and New Zealand. LA can be used in a variety of 

processed foods like candy, beverages, bakery products, canned fruit and vegetables, 

jams and jellies, as an acidulant, color maintaining and pH buffering agent (Leroy & 

De Vuyst, 2004). In beermaking, a bacterial process, adding the proper amount of LA 

can adjust the pH value to promote saccharification, facilitate yeast fermentation, 

improve beer quality and extend the shelf life. Because of its preservative effect, it can 

also be used as a decontaminant during meat processing. In terms of seasoning, the 

addition of a certain amount of LA can stabilize and inhibit the growth of 

microorganisms in the product as well as improving the taste (De Vuyst & Leroy, 2007). 

2.2.2 Pharmaceutical and cosmetic applications 

LA can be directly formulated into medicines or daily health care products, 

working as a preservative, carrier, cosolvent, pH adjuster, etc. in medicine. LA vapor 

can effectively kill bacteria in the air in wards and operating rooms. As the most 

effective type of Alpha Hydroxy Acid (AHA) and with little irritation, LA is widely 

used in various skin care products to adjust acidity and for its disinfectant and 
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keratolytic properties (Datta & Henry, 2006). LA can also be used as a moisturizer in 

many toiletries, such as shampoos, soaps and body lotion, and as a pH regulator in soaps, 

reducing the loss of moisture during storage and thus preventing the soap from cracking 

(Narayanan, Roychoudhury, & Srivastava, 2004).  

2.2.3 Chemical applications 

In the textile and tanning industry, LA can be used to pretreat raw materials, which 

makes them softer, easier to dye and more lustrous. In the cigarette industry, LA can be 

applied to maintain tobacco moisture, neutralize nicotine and reducing other harmful 

substances to improve tobacco quality (Narayanan et al., 2004). Due to its unique 

complexation constant for nickel, LA is often used in the nickel plating process and as 

a buffer and stabilizer in the plating bath at the same time. In the microelectronics 

industry, its unique high purity and low metal content meets the high requirements for 

semiconductor quality (Datta & Henry, 2006). In addition, LA is used as a pH regulator 

and a synthetic agent in a variety of water-based coating systems. LA works better for 

washing and cleaning compared to other traditional organic detergents with the 

functions of a cleansing and anti-microbial agent, so it can be applied to many descaling 

products (Wee, Kim, & Ryu, 2006). 

2.2.4 Biomaterial 

As a leading example of bio-based plastics, PLA presents a potential to reduce the 

dependence on fossil fuels and the related environmental impacts (Thongchul, 2013). 

PLA can be drawn into a silk-spun line, a good surgical suture. After the cut is healed, 
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there is no need to remove the thread, as the body can degrade it into LA and it then to 

be absorbed by the human body without adverse consequences. This eliminates the need 

for suturing the second operation for the removal of the surgical suture in the body. The 

polymer compound can also be used as a binder in organ transplantation and bone 

grafting (Lunt, 1998). The special characteristics of PLA, such as GRAS (generally 

regarded as safe) status, biodegradability, comparable cost and effective antimicrobial 

activity, make it a promising material in antimicrobial food packaging (Jin & Zhang, 

2008). In addition, PLA is used in the production of agricultural film, taking the place 

of hydrocarbon based plastic film. After use, It can be decomposed by bacteria and then 

incorporated into the soil. (Agarwal, Koelling, & Chalmers, 1998). 

2.3 Fermentative production  

LA can be produced both naturally and synthetically. In industry, LA is produced 

by bacterial fermentation, where lactic acid bacteria (LAB) convert simple 

carbohydrates such as glucose, sucrose, or galactose to LA, or by chemical synthesis 

from acetaldehyde, which is available from coal or crude oil (Wee et al., 2006). 

Fermentative production can obtain an optically pure product by choosing a strain of 

LAB producing only one of the isomers, whereas synthetic production always results 

in a racemic mixture of LA. Moreover, renewable resources, such as starch and 

cellulose, can be fed as substrates in fermentative production (Wang, Tashiro, & 

Sonomoto, 2015), which does not give any net contribution to carbon dioxide emissions 

or use limited oil- and fossil-fuel-based sources. 
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2.3.1 Batch reactor  

 
Figure 2.2 Schematic diagram of a batch reactor. 

A batch reactor is the simplest type of reaction vessels, typically consisted of a tank 

with an agitator and integral heating/cooling system (Bieler, 2004). Prior to setting the 

reaction conditions, all reactants and solvents are added to the batch reactor and no 

reactant is put in nor product is taken out until the reaction is complete. Both heat 

generation and concentrations in the batch reactor vary during the reaction process 

(Foutch & Johannes, 2017). Batch reactors are often used in pharmaceutical production, 

industrial processes like waste water treatment, or laboratories, such as small-scale 

production, inducing fermentation processes and experiments of reaction kinetics, 

volatiles and thermodynamics (Krishna, 2013). Batch reactors are not always referred 

to as reactors but a name reflecting the role they perform, crystallizer, bioreactor or 

fermenter (Towler & Sinnott, 2012). Batch reactors have the advantage of obtaining 

high conversions by leaving the reactants in for long periods of time. However, they 

are also generally considered expensive to run, difficult to scale up, as well as having 

potential variability of products from batch to batch (Fogler, 2010).  
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2.3.2 Nutrient required for L. pentosus growth 

L. pentosus, the microorganism applied in this study, is one of the LAB strains, 

which are rod shaped bacteria. It has LA as the major end product from energy-

conserving fermentation of sugars. L. pentosus is one of the few LAB organism which 

has been demonstrated to metabolize hexoses to produce almost exclusively LA or 

metabolize pentoses to produce LA with acetic as the main byproduct. (Garde, Jonsson, 

Schmidt, & Ahring, 2002). LAB is a general term for bacteria that are capable of 

producing LA from fermentable carbohydrates, consisted of the Gram-positive genera: 

Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, 

Oenococcus, Pediococcus, Streptococcus, Tetragenococcus, Vagococcus, and 

Weissella. Most LAB are considered GRAS with high acid tolerance at pH 5 and lower 

and the optimal temperature for growth, which varies between the genera, from 20 to 

45°C (Axelsson & Ahrné, 2000).  

Like many heterotrophic microorganisms, L. pentosus has limited ability to 

decompose carbohydrates and synthesize organic compounds, due to its relatively 

simple enzyme system. Therefore, L. pentosus requires supplement nutrients like amino 

acids, vitamins and minerals as well as fermentable carbohydrates and nitrogen sources 

for optimal growth (Todorov & Dicks, 2004). The carbon source used is usually from 

monosaccharides like glucose or oligosaccharides, providing energy in cells and 

metabolites. Hydrolysis products of protein, such as the peptide, amino acids and 

peptone, can be fed as sources of nitrogen. Some of the needed minerals can be obtained 

from nutrients, and the others are provided as inorganic salts, with manganese being 
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the most influential. 

Table 2.1 Nutrients of the fermentation broth in this study. 

Component  Element  Physiological Function 

Glucose Carbon Constituent of organic cellular material, the energy source 

Yeast Extract Nitrogen Constituent of proteins, nucleic acids and coenzymes 

K2HPO4 & 

K2HPO4 

Phosphorus Constituent of nucleic acids, phospholipids, nucleotides and 

certain coenzymes 

Potassium Principal inorganic cation in cells and cofactor for some 

enzymes 

2.3.3 Metabolic pathway in fermentation by L. pentosus  

LAB ferment sugars via different pathways resulting in homo-, hetero-, or mixed 

acid fermentation (Fig 2.3). In homofermentation, the Embden–Meyerhof–Parnas 

(EMP) pathway is used, producing only LA as the end product of glucose metabolism 

(Bustos, Moldes, Cruz, & Domínguez, 2005). According to the overall stoichiometry 

below:  

Glucose + 2 ADP + 2 Pi → 2 Lactic Acid + 2 ATP, 

homofermentation should theoretically yield 2 moles of LA per mole of consumed 

glucose with a theoretical yield (YP/S) of 1 g/g (g of product per g of substrate). But the 

experimental yields are usually lower (0.74 - 0.99 g/g), because a portion of the carbon 

source is used for cell growth. In heterofermentation, the phosphoketolase (PK) 

pathway is applied, forming equimolar amounts of LA, carbon dioxide and ethanol, 

following the overall reaction: 

Glucose + 2 ADP + 2 Pi → Lactic acid + CO2 + Ethanol + 2 ATP. 
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Figure 2.3 Illustration of EMP pathway and PK pathway in the left and right sides, respectively 

(redrawn based on Martinez et al., 2013).  

2.3.4 Parameters affecting fermentation 

The main factors affecting the efficiency of a fermentation process can be 
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summarized as microorganism, carbon source, nitrogen source, fermentation mode, pH 

and temperature, immobilization and recirculation of cells (Hofvendahl & Hahn–

Hägerdal, 2000).  

 

Figure 2.4 Parameters effecting LA production from fermentation processes. 

To achieve good production, it is economically desirable to find the most favorable 

fermentation conditions. The effectiveness of a process can be measured as the 

concentration of LA produced, as the yield of LA based on substrate and as the 

productivity or LA production rate (Abdel-Rahman et al., 2013). As a result, much 

research work has focused on screening process parameters for biotechnological LA 

production. Generally, purer product is obtained with purer sugar fermented and higher 

nutrient concentration leads to better LA production (Komesu et al., 2017). In most of 

the studies, the batch fermentation mode gave a higher LA concentration and yield with 

all substrate utilized, whereas the continuous mode resulted in a higher productivity. 

Some of the studies showed that free cells gave better results, while the others suggested 

that recirculation of cells resulted in a higher LA concentration and higher or equal 

yield. In addition, titration to a constant pH produces a higher LA concentration, yield 
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and productivity, compared to leaving pH to decrease during LA fermentation 

(Hofvendahl & Hahn–Hägerdal, 2000). 

However, there is no general trend of temperature impact applicable for most LAB 

yet. The effect of temperature on the production of LA from glucose has only been 

studied in a few reports, as shown in the references cited below.  

Figure 2.5 Influence of temperature on LA production from glucose (Yumoto & Ikeda, 1995; Hujanen& 

Linko, 1996; Hofvendahl, 1998; Åkerberg, Hofvendahl, Zacchi, & Hahn-Hägerdal, 1998). 

LA: lactic acid concentration, g/L; YP/S: product yield, g/g; QV: volumetric lactic acid productivity, 

g/(L•h). 

As shown in Fig 2.1, for Lb. amylophilus, the optimal temperatures were between 

37 and 44°C for the maximum productivity and yield (Yumoto & Ikeda, 1995). For Lb. 
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rhamnosus and Lc. lactis exhibited the highest yield and productivity at 33 to 35°C and 

41 to 45°C, respectively (Hujanen& Linko, 1996; Hofvendahl, 1998; Åkerberg, 

Hofvendahl, Zacchi, & Hahn-Hägerdal, 1998). We could see that in some cases the 

same temperature gave the best results in all categories, while the temperature resulting 

in the highest productivity was lower than the temperature giving highest LA 

concentration and yield in others. And the optimal temperature varied from different 

strains. Thus, detailed studies on the effects of temperature on cell growth, LA 

production and residual sugar during fermentation of LA from glucose by L. pentosus 

are still needed and will be performed in this study. 

2.4 Kinetic modeling and LA fermentation 

Mathematical models hold the key for engineering systems. Often a theory leads 

to mathematical formulations, and the validity of the theory is tested by comparing 

predicted responses to the ones in experiments (Motta & Pappalardo, 2012). In practice, 

the sustainable (or steady) state can be fluctuating with a noticeable degree, different 

from what is known or when no human interruption is imposed. A well-developed 

mathematical model gives bioprocess engineers an idea of what to expect by accurately 

predicting the dynamic outcomes and enhancing the ability to meet sustainability 

requirements (Liu, 2016).  

To describe a microbial process, two kinds of models can be developed, structured 

and unstructured models. Compared to structured models, unstructured models are 

much easier to use, and have been proven to accurately describe LA fermentation in a 
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wide range of experimental conditions and media (Bouguettoucha, Balannec, & 

Amrane, 2011). In unstructured models, only total cellular concentration is considered, 

and hence they do not involve any physiological characterization of the cells (Rogers, 

Bramall, & McDonald, 1978).  

A kinetic model can be used to predict the influence of fermentation operating 

parameters on cell growth, substrate utilization and LA production, providing a general 

understanding of the metabolic processes involved in LA production as well as the basis 

for better optimization strategies (Motta & Pappalardo, 2012). Such models can further 

be applied to cautiously predict the growth of organisms under conditions for which 

experiments have not yet been performed. That is they can provide useful and testable 

hypotheses and a mathematical framework to aid in interpreting results. 

2.5 Using 1HNMR to quantify compounds in fermentation broth 

Traditionally, compounds in fermentation broth have been quantified 

chromatographically using high performance liquid chromatography (HPLC), gas 

chromatography (GC) or a related technique, and chemical structures have been 

identified with nuclear magnetic resonance (NMR) spectroscopy (Yang et al., 2016). 

However, recent studies have proven that a NMR technique can also be used to 

accurately quantify compounds like carbohydrates, organic acids and amino acids in 

both one dimension (proton NMR) and two dimensional (proton – carbon NMR). NMR 

can selectively detect most of the fermentation compounds in one prepared sample, 

unlike the chromatography methods (Holzgrabe, 2010). NMR quantification of 
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fermentation metabolites and substrates is made either by integration of NMR chemical 

shifts with the use of calibration references or by partial least-squares regression (Nord 

et al., 2004). When signals interfere with each other and result in partially overlapped 

or overlapped 1H NMR spectrum, two dimensional 1H-13C Heteronuclear Single 

Quantum Correlation (HSQC) NMR technique can be used to avoid overlapping signals 

and accurately quantify individual monosaccharides (Rai & Chandel, 2015).  

 

Figure 2.6 1D NMR for quantification of glucose and lactic acid by using glucosamine as the internal 

standard. 

Fig 2.5 Shows the 1H NMR spectrum of fermentation broth from batch 

fermentation. It can be observed that there is little interference among signals of the 

glucosamine internal standard, glucose and LA, the substrate and product of 

fermentation in this study. Therefore, 1H NMR analysis can be performed well with 

careful manual integration for quantification of compounds in fermentation broth. The 

C1- α and C1- β anomeric protons are integrated and summed for glucose and a 
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reference standard of known mass concentration is used to determine the concentration 

of the glucose and LA. 

2.6 Using optical density (OD) to quantify cell biomass in fermentation broth 

Quantification of cell biomass in the fermentation broth is essential to determine 

the kinetics of microbial growth. In many cases, direct measurement is not feasible due 

to the presence of suspended solids or other interfering compounds in the medium 

(Zhang et al., 2009). 

OD indicates the optical density or light absorbed by the object to be detected. 

When light passes through the microbial suspension, it will be partly scattered and 

partly absorbed by the cells and the amount of light transmitted will be reduced (Myers, 

Curtis & Curtis, 2013). Within a certain range, the transmittance decreases and the OD 

increases when the microbial cell concentration increases. However, the OD or 

transmittance is also affected by other factors, such as cell size, morphology, 

composition of the seed culture, and wavelength of light used (Griffiths et al., 2011). 

Therefore, the concentrations of bacterial suspensions can be measured only within a 

series of known OD of the same strain under the same conditions. The wavelength of 

light wave used is usually between 400 and 700 nm, depending on the microorganism 

concentration used, and the maximum absorption wavelength and stability of the cells 

(Stevenson et al., 2016). From the standard curve of OD value against cell concentration, 

the corresponding bacterial concentration can be determined by plotting the measured 

OD of the sample solution. The OD method has the advantages of being simple, rapid, 
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non-intrusive, and good for continuously measurement, which is beneficial for 

automatic control.  

2.7 Previous kinetic study of LA production by L. pentosus 

In Buyondo’s research, Lactobacillus pentosus ATCC 8041, the same LAB strain 

used in this study, had been successfully adapted and used in concentrated wood extract 

hydrolysate in order to obtain a high LA yield via batch and continuous fermentation 

processes. In the batch fermentation at 37 ℃ and pH 6.0, lower total sugar 

concentration led to the highest product yield of 0.83 g/g. It was observed that acetic 

acid was the main by product and its production started after depletion of hexose. In the 

continuous fermentation process, a higher LA productivity of 2.36 g/(L∙h) was obtained, 

compared to the productivity of 1.53 g/(L∙h) obtained in batch process. Taking end 

product inhibition into account, an unstructured kinetic model was developed to 

describe biomass growth, product formation and substrate utilization in batch LA 

production from sugar maple wood hemicelluloses (Buyondo & Liu, 2011).  

2.8 Summary 

Lactic acid is mainly obtained from fermentative production. However, there are 

limited studies on the temperature effects during the fermentation process, especially 

the optimal temperature for one particular LAB strain. Therefore, the aims of this study 

were to study the temperature effects on the cell growth of L. pentosus, glucose 

utilization and LA production during batch fermentation process, and to develop a 

kinetic model to simulate the process. 
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CHAPTER 3: MATERIALS AND METHODS 

The experimental flow chart is shown in Fig 3.1. The activated microorganism was 

processed into batch fermentation with variable temperatures. Collected samples were 

subjected to NMR spectroscopy and the OD standard curve to figure out the optimal 

temperature for cell growth, LA production and glucose utilization. A verification 

experiment of pH effects was then conducted to validate the optimal temperature. At 

last, an unstructured kinetic model was developed to simulate the batch fermentation 

process. 

 

Figure 3.1 Experimental flow chart of continuous fermentation. 

3.1 Seed culture preparation 

The bacterial strain L. pentosus ATCC 8041 used was obtained from the American 

Type Culture Collection (ATCC). The strain was maintained on MRS agar medium 

slant and stored at 4 °C. The strain was transferred every 3 - 4 weeks to a fresh medium. 

The MRS medium was made as: 10.0 g/L proteose peptone 3, 10.0 g/L beef extract, 5.0 

g/L yeast extract, 20.0 g/L dextrose, 1.0 mL/L Tween 80, 2.0 g/L ammonium citrate, 

0.1 g/L MgSO4, 0.05 g/L MnSO4, 2.0 g/L K2HPO4 and 5.0 g/L CH3COONa and 

supplemented with 20 g/L agar to make slant. All medium components were purchased 
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from Fisher Scientific, Pittsburgh, PA, USA. The seed culture was prepared by picking 

1 - 2 big colonies from the slant and inoculating them into 100 mL MRS medium 

contained in 250 mL screw capped plastic flasks (NALGENE, Rochester, NY, USA). 

The seed culture was incubated at 37 °C for 20 - 24 h on a rotary shaker 

(GYROMAXTM 747R, Amerex Instruments, Lafayette, CA, USA), operating at 150 

rounds per minute (rpm). 

3.2 Batch fermentation process 

Batch fermentation experiments were conducted in a 1.0 L New Brunswick 

Bioreactor (BIOFLO 110; New Brunswick Scientific Co., Edison, NJ, USA) with 800 

mL working volume. The fermentation medium contained 65 g/L glucose, 10 g/L yeast 

extract, 2 g/L K2HPO4, 2 g/L KH2PO4 and 0.5% (v/v) Tween 80. All medium 

components were purchased from Fisher Scientific, Pittsburgh, PA, USA. The 

bioreactor was inoculated with 5 mL of centrifugation concentrated actively growing 

20 to 24 hour-old seed culture. The pH of medium was adjusted to and maintained at 

6.0 by the addition of 5 mol/L NaOH prior to inoculation and during fermentation. 

Agitation speed was set at 150 rounds per minute (rpm) and air flow rate at 25 mL/min. 

Temperatures studied were carried out at 20 ℃, 25 ℃, 28 ℃, 30 ℃, 35 ℃, 37 ℃, 

40 ℃, 42 ℃ and 45 ℃. Batch fermentations with pH at 5.0, 6.0, 7.0 and 8.0 were then 

conducted at the obtained optimal temperature to verify the temperature effects 

(agitation speed at 150 rpm and air flow rate at 25 mL/min). Samples (2 mL) were taken 

at given fermentation time intervals and centrifuged at 4000 rpm for 5 min. The 
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supernatants were stored at -10 ℃ for LA and glucose analyses. Experimental data were 

obtained in triplicates. 

 

Figure 3.2 Schematic diagram of batch fermentation system in this study. 

 

Figure 3.3 The bioreactor used for LA fermentation located at lab 204 of department of Paper and 

Bioprocess Engineering, SUNY-ESF. 
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3.3 Determination of substrate and product concentrations 

Samples were prepared by mixing 0.1 mL sample, 0.1 mL internal standard (95.6 % 

wt deuterium oxide, 4.2% wt glucosamine, 0.2 % wt trimethylamine and 0.1% wt 

trimethylsilyl propionate) and 0.8 mL deuterium oxide (Acros organics) in a 5-mm-o.d. 

NMR tube (Corning, NY, USA). Standard solutions of LA and glucose with known 

ranges of concentrations were subjected to 1HNMR spectroscopy and respective 

calibration curves of normalized peak area against concentration were generated 

(Appendix A, a & b).  

 

Figure 3.4 The NMR tubes used for determination of substrate and product concentrations stored at lab 

204 of department of Paper and Bioprocess Engineering, SUNY-ESF. 
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The α-glucosamine signal peak area was used as the reference for quantification of 

analytes whereas trimethylsilyl propionate (TSP) was set as the reference point at 0 

ppm chemical shift. LA, α-glucose and β-glucose methyl group signals located at 1.31 

– 1.36 ppm, 5.26 – 5.22 ppm and 4.68 – 4.82 ppm, respectively were used for 

quantification of analytes. The peaks were integrated using MestReNova software and 

normalized to C1-α anomeric peak for glucosamine. Concentrations of individual 

analytes were determined by comparing the obtained peak area to the respective 

calibration curve. 

3.4 Determination of cell biomass concentration 

The cell biomass concentration was determined by measuring the optical density 

(OD) using an OD scanner (BugLab, CA, USA). As the standard curve provided by the 

scanner was for E. coli, a standard curve of L. pentosus was needed and it was 

developed by obtaining the dry weight of samples with known E. coli OD values. A 

pre-weighed beaker containing 50 mL of sample was air-dried in the oven at 80 ℃ to 

constant weight. The cell mass of the respective samples was defined as the difference 

in the measured weights of the beaker before and after drying. Concentration of biomass 

analytes was determined by comparing the obtained OD reading to the calibration curve 

(Appendix A, c). 
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Figure 3.5 The OD scanner used for determination of cell biomass concentration located at lab 204 of 

department of Paper and Bioprocess Engineering, SUNY-ESF.  

3.5 Kinetic modeling 

Several assumptions and possible models were evaluated based on the 

experimental data and observations. Estimation was then conducted to verify those 

showing the potential. To estimate kinetic parameters, it was required to search for 

values at which predicted data of the glucose concentration, biomass concentration, and 

LA concentration were close to the experimental data, within acceptable tolerance, 

during the whole fermentation process. Kinetic parameters were determined by 

simultaneously solving the equations for the dependent variables, glucose concentration, 

biomass concentration, and LA concentration, using ODEXLIMS function developed 

in Excel (Liu, 2013). The best fitting parameters were determined by using Excel solver 

to minimize the variance between the predicted and the experimental data. 
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CHAPTER 4 RESULTS AND DISCUSSION 

This chapter discusses the results and findings gathered in this study, including the 

kinetics study of glucose utilization and LA production by L. pentosus in the batch 

fermentation process with a focus on the effects of temperature and pH on the cell 

growth of L. pentosus, utilization of glucose and production of LA. An unstructured 

mathematical kinetic modeling of L. pentosus cell growth rate, product formation rate 

and glucose utilization rate was developed. 

4.1 Temperature effects on LA batch fermentation by L. pentosus from glucose  

The batch reactor is an idealized reactor, without inlets or outlets. The reaction 

mixture is assumed to be well-mixed at all times in the batch reactor (Fogler & Brown, 

1992). Therefore, the temperature and concentration are uniform inside the reactor at 

any given time, which makes its analysis far simpler. 

Concentrated L. pentosus seed culture (5 mL) was inoculated into the prepared 

fermentation medium and set to run for 60 hours. To investigate the possible effects of 

temperature, batch fermentations were carried out at variable temperatures (20 ℃, 

25 ℃, 28 ℃, 30 ℃, 35 ℃, 37 ℃, 40 ℃, 42 ℃ and 45 ℃) while all the other process 

parameters remained the same (pH 6.0, agitation speed at 150 rpm and air flow rate at 

25 mL/min). Figs 4.1 to 4.3 are the profiles of glucose utilization, LA production and 

cell growth during batch fermentation at different temperatures (pH 6.0, agitation speed 

at 150 rpm and air flow rate at 25 mL/min), respectively. Concentrations of glucose, 

LA and biomass were shown with fermentation time. Triplicate of independent runs 
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were performed for each set of parameters. Fig 4.1 shows both the trend and the error 

bar of glucose, cell biomass and LA concentration as function of time. 

 

Figure 4.1 Profiles of glucose utilization, biomass growth and LA production during batch fermentation 

at 35 ℃ (pH 6.0, agitation speed at 150 rpm, and air flow rate 25 mL/min). Standard error was obtained 

from the triplicate independent experiments and included as above. 

4.1.1 Glucose utilization 

As shown in Fig 4.2, glucose concentration decreased with time and glucose was 

consumed rapidly within the first 35 hours, gradually approaching steady state. Shown 

in Fig 4.3, in the batches at 28 ℃, 30 ℃, 35 ℃, 37 ℃ and 40 ℃, the maximum glucose 

consumption was at a similar rate within the first 35 hours and glucose was almost 

completely consumed after 60 hours with less than 1.70 % of residual glucose 

(Appendix D). In the batches at 20 ℃, 25 ℃, 42 ℃ and 45 ℃, glucose utilization was 

at a slower rate and a considerable amount, up to 44.00 % of glucose remained 

unconsumed after 60 hours. Among all the batches, glucose was utilized most 
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thoroughly at 35 ℃, with the highest maximum glucose consumption rate of 4.24 h-1 

and the lowest residual glucose concentration of 0.17%. 

 

Figure 4.2 Sugar utilization profiles during batch fermentation at different temperatures (pH 6.0, agitation 

speed at 150 rpm, and air flow rate 25 mL/min). 

 

Figure 4.3 Influence of temperature on the glucose utilization during batch fermentation (pH 6.0, 
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agitation speed at 150 rpm, and air flow rate at 25 mL/min). 

T: temperature, degrees Celsius; G: residual glucose concentration, percentage of initial glucose 

concentration; μ_(SE,max): maximum glucose consumption rate obtained from experiment, per hour. 

Therefore, it can be inferred that the glucose utilization rate increases when the 

temperature increases from 20 ℃ to 35 ℃ but decreases when the temperature increases 

from 35 ℃ to 45 ℃. On the other hand, the residual glucose decreases with the 

temperature from 20 ℃ to 35 ℃ but increases with the temperature from 35 ℃ to 45 ℃. 

The optimal temperature for glucose utilization is likely to be 35 ℃, based on glucose 

consumption rate and lowest residual glucose after 60 hours. 

4.1.2 Biomass growth 

A typical batch growth curve includes the following phases: (1) lag phase, (2) 

logarithmic or exponential growth phase, (3) deceleration phase, (4) stationary phase 

and (5) death phase (Zwietering et al., 1990). Shown in Fig 4.4, the biomass 

concentration experienced a slight decrease within the first 5 hours, which was the lag 

phase of cell growth, and then increased rapidly, which was the exponential growth 

phase. In contrast to standard growth curves, the deceleration phase of L. pentosus 

growth under the batch fermentation conditions in this study (20-40 ℃, pH 6.0) was 

not apparent expect the batches at 42 ℃ and 45 ℃. Because under those temperatures, 

the low enzyme activity made the period of cell growth longer. After reaching the 

stationary phase, it appeared to fluctuate within a certain range during the rest of the 

fermentation.  
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Figure 4.4 Biomass growth profiles during batch fermentation at different temperatures (pH 6.0, agitation 

speed at 150 rpm, and air flow rate at 25 mL/min).  

The lag phase occurs immediately after inoculation, as a period of L. pentosus 

adaptation to the new environment. The concentration of nutrients, growth factors and 

the age of the inoculum culture have strong effects on the length of the lag phase. 

Multiple lag phases may be observed when more than one carbon source can be 

accessed from the medium (Rolfe et al., 2012). In this study, the same formula was used 

to prepare the fermentation broth and the same length of culture time was applied to 

activate the cells. The fermentation broth contains a single carbon source which is 

glucose. The microorganism was processed into different mediums during the seed 

culture preparation and fermentation. Thus, there was only one lag phase as shown on 

the cell growth curve right after inoculum. The length of the lag phase of cell growth 

reflects on how well adapted the growth factors are for the organism. Shown in Fig 4.5, 
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in the batches at 20 ℃, 25 ℃, 28 ℃, 30 ℃ and 35 ℃, it took a shorter period of time 

for biomass concentration to start growing, and the opposite tendency could be found 

in the batches at 37 ℃, 40 ℃, 42 ℃ and 45 ℃ with a longer lag phase, which suggests 

that the lag phase tended to be shorter as temperature increased from 20 ℃ to 35 ℃ 

and then, became longer as temperature increased from 35 ℃ to 45 ℃.  

 

Figure 4.5 Influence of temperature on the biomass growth during batch fermentation (pH 6.0, agitation 

speed at 150 rpm, and air flow rate at 25 mL/min). 

T: temperature, degrees Celsius; B: biomass concentration, gram per liter; μ_(GE,max) maximum 

biomass growth rate obtained from experiment, per hour; t_L, time period of lag phase, hour; t_S, time 

required to reach stationary phase, hour. 

The maximum growth phase, also known as the exponential growth phase or 

logarithmic growth phase, follows the lag phase. In this phase, cells can multiply 

rapidly at a maximum rate, and cell mass and cell number density increase 

exponentially with time (Maier & Pepper, 2015). In the batches at 28 ℃, 30 ℃, 35 ℃, 

37 ℃, 40 ℃ and 42 ℃, the maximum growth phase happened within the first 15 hours 
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and it extended to 25 hours at 20 ℃, 25 ℃ and 45 ℃. The highest maximum growth 

rate of biomass was obtained as 0.49 g/(L∙h) at 35 ℃, followed by 30 ℃, 37 ℃, 40 ℃, 

28 ℃, 42 ℃, 25 ℃, 20 ℃ and 45 ℃ (Appendix E), suggesting that the cell growth rate 

rose when the temperature increased from 20 ℃ to 35 ℃ but dropped when the 

temperature increased from 35 ℃ to 45 ℃.  

During the stationary phase, the net growth rate is zero (growth rate is equal to the 

death rate) and the total cell mass concentration may stay constant, but the number of 

viable cells may decrease and the cell lysis may occur. Cells may grow on lysis products 

of lysed cells, when a second growth phase may occur (Newton, 2018). In all the 

batches, the cell biomass concentration stopped growing much earlier than the glucose 

was all consumed. It was because the fermentation broth contained abundant amount 

of carbon source, which was glucose, as the substrate for LA production, but a limited 

amount of nitrogen source, to lower the cell growth and improve the product yield. 

At the end of the stationary phase, the death phase begins due to nutrient depletion. 

However, a clear demarcation between them is not always possible as some cell death 

starts during or even before the stationary phase (Mason & Egli, 1993). In the batches 

at 30 ℃ and 35 ℃, glucose was almost gone after 40 hours so that the cell mass 

concentration began to decrease markedly. In the rest of the batch fermentation, since 

there was a quite large amount of residual glucose, the cell growth was still at the 

stationary phase. After 60 hours of the fermentation, the batch fermentation at 20 ℃ 

had the highest biomass concentration of 3.94 g/L, followed by 35 ℃, 28 ℃, 30 ℃, 

35 ℃, 37 ℃, 40 ℃, 42 ℃ and 45 ℃, which indicated that the biomass concentration 
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at stationary phase decreased when the fermentation temperature increased. 

4.1.3 LA production 

In Fig 4.6, the LA production followed the same trend as the glucose utilization, 

increasing rapidly during the first 35 hours and gradually reaching the steady state 

afterwards. Although L. pentosus is capable of metabolizing both 5-carbon and 6-

carbon sugars, producing acetic acid from 5-carbon sugars as the main by-product 

(Buyondo & Liu, 2011), the fermentation medium in this study only contained glucose, 

a 6-carbon sugar. Theoretically, no significant acetic acid production was expected to 

be detected. In fact, there was no significant production of either acetic acid or ethanol 

in all batches. Therefore, it can be inferred that LA production by L. pentosus from 

glucose follows the EMP pathway only.  

 

Figure 4.6 LA production profiles during batch fermentation at different temperatures (pH 6.0, agitation 

speed at 150 rpm, and air flow rate at 25 mL/min). 
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Shown in Fig 4.7, in the batches at 20 ℃, 25 ℃, 28 ℃, 30 ℃ and 35 ℃, the 

maximum LA formation rate rose from 1.13 h-1 to 3.15 h-1, whereas in the batches at 

37 ℃, 42 ℃ and 45 ℃, the maximum LA formation rate dropped to 1.35 h-1 (Appendix 

F). However, in the batch at 40 ℃, LA was produced at a higher speed than 37 ℃. It 

was because they shared the similar glucose utilization rate but less biomass was 

obtained in the batch at 40 ℃, showing that a lower proportion of carbon source was 

used for biomass growth at 40 ℃ thus a higher proportion for LA production. In all the 

batches, the fermentation time required to reach steady state was decreasing with 

temperature increasing. The batch fermentation at 35 ℃ had the highest maximum LA 

formation rate of 3.15 h-1 and the highest LA concentration of 48.75 g/L after 60 hours 

of the fermentation, followed by 30 ℃, 28 ℃, 40 ℃, 37 ℃, 25 ℃, 42 ℃, 45 ℃ and 

20℃. 

 

Figure 4.7 Influence of temperature on the LA production during batch fermentation (pH 6.0, agitation 

speed at 150 rpm, and air flow rate at 25 mL/min). 

T: temperature, degrees Celsius; LA: lactic acid concentration, gram per liter; μ_(PE,max): maximum 
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LA formation rate obtained from experiment, per hour; t_s, time required to reach steady state, hour. 

Therefore, it can be inferred that the LA production rate and the obtained LA 

concentration increase when the temperature increases from 20 ℃ to 35 ℃ but 

decreases when temperature increases from 35 ℃ to 45 ℃. The optimal temperature of 

LA production was shown to be 35 ℃. It was also observed that the fermentation time 

required to reach steady state decreases as the temperature increases from 20 ℃ to 45 ℃. 

4.1.4 Temperature effects and the optimal temperature (pH 6.0) 

Based on the above results, lower temperatures lead to better cell growth while 

higher temperatures result in more efficient glucose utilization and more productive LA 

generation (Fig 4.8). As the temperature increases from 20 ℃ to 35 ℃, glucose is 

utilized faster and more fully, contributing to a shorter lag phase in cell growth and 

producing more LA with a higher productivity and a higher product yield. However, 

when the temperature increases from 35 ℃ to 45 ℃, the glucose utilization slows down 

and more glucose remains unconsumed after 60 hours, extending the cell growth lag 

phase and generating less LA with a lower productivity and product yield. In addition, 

the obtained biomass concentration and the fermentation time required to reach steady 

state decrease with the temperature from 20 ℃ to 45 ℃. 
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Figure 4.8 Influence of temperature on the biomass growth, LA production and glucose utilization during 

batch fermentation (pH 6.0, agitation speed at 150 rpm, and air flow rate at 25 mL/min). 

From the data, it is apparent that 35 ℃ was the turning point of glucose utilization, 

biomass growth and LA production of the batch fermentation at pH value of 6.0. 

Although the batch fermentation at 30 ℃ and 37 ℃ both shared the approximate trends 

and outcomes of the glucose utilization, biomass growth and LA production with 35 ℃ 

and even more biomass was cultured at 30 ℃, the batch fermentation at 35 ℃ generated 

most LA at the fastest metabolic rate. This is a consequence of lower glucose utilization 

for biomass growth leaving more for LA production. After 60 hours of fermentation at 

35 ℃, glucose was completely utilized, producing the highest LA concentration of 

48.75 g/L, with the highest product yield of 0.7308 gram LA per gram consumed 

glucose and the highest productivity of 1.02 gram LA per gram consumed glucose per 

liter per hour (Appendix I). It can be concluded that 35 ℃ is the optimal temperature 
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during batch fermentation by Lb. pentosus from glucose (pH 6.0, agitation speed at 150 

rpm, and air flow rate at 25 mL/min). 

4.1.5 Verification experiment of pH effects on glucose utilization, biomass growth 

and LA production  

To verify the validity of the conclusions above, the optimum pH value at a 

controlled temperature (35℃) for batch fermentation was determined by verification 

testing. Variable pH values (pH 5.0, pH 6.0, pH 7.0 and pH 8.0) were chosen and all 

the other process parameters remained the same (agitation speed at 150 rpm and air 

flow rate 25 mL/min). Fig 4.9 to 4.11 are the profiles of the glucose utilization, LA 

production and cell growth during batch fermentation at different pH (temperature at 

35 ℃, agitation speed at 150 rpm and air flow rate at 25 mL/min), respectively. 

Concentrations of glucose, LA and biomass were showed with fermentation time. 

Observed from Fig 4.9 to 4.12, the fermentation of pH 6.0 had the best glucose 

utilization, the highest productivity of LA and the highest growth rate of biomass at the 

exponential growth phase. In accordance with Fig 4.2, 4.4 and 4.7, glucose utilization, 

biomass growth and LA production curves in Fig 4.9 to 4.11 showed trends similar to 

the previous batches in the study of temperature effects. The time required for each 

concentration to reach its peak value was basically the same. Compared with the batch 

fermentation of 35 ℃ and pH 6.0 in the study of temperature effects, the relative errors 

(Appendix J) of glucose consumption and maximum biomass growth between these 

two groups of experiments were 4.6 % and 3.8 %, respectively. The above analysis 

showed that the experimental results were repeatable. Therefore, the verification testing 
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was effective. It validates that the optimal temperature is 35 ℃ when pH is 6.0 during 

batch fermentation by L. pentosus from glucose (agitation speed at 150 rpm, and air 

flow rate at 25 mL/min). 

 

pH 5 6 7 8 

G (%) 25.33 0.12 5.82 33.65 

Figure 4.9 Glucose utilization profiles during batch fermentation at different pH (35 ℃, agitation speed 

at 150 rpm, and air flow rate at 25 mL/min) with residual glucose concentration at the end point. 

G: residual glucose concentration, percentage of initial glucose concentration.   
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pH 5 6 7 8 

B (g/L) 3.93 3.40 3.64 2.64 

Figure 4.10 Biomass growth profiles during batch fermentation at different pH (35 ℃, agitation speed at 

150 rpm, and air flow rate at 25 mL/min) with biomass concentration at the end point. 

B: biomass concentration, gram per liter. 
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pH 5 6 7 8 

LA (g/L) 25.37 48.33 45.93 25.58 

Figure 4.11 LA production profiles during batch fermentation at different pH (temperature at 35 ℃, 

agitation speed at 150 rpm, and air flow rate at 25 mL/min) with LA concentration at the end point. 

LA: lactic acid concentration, gram per liter. 

 

Figure 4.12 Influence of pH on the biomass growth, LA production and glucose utilization during batch 

fermentation (temperature at 35 ℃, agitation speed at 150 rpm, and air flow rate at 25 mL/min). 
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4.2 Unstructured kinetic modeling of LA batch fermentation from glucose 

The experimental data obtained from batch fermentation at 35℃ and pH 6.0 were 

used to determine the kinetic parameters. An unstructured mathematical model was 

developed, with the capability of predicting cell growth, glucose utilization and LA 

production during batch fermentation at 35℃ and pH 6.0 from glucose by L.pentosus. 

4.2.1 Mathematical model 

During mathematical modeling, the following assumptions were made: 

1. The batch reactor was well-mixed and the concentration in the reactor was 

consistent. 

2. Carbon source and nitrogen source were the only two nutrients that limited cell 

growth. 

Mass balance of the cell biomass in the batch reactor leads to: 

0 − 0 + 𝑟𝑋𝑉 =
𝑑(𝑋𝑉)

𝑑𝑡
 

where 𝑟𝑋 is the cell biomass growth rate, g/(L•h); 𝑋 is the cell biomass concentration, 

g/L; 𝑡 is the fermentation time; 𝑉 is the reactor volume, L. 

Mass balance of the limiting substrate in the batch reactor leads to: 

0 − 0 + 𝑟𝑆𝑉 =
𝑑(𝑆𝑉)

𝑑𝑡
 

where 𝑟𝑆 is the substrate reaction rate, g/(L•h). 

Mass balance of the product in the batch reactor leads to: 

0 − 0 + 𝑟𝑃𝑉 =
𝑑(𝑃𝑉)

𝑑𝑡
 

where 𝑟𝑃 is the substrate reaction rate, g/(L•h). 

(4.1) 

(4.2) 

(4.3) 
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 Rate law for biomass (Juliastuti et al., 2003) is usually expressed as: 

𝑟𝑋 = 𝜇𝑛𝑒𝑡𝑋 = (𝜇𝐺 − 𝑘𝑑)𝑋 

where 𝜇𝑛𝑒𝑡 is the net specific rate of cell biomass, h
-1; 𝜇𝐺 is the specific growth rate 

of biomass, h-1; 𝑘𝑑 is the specific death rate of biomass, h
-1. 

  LA production processes traditionally suffer from end-product inhibition 

which limits not only microbial metabolism but also product formation (Axelsson, 

1993). Although the pH of the fermentation broth in this study was maintained at 6.0 

by automatic addition of 5M NaOH. The inhibition mechanism of LA is probably 

related to the solubility of the undissociated LA within the cytoplasmic membrane and 

the insolubility of dissociated lactate, which causes acidification of cytoplasm and 

failure of proton motive forces. It eventually influences the transmembrane pH gradient 

and decreases the amount of energy available for cell growth (Gonçalves, Ramos, 

Almeida, Xavier, & Carrondo, 1997). Therefore, the effects of end product inhibition 

must be taken into account in the kinetic modeling, as well as substrate limitation and 

growth conditions. As a result, for extracellular product formation, the Monod equation 

(Monod, 1949) is modified to show the end product inhibition: 

𝜇𝑃 =
𝑟𝑃

𝑋
=

𝜇𝑃𝑚𝑎𝑥𝑆

(𝐾𝑃𝑆 + 𝑆)(1 +
𝑃

𝐾𝑃
)
 

where 𝜇𝑃  is the specific formation rate of product, h
-1; 𝜇𝑃𝑚𝑎𝑥  is the maximum 

produuction formation rate, h-1; 𝐾𝑃𝑆 is the saturation constant, g/L; 𝐾𝑃 is the product 

inhibition constant, g/L.  

(4.4) 

(4.5) 
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 Similarly, the Monod equation of cell biomass growth is modified as: 

𝜇𝑆 =
𝜇𝑚𝑎𝑥𝑆

𝐾𝑆 + 𝑆
 

1

1 +
𝑃

𝐾𝑃

  

where 𝜇𝑆  is the specific growth rate of cell biomass on substrate; 𝜇𝑚𝑎𝑥  is the 

maximum growth rate of cell biomass, h-1; 𝐾𝑆 is the saturation constant, g/L. 

During batch growth, there are limiting nutrients for the cells to utilize and cell 

growth stops when running out of either carbon source or nitrogen source (Koller, 2018). 

In this study, the fermentation broth contained an abundant amount of carbon source, 

which was glucose, but a limited amount of nitrogen source. Therefore, cell 

concentration reached its maximum packing density when the limiting nitrogen source 

was completely utilized. As a result, the effect of limiting nitrogen source can be added 

to Eq. (4.6) as: 

𝜇𝐺 =
𝜇𝑚𝑎𝑥𝑆

𝐾𝑆 + 𝑆
 

1

1 +
𝑃

𝐾𝑃

 
𝑁

𝐾𝑁 + 𝑁
 

𝜇𝑁 =
𝑟𝑁

𝑋
= −

𝜇𝑁𝑚𝑎𝑥𝑆

𝐾𝑆 + 𝑆
 

1

1 +
𝑃

𝐾𝑃

 
𝑁

𝐾𝑁 + 𝑁
 

where 𝑁 is the nitrogen concentration, g/L; 𝐾𝑁 is the saturation constant, g/L; 𝜇𝑁 is 

the specific consumption rate of nitrogen source, h-1; 𝜇𝑃𝑚𝑎𝑥 is the maximum nitrogen 

source consumption rate, h-1. 

During the batch fermentation process in this study, the limiting substrate 

consumption is directly related to the cell biomass growth and product formation: 

𝑟𝑆 = −
𝜇𝑆𝑋

𝛾𝐹𝑋/𝑆
−

𝜇𝑃𝑋

𝛾𝐹𝑃/𝑆
 

where 𝛾𝐹𝑋/𝑆  is the cell biomass growth yield factor, g/g; 𝛾𝐹𝑃/𝑆  is the product 

(4.9) 

(4.6) 

(4.7) 

(4.8) 
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formation yield factor, g/g. 

Since the volume is nearly constant during the batch fermentation, Eq. (4.1), (4.2), 

and (4.3) can be rearranged to give: 

𝑑𝑋

𝑑𝑡
= 𝑟𝑋 = (

𝜇𝑚𝑎𝑥𝑆

𝐾𝑆 + 𝑆
 

1

1 +
𝑃

𝐾𝑃

 
𝑁

𝐾𝑁 + 𝑁
− 𝑘𝑑)𝑋 

𝑑𝑃

𝑑𝑡
= 𝑟𝑃 =

𝜇𝑃𝑚𝑎𝑥𝑆

(𝐾𝑃𝑆 + 𝑆)(1 +
𝑃

𝐾𝑃
)

 𝑋 

𝑑𝑆

𝑑𝑡
= 𝑟𝑆 = −

𝜇𝑚𝑎𝑥𝑆

𝐾𝑆 + 𝑆
 

1

1 +
𝑃

𝐾𝑃

 
𝑋

𝛾𝐹𝑋/𝑆
−

𝜇𝑃𝑚𝑎𝑥𝑆

(𝐾𝑃𝑆 + 𝑆)(1 +
𝑃

𝐾𝑃
)

 
𝑋

𝛾𝐹𝑃/𝑆
 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁 = −

𝜇𝑁𝑚𝑎𝑥𝑆

𝐾𝑆 + 𝑆
 

1

1 +
𝑃

𝐾𝑃

 
𝑁

𝐾𝑁 + 𝑁
 𝑋 

 

4.2.2 Estimation of kinetic parameters 

The Monod equation of cell growth is only applicable for balanced growth, at 

which pseudosteady state inside the cells has been reached (Galban & Locke, 1999). 

Thus, it is not applicable in the lag phase. To determine when to use the Monod equation, 

a straight line (dashed line) was drawn on the biomass growth curves as shown in Fig 

4.13. It was observed that there was an apparent lag time 𝑡𝐿   2 h and the cell 

concentration changed with time and became exponential after 𝑡  3 h. Therefore, the 

data was correlated starting from 𝑡  3 h. 

(4.11) 

(4.10) 

(4.12) 

(4.13) 
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Figure 4.13 Profiles of glucose utilization, biomass growth and LA production during batch fermentation 

from glucose by L. pentosus at 35 ℃ and pH 6.0 (agitation speed at 150 rpm, and air flow rate at 25 

mL/min). A dashed line was drawn as a guide on the cell biomass data. 

Using the OdexLims in Excel to solve the four differential equations (Appendix K), 

while fitting with the experimental data, the kinetic parameters were obtained as: 

𝜇𝑚𝑎𝑥  12.266 h
-1, 𝜇𝑃𝑚𝑎𝑥  9.2077 h

-1,  𝜇𝑁𝑚𝑎𝑥  3.1730 h
-1, 𝑘𝑑  0.0062904 h

-1, 

𝐾𝑆  166.97 g/L, 𝐾𝑃𝑆  0.015488 g/L, 𝐾𝑃  0.17865 g/L, 𝐾𝑁  0.40135 g/L, 𝛾𝐹𝑋/𝑆   

0.17865 g/g, 𝛾𝐹𝑃/𝑆 0.98360 g/g. With all the kinetic parameters known, the growth 

behavior of the cells in the batch fermentation culture could be calculated or predicted. 

For organisms growing aerobically on glucose, the cell biomass growth yield factor 

𝛾𝐹𝑋/𝑆 is typically 0.4-0.6g/g for most yeast and bacteria (Liu, 2016). As mentioned 

above, 𝛾𝐹𝑋/𝑆 was estimated to be 0.1862 g/g, quite a lot lower than 0.4 g/g, which 

indicated that the limiting nitrogen source contained in the fermentation broth had 

successfully lowered cell growth, and accordingly left a larger portion of carbon source 
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for product formation. 

4.2.3 Experimental data fitting 

 

 G B LA 

R2 0.9835 0.9906 0.9932 

 

Figure 4.14 Curve fitting of the predicted data to experimental data for glucose utilization, biomass 

growth and LA production for batch fermentation from glucose by L. pentosus at 35℃ and pH 6.0 

(agitation speed at 150 rpm, and air flow rate at 25 mL/min).  

Expt: experiment data; Model: predicted data; G: glucose; B, biomass; LA, lactic acid. 

From Fig 4.14, it could be observed that the developed model presented good 

agreement on cell growth, glucose utilization and LA production with the experimental 

results. The closeness between predicted and experimental data was further 

demonstrated by computing the squared Pearson correlation coefficient (Appendix L), 
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R2 (0.9835-0.9932), which indicated that the developed model was able to predict the 

experimental results with high accuracy.  
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CHAPTER 5: CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

In this study, temperature effects during batch and continuous LA production were 

investigated. The main findings of this research included: (1) temperature effects on 

glucose utilization, cell growth and LA production by L. pentosus from glucose via 

batch fermentation process and (2) development of an unstructured kinetic model to 

describe batch LA production from glucose. 

5.1.1 LA batch fermentation by L. pentosus from glucose 

LA production by L. pentosus from glucose only follows EMP pathway because of 

the absence of measurable acetic acid and ethanol production. Rapid glucose utilization 

and LA production happen in the first 35 hours, and biomass growth tend to be steady 

after 12 hours. 

5.1.2 Temperature effects on LA batch fermentation by L. pentosus from glucose 

In batch fermentation of pH 6.0, agitation speed at 150 rpm and air flow rate at 25 

mL/min, lower temperature leads to better cell growth while higher temperature results 

in more efficient glucose utilization and more productive LA generation. As 

temperature increases from 20 ℃ to 35 ℃, glucose is utilized faster and more fully, 

contributing to a shorter lag phase in cell growth and producing more LA with a higher 

productivity and a higher product yield. However, when temperature increases from 

35 ℃ to 45 ℃, glucose utilization slows down and more glucose remains unconsumed, 
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extending the cell growth lag phase and generating less LA with lower productivities 

and product yields. In addition, the obtained biomass concentration and the 

fermentation time required to reach steady state decrease with temperature from 20 ℃ 

to 45 ℃. 

5.1.3 Optimal temperature of LA batch fermentation by L. pentosus from glucose  

The optimal temperature documented is 35 ℃ when pH is 6.0 during batch 

fermentation by L. pentosus from glucose (agitation speed at 150 rpm, and air flow rate 

at 25 mL/min). 

5.1.4 Unstructured kinetic modeling of LA batch fermentation by L. pentosus 

from glucose  

An unstructured kinetic model was developed to describe batch LA production at 

35 ℃ and pH 6.0 from glucose by L. pentosus, when cell growth, glucose utilization, 

LA production, end product inhibition and limiting nitrogen source for cell growth were 

taken into account.  

Kinetic parameters were determined by using Visual Basic Application (VBA) 

routine ODEXLIMS to solve a set of ordinary differential equations: 

𝑑𝑋

𝑑𝑡
= 𝑟𝑋 = (

𝜇𝑚𝑎𝑥𝑆

𝐾𝑆 + 𝑆
 

1

1 +
𝑃

𝐾𝑃

 
𝑁

𝐾𝑁 + 𝑁
− 𝑘𝑑)𝑋 

𝑑𝑃

𝑑𝑡
= 𝑟𝑃 =

𝜇𝑃𝑚𝑎𝑥𝑆

(𝐾𝑃𝑆 + 𝑆)(1 +
𝑃

𝐾𝑃
)

 𝑋 

𝑑𝑆

𝑑𝑡
= 𝑟𝑆 = −

𝜇𝑚𝑎𝑥𝑆

𝐾𝑆 + 𝑆
 

1

1 +
𝑃

𝐾𝑃

 
𝑋

𝛾𝐹𝑋/𝑆
−

𝜇𝑃𝑚𝑎𝑥𝑆

(𝐾𝑃𝑆 + 𝑆)(1 +
𝑃

𝐾𝑃
)

 
𝑋

𝛾𝐹𝑃/𝑆
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𝑑𝑁

𝑑𝑡
= 𝑟𝑁 = −

𝜇𝑁𝑚𝑎𝑥𝑆

𝐾𝑆 + 𝑆
 

1

1 +
𝑃

𝐾𝑃

 
𝑁

𝐾𝑁 + 𝑁
 𝑋 

and Excel solver to minimize the variance between experimental and predicted values. 

Kinetic parameters were estimated as: the maximum biomass growth rate 

𝜇𝑚𝑎𝑥  12.266 h
-1, the maximum product formation rate 𝜇𝑃𝑚𝑎𝑥  9.2077 h

-1, the 

maximum nitrogen source utilization rate 𝜇𝑁𝑚𝑎𝑥 3.1730 h
-1, the specific cell death rate 

𝑘𝑑  0.0062904 h
-1, the saturation constants 𝐾𝑆  166.97 g/L 𝐾𝑃𝑆  0.015488 g/L 

𝐾𝑃 1.0928 g/L 𝐾𝑁 0.40135 g/L, the cell biomass growth yield factor 𝛾𝐹𝑋/𝑆  0.17865 

g/g, the product formation yield factor  𝛾𝐹𝑃/𝑆 0.98360 g/g.  

The developed model was excellent in predicting biomass growth, product 

formation and substrate utilization with the squared Pearson correlation coefficients (R2) 

of 0.9835, 0.9906 and 0.9932, respectively. 

5.2 Recommendations for future work 

5.2.1 Continuous fermentation 

 

Figure 5.1 Experimental flow chart of continuous fermentation. 

The temperature effects found in this study could be usefully tested in a continuous 
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fermentation process, based on results from the batch fermentation at 30 ℃, the optimal 

temperature for cell growth obtained in this study and then moving forward to apply in 

continuous fermentation at 35 ℃, the optimal temperature for glucose utilization and 

LA production obtained in this batch study. The batch data implies that best continuous 

results are likely to be found in the temperatures between 30 and 35 ℃. Used to take 

best advantage of the batch data, glucose is the only nutrient fed and cell recirculation.  

 

Figure 5.2 Schematic diagram of continuous fermentation system for reference. 

5.2.2 Kinetic model improvement 

The developed unstructured LA kinetic model could further be improved by 

including the effects of temperature and pH on kinetic parameters. It is also 

recommended to develop a structured model for batch LA production from glucose and 

compare the obtained kinetic parameters to the unstructured ones. 
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5.2.3 Additional screening of fermentation conditions by Plackett- Burman 

design 

To further improve LA production via fermentation processes, it would be 

necessary to study the rest of the parameters affecting the fermentation process, such as 

carbon source, nitrogen source, especially pH effects on glucose utilization, biomass 

growth and LA production.  

Table 5.1 Assigned parameters of variables at different levels in Plackett-Burman design for LA 

production by batch fermentation. 

 Variables Lower Level (-) Higher Level (+) 

1 X1 Temperature 30 ℃ 40 ℃ 

2 X2 pH 6 7.5 

3 X3 Carbon Source 60 g/L Glucose 30 g/L Glucose+ 30 g/L Xylose 

4 X4 Nitrogen Source 10 g/L Yeast Extract 5 g/L Yeast Extract + 5 g/L Peptone 

5 X5 Inoculum Size 2 mL 5 mL 

6 X6 Working Volume 500 mL 800 mL 

7 X7 Air Arobic 25 mL/min 

Table 5.2 Plackett-Burman design for 7 variables with coded values. 

Run X1 X2 X3 X4 X5 X6 X7 

1 + + + + + + + 

2 + + - - - - + 

3 + - + + - - - 

4 + - - - + + - 

5 - + + - + - - 

6 - + - + - + - 

7 - - + - - + + 

8 - - - + + - + 
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APPENDICES 

Appendix A: Standard curves for NMR spectroscopy and OD scanner. 

 

(a) lactic acid concentration versus integrated area from NMR spectrum  

  

(b) glucose concentration versus integrated area from NMR spectrum 

  

(c) L. pentosus biomass concentration versus E.coli OD value from OD scaner 
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Appendix B: Profiles of glucose utilization, biomass growth and LA production during 

batch fermentation at different temperatures (pH 6.0, agitation speed at 150 rpm, and 

air flow rate at 25 mL/min). 

   

(a) profile of batch fermentation at 20 ℃        (b) profile of batch fermentation at 25 ℃ 

 

   

(c) profile of batch fermentation at 28 ℃        (d) profile of batch fermentation at 30 ℃  

 

   

(e) profile of batch fermentation at 35 ℃        (f) profile of batch fermentation at 37 ℃ 
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(g) profile of batch fermentation at 40 ℃        (h) profile of batch fermentation at 42 ℃ 

 

 

(i) profile of batch fermentation at 45 ℃ 

 

Appendix C: Profiles of glucose utilization, biomass growth and LA production during 

batch fermentation at different pH (35 ℃, agitation speed at 150 rpm, and air flow rate 

at 25 mL/min). 

   

(a) profile of batch fermentation at pH 5.0        (b) profile of batch fermentation at pH 6.0 
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(c) profile of batch fermentation at pH 7.0        (d) profile of batch fermentation at pH 8.0 

 

Appendix D: Influence of temperature on the glucose utilization during batch 

fermentation (pH 6.0, agitation speed at 150 rpm, and air flow rate at 25 mL/min). 

T (℃) 20 25 28 30 35 37 40 42 45 

G (%) 32.09 6.51 1.70 0.35 0.17 1.69 0.75 19.48 44.00 

𝜇𝑆𝐸,𝑚𝑎𝑥 (h-1) 1.71  2.40 3.85 3.93 4.24  4.02 3.74 2.05 1.62 

T: temperature, degrees Celsius; G: residual glucose concentration, percentage of initial 

glucose concentration; 𝜇𝑆𝐸,𝑚𝑎𝑥 : maximum glucose consumption rate obtained from 

experiment, per hour. 

 

Appendix E: Influence of temperature on the biomass growth during batch fermentation 

(pH 6.0, agitation speed at 150 rpm, and air flow rate at 25 mL/min). 

T (℃) 20 25 28 30 35 37 40 42 45 

B (g/L) 3.94 3.92 3.65 3.64 3.13 3.02 2.91 2.88 1.42 

𝜇𝐺𝐸,𝑚𝑎𝑥  (g/(L•h)) 0.26 0.26 0.39 0.45 0.49 0.47 0.47 0.37 0.06 

𝑡𝐿 (h) 7.5 4 3 2 2 3 3 4 5 

𝑡𝑆 (h) 28 22 16 16 14 12 12 12 32 



63 

 

T: temperature, degrees Celsius; B: biomass concentration, gram per liter; 𝜇𝐺𝐸,𝑚𝑎𝑥 

maximum biomass growth rate obtained from experiment, per hour; 𝑡𝐿, time period of 

lag phase, hour; 𝑡𝑆, time required to reach stationary phase, hour. 

 

Appendix F: Influence of temperature on the LA production during batch fermentation 

(pH 6.0, agitation speed at 150 rpm, and air flow rate at 25 mL/min). 

T (℃) 20 25 28 30 35 37 40 42 45 

LA (g/L) 28.09 40.86 47.30 48.05 48.75 44.66 46.01 34.50 23.69 

𝜇𝑃𝐸,𝑚𝑎𝑥 (h-1) 1.13  1.81 2.20 2.75 3.15  2.41 2.61 1.44 1.35 

𝑡𝑠 (h) 48 48 48 42 36 36 32 28 22 

T: temperature, degrees Celsius; LA: lactic acid concentration, gram per liter; 𝜇𝑃𝐸,𝑚𝑎𝑥: 

maximum LA formation rate obtained from experiment, per hour; 𝑡𝑠, time required to 

reach steady state, hour. 

 

Appendix G: Influence of pH on the biomass growth, LA production and glucose 

utilization during batch fermentation (35 ℃, agitation speed at 150 rpm, and air flow 

rate at 25 mL/min). 

pH B 

g/L 

LA 

g/L 

G 

% 

YP/S 

g/g 

QV 

 g/(g•L•h) 

5 3.93 25.37 39.67 0.6588 0.53 

6 3.96 48.27 0.13 0.7158 1.01 

7 3.79 45.93 9.04 0.7842 0.96 

8 2.64 25.58 50.12 0.7639 0.53 

B: biomass concentration, gram per liter; LA: lactic acid concentration, gram per liter; 
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G: residual glucose concentration, percentage of initial glucose concentration; YP/S: 

product yield, gram LA per gram consumed glucose; QV: volumetric LA productivity, 

gram LA per gram consumed glucose per liter per hour. 

 

Appendix I: Influence of temperature on the biomass growth, LA production and 

glucose utilization during batch fermentation (pH 6.0, agitation speed at 150 rpm, and 

air flow rate at 25 mL/min). 

T B  

g/L 

LA 

g/L 

G 

% 

YP/S 

g/g 

QV 

 g/(g•L•h) 

20℃ 4.39 28.09 32.09 0.6138 0.59 

25 ℃ 4.39 40.86 6.51 0.6618 0.85 

28 ℃ 4.20 47.30 1.70 0.7139 0.99 

30 ℃ 4.29 48.05 0.35 0.7332 1.00 

35 ℃ 3.93 48.75 0.17 0.7308 1.02 

37 ℃ 3.36 44.66 1.69 0.7072 0.93 

40 ℃ 3.21 46.01 0.75 0.6945 0.96 

42 ℃ 3.11 34.50 19.48 0.6448 0.72 

45 ℃ 1.53 23.69 44.00 0.6446 0.49 

T: temperature, degrees Celsius; B: biomass concentration, gram per liter; LA: lactic 

acid concentration, gram per liter; G: residual glucose concentration, percentage of 

initial glucose concentration; YP/S: product yield, gram LA per gram consumed glucose; 

QV: volumetric LA productivity, gram LA per gram consumed glucose per liter per 

hour.  

 

Appendix J: Relative error is a measure of the uncertainty of measurement compared 

to the size of the measurement (Taylor, 1997). The relative error is defined by 
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where  is the absolute error,  is the measured or inferred value,  is the true 

value. In this work,  is the experimental data obtained in the batches of the study of 

temperature effects and  is the experimental data gathered verification experiment 

of pH effects. 

 

Appendix K: Visual basic module showing the integral kernels and the excel work sheet 

for estimation of kinetic parameters in this study. 

Let y(1)   𝑋, y(2)   𝑆, y(3)   𝑃, y(4)  𝑁, 

c(1)  𝜇𝑚𝑎𝑥, c(2)  𝜇𝑃𝑚𝑎𝑥, c(3)  𝜇𝑁𝑚𝑎𝑥, c(4)  𝑘𝑑,c(5)  𝐾𝑆, c(6)  𝐾𝑃𝑆, c(7)  𝐾𝑃,  

c(8)  𝐾𝑁, c(9)  𝛾𝐹𝑋/𝑆, c(10)  𝛾𝐹𝑃/𝑆, 

and the independent variable 𝑥 = 𝑡. 

 

 

 

x 0x x

x
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Appendix L: In statistics, the Pearson correlation coefficient is a measure of the linear 

correlation between two variables 𝑋 and 𝑌. It has a value between +1 and −1, where 

1 is total positive linear correlation, 0 is no linear correlation, and −1 is total negative 

linear correlation. Pearson correlation coefficient is the covariance of the two variables 

divided by the product of their standard deviations (Lee & Nicewander, 1988). Given a 

pair of random variables (𝑋, 𝑌), the formula for Pearson correlation coefficient 𝜌 is: 

𝜌𝑋,𝑌 =
cov (𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 

Where cov is the covariance, 𝜎𝑋 is the standard deviation of 𝑋, 𝜎𝑌 is the standard 

deviation of 𝑌. 

 In this work, 𝑋 is the experimental data and 𝑌 is the predicted data. 𝜌𝑋,𝑌 is used 

to show the closeness of the experimental and predicted date for glucose utilization, LA 

production and biomass growth. 
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